
Contents

A Linear Vector Spaces and Matrix Computations 1

A.1 Linear Vector Spaces . 1
A.2 Matrix and Vector Algebra . 3
A.3 Partitioning and Block Matrices 8
A.4 Inner Products, Orthogonality and Projections 10
A.5 Linear Least Squares Problems 12
A.6 Eigenvalues of Matrices . 15
A.7 The Singular Value Decomposition 17
A.8 Norms of Vectors and Matrices 19
Review Questions . 22
Problems . 23

B A Multiple Precision Package 25

B.1 Introduction . 25
B.2 The Mulprec Library . 27

B.2.1 Basic arithmetic operations 27
B.2.2 Some special mulprec operations 28
B.2.3 Elementary functions 29
B.2.4 A library for mulprec vector algorithms 29
B.2.5 Miscellaneous . 30
B.2.6 How to start Mulprec 30

B.3 More Subprojects . 30
Computer Exercises . 31

C Guide to Literature 35

C.1 Introduction . 35
C.2 Textbooks in Numerical Analysis 36
C.3 Handbooks, Tables and Formulas 39

Index 41

i

ii Contents

Appendix A

Linear Vector Spaces and

Matrix Computations

Many mathematical objects, e.g., geometric vectors, matrices of some size, real
functions etc., can be added together and be multiplied by real or complex numbers
(scalars), so that the usual algebraic rules hold. Such objects may be called vectors,
which is a generalization of the classical usage of this word. A set V of vectors,
such that the results of addition and multiplication of real (complex) scalars does
not lead outside V is called a linear vector space.

In this section we recall basic elements of linear vector spaces and related
matrix algebra, and introduce notations to be used in the rest of the text. The
exposition is brief and meant as a convenient reference.

A.1 Linear Vector Spaces

A linear vector space over K is a set of vectors V, for which the operation
addition and scalar multiplication are defined for all vectors in V and all scalars
in the field of real or complex numbers, with the following properties. For all v,
w ∈ V and all scalars α, β ∈ R (or C) it holds:

1. addition is commutative and associative and scalar multiplication is associa-
tive;

2. distributive properties α(v+w) = αv+αw, (α+β)v = αv+βv, for all scalars
α, β and v, w ∈ V;

3. there is an element 0 ∈ V called the null vector such that v + 0 = v for all
v ∈ V;

4. for each vector v there exists a vector −v such that v + (−v) = 0;

5. 0 · v = 0, 1 · v = v.

1

2 Appendix A. Linear Vector Spaces and Matrix Computations

Example A.1.1. Familiar examples of a vector space are V = Rn (V = Cn),
i.e. the set of n-tuples, 1 ≤ n < ∞, of real (complex) numbers. In approximation
theory the vector space Pn of polynomials

pn(x) =
n−1
∑

k=0

akxk,

of degree less than n plays an important role. Another example is V = Cp([a, b]),
the set of complex-valued functions which are continuous up to their pth derivatives
(0 ≤ p < ∞) on [a, b].

Let v1, v2, . . . , vk be vectors, and let α1, α2, . . . , αk be scalars. Then

α1v1 + α2v2 + · · · + αkvk

is called a linear combination of v1, v2, . . . , vk. The vectors are said to be linearly

independent if none of them is a linear combination of the others, i.e.

k
∑

i=1

αivi = 0, ⇒ αi = 0, i = 1 : k.

Otherwise, if a nontrivial linear combination of v1, . . . , vk is zero, the vectors are said
to be linearly dependent. Then at least one vector vi will be a linear combination
of the rest.

A basis in V is any set of linearly independent vectors v1, v2, . . . , vn ∈ V such
that all vectors v ∈ V can be expressed as a linear combination

v =
n

∑

i=1

ξivi.

The scalars ξi are called the components or coordinates of v with respect to the
basis {vi}. If the vector space V has a basis of n vectors, then every system of
linearly independent vectors of V has at most k elements and any other basis of V

has the same number k of elements. The number k is called the dimension of V

and denoted by dim(V).
The linear space of column vectors, x = (x1, x2, . . . , xn)T , where xi ∈ R is

denoted Rn; if xi ∈ C then it is denoted Cn. The dimension of this space is n, and
the unit vectors e1, e2, ..., en, where

e1 = (1, 0, . . . , 0)T , e2 = (0, 1, . . . , 0)T , . . . , en = (0, 0, . . . , 1)T ,

constitute the standard basis Note that the coordinates x1, x2, . . . , xn are the
coefficients, when the vector x is expressed as a linear combination of the standard
basis. We shall use the same name for a vector as for its coordinate representation
by a column vector, with respect to the standard basis.

An arbitrary basis V can be characterized by the non-singular matrix V =
(v1, v2, . . . , vn), and the coordinate transformation reads, x = V ξ. The standard
basis itself is characterized by the unit matrix I.

A.2. Matrix and Vector Algebra 3

If W ⊂ V is a vector space then W is called a vector subspace of V. The
set of all linear combinations of v1, . . . , vk ∈ V form a vector subspace denoted by

span {v1, . . . , vk} =

k
∑

i=1

αivi, αi ∈ K, i = 1 : k.

If S1, . . . ,Sk are vector subspaces of V then their sum defined by

S = {v1 + · · · + vk| vi ∈ Si, i = 1 : k}
is also a vector subspace. The intersection T of a set of vector subspaces is also a
subspace,

T = S1 ∩ S2 · · · ∩ Sk.

(The union of vector spaces is generally no vector space.) If the intersection of the
subspaces are empty, Si ∩ Sj = 0, i 6= j, then the sum of the subspaces is called
their direct sum and denoted by

S = S1 ⊕ S2 · · · ⊕ Sk.

All this may look like a quick repeat of elementary linear algebra. The new
thing is that it also applies to linear spaces of infinite dimension, i.e. function

spaces. The elements (vectors) then are functions of one or several real variables
on a compact set, i.e. a closed bounded region. The idea of a functions space is
now illustrated on an example.

Example A.1.2. Consider the set of functions representable by a convergent power
series on the interval [−1, 1],

f(t) = c0 + c1t + c2t
2 + · · · .

This is an infinite-dimensional linear space. The functions 1, t, t2, . . . can be con-
sidered as a standard basis of this space. The coordinates of f(t) then is the vector
c0, c1, c2,

A function F from one linear space to another (or the same) linear space is
said to linear if

F (αu + βv) = αF (u) + βF (v)

for all vectors u, v ∈ V and all scalars α, β. Note that this terminology excludes non-
homogeneous functions like αu+β, which are sometimes called linear in elementary
mathematics. Such functions are called affine. A linear function is often expressed
in the form Au, where A is called a linear operator.

A.2 Matrix and Vector Algebra

A matrix A is a collection of m × n numbers ordered in m rows and n columns

A = (aij) =









a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn









.

4 Appendix A. Linear Vector Spaces and Matrix Computations

We write A ∈ Rm×n, where Rm×n denotes the set of all real m × n matrices. If
m = n, then the matrix A is said to be square and of order n. If m 6= n, then A is
said to be rectangular.

Consider a linear function u = F (v), v ∈ Cn, u ∈ Cm, and let x and y be the
column vectors representing the vectors v and F (v), respectively, using the standard
basis of the two spaces. Then there is a unique matrix A ∈ Cm×n representing this
map such that

y = Ax.

This gives a link between linear maps and matrices.
We will follow a convention introduced by Householder1 and use capital letters

(e.g. A, B) to denote matrices. The corresponding lower case letters with subscripts
ij then refer to the (i, j) component of the matrix (e.g. aij , bij). Greek letters
α, β, . . . are usually used to denote scalars. Column vectors are usually denoted by
lower case letters (e.g. x, y).

Two matrices in Rm×n are said to be equal, A = B, if

aij = bij , i = 1 : m, j = 1 : n.

The basic operations with matrices are defined as follows. The product of a matrix
A with a scalar α is

B = αA, bij = αaij .

The sum of two matrices A and B in Rm×n is

C = A + B, cij = aij + bij . (A.2.1)

The product of two matrices A and B is defined if and only if the number of
columns in A equals the number of rows in B. If A ∈ Rm×n and B ∈ Rn×p then

C = AB ∈ Rm×p, cij =

n
∑

k=1

aikbkj , (A.2.2)

and can be computed with mnp multiplications.
Matrix multiplication is not commutative. The product BA is defined only if

p = m. Then the matrices AB ∈ Rm×m and BA ∈ Rn×n are both square, but if
m 6= n of different orders. In general, AB 6= BA even when m = n. If AB = BA
the matrices are said to commute.

Matrix multiplication satisfies the rules

A(BC) = (AB)C, A(B + C) = AB + AC.

Note, however, that the number of arithmetic operations required to compute, re-
spectively, the left- and right-hand sides of these equations can be very different!

1A. S. Householder 1904–1993, mathematician at Oak Ridge National Laboratory and Univer-
sity of Tennessee. He pioneered the use of matrix factorization and orthogonal transformations in
numerical linear algebra.

A.2. Matrix and Vector Algebra 5

Example A.2.1. If C ∈ Rp×q then computing the product ABC as (AB)C
requires mp(n + q) operations whereas A(BC) requires nq(m + p) operations. For
example, if A and B are square n × n matrices and x a column vector of length n
then computing the product ABx as (AB)x requires n3 + n2 operations whereas
A(Bx) only requires 2n2 operations. When n ≫ 1 this makes a great difference!

The transpose AT of a matrix A = (aij) is the matrix whose rows are the
columns of A, i.e., if C = AT then cij = aji. For the transpose of a product we
have

(AB)T = BT AT ,

i.e., the product of the transposed matrices in reverse order. For a complex matrix
AH denotes the complex conjugate transpose of A

A = (aij), AH = (āji),

and it holds that (AB)H = BHAH .
A column vector is a matrix consisting of just one column and we write

x ∈ Rm instead of x ∈ Rm×1. As a special case of the multiplication rule if
A ∈ Rm×n, x ∈ Rn then

y = Ax ∈ Rm, yi =

n
∑

j=1

aijxj , i = 1 : m.

A row vector is a matrix consisting of just one row and is obtained by transposing
a column vector (e.g. xT).

The Euclidean inner product of two vectors x and y in Rn is given by

xT y =

n
∑

i=1

xiyi = yT x.

In particular

xT x =

n
∑

i=1

|xi|2

is the Euclidian length of the vector x.
The outer product of x ∈ Rm and y ∈ Rn is the matrix

xyT =







x1y1 . . . x1yn
...

...
xmy1 . . . xmyn






∈ Rm×n.

For many problems it often is more relevant and convenient to work with
complex vectors and matrices, i.e., the vector space Cn×m of all complex n × m
matrices whose components are complex numbers.2

2In Matlab the only data type used is a matrix with either real or complex elements.

6 Appendix A. Linear Vector Spaces and Matrix Computations

Most concepts introduced here carry over to complex matrices. Addition and
multiplication of vectors and matrices follow the same rules as before. The most
common inner product of two vectors x and y in Cn is the Hermitian. It is defined
by

xHy =

n
∑

k=1

x̄kyk, (A.2.3)

where xH = (x̄1, . . . , x̄n) and x̄k denotes the complex conjugate of xk. Hence

xHy = yHx.
It is useful to define array operations, which are carried out element-by-

element on vectors and matrices. Following the convention in Matlab we denote
array multiplication and division by .∗ and ./, respectively. If A and B have the
same dimensions A . ∗ B is the matrix with elements equal to aij · bij and A ./B
has elements aij/bij . (Note that for +,− array operations coincides with matrix
operations so no distinction is necessary.)

