next up previous contents
Next: Some Theoretical Distributions Up: Characteristic Parameters of a Previous: Arithmetic Mean of Random   Contents


Illustrations and Examples

In this subsection we list some numerical examples, which are taken from the published literature, in order to shortly illustrate the introduced notions. The numerical tables should suggest the computing of exercises.

(i)
(David, 1977[5], S. 35): 10 values of ore samples (Fe) in % are given:


1 55.8
2 54.8
3 56.5
4 56.0
5 57.5
6 54.7
7 55.3
8 56.3
9 55.9
10 56.3

Find $/bar{z}, /; s$ and an approximate 95% confidence interval for the mean $m$.

Solution: $/bar{z}=55.91/% Fe, s=.835/% Fe$, 95% confidence interval = [55.4,56.4].

(ii)
(Koch and Link, 1970-71[13], S. 30): Frequency distribution of 224 phosphate samples in %.

Mean of Abs. Rel. Cum. Rel. Cum.
Interval Interval Frequ. Frequ. Frequ. Frequ.
$[/% P_{2}O_{5}]$ $c_{j}$ $h_{j}$ $f_{j}[/%]$ [%] $h_{j}c_{j}$ $h_{j}c_{j}^{2}$
14-16 15 1 0.45 1 0.45 15 225
16-18 17 1 0.45 2 0.90 17 289
18-20 19 8 3.57 10 4.47 152 2,888
20-22 21 21 9.37 31 13.84 441 9,261
22-24 23 44 19.64 75 33.48 1,012 23,276
24-26 25 54 24.12 129 57.60 1,350 33,750
26-28 27 56 25.00 185 82.60 1,512 40,824
28-30 29 30 13.39 215 95.99 870 25,230
30-32 31 7 3.12 222 99.11 217 6,727
32-34 33 2 0.89 224 100.00 66 2,178


units <1.0cm,1.0cm> x from 0 to 6.0, y from 0.0 to 6.0 right ticks in long withvalues / at 1 2 3 4 5 / /

top ticks in long withvalues / at .4 1.8 3.2 4.6 / /

left label Frequ-encies$h_{j}$ ticks in long withvalues 0 10 20 30 40 50 60 / at 0 1 2 3 4 5 6 / /

bottom label Analyses ( % $P_{2}O_{5}$ ) ticks length <0cm> withvalues 15 20 25 30 35 / at .4 1.8 3.2 4.6 6.0 / /

span <0.07cm> .12 0.0 .68 0.1 1.24 0.1 1.8 0.8 2.36 2.1 2.92 4.4 3.48 5.4 4.04 5.6 4.6 3.0 5.16 0.75 5.72 0.2 /

Computations:
$m /simeq /bar{z}= /sum h_{j}c_{j}//sum h_{j}$
$/sum h_{j}c_{j}=5652$
$/sum h_{j}=224$
$/bar{z}=25.23$
$s^{2}=/frac{SS}{/sum h_{j}-1}=/frac{/sum hc^{2}-(/sum hc)^{2}/ /sum h}{/sum
h-1}$
$/sum hc^{2}=144.648$
$(/sum hc)^{2}=31.945.104$
$(/sum hc)^{2}/n=142.612$
SS = 2.036
$s^{2}=9.13$
s = 3.02
v = 0.119 .


