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Appendix A

Calculus in Vector Spaces

We shall introduce some notions and notations from the calculus in vector spaces
that will be useful in this and in later chapters. A more general and rigorous
treatment can be found, e.g., in Dieudonné [2]. Our presentation is also much
influenced by Butcher [1, Chapter 1], whose purpose is rather similar to ours, but
his discussion is stricter. In these books the reader may find some proofs that we
omit here. There are, in the literature, several different notations for these matters,
e.g., multilinear mapping notation, tensor notation, or, in some cases, vector-

matrix notation. None of them seems to be perfect or easy to handle correctly
in some complex situations. This may be a reason to become familiar with several
notations.

A.1 Multilinear Mappings

Consider k + 1 vector spaces X1, X2, . . ., Xk, Y , and let xν ∈ Xν . A function
A: X1×X2 . . .×Xk → Y is called k-linear, if it is linear in each of its arguments xi

separately. For example, the expression (Px1)
T Qx2 + (Rx3)

T Sx4 defines a 4-linear
function, mapping or operator (provided that the constant matrices P , Q, R, S
have appropriate size). If k = 2 such a function is usually called bilinear, and
more generally one uses the term multilinear. , , , ,

Let Xν = Rnν , ν = 1, 2, . . . , k, Y = Rm, and let eji
be one of the basis vectors

of Xi. We use superscripts to denote coordinates in these spaces. Let ai
j1,j2,...,jk

denote the ith coordinate of A(ej1 , ej2 , . . . , ejk
). Then, because of the linearity, the

ith coordinate of A(x1, x2, . . . , xk) reads

n1
∑

j1=1

n2
∑

j2=1

. . .

nk
∑

jk=1

ai
j1,j2,...,jk

xj1
1 xj2

2 . . . xjk

k , xν ∈ Xν . (A.1.1)

We shall sometimes use the sum convention of tensor analysis; if an index occurs
both as a subscript and as a superscript, the product should be summed over
the range of this index, i.e., the ith coordinate of A(x1, x2, . . . , xk) reads shorter
ai

j1,j2,...,jk
xj1

1 xj2
2 . . . xjk

k . (Remember always that the superscripts are no exponents.)
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2 Appendix A. Calculus in Vector Spaces

Suppose that Xi = X , i = 1, 2, . . . , k. Then, the set of k-linear mappings
from Xk to Y is itself a linear space called Lk(X, Y ). For k = 1, we have the
space of linear functions, denoted more shortly by L(X, Y ). Linear functions can,
of course, also be described in vector-matrix notation; L(Rn,Rm) = Rm×n, the
set of matrices defined in Section 6.2. Matrix notation can also be used for each
coordinate of a bilinear function. These matrices are in general unsymmetric.

Norms of multilinear operators are defined analogously to subordinate matrix
norms. For example,

‖A(x1, x2, . . . , xk)‖∞ ≤ ‖A‖∞‖x1‖∞‖x2‖∞ . . . ‖xk‖∞,

where

‖A‖∞ =
m

max
i=1

n1
∑

j1=1

n2
∑

j2=1

. . .

nk
∑

jk=1

|ai
j1,j2,...,jk

|. (A.1.2)

A multilinear function A is called symmetric, if A(x1, x2, ..., xk) is symmetric with
respect to its arguments. In the cases mentioned above, where matrix notation can
be used, the matrix becomes symmetric, if the multilinear function is symmetric.

We next consider a function f : X → Y , not necessarily multilinear, where X
and Y are normed vector spaces. This function is continuous, at the point x0 ∈ X
if ‖f(x) − f(x0)‖ → 0 as x → x0, (i.e. as ‖x − x0‖ → 0). The function f satisfies
a Lipschitz condition in a domain D ⊂ X , if a constant α, called a Lipschitz

constant, can be chosen so that ‖f(x′) − f(x′′)‖ ≤ α‖x′ − x′′‖ for all points x′,
x′′ ∈ D.

The function f is differentiable at x0, in the sense of Fréchet, if there exists a
linear mapping A such that

‖f(x) − f(x0) − A(x − x0)‖ = o(‖x − x0‖), x → x0.

This linear mapping is called the Fréchet derivative of f at x0, and we write
A = f ′(x0) or A = fx(x0). Note that (the value of) f ′(x0) ∈ L(X, Y ). (Considered
as a function of x0, f ′(x0) is, of course, usually non-linear.)