Any matrix D for which dij = 0 if i 6= j is called a diagonal matrix. If
x ∈ Rn is a vector then D = diag (x) ∈ Rn×n is the diagonal matrix formed by the
elements of x. For a matrix A ∈ Rn×n the elements aii, i = 1 : n, form the main

diagonal of A, and we write

diag (A) = diag (a11, a22, . . . , ann).

For k = 1 : n − 1 the elements ai,i+k (ai+k,i), i = 1 : n − k form the kth super-

diagonal (subdiagonal) of A. The elements ai,n−i+1, i = 1 : n form the (main)
antidiagonal of A.

The unit matrix I = In ∈ Rn×n is defined by

In = diag (1, 1, . . . , 1) = (e1, e2, . . . , en),

and the k-th column of In is denoted by ek. We have that In = (δij), where δij is
the Kronecker symbol δij = 0, i 6= j, and δij = 1, i = j. For all square matrices
of order n it holds AI = IA = A. If desirable, we set the size of the unit matrix as
a subscript of I, e.g., In.

A matrix A for which all nonzero elements are located in consecutive diagonals
is called a band matrix. A is said to have upper bandwidth r if r is the smallest
integer such that

aij = 0, j > i + r,

and similarly lower bandwidth s if r is the smallest integer such that

aij = 0, i > j + s.

The number of nonzero elements in each row of A is then at most equal to w =
r + s + 1, which is the bandwidth of A. For a matrix A ∈ Rm×n which is not
square we define the bandwidth as

w = max
1≤i≤m

{j − k + 1 | aijaik 6= 0}.

A.2. Matrix and Vector Algebra 7

Several classes of band matrices that occur frequently have special names.
Thus, a matrix for which r = s = 1 is called tridiagonal, if r = 0, s = 1 (r = 1,
s = 0) it is called lower (upper) bidiagonal etc. A matrix with s = 1 (r = 1) is
called an upper (lower) Hessenberg matrix.

An upper triangular matrix is a matrix R for which rij = 0 whenever i > j.
A square upper triangular matrix has form

R =









r11 r12 . . . r1n

0 r22 . . . r2n
...

...
. . .

...
0 0 . . . rnn









.

If also rij = 0 when i = j then R is strictly upper triangular. Similarly a matrix L
is lower triangular if lij = 0, i < j, and strictly lower triangular if lij = 0, i ≤ j.
Sums, products and inverses of square upper (lower) triangular matrices are again
triangular matrices of the same type.

A square matrix A is called symmetric if its elements are symmetric about
its main diagonal, i.e. aij = aji, or equivalently AT = A. The product of
two symmetric matrices is symmetric if and only if A and B commute, that is,
AB = BA. If AT = −A, then A is called skew-symmetric.

The classical definition of the determinant3 of a matrix requires some ele-
mentary facts about permutations, which we now state. Let α = {α1, α2, . . . , αn}
be a permutation of the integers {1, 2, . . . , n}. The pair αr, αs, r < s is said to
form an inversion in the permutation if αr > αs. For example, in the permutation
{2, . . . , n, 1} there are (n − 1) inversions (2, 1), (3, 1), . . . , (n, 1). A permutation α
is said to be even and sign (α) = 1 if it contains an even number of inversions;
otherwise the permutation is odd and sign (α) = −1.

A transposition τ is a permutation which only interchanges two elements.
Any permutation can be decomposed into a sequence of transpositions, but this
decomposition is not unique. We now show that a transposition will change the
number of inversions by an odd number and thus sign (τ) = −1. If τ interchanges
two adjacent elements αr and αr+1 in the permutation {α1, α2, . . . , αn}, this will
not affect inversions in other elements. Hence the number of inversions increases by
1 if αr < αr+1 and decreases by 1 otherwise. Suppose now that τ interchanges αr

and αr+q. This can be achieved by first successively interchanging αr with αr+1,
then with αr+2, and finally with αr+q. This takes q steps. Next the element αr+q

is moved in q − 1 steps to the position which αr previously had. In all it takes an
odd number 2q − 1 of transpositions of adjacent elements, in each of which the sign
of the permutation changes.

The determinant of a square matrix A is denoted by det(A) and defined by

det(A) =
∑

α∈Sn

sign (α) a1,α1
a2,α2

· · ·an,αn
, (A.2.4)

3Determinants were first introduced by Leibniz (1693) and Cayley (1841). The theory of
determinants are covered in a monumental five volume work ”The Theory of Determinants in
the Historical Order of Development” by Thomas Muir (1844–1934).

8 Appendix A. Linear Vector Spaces and Matrix Computations

where the sum is over all permutations of the set {1, . . . , n} and sign α is ±1 accord-
ing to whether α is an even or odd permutation. (Note that each term in (A.2.4)
contains exactly one factor from each row and each column in A.) If det(A) 6= 0
then the matrix A is nonsingular and the solution of the linear system Ax = b can
be expressed as

xi = det(Aj)/ det(A), i = 1 : n, (A.2.5)

where Aj is the matrix A where the jth column has been replaced by the right hand
side b. This expression is known as Cramer’s rule.4 Cramer’s rule is useful for
numerical computation only in very special cases, e.g., if n = 2.

Using the definition (A.2.4) to evaluate det(A) would require n ·n! arithmetic
operations. By the following three rules det(A) can be computed much more effi-
ciently:

(i) The value of the determinant is unchanged if a row (column) multiplied by a
scalar is added to another row (column).

(ii) The determinant of a triangular matrix equals the product of the elements in
the main diagonal, i.e., if R is upper triangular

det(R) = r11r22 · · · rnn.

(iii) If two rows (columns) are interchanged the value of the determinant is multi-
plied by (−1).

Obviously det(αA) = αn det(A). The following rules are also valid:

det(AT) = det(A), det(AB) = det(A) det(B).

A matrix is nonsingular if and only if det(A) 6= 0. Otherwise the matrix is
singular. Hence a triangular matrix is nonsingular if and only if all its diagonal
elements are nonzero. If A is nonsingular then there exists an inverse matrix

denoted by A−1 with the property that

A−1A = AA−1 = I.

By A−T we will denote the matrix (A−1)T = (AT)−1. For the inverse of a product
of two matrices we have

(AB)−1 = B−1A−1,

where the product of the inverse matrices are taken in reverse order.

A.3 Partitioning and Block Matrices

A matrix formed by the elements at the intersection of a set of rows and columns
of a matrix A is called a submatrix. For example, the matrices

(

a22 a24

a42 a44

)

,

(

a22 a23

a32 a33

)

,

are submatrices of A. The second submatrix is called a contiguous submatrix since
it is formed by contiguous elements of A.

4Named after Swiss mathematician Gabriel Cramer 1704–1752.

A.3. Partitioning and Block Matrices 9

Definition A.3.1.

A submatrix of A = (aij) ∈ Rm×n, is a matrix B ∈ Rp×q formed by selecting
p rows and q columns of A,

B =











ai1j1 ai1j2 · · · ai1jq

ai2j1 ai2j2 · · · ai2jq

...
...

. . .
...

aipj1 aipj2 · · · aipjq











,

where
1 ≤ i1 ≤ i2 ≤ · · · ≤ ip ≤ m, 1 ≤ j1 ≤ j2 ≤ · · · ≤ jq ≤ n.

If p = q and ik = jk, k = 1 : p, then B is a principal submatrix of A. If in
addition, ik = jk = k, k = 1 : p, then B is a leading principal submatrix of A.

It is often convenient to think of a matrix (vector) as being built up of con-
tiguous submatrices (subvectors) of lower dimensions. This can be achieved by
partitioning the matrix or vector into blocks. We write, e.g.,

A =











q1 q2 . . . qN

p1 { A11 A12 . . . A1N

p2 { A21 A22 . . . A2N

...
...

...
. . .

...
pM { AM1 AM2 . . . AMN











, x =











p1 { x1

p2 { x2

...
...

pM { xM











(A.3.1)

where AIJ is a matrix of dimension pI ×qJ . We call such a matrix a block matrix.
The partitioning can be carried out in many ways, and is often suggested by the
structure of the underlying problem. For square matrices the most important case
is when M = N , and pI = qI , I = 1 : N . Then the diagonal blocks AII , I = 1 : N ,
are square matrices.

The great convenience of block matrices lies in the fact that the operations of
addition and multiplication can be performed by treating the blocks AIJ as non-
commuting scalars and applying the definitions (??) and (??). Therefore many
algorithms defined for matrices with scalar elements have another simple gener-
alization to partitioned matrices. Of course the dimensions of the blocks must
correspond in such a way that the operations can be performed. When this is the
case, the matrices are said to be partitioned conformally.

The great convenience of block matrices lies in the fact that the operations
of addition and multiplication can be performed by treating the blocks Aij as non-
commuting scalars and applying the definitions (A.2.1) and (A.2.2). Therefore
many algorithms defined for matrices with scalar elements have another simple
generalization to partitioned matrices. Of course the dimensions of the blocks must
correspond in such a way that the operations can be performed. When this is the
case, the matrices are said to be partitioned conformally. Then we have, e.g.,

(

A11 A12

A21 A22

) (

B11 B12

B21 B22

)

=

(

A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)

.

10 Appendix A. Linear Vector Spaces and Matrix Computations

Be careful to note the order of the factors in the products! In the special case of
block upper triangular matrices this reduces to

(

R11 R12

0 R22

) (

S11 S12

0 S22

)

=

(

R11S11 R11S12 + R12S22

0 R22S22

)

.

Note that the product is again block upper triangular and its block diagonal equals
the products of the diagonal blocks of the factors.

More generally, let A = (Aik) and B = (Bkj) be block matrices of block
dimensions m × n and n × p respectively, where the partitioning corresponding to
the index k is the same for each matrix. Then we have C = AB = (Cij), where

Cij =

N
∑

k=1

AikBkj , 1 ≤ i ≤ m, 1 ≤ j ≤ p.

Often it is convenient to partition a matrix into rows or columns. In the special
case when M = 1 and A ∈ Rm×n we write

A = (a1, a2, . . . , an),

where aj ∈ Rm, j = 1 : n, is the j-th column of A. Similarly, when N = 1 , we
write

A =







aT
1
...

aT
m






,

ai ∈ Rn, i = 1 : m, which means that aT
i is the i-th row of A. Let A ∈ Rm×n,

B ∈ Rn×p. Then the matrix product C = AB ∈ Rm×p can be written

C = AB = (a1 a2 · · · an)









bT
1

bT
2
...

bT
n









=

n
∑

k=1

akbT
k , (A.3.2)

where ak ∈ Rm, bk ∈ Rp. Note that each term in the sum of (A.3.2) is an outer
product.

The more common inner product formula (A.2.2) is obtained from the parti-
tioning

C = AB =









aT
1

aT
2
...

aT
m









(b1 b2 · · · bp) = (cij), cij = aT
i bj.

with ai, bj ∈ Rn. Note that when the matrices A and B only have relatively
few nonzero elements the outer product formula (A.3.2) is a more efficient way to
compute AB!