(iii)
(David, 1977[5]):
units <0.9cm,0.9cm> x from 0 to 7.0, y from 0.0 to 6.2 right / top / left / bottom / <0.2cm> [0.2,0.4] from 0.5 0.5 to 6.5 0.5 <0.2cm> [0.2,0.4] from 0.5 3.5 to 6.5 3.5 $50' /enspace /mbox{BLOCKS}$ at 4.5 5 $10' /enspace /mbox{SAMPLES}$ at 4.5 1.8 $0.0$ at 0.7 3.3 $0.30$ at 1.7 3.3 $0.60$ at 2.7 3.3 $0.90$ at 3.7 3.3 $1.20$ at 4.7 3.3 $/% /enspace Cu$ at 5.9 3.3 $0.0$ at 0.7 0.3 $0.30$ at 1.7 0.3 $0.60$ at 2.7 0.3 $0.90$ at 3.7 0.3 $1.20$ at 4.7 0.3 $/% /enspace Cu$ at 5.9 0.3 0.5 3.5 1.0 4.5 1.5 5.8 2.0 4.5 2.5 3.8 3.0 3.7 3.5 3.6 / 0.5 0.5 1.0 1.3 1.5 1.8 2.0 1.6 2.5 1.2 3.0 0.9 3.5 0.8 4.0 0.7 4.5 0.6 5.0 0.6 5.5 0.52 /

Histograms of grades of 10'-samples compared with 50'-blocks in a Porphyre Copper deposit.

units <1.0cm,1.0cm> x from 0.0 to 5.5, y from 0.0 to 3.9 <0.2cm> [0.2,0.4] from 5.1 0.0 to 5.5 0.0

left label F
r
e
q
e
n
c
y ticks short unlabeled at 0.29 0.58 0.87 1.46 1.75 2.04 2.63 2.92 3.21 / long withvalues 0 5 10 15 / at 0.0 1.17 2.34 3.51 / / bottom ticks length <0.0cm> withvalues 0 200 400 600 800 1000 / at 0 1 2 3 4 5 / /
0.00 0.00 0.25 1.20 0.50 3.30 0.75 3.40 1.00 2.70 1.25 2.20 1.50 1.80 1.75 1.50 2.00 1.10 2.25 0.90 2.50 0.70 2.75 0.58 3.00 0.50 3.25 0.45 3.50 0.30 3.75 0.25 4.00 0.20 4.25 0.17 4.50 0.14 4.75 0.12 5.00 0.10 /

<0.15cm,0.1cm> 1.7 0.0 1.7 2.3 /

0.5mm 0.00 0.00 0.10 0.40 0.10 1.05 0.20 2.30 0.30 3.00 0.41 3.45 0.60 3.40 0.90 2.70 1.10 2.20 2.00 1.10 2.75 0.50 3.75 0.25 5.50 0.10 /



Histogram of 28.334 gold samples (inch.dwt) in mine A of Witwatersrand.
units <1.0cm,1.0cm> x from 0.0 to 4.2, y from 0.0 to 4.5 <0.2cm> [0.2,0.4] from 0.0 4.1 to 0.0 4.5 left label A
b
s
.

f
r
e
q
u
e
n
c
y ticks short withvalues 50 100 150 200 250 300 350 400 / at 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 / / bottom ticks short withvalues 20 25 30 35 40 45 50 / at 0.05 0.7 1.35 2.0 2.65 3.30 3.95 / /

$/% /enspace Fe$ [0.1] at 4.8 0.0 0.13 0.0 0.26 0.05 0.39 0.10 0.52 0.02 0.65 0.20 0.78 0.20 0.91 0.25 1.04 0.30 1.17 0.55 1.30 0.80 1.43 1.30 1.56 1.90 1.69 2.60 1.82 3.00 1.95 3.25 2.08 3.60 2.21 3.80 2.34 3.80 2.47 4.00 2.60 3.95 2.73 3.60 2.86 2.95 2.99 2.10 3.12 1.50 3.25 1.20 3.38 0.80 3.51 0.55 3.64 0.30 3.77 0.20 3.90 0.10 4.03 0.02 /



Histogram of grade of magnetite of 4838 10'-samples.

units <1.0cm,1.0cm> x from 0.0 to 4.7, y from 0.0 to 5.0 left label R
e
l
a
t
i
v
e

f
r
e
q
u
e
n
c
y ticks short withvalues 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 / at 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 / /
bottom ticks length <0cm> withvalues Error / at 0.5 0.0 / /