These definitions apply also to infinite dimensional spaces. In the finite di-
mensional case, the Fréchet derivative is represented by the Jacobian matrix, the
elements of which are the partial derivatives ∂f i/∂xj, also written f i

j , in an estab-
lished notation, e.g., in tensor analysis; superscripts for coordinates and subscripts
for partial derivation. If vector-matrix notation is used, it is important to note that
the derivative g′ of a real-valued function g is a row vector, since

g(x) = g(x0) + g′(x0)(x − x0) + o(‖x − x0‖).

We suggest that the notation gradient, or grad g is used for the transpose of g′(x).
A differential reads, in the multilinear mapping notation, df = f ′dx or df =

fxdx. In tensor notation with the sum convention, it reads df i = f i
jdxj .

Many results from elementary calculus carry over to vector space calculus,
such as the rules for the differentiation of products. The proofs are in principle the
same.
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If z = f(x, y) where x ∈ Rk, y ∈ Rl, z ∈ Rm then we define partial derivatives

fx, fy with respect to the vectors x, y by the differential formula

df(x, y) = fxdx + fydy, ∀dx ∈ Rk, dy ∈ Rl. (A.1.3)

If x, y are functions of s ∈ Rn, then a general version of the chain rule reads

f ′(x(s), y(s)) = fxx′(s) + fyy
′(s). (A.1.4)

The extension to longer chains is straightforward. These equations can also be used
in infinite dimensional spaces.

Consider a function f :Rk → Rk, and consider the equation x = f(y). By

formal differentiation, dx = f ′(y)dy, and we obtain dy =
(

f ′(y)
)−1

dx, provided
that the Jacobian f ′(y) is non-singular. In Section 13.2.4, we shall see sufficient
conditions for the solvability of the equation x = f(y), so that it defines, in some

domain, a differentiable inverse function of f , such that y = g(x), g′(x) =
(

f ′(y)
)−1

.
Another important example: if f(x, y) = 0 then, by (A.1.4), fxdx + fydy =

0. If fy(x0, y0) is a non-singular matrix, then, by the implicit function theorem

(see Dieudonné [2, Section 10.2]) y becomes, under certain additional conditions,
a differentiable function of x in a neighborhood of (x0, y0), and we obtain dy =
−(fy)

−1fxdx, hence y′(x) = −(fy)
−1fx|y=y(x).

One can also show that

lim
ǫ→+0

f(x0 + ǫv) − f(x0)

ǫ
= f ′(x0)v.

There are, however, functions f , where such a directional derivative exists for any
v but, for some x0, is not a linear function of v. An important example is f(x) =
‖x‖∞, where x ∈ Rn. (Look at the case n = 2.) The name Gateaux derivative is
sometimes used in such cases, in order to distinguish it from the Fréchet derivative
f ′(x0) previously defined.

If f ′(x) is a differentiable function of x at the point x0, its derivative is denoted
by f ′′(x0). This is a linear function that maps X into the space L(X, Y ) that
contains f ′(x0), i.e., f ′′(x0) ∈ L(X, L(X, Y )). This space may be identified in
a natural way with the space L2(X, Y ) of bilinear mappings X2 → Y ; if A ∈
L(X, L(X, Y )) then the corresponding Ā ∈ L2(X, Y ) is defined by (Au)v = Ā(u, v)
for all u, v ∈ X ; in the future it is not necessary to distinguish between A and Ā.
So,

f ′′(x0)(u, v) ∈ Y, f ′′(x0)u ∈ L(X, Y ), f ′′(x0) ∈ L2(X, Y ).

It can be shown that f ′′(x0): X2 → Y , is a symmetric bilinear mapping, i.e.
f ′′(x0)(u, v) = f ′′(x0)(v, u). The second order partial derivatives are denoted
fxx, fxy, fyx, fyy. One can show that

fxy = fyx.

If X = Rn, Y = Rm, m > 1, f ′′(x0) reads fp
ij(x0) = fp

ji(x0) in tensor notation.
It is thus characterized by a three-dimensional array, which one rarely needs to store
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or write. Fortunately, most of the numerical work can be done on a lower level, e.g.,
with directional derivatives. For each fixed value of p we obtain a symmetric n× n
matrix, named the Hessian matrix H(x0); note that f ′′(x0)(u, v) = uT H(x0)v.
The Hessian can be looked upon as the derivative of the gradient. An element
of this Hessian is, in the multilinear mapping notation, the pth coordinate of the
vector f ′′(x0)(ei, ej).