A.4. Inner Products, Orthogonality and Projections 11

A.4 Inner Products, Orthogonality and Projections

An inner product on a vector space V defined over K is a continuous mapping (·, ·)
from V × V onto K with the properties

1. (v, v) > 0 ⇐⇒ v 6= 0;

2. (v, w) = (w, v);

3. (αu + βv, w) = α(u, w) + β(v, w).

A vector space for which an inner product is defined is called an inner prod-

uct space. We have already seen examples of an inner product space, namely Rn

(Cn) with the Euclidian inner product (x, y) = xT y ((x, y) = xHy).
For a nonsingular linear transformation A which maps a vector space V onto

V there is a unique adjoint transformation A∗, such that

(x, A∗y) = (Ax, y).

A matrix A ∈ Cn×n is called self-adjoint if A∗ = A.
For A ∈ Rn×n with the Euclidian inner product we have

(Ax, y) = (Ax)T y = xT AT y,

that is A∗ = AT , the transpose of A. Hence A is self-adjoint if A is symmetric. A
symmetric matrix A is called positive definite if

xT Ax > 0, ∀x ∈ Rn, x 6= 0. (A.4.1)

and positive semidefinite if xT Ax ≥ 0, for all x ∈ Rn. Otherwise it is called
indefinite.

Similarly, A ∈ Cn×n is self-adjoint or Hermitian if A = AH , conjugate
transpose of A. A Hermitian matrix has analogous properties to a real symmetric
matrix. If A is Hermitian, then (xHAx)H = xHAx is real, and A is positive

definite if
xHAx > 0, ∀x ∈ Cn, x 6= 0,

For the vector space Rn (Cn) any inner product can be written as (x, y) =
yT Gx ((x, y) = yHGx), where the matrix G is positive definite.

Any matrix A ∈ Cn×n can be written as the sum of its Hermitian and a
skew-Hermitian part, A = H(A) + S(A), where

H(A) =
1

2
(A + AH), S(A) =

1

2
(A − AH).

A is Hermitian if and only if S(A) = 0. It is easily seen that A is positive definite
if and only if its symmetric part H(A) is positive definite.

Two vectors v and w in Rn are said to be orthogonal if (v, w) = 0. A set
of vectors v1, . . . , vk in Rn is called orthogonal with respect to the Euclidian inner
product if

vT
i vj = 0, i 6= j,

12 Appendix A. Linear Vector Spaces and Matrix Computations

and orthonormal if also vT
i vi = 1, i = 1 : k. An orthogonal set of vectors is

linearly independent. More generally, a collection of subspaces S1, . . . , Sk of Rn are
mutually orthogonal if

xT y = 0, x ∈ Si, y ∈ Sj , i 6= j.

The orthogonal complement S⊥ of a subspace S ∈ Rn is defined by

S⊥ = {y ∈ Rn| yT x = 0, x ∈ S}.

The vectors q1, . . . , qk form an orthonormal basis for a subspace S ⊂ Rn if they are
orthonormal and span {q1, . . . , qk} = S. Such a basis can always be extended to a
full orthonormal basis q1, . . . , qn for Rn, and then S⊥ = span {qk+1, . . . , qn}.

Let q1, . . . , qn ∈ Rm be orthonormal and form the matrix Q = (q1, . . . , qn) ∈
Rm×n, m ≥ n. Then Q is called an orthogonal matrix and QT Q = In. If Q
also is square (m = n) then we have Q−1 = QT , and hence also QQT = In. Further
since det(QT Q) = det(I) = 1 and det(QT Q) = det(QT) det(Q) = (det(Q))2 and
hence | det(Q)| = 1.

Let S1 and S2 be two subspaces such that S1⊕S2 = Rn and their intersection
is the origin. Then any vector v ∈ Rn can be decomposed in a unique way as

v = v1 + v2, v1 ∈ S1, v2 ∈ S2.

The vector v is mapped into v1 by a linear transformation P1 called a projector

onto S1 along S2. Since it holds that

P 2
1 v = P1v, ∀ v ∈ Rn,

we have P 2
1 = P1 and P1 is called idempotent.

A matrix P1 is a projector onto the subspace S1 if and only if it holds:

(i) P1v = v, ∀ v ∈ S1, (ii) P 2
1 = P1. (A.4.2)

The decomposition of an arbitrary vector v ∈ Rn can be written

v = P1v + (I − P1)v = v1 + v2, (A.4.3)

and P2 = I − P1 is the projector onto S2 along S1.
If it also holds: (iii) PT

1 = P1, then

PT
1 P2v = PT

1 (I − P1)v = (P1 − P 2
1)v = 0, ∀ v ∈ Rn.

and it follows that PT
1 P2 = 0. Hence vT PT

1 P2v = vT
1 v2 = 0, for all b ∈ Rn, that is

v2 ⊥ v1. In this case P1 is the orthogonal projector onto S1 and P2 = I −P1 the
orthogonal projector onto S⊥

1 . It can be shown that the orthogonal projector P1

is unique. Orthogonal projections play a central role in the study of least squares
problems (see Sec. A.5 and Chapter 8, Volume II).

In the complex case, A = (aij) ∈ Cm×n the Hermitian inner product leads to
modifications in the definition of symmetric and orthogonal matrices. Two vectors

A.5. Linear Least Squares Problems 13

x and y in Cn are called orthogonal if xHy = 0. A square matrix U for which
UHU = I is called unitary. From (A.2.3) we find that

(Ux)HUy = xHUHUy = xHy.

Unitary matrices are characterized by the property that they preserve the Her-
mitian inner product. In particular the Euclidian length of a vector is invariant
under unitary transformations, i.e., ‖Ux‖2

2 = ‖x‖2
2. Note that when the vectors

and matrices are real the definitions for the complex case are consistent with those
made for the real case.

A.5 Linear Least Squares Problems

Four fundamental subspaces are associated with a matrix A ∈ Rm×n. Two
of them are the range R(A) of A and the null space N (AT) of AT , which are
subspaces of Rm and defined by

R(A) = {z ∈ Rm| z = Ax, x ∈ Rn}, (A.5.1)

N (AT) = {w ∈ Rm| AT w = 0}. (A.5.2)

The other two fundamental subspaces are R(AT) and N (A), which are subspaces
of Rn.

R(AT) = {x ∈ Rn| x = AT y, y ∈ Rm}, (A.5.3)

N (A) = {y ∈ Rn| Ay = 0}. (A.5.4)

If y ∈ R(A) and z ∈ N (AT) then yT z = xT AT z = 0, i.e., y is orthogonal to z. It
follows that N (AT) is the orthogonal complement to R(A) in Rm. Likewise N (A)
is the orthogonal complement to R(AT) in Rn.

The rank r of a matrix A equals the maximum number of independent row
or column vectors of A, and thus r ≤ min(m, n). If rank (A) = n we say that A
has full column rank. If rank (A) = m, then A is said to have full row rank. A
square matrix A ∈ Rn×n is nonsingular if and only if N (A) = {0}.

The linear system Ax = b, A ∈ Rm×n is said to be consistent iff b ∈ R(A),
or equivalently iff rank (A, b) = rank (A). A consistent linear system always has
at least one solution x; If b 6∈ R(A), or, equivalently, rank (A, b) > rank (A) the
system is inconsistent and has no solution. If m > n there are always right hand
sides b such that Ax = b is inconsistent.

For an inconsistent linear system Ax = b there are many possible ways of
defining a vector x, which in some sense “best” satisfies the system. A choice
which can often be motivated for statistical reasons and also leads to a simple
computational problem is to take x to be a vector which minimizes the Euclidian
length of the residual vector r = b − Ax

min
x

‖b − Ax‖2, (A.5.5)

14 Appendix A. Linear Vector Spaces and Matrix Computations

where we have used the notation

‖x‖2 = (|x1|2 + · · · + |xn|2)1/2 = (xT x)1/2.

for the Euclidian length of a vector x. We call (A.5.5) a linear least squares

problem and any minimizer x a least squares solution of the system Ax = b.
The set of all solutions to problem (A.5.5) can be characterized as follows:

Theorem A.5.1.

The vector x minimizes ‖b−Ax‖2 if and only if the residual vector r = b−Ax
is orthogonal to R(A), or equivalently

AT (b − Ax) = 0. (A.5.6)

Proof. Let x be a vector for which AT (b−Ax) = 0. Then for any y ∈ Rn, it holds
that b − Ay = (b − Ax) + A(x − y). Squaring this and using (A.5.6) we obtain

‖b − Ay‖2
2 = ‖b − Ax‖2

2 + ‖A(x − y)‖2
2 ≥ ‖b − Ax‖2

2,

On the other hand assume that AT (b − Ax) = z 6= 0. Then if x− y = −ǫz we have
for sufficiently small ǫ 6= 0,

‖b − Ay‖2
2 = ‖b − Ax‖2

2 + ǫ2‖Az‖2
2 − 2ǫ(Az)T (b − Ax)

= ‖b − Ax‖2
2 + ǫ2‖Az‖2

2 − 2ǫ‖z‖2
2 < ‖b − Ax‖2

2,

so x does not minimize ‖b − Ax‖2.

Theorem A.5.1 shows that any least squares solution x decomposes the right
hand side b into two orthogonal components

b = Ax + r, r ⊥ Ax. (A.5.7)

Here Ax is the orthogonal projection onto R(A) and r ∈ N (AT); see Fig. 1.6.1. Note
that although the least squares solution x may not be unique the decomposition
(A.5.7) always is unique.

The above characterization of a least squares solution immediately leads to
a classical method for solving the least squares problem (A.5.5). It follows from
(A.5.6) that a least squares solution always satisfies the normal equations

AT Ax = AT b. (A.5.8)

Here AT A ∈ Rn×n is a symmetric, positive semidefinite matrix. The normal equa-
tions are always consistent since

AT b ∈ R(AT) = R(AT A),

and therefore a least squares solution always exists. We now give a condition for
the least squares solution to be unique.

A.6. Eigenvalues of Matrices 15

1

�6

Ax

b b − Ax

R(A)

Figure A.5.1. Geometric characterization of the least squares solution.

Theorem A.5.2.

The matrix AT A is positive definite if and only if the columns of A are linearly
independent, i.e., when rank (A) = n. In this case the least squares solution x is
unique and given by

x = (AT A)−1AT b. (A.5.9)

Proof. If the columns of A are linearly independent, then x 6= 0 ⇒ Ax 6= 0.
Therefore x 6= 0 ⇒ xT AT Ax = ‖Ax‖2

2 > 0, and hence AT A is positive definite. On
the other hand, if the columns are linearly dependent, then for some x0 6= 0 we have
Ax0 = 0. Then xT

0 AT Ax0 = 0, and therefore AT A is not positive definite. When
AT A is positive definite it is also nonsingular and (A.5.9) follows.

In the full column rank case, rank (A) = n, the residual r = b − Ax can be
written

r = b − PR(A)b, PR(A) = A(AT A)−1AT , (A.5.10)

which gives an expression for PR(A), the orthogonal projector onto R(A), the range
space of A. It follows that any solution to the consistent linear system Ax = PR(A)b
is a least squares solution.

In more general least squares problems Ax = b we can have rank (A) < n, and
then A has a nontrivial nullspace. In this case if x̂ is any vector that minimizes
‖Ax − b‖2, then the set of all least squares solutions is

S = {x = x̂ + y | y ∈ N (A)}. (A.5.11)

In this set there is a unique solution of minimum norm characterized by x ⊥ N (A).