1.0 0.0 1.1 1.2 1.2 1.05 1.3 1.4 1.45 0.9 1.5 1.35 1.65 0.8 1.9 4.45 1.95 3.95 2.1 3.95 2.15 5.0 2.3 5.2 2.5 3.5 2.6 3.4 2.7 1.4 2.9 1.4 3.0 1.6 3.1 0.85 3.2 0.9 3.25 0.6 3.5 0.7 3.6 0.1 3.75 0.1 3.8 0.0 /

0.5 0.0 1.0 0.5 1.6 1.5 1.9 4.0 2.0 5.0 2.15 5.1 2.3 5.0 2.5 4.0 2.7 2.0 2.8 1.5 3.0 1.0 3.4 0.5 4.2 0.0 /

units <1.0cm,1.0cm> x from 0.0 to 4.7, y from 0.0 to 5.0 left label R
e
l
a
t
i
v
e

f
r
e
q
u
e
n
c
y ticks short withvalues 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 / at 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 / /
bottom ticks length <0cm> withvalues Error / at 0.5 0.0 / /

0.4 0.0 0.45 0.05 0.6 0.0 0.75 0.1 0.85 0.0 0.9 0.0 0.95 0.6 1.1 0.25 1.22 0.22 1.3 1.3 1.4 1.05 1.5 2.2 1.65 2.1 1.8 3.15 1.95 3.2 2.0 4.2 2.13 4.6 2.25 3.6 2.35 3.8 2.48 3.6 2.6 2.7 2.7 2.8 2.9 1.7 3.0 0.6 3.1 0.6 3.2 1.1 3.3 0.6 3.45 0.5 3.55 0.05 3.88 0.0 4.0 0.3 4.1 0.0 4.2 0.1 4.3 0.1 /

0.6 0.0 1.0 0.5 1.2 1.0 1.3 1.3 1.5 1.4 1.8 3.1 1.98 4.1 2.1 4.25 2.22 4.1 2.85 1.7 3.5 0.3 3.8 0.15 4.2 0.0 /

Histograms of errors in two different prediction models of values for blocks of mining.



(iv)
(Koch and Link, 1970[13]):



units <.7cm,.7cm> x from 0 to 6, y from 0.0 to 6 <0.2cm> [0.15,0.3] from 2.3 5.5 to 2.8 5.0 <0.2cm> [0.15,0.3] from 4.2 4.5 to 3.5 4.2 left label R
e
l
a
t
i
v
e

f
r
e
q
u
e
n
c
i
e
s ticks long in withvalues 5 10 15 20 25 30 / at 1 2 3 4 5 6 / / bottom label Cu (log ppm) ticks long in withvalues $/bar{1}.75$ $/bar{1}.95$ .15 .35 .55 .75 / at 0.5 1.5 2.5 3.5 4.5 5.5 / / right ticks long in at 1 2 3 4 5 6 / / estimatedfrequencydistribution [lt] at 0.5 6.3 observedfrequencydistribution [lt] at 4 5.5
0.35 0.0 0.35 0.2 0.85 0.2 0.85 0.9 1.35 0.9 1.35 0.6 1.85 0.6 1.85 3.2 2.35 3.2 2.35 4.5 2.85 4.5 2.85 6.0 3.35 6.0 3.35 2.6 3.85 2.6 3.85 0.8 4.35 0.8 4.35 0.5 4.85 0.5 4.85 0.2 5.35 0.2 5.35 0 / 0.15 0.0 0.82 0.3 1.33 0.9 2.1 3.2 2.65 5 2.85 5.15 3.05 5 3.6 2.6 4.35 0.8 4.85 0.2 5.55 0.0 /





Histogram of 216 observations of free soluble copper in a background sediment in Zambia.