We suggest that the vector-matrix notation is replaced by the multilinear
mapping formalism when handling derivatives of vector-valued functions of order
higher than one. The latter formalism has the further advantage that it can be used
also in infinite-dimensional spaces (see Dieudonné [2]). In finite dimensional spaces
the tensor notation with the summation convention is another alternative.

Similarly, higher derivatives are recursively defined. If f (k−1)(x) is differen-
tiable at x0, then its derivative at x0 is denoted f (k)(x0) and called the kth derivative
of f at x0. One can show that f (k)(x0) : Xk → Y is a symmetric k-linear mapping.
Taylor’s formula then reads, when a, u ∈ X , f : X → Y ,

f(a + u) = f(a) + f ′(a)u + 1
2f ′′(a)u2 + . . . +

1

k!
f (k)(a)uk + Rk+1, (A.1.5)

Rk+1 =

∫ 1

0

(1 − t)k

k!
f (k+1)(a + ut)dtuk+1;

it follows that

‖Rk+1‖ ≤ max
0≤t≤1

∥

∥

∥
f (k+1)(a + ut)

∥

∥

∥

‖u‖k+1

(k + 1)!
.

After some hesitation, we here use u2, uk, etc. as abbreviations for the lists of input
vectors (u, u), (u, u, . . . , u) etc.. This exemplifies simplifications that you may allow
yourself (and us) to use when you have got a good hand with the notation and its
interpretation. Abbreviations that reduce the number of parentheses often increase
the clarity; there may otherwise be some risk for ambiguity, since parentheses are
used around the arguments for both the usually non-linear function f (k): X →
Lk(X, Y ) and the k-linear function f (k)(x0): Xk → Y . You may also write, e.g.,
(f ′)3 = f ′f ′f ′; beware that you do not mix up (f ′)3 with f ′′′.

The mean value theorem of differential calculus and Lagrange’s form for the
remainder of Taylor’s formula are not true, but they can in many places be replaced
by the above integral form of the remainder. All this holds in complex vector spaces
too.

In the following subsections we show some relevant applications of these no-
tions to numerical mathematics.

A.2 Taylor Coefficients for the Solution of a System
of Ordinary Differential Equations.

Let y be a function of the real variable t, that satisfies the autonomous differential
system ẏ = f(y), f : Y → Y .1 We shall derive recursion formulas for the derivatives

1A differential system of equations is said to be autonomous if it does not explicitely contain

the independent variable.
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of the solution y(t) with respect to t. We use dots for differentiation with respect
to t of order less than 3, and we set ÿ = z.

By repeated application of the chain rule, the time derivatives of y(t) are
expressed in terms of the derivatives of f with respect to the vector y. In the tables
below the results are given first in the multilinear mapping notation with primes
for differentiation with respect to y (as above). In the last line of the tables, the
same vectors are expressed in tensor notation.

ẏ z = ÿ ż = y(3)

f(y) f ′(y)ẏ f ′′(y)ẏ2 + f ′(y)ÿ
f f ′f f ′′f2 + (f ′)2f

f j f j
kfk f j

klf
kf l + f j

kfk
l f l

z̈ = y(4)

f ′′′(y)ẏ3 + 3f ′′(y)(ÿ, ẏ) + f ′(y)ż
f ′′′f3 + 3f ′′(f ′f, f) + f ′f ′′f2 + (f ′)3f

f j
klmfkf lfm + 3f j

kmfk
l f lfm + f j

kfk
lmf lfm + f j

kfk
l f l

mfm

Note that, at some places, we have here omitted the obvious argument y. We often
do so when there is no doubt about the argument.

The individual terms on the third and fourth lines of these tables are called
elementary differentials. The qth order derivative of y is a linear combination
of the qth order elementary differentials with integer coefficients. They are funda-
mental in the theory of one-step methods for ordinary differential equations; see
Section 13.3.

These matters can easily become rather messy. J. Butcher and others have
made the analysis more transparent by employing an one-to-one correspondence
between the qth order elementary differentials and a rooted tree with q vertices.
We denote a rooted tree by t; its order, that is the number of vertices, is denoted
ρ(t), and the corresponding elementary differential is denoted F (t). The qth order
trees are denoted tq1, tq2, . . ..