A.6 Eigenvalues of Matrices

Of central importance in the study of matrices are the special vectors whose direc-
tions are not changed when multiplied by A. A complex scalar λ such that

Ax = λx, x 6= 0, (A.6.1)

16 Appendix A. Linear Vector Spaces and Matrix Computations

is called an eigenvalue of A and x is an eigenvector of A. Eigenvalues and
eigenvectors give information about the behavior of evolving systems governed by
a matrix or operator and are a standard tools in the mathematical sciences and in
scientific computing.

Consider the linear transformation y = Ax, where A ∈ Rn×n. Let V be
nonsingular and suppose we change basis by setting x = V ξ, y = V η. Then the
column vectors ξ and η represents the vectors x and y with respect to the basis
V = (v1, . . . , vn). Now V η = AV ξ, and hence η = V −1AV ξ, which shows that the
matrix

B = V −1AV

represents the operator A in the new basis V. The mapping A → B = V −1AV is
called a similarity transformation. If Ax = λx then

V −1AV y = By = λy, y = V −1x,

which shows the important fact that B has the same eigenvalues as A. In other
words: eigenvalues and eigenvectors are properties of the operator itself, and are
independent of the basis used for its representation by a matrix.

From (A.6.1) it follows that λ is an eigenvalue if and only if the linear homo-
geneous system (A−λI)x = 0 has a nontrivial solution x 6= 0, or equivalently if and
only if A−λI is singular. It follows that the eigenvalues satisfy the characteristic

equation

p(λ) = det(A − λI) = 0. (A.6.2)

Obviously, if x is an eigenvector so is αx for any scalar α 6= 0.
The polynomial p(λ) = det(A−λI) is the characteristic polynomial of the

matrix A. Expanding the determinant in (A.6.2) it follows that p(λ) has the form

p(λ) = (a11 − λ)(a22 − λ) · · · (ann − λ) + q(λ), (A.6.3)

where q(λ) has degree at most n − 2. Hence p(λ) is a polynomial of degree n in
λ with leading term (−1)nλn. By the fundamental theorem of algebra the matrix
A has exactlyn (possibly complex) eigenvalues λi, i = 1, 2, . . . n, counting multiple
roots according to their multiplicities, The set of eigenvalues of A is called the
spectrum of A and denoted by λ(A). The largest modulus of an eigenvalue is
called the spectral radius and denoted by

ρ(A) = max
i

|λi(A)|. (A.6.4)

Putting λ = 0 in p(λ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ) and (A.6.2) it follows
that

p(0) = λ1λ2 · · ·λn = det(A), (A.6.5)

The trace of a square matrix of order n is the sum of its diagonal elements

trace (A) =

n
∑

i=1

aii =

n
∑

i=1

λi. (A.6.6)

A.6. Eigenvalues of Matrices 17

The last equality follows using the relation between the coefficients and roots of the
characteristic equation. Hence the trace of the matrix is invariant under similarity
transformations.

Given A ∈ Cn×n there exists a unitary matrix U ∈ Cn×n such that

UHAU = T =









λ1 t12 . . . t1n

λ2 . . . t2n

. . .
...

λn









,

where T is upper triangular. This is the Schur normal form of A. (A proof will
be given in Chapter 9, Volume II.) Since

det(T − λI) = (λ1 − λ)(λ2 − λ) · · · (λn − λ)

the diagonal elements λ1, · · · , λn of T are the eigenvalues of A.
To each distinct eigenvalue λi there is at least one eigenvector wi. Let V =

(v1, . . . , vk) be eigenvectors corresponding to the eigenvectors Λ = diag (λ1, . . . , λk)
the eigenvalues of a matrix A. Then,

AV = V Λ.

If there are n linearly independent eigenvectors then V (v1, . . . , vn) is nonsingular
and

A = V ΛV −1,

Then A is said to be diagonalizable.
A matrix A ∈ Cn×n is said to be normal if AHA = AAH . It follows that for

a normal matrix the upper triangular matrix T in the Schur normal form is normal,
i.e.

T HT = TT H.

It can be shown that this implies that all nondiagonal elements in T vanishes. Hence
the matrix T in the Schur normal form for a normal matrix A is diagonal, T = Λ.
Then we have AU = UT = UΛ, where Λ = diag (λi), or with U = (u1, . . . , un),

Aui = λiui, i = i : n.

This shows the important result that a normal matrix always has a set of mutually
unitary (orthogonal) eigenvectors.

Important classes of normal matrices are Hermitian (A = AH), skew-Hermitian
(AH = −A), unitary (A−1 = AH). Hermitian matrices have real eigenvalues, skew-
Hermitian matrices have imaginary eigenvalues, and unitary matrices have eigen-
values on the unit circle; see Chapter 9, Volume II).

An example of a non-diagonalizable matrix is

Jm(λ) =











λ 1

λ
. . .
. . . 1

λ











∈ Cm×m.

18 Appendix A. Linear Vector Spaces and Matrix Computations

The matrix Jm(λ) is called a Jordan block. It has one eigenvalue λ of multiplicity
m to which corresponds only one eigenvector,

Jm(λ)e1 = λe1, e1 = (1, 0, . . . , 0)T .

A.7 The Singular Value Decomposition

Let A ∈ Rm×n be a matrix of rank r. Then there is a decomposition of A into a
product of three matrices

A = UΣV T , Σ =

(

Σ1 0
0 0

)

∈ Rm×n, (A.7.1)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal, Σ1 = diag (σ1, σ2, . . . , σr), and

σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

(Note that if r = n and/or r = m, some of the zero submatrices in Σ disappear.)
The σi are called the singular values of A and if we write

U = (u1, . . . , um), V = (v1, . . . , vn),

then
ui, i = 1 : m, vi, i = 1 : n,

‖ui‖2 = 1, ‖vi‖2 = 1, are left and right singular vectors, respectively. The rank
of A equals the number of nonzero singular values.

Similarly, for any complex matrix A ∈ Cm×n we have the decomposition
A = UΣV H , where U and V are unitary matrices and Σ a real diagonal matrix. (A
proof of the singular value decomposition (SVD) will be given in Sec. 8.3, Volume
II.)

The SVD is of great theoretical and practical importance.5 The geometrical
significance of the SVD can be described as follows: The rectangular matrix A
represents a mapping from Rn to Rm. From the SVD it follows that there is an
orthogonal basis in each of these two spaces, with respect to which this mapping
is represented by the generalized diagonal matrix Σ. Note that transposing (A.7.1)
we obtain the SVD of AT ,

AT = V ΣT UT . (A.7.2)

The singular values of A are uniquely determined. For any distinct singular
value σj 6= σi, i 6= j, the corresponding singular vector vj is unique (up to a factor
±1). For multiple singular values, the corresponding singular vectors can be chosen
as any orthonormal basis for the unique subspace that they span. Once the singular
vectors vj , 1 ≤ j ≤ r have been chosen, the vectors uj, 1 ≤ j ≤ r are uniquely
determined, and vice versa, by

uj =
1

σj
Avj , vj =

1

σj
AT uj j = 1 : r. (A.7.3)

5The SVD was published more than a century ago by Eugenio Beltrami in 1873 and indepen-
dently by Camille Jordan in 1874. Its use in numerical computations is much more recent.

A.8. Norms of Vectors and Matrices 19

If U and V are partitioned according to

U = (U1, U2), U1 ∈ Rm×r, V = (V1, V2), V1 ∈ Rn×r. (A.7.4)

then the SVD can be written in the compact form

A = U1Σ1V
T
1 =

r
∑

i=1

σiuiv
T
i . (A.7.5)

The last expression expresses A as a sum of r matrices of rank one.
The pseudoinverse of A is defined as

A† = V Σ†UT , Σ† =

(

Σ−1
1 0
0 0

)

∈ Rn×m, (A.7.6)

The pseudoinverse solution of the linear system Ax = b is

x = A†b = V Σ†UT b

and equals the least squares solution of minimum Euclidian length.
The SVD gives complete information about the four fundamental subspaces

associated with A. Using (A.7.1)–(A.7.2) it is easy to verify that the range and
nullspace of A and AT are given by

R(A) = R(U1) N (AT) = R(U2) (A.7.7)

R(AT) = R(V1) N (A) = R(V2). (A.7.8)

Hence we immediately find the well-known relations

R(A)⊥ = N (AT), N (A)⊥ = R(AT).

In general, we have

dimR(A) = dimR(AT) = r, dimN (A) = n − r, dimN (AT) = m − r,

where r = rank (A).
If S = span (U) and U = (u1, . . . , uk) is orthogonal, UT U = I, then it is easily

seen that the orthogonal projector onto S can be written P = UUT . Similarly the
orthogonal projectors onto the four fundamental subspaces of A can be expressed
in terms of the singular vectors of A as

PR(A) = AA† = U1U
T
1 , PN (AT) = U2U

T
2 , (A.7.9)

PR(AT) = AT (AT)† = V1V
T
1 , PN (A) = V2V

T
2 .

A.8 Norms of Vectors and Matrices

In many applications it is useful to have a measure of the size of a vector or a
matrix. An example is the quantitative discussion of errors in matrix computation.
Such measures are provided by vector and matrix norms, which can be regarded as
generalizations of the absolute value function on R.

A norm on a vector space V ∈ Cn is a function V → R denoted by ‖ · ‖ that
satisfies the following three conditions:

20 Appendix A. Linear Vector Spaces and Matrix Computations

1. ‖x‖ > 0, ∀x ∈ V, x 6= 0 (definiteness)

2. ‖αx‖ = |α| ‖x‖, ∀α ∈ C, x ∈ Cn (homogeneity)

3. ‖x + y‖ ≤ ‖x‖ + ‖y‖ ∀x, y ∈ V (triangle inequality)

The triangle inequality is often used in the form (see Problem 11) ‖x ± y‖ ≥
∣

∣ ‖x‖ − ‖y‖
∣

∣.
The most common vector norms are special cases of the family of Hölder

norms or p-norms

‖x‖p = (|x1|p + |x2|p + · · · + |xn|p)1/p, 1 ≤ p < ∞. (A.8.1)

The p-norms have the property that ‖x‖p = ‖ |x| ‖p. Vector norms with this prop-
erty are said to be absolute. The three most important particular cases are p = 1, 2
and the limit when p → ∞:

‖x‖1 = |x1| + · · · + |xn|,
‖x‖2 = (|x1|2 + · · · + |xn|2)1/2 = (xHx)1/2, (A.8.2)

‖x‖∞ = max
1≤i≤n

|xi|.

The vector 2-norm is also called the Euclidean norm. It is invariant under unitary
(orthogonal) transformations since

‖Qx‖2
2 = xHQHQx = xHx = ‖x‖2

2

if Q is orthogonal.
Another important property of the p-norms is the Hölder inequality

|xHy| ≤ ‖x‖p‖y‖q,
1

p
+

1

q
= 1, p ≥ 1. (A.8.3)

For p = q = 2 this becomes the Cauchy–Schwarz inequality

|xHy| ≤ ‖x‖2‖y‖2.

