next up previous contents
Next: Regionalized Variables Up: Some Theoretical Distributions Previous: The Normal Distribution N()   Contents


The Lognormal Distribution

Applied work shows that values of ore samples do usually not follow the normal distribution, however, the logarithm of the values might much better be approximated by a normal distribution. This can be observed especially frequently in ore deposits with low grades, or when investigating geochemical data (trace elements). The distribution is right skewed (skewness is positive), and a typical histogram of samples from a gold mine is presented in Figure 2.9.

Figure 2.9: Histogram of Samples from a Gold Mine.
/begin{figure}/begin{center}
/mbox
{/beginpicture
/setcoordinatesystem units <1....
...13
5.75 0.22
6.0 0.22
6.25 0.13
6.5 0.13 /
/endpicture}
/end{center}/end{figure}

The density function $f$ is defined by

/begin{displaymath}f(z)=/frac{1}{/sqrt{2 /pi} /beta z} e ^{- /frac{(ln z- /mu)^2}{2
/beta^{2}}}, /; z > 0/ / / ./end{displaymath}

The transformed variable $Y /; = /; ln Z$ is normally distributed as $N(/mu,/beta^{2})$. After the transformation $y_{i}=ln /; z_{i}$ of the data, the parameters $/mu $ and $/beta$ may be estimated as in case of the normal distribution, namely as

/begin{displaymath}/hat{/mu}=/bar{y}=/frac{1}{n} /sum y_{i},/; /; /; /hat{/beta}=
/sqrt{/frac{1}{n-1} /sum (y_{i}-/hat{/mu})^{2}}/ / / ./end{displaymath}

Using the original data, $/hat{/mu}$ can also be found via the geometric mean:

/begin{displaymath}e^{/hat{/mu}}=(/prod_{i=1}^{n} e ^{y_i})^/frac{1}{n}=(/prod_{i=1}^{n}
z_{i})^/frac{1}{n}/end{displaymath}

or

/begin{displaymath}/hat{/mu}=/frac{1}{n}ln(/prod_{i=1}^{n} /; z_{i})/ / / ./end{displaymath}

An equivalent estimator of $e^/mu$ also is the median of the untransformed data.

Example 2.5: In the following two tables (Koch and Link, 1970-71[13]) we see frequencies of grades of samples of gold. One can immediately see the difficulties for the estimation of $/mu $.

Frequency Distribution of 1536 Gold Samples (in dwt) from the City Deep Mine, South Africa.

Interval Cumulative Rel. Cumulative
[dwt/short ton] Frequ. Frequ. Frequ. [%]
0 -5 910 910 59.24
5 -10 208 1118 72.79
10 -15 118 1236 80.47
15 -20 80 1316 85.68
20 -25 54 1370 89.19
25 -30 33 1403 91.34
30 -35 24 1427 92.90
35 -40 13 1440 93.75
40 -45 14 1454 94.66
45 -50 8 1462 95.18
50 -55 8 1470 95.71
55 -60 10 1480 96.36
60 -65 4 1484 96.62
65 -70 4 1488 96.88
70 -75 3 1491 97.07
75 -80 1 1492 97.14
80 -85 1 1493 97.20
85 -90 4 1497 97.46
90 -95 1 1498 97.53
95 -100 7 1505 97.99
100 -105 3 1508 98.18
105 -110 2 1510 98.31
110 -115 3 1513 98.51
120 -125 2 1515 98.63
125 -130 1 1516 98.70
130 -135 5 1521 99.03
145 -150 1 1522 99.09
150 -155 1 1523 99.16
155 -160 3 1526 99.35
180 -185 1 1527 99.42
190 -195 2 1529 99.56
205 -210 2 1531 99.68
215 -220 1 1532 99.72
245 -250 1 1533 99.81
305 -310 1 1534 99.87
420 -425 1 1535 99.93
620 -625 1 1536 100.00

Frequency Distributions of Means of Samples of Different Size. The samples were selected randomly from a set of 900 gold samples from the Homestake Mine.

Interval Sample Size
[ppm Au] 1 5 25 100
0 -1 439 175 0 0
1 -2 120 121 3 0
2 -3 67 105 36 1
3 -4 44 88 82 5
4 -5 35 69 124 38
5 -6 26 66 131 149
6 -7 23 57 146 222
7 -8 14 40 114 201
8 -9 23 45 83 198
9 -10 14 35 73 98
10 -11 16 31 56 49
11 -12 13 16 38 22
12 -13 13 12 25 10
13 -14 13 23 34 5
14 -15 9 15 15 2
15 -16 10 19 15
16 -17 8 11 7
17 -18 7 5 5
18 -19 9 4 7
19 -20 1 1 1
20 -21 6 5 0
21 -22 7 7 4
22 -23 1 5 2
23 -24 6 7 0
24 -25 1 1 0
25 -26 3 4 0
26 -27 3 5 0
27 -28 4 1 0
28 -29 2 3 0
29 -30 6 6 1
30 -31 2 4
31 -32 6 1
32 -33 7 0
33 -34 1 1
34 -35 0 1
35 -49 14 7
50 -99 21 3
100 - 8


next up previous contents
Next: Regionalized Variables Up: Some Theoretical Distributions Previous: The Normal Distribution N()   Contents
Rudolf Dutter 2003-03-13