Table 11.5.1 displays up to order 4 the elementary differentials and trees.
(analogous to the tree t32). It corresponds to the elementary differential (f ′)3f .
Study the table, and see Problem 7. Note the monotonic ordering of the labels along
the branches, and see how well the tensor notation corresponds to this labeling. F (t)
denotes the elementary differential, which corresponds to the tree t, e.g., F (t21) =
f ′f . A tree t can be labeled in several ways. A parameter named α(t) equals, in a
certain sense, the number of essentially different monotonic labelings of t; α(t) = 1
for all trees in the figure, except for α(t42) = 3. (Pure permutation of the labels
of leaves on the same branch is not “essential”.) The precise definition of α(t) is
rather subtle, and we refer to Hairer, Nørsett and Wanner [1993, Ch.2 ] or Butcher
loc.cit. for more detailed information. We give in §13.3.1 a table with α(t) and
some other data for ρ(t) ≤ 5.

With these notations, the formal Taylor expansion of the solution y(t) around
t = t0 reads

y(t0 + h) = y(t0) + y′(t0)h +
1

2!
y′′(t0)h

2 +
1

3!
y′′′(t0)h

3 + . . .
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Table A.2.1. Elementary differentials and the corresponding trees up to

order ρ(t) = 4.

order t graph F (t)

1 t11 f f j

2 t21 f ′f f j
kfk

3 t31 f ′′f2 f j
klf

kf l

t32 (f ′)2f f j
kfk

l f l

4 t41 f ′′′f3 f j
klmfkf lfm

t42 f ′′(f ′f, f) f j
kmfk

l f lfm

t43 f ′f ′′f2 f j
kmfk

l f lfm

t44 (f ′)3f f j
kfk

lmf lfm

= y(t0) + hfy(t0) +
h2

2!
h2f ′fy(t0) +

h3

3!
(f ′′f2 + (f ′)2f)y(t0) + . . .

= y(t0) +
(

hF (t11) +
h2

2!
F (t21) +

h3

3!

(

F (t31) + F (t32)
)

+ . . .
)

y(t0).

More generally, the Taylor expansion becomes,

y(t0 + h) = y(t0) +
∑

t

hρ(t)

ρ(t)!
α(t)F (t)y(t0), ρ(t) ≥ 1. (A.2.1)

This expression is useful for the design and analysis of numerical methods. If
you want to use a Taylor expansion for computing the numerical solution of a
system, however, you had better use the techniques of automatic differentiation,
see Section 3.1 and Section 13.3.

The number of elementary differentials for q = 1 : 10 are as follows:

1 2 3 4 5 6 7 8 9 10
1 1 2 4 9 20 48 115 286 719

(A.2.2)
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Much more about this can be found in Butcher, loc.cit., and Hairer, Nørsett and
Wanner, loc.cit..

The formulas for an autonomous system, ẏ = f(y), include also the non-
autonomous case, i.e. a system of the form ẏ = f(t, y), for if we add the trivial
equation ṫ = 1 to the latter system, then we obtain an autonomous system for the
vector (t, y), (written as a column). Nevertheless, since the variable t plays a special
role, it is sometimes interesting to see the formulas for the non-autonomous system
more explicitly. Recall that fty = fyt.

ẏ = f(t, y)
z = ÿ = df(t, y(t))/dt = ft + fy ẏ = ft + fyf
ż = (ft + fyf)t + (ft + fyf)yf = ftt + fyft + 2fytf + fyyf

2 + fyfyf,

PROBLEMS

4. Consider the multilinear operator A defined by (A.1.1), and suppose that Xν = R
n,

∀ν. What is ‖A‖ if a weighted max-norm is used in R
n?

5. Write a program for the approximate computation of the Hessian of a real-valued
function, by central differences.

6. Consider an autonomous system, ẏ = f(y), f : R
s → R

s. Such a system has an
infinity of solutions y(t), but we shall see in Section 13.1 that, for given τ ∈ R, η ∈
R

s, there is, under very general conditions on the function f , only one solution for
which y = η for t = τ . Denote this solution by y(t; τ, η). Runge’s 2nd order method,

introduced in Section 1.3, reads k1 = hf(yn), k2 = hf
“

yn + 1

2
k1

”

, yn+1 = yn + k2.

Show that

yn+1 − y(tn + h; tn, yn) = h
3
“

1

8
f ′′ẏ2 − 1

6
y′′′

”

+ O(h4).

(This is called the local error.) Also show that k2 −k1 = 1

2
h2ÿ +O(h3). (The vector

k2 − k1 is used for the choice of step size in the algorithm of Section 1.3. See also
Section 13.2.)

7. (a) Draw the tree t44, and write down the corresponding elementary differential in
multilinear mapping notation and in tensor notation.