Norms can be obtained from inner products by taking

‖x‖2 = (x, x) = xHGx,

where G is Hermitian and positive definite. It can be shown that the unit ball
{x : ‖x‖ ≤ 1} corresponding to this norm is an ellipsoid, and hence they are also
called elliptic norms. A special case that frequently is useful is the scaled p-norms
defined by

‖x‖p,D = ‖Dx‖p, D = diag (d1, . . . , dn), di 6= 0, i = 1 : n. (A.8.4)

All norms on Cn are equivalent in the following sense: For each pair of norms
‖ · ‖ and ‖ · ‖′ there are positive constants c and c′ such that

1

c
‖x‖′ ≤ ‖x‖ ≤ c′‖x‖′, ∀x ∈ Cn. (A.8.5)

A.8. Norms of Vectors and Matrices 21

In particular it can be shown that for the p-norms we have

‖x‖q ≤ ‖x‖p ≤ n(1

p
− 1

q)‖x‖q, 1 ≤ p ≤ q ≤ ∞. (A.8.6)

We now consider matrix norms. We can construct a matrix norm from a
vector norm by defining

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖ = sup

‖x‖=1

‖Ax‖. (A.8.7)

This norm is called the operator norm, or the matrix norm subordinate to the
vector norm. From the definition it follows directly that

‖Ax‖ ≤ ‖A‖ ‖x‖, x ∈ Cn.

Whenever this inequality holds, we say that the matrix norm is consistent with
the vector norm.

It is an easy exercise to show that operator norms are submultiplicative,
i.e., whenever the product AB is defined it satisfies the condition

4. N(AB) ≤ N(A)N(B)

The matrix norms

‖A‖p = sup
‖x‖=1

‖Ax‖p, p = 1, 2,∞,

subordinate to the vector p-norms are especially important. For these it holds that
‖In‖p = 1. The 1-norm and ∞-norm are easily computable from

‖A‖1 = max
1≤j≤n

m
∑

i=1

|aij |, ‖A‖∞ = max
1≤i≤m

n
∑

j=1

|aij |, (A.8.8)

respectively. Note that the 1-norm equals the maximal column sum and the ∞-
norm equals the maximal row sum of the magnitude of the elements. Consequently
‖A‖1 = ‖AH‖∞.

The 2-norm is also called the spectral norm. Its major drawback is that it
is expensive to compute. We have

‖A‖2 = sup
‖x‖=1

(xHAHAx)1/2 = σ1(A), (A.8.9)

where σ1(A) is the largest singular value of A. Since the nonzero eigenvalues of
AHA and AAH are the same it follows that ‖A‖2 = ‖AH‖2. A useful upper bound
for the matrix 2-norm is

‖A‖2 ≤ (‖A‖1‖A‖∞)1/2. (A.8.10)

The proof of this bound is given as an exercise in Problem 16.

22 Appendix A. Linear Vector Spaces and Matrix Computations

Another way to proceed in defining norms for matrices is to regard Cm×n as
an mn-dimensional vector space and apply a vector norm over that space. With
the exception of the Frobenius norm 6 derived from the vector 2-norm

‖A‖F =
(

m
∑

i=1

n
∑

j=1

|aij |2
)1/2

(A.8.11)

such norms are not much used. Note that ‖AH‖F = ‖A‖F . Useful alternative
characterizations of the Frobenius norm are

‖A‖2
F = trace (AHA) =

k
∑

i=1

σ2
i (A), k = min(m, n), (A.8.12)

where σi(A) are the nonzero singular values of A. The Frobenius norm is submulti-
plicative. However, it is often larger than necessary; e.g., ‖In‖F = n1/2. This tends
to make bounds derived in terms of the Frobenius norm not as sharp as they might
be. From (A.8.9) and (A.8.12) we also get lower and upper bounds for the matrix
2-norm

1√
k
‖A‖F ≤ ‖A‖2 ≤ ‖A‖F , k = min(m, n).

An important property of the Frobenius norm and the 2-norm is that both are
invariant with respect to orthogonal transformations.

Lemma A.8.1. For all orthogonal matrices Q and P (QHQ = I, and PHP = I)
of appropriate dimensions it holds

‖QAP‖ = ‖A‖ (A.8.13)

where ‖ · ‖ is the Frobenius norm and the 2-norm.

We finally remark that the 1-,∞- and the Frobenius norm satisfy

‖ |A| ‖ = ‖A‖, |A| = (|aij |),

but for the 2-norm the best result is that ‖ |A| ‖2 ≤ n1/2‖A‖2. The vector and matrix
norms defined in this section can immediately be extended to complex vectors and
matrices.

One use of norms is the study of limits of sequences of vectors and matrices
(see Sec. 9.2.4). Consider an infinite sequence x1, x2, . . . of elements of a vector
space V and let ‖ · ‖ be a norm on V. The sequence is said to converge (strongly if
V is infinite dimensional) to a limit x ∈ V, and we write limk→∞ xk = x if

lim
k→∞

‖xk − x‖ = 0,

6Ferdinand George Frobenius (1849–1917) German mathematician, professor at ETH Zürich
(1875–1892) before he succeeded Weierstrass at Berlin University.

Review Questions 23

For a finite dimensional vector space the equivalence of norms (A.8.5) shows that
convergence is independent of the choice of norm. The particular choice ‖·‖∞ shows
that convergence of vectors in Cn is equivalent to convergence of the n sequences of
scalars formed by the components of the vectors. By considering matrices in Cm×n

as vectors in Cmn the same conclusion holds for matrices.

Review Questions

1. Define the concepts:

(i) Real symmetric matrix. (ii) Real orthogonal matrix.

(iii) Real skew-symmetric matrix. (iv) Triangular matrix.

(v) Hessenberg matrix.

2 To compute the matrix product C = AB ∈ Rm×p we can either use an
outer product or an inner product formulation. Discuss the merits of the two
resulting algorithms when A and B have relatively few nonzero elements.

3. (a) Give conditions for a matrix P to be the orthogonal projector onto a
subspace S ∈ Rn.

(b) Define the orthogonal complement of S in Rn.

4. What is the Schur normal form of a matrix A ∈ Cn×n?

(b)What is meant by a normal matrix? How does the Schur form simplify for
a normal matrix?

5. (a) Show that A† = A−1 when A is a nonsingular matrix.

(b) Construct an example where G 6= A† despite the fact that GA = I.

6. (a) Construct an example where (AB)† 6= B†A†.

(b) Show that if A is an m × r matrix, B is an r × n matrix, and rank (A) =
rank (B) = r, then (AB)† = B†A†.

7. Show, using the SVD, that PR(A) = AA† and PR(AT) = A†A.

8. Define the matrix subordinate norm to a given vector norm.

9. Define the p norm of a vector x. Give explicit expressions for the matrix p
norms for p = 1, 2,∞. Show that

1

n
‖x‖1 ≤ 1√

n
‖x‖2 ≤ ‖x‖∞.

which are special cases of (A.8.6).

Problems

1. (a) A square matrix A is called persymmetric if it is symmetric about its
antidiagonal, i.e., aij = an−j+1,n−i+1. Show that A is persymmetric if and
only if PA is symmetric, where P is the permutation matrix that reverses the

24 Appendix A. Linear Vector Spaces and Matrix Computations

rows of A.

(b) Show that if A, B ∈ Rn×n are both symmetric and persymmetric, then
the matrix AB + BA also has this property.

2. Let A ∈ Rm×n have rows aT
i , i.e., AT = (a1, . . . , am). Show that

AT A =

m
∑

i=1

aia
T
i .

What is the corresponding expression for AT A if A is instead partitioned into
columns?

3. (a) If A and B are square upper triangular matrices show that AB is upper
triangular, and that A−1 is upper triangular if it exists. Is the same true for
lower triangular matrices?
(b) Let A, B ∈ Rn×n have lower bandwidth r and s respectively. Show that
the product AB has lower bandwidth r + s.

(c) An upper Hessenberg matrix H is a matrix with lower bandwidth r = 1.
Using the result in (a) deduce that the product of H and an upper triangular
matrix is again an upper Hessenberg matrix.

(d) Show that if R ∈ Rn×n is strictly upper triangular, then Rn = 0.

4. To solve a linear system Ax = b, where A ∈ Rn, by Cramer’s rule (see
Equation (A.2.5)) requires the evaluation of n + 1 determinants of order n.
Estimate the number of multiplications needed for n = 50 if the determinants
are evaluated in the naive way. Estimate the time it will take on a computer
performing 109 floating point operations per second!

5. Consider an upper block triangular matrix

R =

(

R11 R12

0 R22

)

,

and suppose that R−1
11 and R−1

22 exists. Show that R−1 exists.

6 (a) Show that if w ∈ Rn and wT w = 1, then the matrix P (w) = I − 2wwT is
both symmetric and orthogonal.

(b) Given two vectors x, y ∈ Rn, x 6= y, ‖x‖2 = ‖y‖2, then

P (w)x = y, w = (y − x)/‖y − x‖2.

7. Let A ∈ Rn×n be a given matrix. Show that if Ax = y has at least one solution
for any y ∈ Rn, then it has exactly one solution for any y ∈ Rn. (This is a
useful formulation for showing uniqueness of approximation formulas.)

8. Show that for x ∈ Rn,
lim

p→∞
‖x‖p = max

1≤i≤n
|xi|.

9. Prove that the following inequalities are valid and best possible:

‖x‖2 ≤ ‖x‖1 ≤ n1/2‖x‖2, ‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞.

Derive similar inequalities for the comparison of the operator norms ‖A‖1,
‖A‖2, and ‖A‖∞.

Problems 25

10. Show that any vector norm is uniformly continuous by proving the inequality

| ‖x‖ − ‖y‖ | ≤ ‖x − y‖, x, y ∈ Rn.

11. Show that for any matrix norm there exists a consistent vector norm.

Hint: Take ‖x‖ = ‖xyT ‖ for any vector y ∈ Rn, y 6= 0.

12. Derive the formula for ‖A‖∞ given in (A.8.8).

13. Show that for any subordinate matrix norm

‖A + B‖ ≤ ‖A‖ + ‖B‖, ‖AB‖ ≤ ‖A‖‖B‖.

14. Show that ‖A‖2 = ‖PAQ‖2 if P and Q are orthogonal matrices.

15. Use the result ‖A‖2
2 = ρ(AT A) ≤ ‖AT A‖, valid for any matrix operator norm

‖ · ‖, where ρ(AT A) denotes the spectral radius of AT A, to deduce the upper
bound in (A.8.10).

16. (a) Let T be a nonsingular matrix, and let ‖ · ‖ be a given vector norm. Show
that the function N(x) = ‖Tx‖ is a vector norm.

(b) What is the matrix norm subordinate to N(x)?

(c) If N(x) = maxi |kixi|, what is the subordinate matrix norm?

26 Appendix A. Linear Vector Spaces and Matrix Computations

Appendix B

A Multiple Precision

Package

B.1 Introduction

In the following we describe the basics of Mulprec, a collection of Matlab m-files
for, in principle, unlimited multiple precision floating point computation. and give
examples of its use.

The version of Mulprec described here was worked out by the first author
during April–December 2001. It is a preliminary version and there may still exist
bugs. Originally, a shorter version of this package and text was meant as a start
impulse for a Master’s project at the Royal Institute of Technology (KTH), Stock-
holm. Some new ideas about chopping strategies and error estimation and control
have been applied in some of the m-files for the basic operations and elementary
functions.