units <.7cm,.7cm> x from 0 to 6, y from 0.0 to 6 <0.2cm> [0.15,0.3] from 2.3 4.7 to 2.8 5.0 left label R
e
l
a
t
i
v
e

f
r
e
q
u
e
n
c
i
e
s ticks long in withvalues 5 10 15 20 25 / at 1 2 3 4 5 / / bottom label Cu (log ppm) ticks long in withvalues $/bar{1}$.75 $/bar{1}$.95 .15 .35 .55 .75 .95 / at 0.5 1.5 2.5 3.5 4.5 5.5 6.5 / / right ticks long in at 1 2 3 4 5 / / estimatedfrequencydistributionof the background [lt] at 0.5 5.5 2 standarddeviations at 4.5 4.2 3 standarddeviations at 6 3 possibleanomalies at 4.8 5.5 probableanomalies at 6.2 6
<0.1cm,0.1cm> 4.35 0 4.35 5.2 / 5.15 0 5.15 5.2 / 0.35 0 0.35 0.1 0.85 0.1 0.85 0.5 1.35 0.5 1.35 0.4 1.85 0.4 1.85 2.9 2.35 2.9 2.35 3.5 2.85 3.5 2.85 5.1 3.35 5.1 3.35 3.4 3.85 3.4 3.85 1.2 4.35 1.2 4.35 1.5 4.85 1.5 4.85 1.1 5.35 1.1 5.35 0.35 5.85 0.35 5.85 0.3 6.35 0.3 6.35 0.0 / 4.35 5.1 5.15 5.1 / 4.75 5.1 4.75 5.2 / 5.15 5.0 6.80 5.0 / 5.95 5.0 5.95 5.6 / 0.15 0.0 0.85 0.3 1.35 0.9 2.1 3.2 2.65 5 2.85 5.15 3.05 5 3.35 4 3.85 1.8 4.15 1.2 4.6 0.5 4.85 0.2 5.1 0.1 5.35 0.05 6.05 0.0 /





Histogram of 825 observations of free soluble copper, ``background'' and ``abberant region'' (anomalies).

Table: Estimates of Grades of Metal of the Don Thomás-Ganges Based on Cumulative Analyses of 18 Adjacent Bore Holes.

Point Estimates of Grades of Metal

Hole Gold Silver Lead Copper Zinc
Nr. [ppm] [ppm] [%] [%] [%]
1 0.15 17 1.8 0.09 1.4
2 0.20 66 2.9 0.08 7.3
3 0.53 172 4.2 0.09 6.8
4 0.40 172 4.4 0.13 6.4
5 0.32 316 6.2 0.24 6.1
6 0.27 277 5.4 0.22 5.3
7 0.41 272 6.2 0.25 5.4
8 0.37 242 5.7 0.24 5.3
9 0.33 294 6.1 0.26 5.7
10 0.30 265 5.5 0.24 5.1
11 0.27 249 5.6 0.23 5.8
12 0.34 249 5.4 0.26 6.1
13 0.31 250 5.8 0.26 7.6
14 0.29 253 7.7 0.33 9.6
15 0.27 239 7.3 0.33 9.3
16 0.28 241 7.0 0.32 8.9
17 0.27 236 6.7 0.35 9.0
18 0.27 278 6.6 0.36 8.6