(b) Given all trees of order q − 1, two ways of producing (different) trees of order
q are as follows. You can either put one more vertex on the first level above the
root (and label it with the next character in the alphabet), or you can create a
new root (labeled j) below the old one and change the other labels. Note that for
q = 3 and q = 4 these operations yield all trees. Find the rules, how the elementary
differentials are modified at these tree operations.

(c) For q = 5, however, the operations in (b) produce together 8 trees, instead of 9,
according to the table in Example A.2. What does the missing tree look like? Find
the corresponding elementary differential.

Comment: There is more material about this in Section 13.3.
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8. Consider a function f : X → X, dimX > 1. Do expressions like f ′′(x0)f
′′(x0) and

f ′′(x0)f
′′(x0)f

′′(x0) ever make sense?

[1] J. C. Butcher. The Numerical Analysis of Ordinary Differential Equations:

Runge-Kutta and General Linear Methods. Wiley-Interscience, Chichester,
1987.

[2] J. Dieudonné. Foundations of Modern Analysis. Academic Press, New York,
NY, 1961.



Appendix B

Guide to Literature in

Linear Algebra

The literature on linear algbera is very extensive. For an advanced theoretical
treatise a classical source is Gantmacher [18, ]. Several nonstandard topics are
covered in Lancaster and Tismenetsky [33, ] and in two excellent volumes by
Horn and Johnson [29, ] and [30, ]. A very complete and useful book on
and perturbation theory and related topics is Stewart and Sun [48, ]. Analytical
aspects are emphasized in Lax [35, ].

An interesting survey of classical numerical methods in linear algebra can be
found in Faddeev and Faddeeva [15, ], although many of the methods treated
are now dated. A compact, lucid and still modern presentation is given by House-
holder [31, ]. Bellman [6, ] is an original and readable complementary
text.

An excellent textbook on matrix computation are Stewart [45, ]. The
recent book [46, ] by the same author is the first in a new series. A book
which should be within reach of anyone interested in computational linear algebra
is the monumental work by Golub and Van Loan [23, ], which has become a
standard reference. The book by Higham [28, ] is another indispensible source
book for information about the accuracy and stability of algorithms in numerical
linear algebra. A special treatise on least squares problems is Björck [7, ].

Two classic texts on iterative methods for linear systems are Varga [53, ]
and Young [58, ]. The more recent book by Axelsson [2, ], also covers
conjugate gradient methods. Barret et al. [5, ] is a compact survey of iterative
methods and their implementation. Advanced methods that may be used with
computers with massiv parallel processing capabilities are treated by Saad [43,
].

A still unsurpassed text on computational methods for the eigenvalue problem
is Wilkinson [56, ]. Wilkinson and Reinsch [57, ] contain detailed discus-
sions and programs, which are very instructive. For an exhaustive treatment of the
symmetric eigenvalue problem see the classical book by Parlett [40, ]. Large
scale eigenvalue problems are treated by Saad [42, ]. For an introduction to the
implementation of algorithms for vector and parallel computers, see also Dongarra
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et al. [13, ]. Many important pratical details on implementation of algorithms
can be found in the documentation of LINPACK and EISPACK software given in
Dongarra et al. [12, ] and Smith et al. [44, ]. Direct methods for sparse
symmetric positive definite systems are covered in George and Liu [20, ], while
a more general treatise is given by Duff et al. [14, ].

LAPACK95 is a Fortran 95 interface to the Fortran 77 LAPACK library doc-
umented in [1, ]. It is relevant for anyone who writes in the Fortran 95 lan-
guage and needs reliable software for basic numerical linear algebra. It improves
upon the original user-interface to the LAPACK package, taking advantage of the
considerable simplifications that Fortran 95 allows. LAPACK95 Users’ Guide [4,
] provides an introduction to the design of the LAPACK95 package, a de-
tailed description of its contents, reference manuals for the leading comments of
the routines, and example programs. For more information on LAPACK95 go to
http://www.netlib.org/lapack95/.

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and
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[2] O. Axelsson. Iterative Solution Methods. Cambridge University Press, Cam-
bridge, UK, 1994.

[3] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. A. van der Vorst. Templates

for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM,
Philadelphia, PA, 2000.

[4] V. A. Barker, L. S. Blackford, J. J. Dongarra, S. Hammarling J. Du Croz,
M. Marinova, J. Was’niewski, and P. Yalamov, editors. LAPACK 95 Users’
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