A normalized mulprec number is a row vector x with the usual Matlab
notations; the value of x reads

val(x) = P x(1)
∑

j=2:k

x(j)P k−j ; P = 107, k ≥ 2.

The x(j), j > 1, are integers called gytes (or gits), i.e., giant digits. They
should all have the same sign (equal to sgn(x)), and |x(j)| < P , j = 2 : k, and
x(2) 6= 0. So, we have a position system with base P = 107. x(1) is the exponent
of val(x), in a floating point representation with base P . Please note that P x(1) de-
notes the unit of the least significant gyte, contrary to the traditional floating point
convention.1 The length k of a mulprec number x may vary during a computation.

Example B.1.1.

π equals, with an absolute error less than P−10 = 10−70, the following 12 gyte
number:

1It seems to be rather easy to change this if desirable.

27

28 Appendix B. A Multiple Precision Package

Columns 1 through 6

−10 3 1415926 5358979 3238462 6433832

Columns 7 through 12

7950288 4197169 3993751 582097 4944592 3078164

The decimal point, or rather the gyte point, is located immediately after column
(12 − 10) = 2.

1 = [0, 1], 0.5 = [−1, 5000000], −0.125 = [−1,−1250000].

We call the Matlab numbers floats. You rarely have to write the mulprec
form of numbers that are exactly representable as floats. The commands for the
elementary operations and most functions are namely so constructed that they
accept single floats (not expressions) as input data and convert them to normalized
mulprec numbers by means of the command npr, or npc for complex floats, see
below.2 Mulprec distinguishes between floats and mulprec numbers by the length,
which is equal to 1 or larger than 1, respectively.

For a complex, normalized mulprec number these conditions typically hold
for both the real and the imaginary part. The exponent and the length are common
for both parts; an exception: x(2) may thus be zero for one of the parts.

It is fundamental for Mulprec that P can be squared without overflow with
some margin. In fact, 253 > 90P 2. Hence, if the shorter one of two positive
normalized mulprec numbers has at most 90 gytes, we can obtain their product by
the multiplication of gytes and addition of integers, so that the sums do not exceed
253. Typically, there is only one normalization in a multiplication.

The normalized representation of x is unique (if x 6= 0). For example, note
that, if you subtract two positive normalized mulprec numbers, the gytes of the
result may have varying signs, unless you normalize the result by the mulprec
operation nize (or the simpler operation rnize if the number is real). Since the
operation rnize is not fast compared to the operations add and sub, there is as a
rule no normalization in add and sub.

For such reasons we now introduce a more general concept: the legal mulprec

number; val(x) has the same value and the same form as the normalized mulprec
number, but all the x(j) need not have the same sign and they have a looser bound:
|x(j)| < 45 P 2.3 Evidently such a representation of a number is not unique.

Allowing this more general type of mulprec number in additions and subtrac-
tions, makes it unnecessary to transport carry digits inside these operations; this is
typically done later, if a normalization is needed.4 A typical suboperation of the

2Expressions with mulprec operations are, however, allowed as input data.
3The addition of two legal numbers does not cause overflow, but the sum can be illegal at first

and must be immediately normalized, see the next footnote.
4An exception: if the result of an add or a sub has become illegal, then it becomes acceptable

after an automatic call of nize inside add.m (or sub.m).

B.2. The Mulprec Library 29

normalization is to subtract a multiple cP from one of the x(j); this is typically
compensated for by adding c to x(j − 1), in order to keep val(x) constant. (Is not
that how we learned to handle the carry in addition in elementary school?)

Multiplication, division, elementary functions etc., do include normalization,
both of the operands and of the results. Normalized numbers only should be printed.

B.2 The Mulprec Library

The mfiles for about 60 mulprec functions are packed together in the text file mul-
prec.lib, which can be downloaded from the books homepage. The numbers in the
beginning of the lines of the

The mfiles for the following mulprec functions are packed together in the text
file mulprec.lib, which can be downloaded from the books homepage. The numbers
in the beginning of the lines of the lists below are only for making references in
the text more convenient. They are thus not to be used in the codes and your
commands.

Since the condensed comments in the table below, may be unclear, you are
recommended to study the codes a little before you use the system. x, y, z are
typically mulprec numbers. As mentioned above, most of the commands accept
also floats as input if it makes sense.

In a command like z = mul(x, y, s), the parameter s means the number of
gytes wanted in the result (including the exponent; hence it equals the length in
the Matlab sense). It is optional; if s is omitted the exact product is computed and
normalized (not chopped).

An asterisk means that the code is longer than 500 bytes. The absence of an
asterisk usually indicates, e.g., that the code is a relatively short combination of
other library codes. The number in the beginning of the lines of the following table
are not used in the computations; they are just for easy reference to the table and
to mulprec.lib.

B.2.1 Basic arithmetic operations

Addition, subtraction were commented above. Multiplication is performed as in el-
ementary school—the amount of work is approximately proportional to the product
of the sizes of the factors. Perhaps one of the fast algorithms presented in Knuth
[?, Sec. 4.3.3], in the binary case, will be adapted to the gyte system in the future.

In the table below mul.m, the shorter of the operands is chosen to be the
multiplier. In order to avoid overflow (in the additions inside the multiplication), the
multiplier is chopped to 90 gytes (at most 623 decimal places). An operation that
can handle a multiplier by partitioning it into 90-gyte pieces and calling mul.m once
for each piece, is tentatively called mullong.m. It has not yet been implemented. At
present there are bounds also for the accuracy for division, square root, elementary
functions etc., since multiplication is used in their codes.

1/x and 1/sqrt(x) are implemented by Newton’s iteration method, (with vari-
able precision) that (roughly) doubles the number of gytes in each iteration. The
initial approximation is obtained by the ordinary Matlab operations (giving ap-

30 Appendix B. A Multiple Precision Package

proximately 16 correct decimals). See more details in mulprec.lib. The square root
algorithm is division-free.

At present, some limitations of Mulprec are set by the restriction of the length
of the shorter operand of a multiplication to at most 90 gytes). It does not seem to
be very difficult to remove these bounds, or at least to widen them considerably.

1.* add.m z = add(x, y) z = x + y
2a*. sub.m z = sub(x, y) z = x − y
2b. subb.m z = subb(x, y) z = x + mi(y), shorter but

slower than 2a
3*. mul.m z = mul(x, y, s) z = x · y, s optional, see above
3b. mullong.m z = mul(x, y, s) z = x · y. Unrestricted multi-

plication. Not yet implemented.
4*. recip.m z = recip(x, s) z = 1/x

5. div.m z = div(x, y, s) z = x/y
6a. mi.m z = mi(x) z = −x; all components change

sign except the exponent
6b. muabs.m z = |x| Absolute value of a real or

complex mulprec number
Not yet implemented.

7*. musqrt.m [y, iny] = musqrt(x, s) Returns sqrt(x) and
optionally 1/sqrt(x)

B.2.2 Some special mulprec operations

The operation chop.m is more general than just chopping to a desired length. See
the code in mulprec.lib.The normalization code rnize still has a bug (?) that violates
the uniqueness. It can happen, e.g., that the last two gytes of a positive number
read −1 9999634 (say). Such nine-sequences may also occur at other places in the
vector. Sometimes such a representation is more easily interpreted than a strictly
normalized normalized mulprec number. I have therefore not yet tried to eliminate
this “bug”.

8. npr.m xx = npr(x) Converts real float to normalized
mulprec number

9. npc.m xx = npc(x) Converts complex float to normalized
mulprec number

10. flo.m y = flo(x) Approximates mulprec number by float
11*. chop.m y = chop(x, k) Returns approximately equivalent

mulprec number, length k
12*. rnize.m y = rnize(x) Normalizes real mulprec number
13. nize.m y = nize(x) Normalizes complex mulprec number
14. elizer.m y = elizer(x) Eliminates zero gytes in mulprec

number, left and right.
15. muzero.m y = muzero(x) If x == 0, y = 1, else y = 0.

B.2. The Mulprec Library 31

B.2.3 Elementary functions

In the computation of ex, x real, we first seek x̄ and an integer n, such that

ex = ex̄Pn, and |x̄| < 1
2 lnP.

Then, for an appropriate integer m, ex̄/2m

is computed by the k−1-term Maclaurin
expansion, a Horner scheme with variable precision. ex̄ is then obtained by squaring
the sum of the Maclaurin expansion m times. Suppose that the volume of computa-
tion is proportional to m+ck; the value c = 0.4 has been found by a combination of
heuristic theory and experiment. In the code, the parameters m and k are obtained
from an approximate formula for finding the minimum of m+ck with the constraint
that the bound for the relative error of ex̄/2m

, due to the Maclaurin truncation and
the squarings of the Maclaurin sum does not exceed P−s.

A similar idea is applied for eix. Now x̄ ∈ [−8π, 8π], and k − 1 terms of
the Taylor expansion into powers of x/2m are used. These methods are inspired
from ideas developed by Napier and Briggs, when they computed the first tables of
logarithms. See Goldstine [12].

The algorithms in lnr.m and muat2.m are based on Newton’s method for the
equations ey = x and tan y = x, respectively, with initial approximations from the
Matlab operations lnx and atan2(y, x). The commands muat2, lnc and mulog do
not yet allow floats as input, and the codes are not well tested.

16*. expo.m y = expo(x, s) y = ex, x real,
17*. expi.m [cox, six, eix] = expi(x, s) cosx and optionally

sin x, eix, x real
18. muexp.m w = muexp(z, s) y = ez, z complex
19*. lnr.m y = lnr(x, s) x > 0
20*. muat2.m v = muat2(y, x, s) adapted from atan2(y, x);

not yet with float input
21a. lnc.m w = lnc(z, s) w = ln z, z 6= 0;

not yet with float input
21b. mulog.m w = mulog(z, s) A better(?) name for 21a

B.2.4 A library for mulprec vector algorithms

A mulprec column vector is represented by a (Matlab) rectangular matrix. A
mulprec row vector is a row of mulprec numbers (where each mulprec number
is a row of gytes). In a rectangular mulprec matrix, each column is a mulprec
column vector, and each row is a mulprec row vector. So, we can say that a
mulprec matrix is a row of rectangular (Matlab) matrices, all of the same size. The
following set of operations is very preliminary. It was worked out for an application
to repeated Richardson h2 extrapolation, see the m-file rich3.m.

32 Appendix B. A Multiple Precision Package

30*. fixcom.m y = fixcom(x, a) x, y mulprec vectors. Returns
y ≈ x, y(1) = a(1),
length(y(i)) =length(a)

31*. musv.m y = musv(sca, vec), sca is mulprec scalar, vec is
mulprec vector y = sca · vec

32*. scalp.m y = scalp(vec1, vec2), scalar prod. in n-dim Eucl. space,
vec1, vec2 mulprec column vectors

33. adv.m z = adv(x, y) z = x + y; x, y, z mulprec vectors
34. rnizev.m y = rnizev(x) Normalizes real mulprec vector
35. chopv.m y = chopv(x, s) Chops components of mulprec

vector to length s
36. chonizv.m y = chonizv(x, s) Normalizes and chops a mulprec

vector

B.2.5 Miscellaneous

50*. intro.m Starting routine for Mulprec. See below.
51*. rich3.m Mulprec algorithm for repeated Richardson h2 extr.
52*. polygons.m Compute circumference for a sequence of polygons.