90%-confidence Intervals

Gold Silver Lead Copper Zinc
[ppm] [ppm] [%] [%] [ppm]
below above below above below above below above below above
0 0.48 0 377 0 10.2 0.02 0.14 0 44.4
0 1.51 0 492 0 8.4 0.05 0.13 0 16.9
0 1.04 0 355 2.0 6.9 0.04 0.22 0.5 12.2
0 0.80 0 649 2.0 10.4 0 0.50 2.0 10.2
0 0.65 8 546 1.7 9.1 0.02 0.42 1.7 8.9
0 0.84 52 491 2.8 9.5 0.07 0.42 2.4 8.3
0 0.74 49 436 2.7 8.7 0.10 0.39 2.8 7.8
0 0.66 101 487 3.4 8.8 0.13 0.39 3.4 7.9
0 0.59 87 443 2.9 8.1 0.12 0.36 2.9 7.4
0 0.54 87 411 3.2 7.9 0.13 0.34 3.5 8.1
0.06 0.61 103 396 3.3 7.5 0.15 0.37 3.9 8.3
0.06 0.56 116 384 3.7 7.9 0.16 0.36 4.3 10.9
0.05 0.52 130 377 3.9 11.6 0.18 0.48 4.9 14.3
0.05 0.49 123 356 3.7 11.0 0.19 0.47 4.9 13.7
0.08 0.49 132 349 3.6 10.5 0.18 0.45 4.7 13.1
0.07 0.46 134 338 3.4 10.0 0.21 0.49 5.1 12.9
0.09 0.46 158 398 3.5 9.7 0.23 0.49 4.9 12.3

(v)
102 Soil Samples on a Straight Line in a Distance of 50 m: Grades in ppm.


 
Table 2.7: Analyses of Soil Samples in ppm.
Sample Nr. Cu Co Ni Cr
1 28 30 285 281
2 25 35 336 259
3 27 47 436 252
4 25 41 448 237
5 21 37 408 170
6 25 46 472 208
7 11 27 385 84
8 16 32 463 89
9 11 27 398 84
10 17 35 415 217
11 27 44 432 292
12 26 40 406 297
13 25 30 307 230
14 26 27 254 202
15 21 22 180 151
16 20 21 163 142
17 21 23 171 138
18 18 19 140 145
19 18 18 130 128
20 18 21 119 142
21 17 17 108 117
22 16 17 97 117
23 16 17 97 89
24 16 16 93 74
25 17 15 103 86
26 13 17 98 85
27 18 17 102 95
28 15 12 100 77
29 16 15 96 82
30 16 15 87 80
31 18 17 129 99
32 18 19 133 98
33 19 18 131 99
34 19 18 127 95
35 18 15 117 101
36 17 15 110 77
37 18 15 105 68
38 14 14 91 53
39 16 14 87 55
40 15 14 75 49
41 15 14 82 94
42 14 13 81 45
43 15 14 73 45
44 14 10 71 36
45 17 17 88 37
46 17 12 90 46
47 16 14 80 44
48 15 13 80 38
49 13 11 74 40
50 15 12 63 33
51 15 13 76 35
Sample Nr. Cu Co Ni Cr
52 17 15 90 40
53 14 11 79 32
54 15 13 71 33
55 16 11 83 37
56 16 13 73 33
57 14 13 79 40
58 14 15 85 33
59 11 13 93 35
60 15 15 94 55
61 17 10 78 47
62 18 10 75 36
63 16 17 105 40
64 14 13 82 43
65 11 11 79 39
66 16 11 75 45
67 15 11 88 39
68 20 17 181 209
69 21 18 180 213
70 20 20 225 196
71 21 18 236 204
72 20 15 186 170
73 21 21 219 139
74 22 19 235 150
75 27 25 253 159
76 20 18 200 142
77 20 16 185 122
78 23 18 195 128
79 18 13 140 105
80 20 12 108 99
81 23 16 123 103
82 23 16 147 104
83 24 15 137 90
84 21 14 116 81
85 26 16 158 89
86 33 18 178 94
87 39 18 176 78
88 36 23 220 77
89 31 20 225 66
90 30 21 262 66
91 25 19 237 89
92 19 14 199 65
93 21 14 183 46
94 23 19 206 56
95 23 19 204 43
96 24 22 215 50
97 24 17 190 47
98 24 17 163 51
99 25 18 154 66
100 33 20 167 83
101 41 16 144 61
102 35 14 147 62


next up previous contents
Next: Some Theoretical Distributions Up: Characteristic Parameters of a Previous: Arithmetic Mean of Random   Contents
Rudolf Dutter 2003-03-13