Calls rich3.m
53. why.m

There are also edited diaries of a few test experiments (comparisons of com-
putations with different precision), e.g., pippi2.dia (π computed by polygons.m and
rich3.m), muat2est.dia (π = 4 arctan1, etest.dia (e computed by expo.m).

B.2.6 How to start Mulprec

Change directory to the seat of the Mulprec files.
Run intro.m. (If you forget this, you are likely to obtain confusing error messages.
Ignore them and run intro.m!)
Then intro.m brings down the file const.mat from the disk. The file const.mat
contains, e.g., 50 gytes mulprec approximations to π (called pilong), and to lnP
(called LP), and the default values of some other global variables. Now Matlab is
ready for your Mulprec adventures.

B.3 More Subprojects

A mulprec analog to the matlab command rat for finding accurate (or exact) ra-
tional approximations to floating point results. In connection with this the basic
operations of exact rational arithmetic and continued fractions, including gcd and
lcm. (See Knuth [?, vol.II, sec. 4.5.2], in particular p. 327). Mulprec can, of course,
not compete with Maple and similar systems for rational arithmetic. Minor tasks
of this type may, however, appear in a context where Mulprec is used.

Interesting specific examples: difference schemes, the generalized Euler Trans-
formation, the Euler–Maclaurin Formula, and other methods of convergence accel-
eration. Illconditioned power series, transformation of a moment sequence to the

Computer Exercises 33

three-term recurrence coefficients for the orthogonal polynomials to the same weight
distribution or, equivalently, transformation of a power series to a continued frac-
tion. Gaussian elimination, Gram–Schmidt orthogonalization.

Theoretical analysis, if possible applied to built-in error estimation and con-
trol, e.g., chopping strategies for the construction of the m-files, both for the Mulprec
library, and for suggestions to the Mulprec users.

Documentation, both comments in the codes, a detailed report, and (in par-
ticular) a clear, short and attractive booklet with a user’s manual.

At present, some limitations of Mulprec are set by the restriction of the length
of the shorter operand of a multiplication to at most 90 gytes. It does not seem to
be very difficult to remove these bounds, or at least to widen them considerably.

Computer Exercises

1. As is well known f(x) = (1 + x)1/x has the limit e = 2.71828 18284 59045 . . .,
when x → ∞. Study the sequences f(xn) for xn = 10−n and xn = 2−n, for
n = 1, 2, 3, Stop when xn < 10−10 (or when xn < 10−20 if you are using
double precision). Give your results as a table of n, xn, and the relative error
gn = (f(xn) − e)/e. Also plot log(|gn|) against log(|xn)|. Comment on and
explain your observations.

Hint: The Maclaurin expansion of ln(1 + x) is useful. Both truncation and
roundoff errors occur.

2. Make up and run some simple examples with several choices of the parameter
s, such that you can easily check the accuracy of the result. For example: 1/7,√

0.75, sin(π/3), e, 4 arctan1. (Compare also the calculations in the dia files.)

3. The ancient Greeks computed approximate values of the circumference of the
unit circle, 2π, by inscribing a regular polygon and computing its perimeter.
Archimedes considered the inscribed 96-sided regular polygon, whose perime-
ter is 6.2821. In general, a regular n-sided polygon inscribed in a circle with
radius 1 has circumference 2an = 2n sin(π/n). If we put h = 1/n, then

a(h) = a1/h =
1

h
sin πh = 2π − π3

3
h2 +

π5

60
h4 − . . . ,

and thus a(h) satisfies the assumptions for repeated Richardson extrapolation
with pk = 2k.
A recursion formula that leads from an to a2n was given in Example 3.3.19.
Setting nm = n1 · 2m−1, we have anm

= nm/sm, where sm = 1/ sin(π/nm)
and tm = 1/ tan(π/nm) satisfy the recursion

tm = sm−1 + tm−1, sm =
√

t2m + 1, m = 1, 2, (B.3.1)

The script file polygons.m uses this recursion after the substitutions

n = 6 ∗ 2m−1, m = 1 : M, M ≤ 36, an = p(m + 1), q = p/n.

34 Appendix B. A Multiple Precision Package

The script polygons.m then calls the function rich3.m that performs Richard-
son extrapolations until the list of M polygons is exhausted or the sequence
of estimates of the limit 2π ceases to be monotonic.
Choose a suitable M, M ≤ 36, and call polygons.m. Compare with the diary
file pippi2.dia that contains previous runs of this. Study the elapsed time.

4. Write a code for the summation of an infinite series
∑

f(n) by Euler–Maclaurin’s
Summation Formula, assuming that convenient algorithms exist for the inte-
gral and for derivatives of arbitrary order. Consider also how to handle gen-
eralized cases where a limit is asked for, rather than a sum, e.g., Stirling’s
asymptotic expansion for ln Γ(z) or the Euler constant γ.
The numerators and denominators of some Bernoulli numbers B2n, n = 1 : 17,
are found in the file const.mat, in the vectors B2nN and B2nD, respectively.
B0 = 1, B1 = −1/2, are given separately.

4. An interesting table of mathematical constants (40 decimal places) is given
in Knuth [?, Appendix A, p. 659]. Compute a few of them to much higher
accuracy. For some of them an estimate of the accuracy may be most easily
obtained by comparing results obtained using different values of the parameter
s. (Compare also the diary files given in the directory of Mulprec.5) Some of
the constants may require some version of the Euler–Maclaurin formula, see
Example 3. Incorporate them to your const.mat, if they are interesting. Γ(1/3)
and −ζ′(2) (the derivative of Riemann’s ζ-function) seem to be relatively
advanced tasks.

5. Write and test a code for the product of a mulprec matrix by a mulprec vector.
Incorporate into your mulprec library.

6. Implement mullong.m according to the indications given above in “Basic arith-
metic operations”, or in some different way. Do something about the conse-
quences of this for expo.m, if you want to treat the next exercise.

7. Poisson’s Summation Formula reads, in the case f(t) = e−t2h2

with the Fourier

Transform f̂(ω) = (
√

π/h)e−ω2/(4h2),

h

N
∑

n=−N

e−n2h2

=
√

π

K−1
∑

k=−K+1

e−π2k2/h2

+ Rh,N,K,choppings.

This particular case is also known as the Theta Transformation Formula.

8. Suppose that you want to compute
√

π to an extreme accuracy, by letting a
computer that didn’t cost more than $2000 (say) work over a weekend with the
use of Mulprec (with a few amendments). For a given (appprox.) bound for
Rh,N,K,choppings, determine a good choice of the parameters h, N, K, and the
parameter s in the various terms. Estimate roughly the relation of computing
time to error.
• Problem 6 must have been treated, at least in principle, before you can solve
this.

5We suspect that one digit is wrong in
√

5. Are we right? By the way, Knuth denotes (
√

5+1)/2
by φ.

Computer Exercises 35

• Note that the function evaluation can be arranged as a set of recursion
formulas with basic arithmetic operations only. I believe that only two or
three evaluations of the exponential will be needed in the whole computation.
• Leave the door open for the use of variable precision, but I am not sure that
it will reduce the computing time by a terrific amount in this exercise.
• Note that π appears in several places in the equation. Think of the com-
putation as an iterative process (although in practice one iteration is perhaps
enough).
• Before you make a full scale experiment, make sure that neither your computer—
nor your office—will be a ruin, when you return after weekend.

36 Appendix B. A Multiple Precision Package

Appendix C

Guide to Literature

C.1 Introduction

For many readers numerical analysis is studied as an important applied subject.
Since the subject is still in a dynamic stage of development, it is important to
keep track of recent literature. Therefore we give in the following a more complete
overview of the literature than is usually given in textbooks. We restrict ourselves to
books written in English. Although the selection presented is by no means complete
and reflects a subjective choice, we hope it can serve as a guide for a reader who
out of interest (or necessity!) wishes to deepen his knowledge. Both more recent
textbooks and older classics are included. Reviews of most books of interest can
be found in Mathematical Reviews as well as in SIAM Review and Mathematics
of Computation A valuable source book to the literature before 1956 is Parke [29,
]. An interesting account of the history of numerical analysis from the 16th
through the 19th century can be found in Goldstine [12, ]

More monographs specialized in linear algebra, approximation, ordinary and
partial differential equations, and other various areas, will be listed and commented
on in the two later volumes in this series.

Starting in the 1960s much general purpose software, often collected in large
libraries or packages have been developed. Two large suppliers of commercial sci-
entific subroutine libraries are NAG and IMSL. Matlab is a much used interactive
system for matrix computations, with “toolboxes” available for many application
areas, e.g., control problems. Many programs and packages are available in the
public domain and can be downloaded free. A prime example is LAPACK, which
superseded LINPACK and EISPACK in the mid 1990s, and contains programs for
solving linear systems and eigenvalue problems. Other packages like DASSL are
available for solving ordinary systems of differential equations. For a survey of
these we refer to Vol. III.

For software the National Institute of Standards and Technology (NIST) Guide
to Available Mathematical Software (GAMS) is available at the Internet URL
“gams.nist.gov”. GAMS is an on-line cross-index of mathematical and statistical

37

38 Appendix C. Guide to Literature

software providing abstracts, documentation, and source code of software modules
and provides access to multiple repositories operated by others. Currently four
repositories are indexed, three within NIST, and netlib. Both public-domain and
proprietary software are indexed although source code of proprietary software is
not redistributed by GAMS. Netlib is a repository of public domain mathematical
software, data, address lists, and other useful items for the scientific computing
community. Access to netlib is via the Internet URL ”www.netlib.bell-labs.com”

C.2 Textbooks in Numerical Analysis

Recent textbooks, which can be read as a complement to this book, include Deufl-
hard and Hohmann [7, ]. Gautschi [11, ] is a carefully written introductory
text with a wealth of computer exercises and much valuable information in notes af-
ter each chapter. The book by Stoer and Bulirsch [39, ] is particularly suitable
for a reader with a good mathematical background. More elementary but useful
books are Van Loan [43, ], and Stewart [37, 38]. Conte and de Boor [6, ],
Several books contain listings of algorithms, or even comes with a disk containing
software, for example, the introductory book by Forsythe, Malcolm, and Moler [8,
] and its successor Kahaner, Moler and Nash [23, ].

Press et al. [30, ] gives an unsurpassed survey of contemporary numerical
methods for the applied scientist together with software available on-line. The book
by Gander and Hřebiček [10, ] contains a collection of weel chosen problems in
scientific computing and their solution by modern software tools like Matlab and
Maple . Another collection of solved problems which is entertaining and highly
instructive is contained in the SIAM 100-digit challange [4].

Advanced classical texts include Isaacson and Keller [22, ], Hamming [17,
], Ralston and Rabinowitz [32, ], and Schwarz [36, ]. Strang [40, ]
gives an excellent modern introduction to applied mathematics.

[1] F. S Acton. Numerical Methods That (Usually) Work. Math. Assoc. of Amer-
ica, New York, second edition, 1990.

[2] K. E. Atkinson. An Introduction to Numerical Analysis. Wiley, New York,
second edition, 1989.

[3] E. K. Blum. Numerical Analysis and Computation: Theory and Practice.
Addison-Wesley, Reading, MA, 1972.

[4] F. Borneman, D. Laurie, S. Wagon, and J. Waldvogel. The SIAM 100-digit
Challenge. A Study in High-Accuracy Numerical Computing. SIAM, Philadel-
phia, PA, 2004.

[5] E. W. Cheney and D. Kincaid. Numerical Mathematics and Computing.
Brooks/Cole, Pacific Grove, CA, third edition, 1994.

[6] S. D. Conte and C. de Boor. Elementary Numerical Analysis. An Algorithmic
Approach. McGraw-Hill, New York, third edition, 1980.

C.2. Textbooks in Numerical Analysis 39

[7] P. Deuflhard and A. Hohmann. Numerical Analysis in Modern Scientific
Computing. Springer, Berlin, second edition, 2003.

[8] G. E. Forsythe, M. A. Malcolm, and C. B. Moler. Computer Methods for
Mathematical Computations. Prentice-Hall, Englewood Cliffs, NJ, 1977.

[9] C.-E. Fröberg. Numerical Mathematics. Theory and Computer Applications.
Benjamin/Cummings, Menlo Park, CA, 1985.

[10] W. Gander and J. Hřebiček. Solving Problems in Scientific Computing using
MAPLE and MATLAB. Springer-Verlag, Berlin, third edition, 1997.

[11] W. Gautschi. Numerical Analysis, an Introduction. Birkhäuser, Boston, MA,
1997.

[12] H. H. Goldstine. A History of Numerical Analysis from the 16th through the
19th Century. Springer-Verlag, New York, 1977.

[13] G. H. Golub, editor. Studies in Numerical Analysis. The Math. Assoc. of
America, 1984.

[14] G. H. Golub and J. M. Ortega. Scientific Computing and Differential Equa-
tions. An Introduction to Numerical Methods. Academic Press, San Diego,
CA, 1992.

[15] G. H. Golub and J. M. Ortega. Scientific Computing. An Introduction with
Parallel Computing. Academic Press, 1993.

[16] G. Hämmerlin and K.-H. Hoffmann. Numerical Mathematics. Springer-
Verlag, Berlin, 1991.

[17] R. W. Hamming. Numerical Methods for Scientists and Engineers. McGraw-
Hill, New York, second edition, 1974.

[18] M. T. Heath. Scientific Computing. An Introductory Survey. McGraw-Hill,
Boston, MA, second edition, 2002.

[19] P. Henrici. Elements of Numerical Analysis. John Wiley, New York, 1964.

[20] F. B. Hildebrand. Introduction to Numerical Analysis. McGraw-Hill, New
York, 1974.

[21] A. S. Householder. Principles of Numerical Analysis. McGraw-Hill, New
York, 1953.

[22] E. Isaacson and H. B. Keller. Analysis of Numerical Methods. Dover, New
York, NY, 1994.

[23] D. Kahaner, C. B. Moler, and S. Nash. Numerical Methods and Software.
Prentice-Hall, Englewood Cliffs, NJ, 1988.

40 Appendix C. Guide to Literature

[24] D. Kincaid and W. Cheney. Numerical Analysis. Brooks/Cole, Pacific Grove,
CA, second edition, 1996.

[25] C. Lanczos. Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956.

[26] G. I. Marchuk. Methods in Numerical Mathematics. Springer-Verlag, Berlin,
second edition, 1982.

[27] J. C. Nash. Compact Numerical Methods for Computers: Linear Algebra and
Function Minimisation. American Institute of Physics, New York, second
edition, 1990.

[28] J. Ortega. Numerical Analysis: A Second Course. Academic Press, New
York, 1972.

[29] N. G. Parke. Guide to the Literature of Mathematics and Physics. Dover
Publications, New York, second edition, 1958.

[30] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Nu-
merical Recipes in Fortran 77; The Art of Scientific Computing. Cambridge
University Press, Cambridge, UK, second edition, 1993.

[31] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. Springer-
Verlag, New York, 2000.

[32] A. Ralston and P. Rabinowitz. A First Course in Numerical Analysis.
McGraw-Hill, New York, second edition, 1978.

[33] J. R. Rice. Mathematical Software. Academic Press, New York, 1971.

[34] J. R. Rice. Numerical Methods, Software, and Analysis. Academic Press,
New York, 1983.

[35] H. Rutishauser. Lectures on Numerical mathematics. Birkhäuser, Boston,
MA, 1990.

[36] H. R. Schwarz. Numerische Methematik. Teubner, Stuttgart, fourth edition,
1997. English translation of 2nd ed.: Numerical Analysis: A Comprehensive
Introduction, Wiley, New York.

[37] G. W. Stewart. Afternotes on Numerical Analysis. SIAM, Philadelphia, PA,
1996.

[38] G. W. Stewart. Afternotes Goes to Graduate School. SIAM, Philadelphia,
PA, 1997.

[39] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-
Verlag, New York, third edition, 20002.

[40] G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press,
Wellesley, MA, 1986.

C.3. Handbooks, Tables and Formulas 41

[41] J. Todd, editor. A Survey of Numerical Analysis. McGraw-Hill, New York,
1962.

[42] C. W. Ueberhuber. Numerical Computation. 1 & 2. Springer-Verlag, Berlin,
1997.

[43] C. F. Van Loan. Introduction to Scientidic Computing. Prentice-Hall, Upper
Saddle River, NJ, second edition, 2000.

[44] J. S. Vandergraft. Introduction to Numerical Computations. Academic Press,
New York, 1983.

[45] D. M. Young and R. T. Gregory. A Survey of Numerical Analysis. Vol. 1.
Addison-Wesley, Reading, MA, 1972.

[46] D. M. Young and R. T. Gregory. A Survey of Numerical Analysis. Vol. 2.
Addison-Wesley, Reading, MA, 1973.

C.3 Handbooks, Tables and Formulas

Some principal questions in the production of software for mathematical computa-
tion are discussed in Rice [15, ],

Mathematical tables are no longer as important for numerical calculations as
they were in the pre-computer days. However, tables can often be an important
aid in checking a calculation or planning calculations on a computer. Detailed
advice about the use and choice of tables is given in Todd [17, , pp. 93–106],
The classical six-figure tables of A most comprehensive source of information on
mathematical functions and formulas is Abramowitz and Stegun [1, ]. An
excellent overview of software for mathematical special functions is given by Lozier
and Olver [13]

The three monographs edited by Jacobs [9, ], Iserles and Powell [8, ],
and Duff and Watson [5, ] give exellent surveys of the development of “state
of the art” methods in many different areas of numerical analysis during the last
decades. The Handbook of Numerical Analysis [4], edited by P. G. Ciarlet and J. L.
Lions, is a multivolume sequence that offers comprehensive coverage in all areas of
numerical analysis as well as many actual problems of contemporary interest. Very
useful surveys articles are to be found in ACTA Numerica, a Cambridge University
Press Annual started in 1992.

Two general mathematics dictionaries, which are useful to have at hand are
[11] and [18].

[1] M. Abramowitz and I. A. Stegun (eds.). Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. Dover Publications, New
York, 1965.

[2] Yu. A. Brychkov, A. P. Prudnikov, and O. I. Marichev. Integrals and Series.
Vol. 1: Elementary Functions. Gordon and Breach, New York, 1986.

42 Appendix C. Guide to Literature

[3] R. Churchhouse, editor. Handbook of Applicable Mathematics, volume III.
Numerical Methods. Wiley-Interscience, New York, 1981.

[4] P. G. Ciarlet and J. L. Lions. Handbook of Numerical Analysis, volume I–VII.
North-Holland, Amsterdam, 1990–2000.

[5] I. S. Duff and G. A. Watson, editors. The State of the Art in Numerical
Analysis. Clarendon Press, Oxford, 1997.

[6] B. Engquist and W. Schmid, editors. Mathematics Unlimited—2001 and Be-
yond. Springer-Verlag, Berlin, 2001.

[7] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series and Products.
Academic Press, London, UK, fifth edition, 1993.

[8] A. Iserles and M. J. D. Powell, editors. The State of the Art in Numerical
Analysis. Clarendon Press, Oxford, 1987.

[9] D. A. H. Jacobs, editor. The State of the Art in Numerical Analysis. Claren-
don Press, Oxford, 1977.

[10] E. Jahnke, F. Emde, and F. Lösh. Tables of Higher Functions. McGraw-Hill,
New York, sixth edition, 1960.

[11] R. C. James and E. F. Beckenbach, editors. James & James Mathematics
Dictionary. Van Nostrand, Princeton, NJ, third edition, 1968.

[12] A. V. Lebedev and R. M. Federova. A Guide to Mathematical Tables. Van
Nostrand, New York, 1960.

[13] D. W. Lozier and F. W. J. Olver. Numerical evaluation of special functions.
In W. Gautschi, editor, Mathematics of Computation 1943–1993: A Half-
Century of Computational Mathematics, volume 48 of Proc. Sympos. Appl.
Math., pages 79–125, Providence, RI, 1994. Amer. Math. Soc.

[14] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev. Integrals and Series.
Vol. 2: Special Functions. Gordon and Breach, New York, 1986.

[15] J. R. Rice. Mathematical Software. Academic Press, New York, 1971.

[16] J. Spanler and K. B. Oldham. An Atlas of Functions. Springer-Verlag, Berlin,
1987.

[17] J. Todd, editor. A Survey of Numerical Analysis. McGraw-Hill, New York,
1962.

[18] E. W. Weisstein, editor. CRC Concise Encyclopedia of Mathematics. CRC
Press, Boca Raton, FL, 2000.

Index

adjoint matrix, 10
antidiagonal, 6
array operations, 6

band matrix, 6
basis

standard, 2
bidiagonal

matrix, 7

Cauchy–Schwarz inequality, 19
column rank, 13
convergence

of vectors and matrices, 22
Cramer’s rule, 8

determinant, 7

eigenvalue, 17
eigenvector, 17

function spaces, 3

Hölder inequality, 19
Hermitian matrix, 11
Hessenberg matrix, 7

idempotent, 12
inner product, 5
inverse matrix, 8

Kronecker symbol, 6

least squares
characterization of solution, 13–

15
problem, 13
solution, 13

linear system
consistent, 13

linearly independent
vectors, 2

matrix
adjoint, 10
band, 6
bidiagonal, 7
block, 9
diagonalizable, 18
Hermitian, 11
Hessenberg, 7
indefinite, 11
inverse, 8
non-negative definite, 11
normal, 18
orthogonal, 11
persymmetric, 7
positive definite, 11
symmetric, 7
tridiagonal, 7
unitary, 12

nonsingular, 8
norm

absolute, 19
consistent, 20
Frobenius, 21
matrix, 20
operator, 20
scaled, 20
spectral, 21
submultiplicative, 20
subordinate, 20
vector, 19
weighted, 20

43

44 Index

normal equations, 14
null space (of matrix), 12

orthogonal, 11
complement, 11
matrix, 11
projector, 12

orthogonal projector, 15
orthonormal, 11
outer product, 5

partitioning
conformal, 9

partitioning (of matrix), 8
permutation

even, 7
odd, 7
sign of, 7

projector, 12
orthogonal, 12

range (of matrix), 12
row rank, 13

similarity transformation, 17
singular value, 15
singular value decomposition, 15
singular vector, 15
spectral radius, 17
spectrum (of matrix), 17
standard basis, 2
subspaces

dimension, 2
fundamental, 12
intersection of, 3
sum of, 3

SVD, see singular value decomposi-
tion

compact form, 16
symmetric matrix, 7

transpose (of matrix), 5
transposition, 7
triangular

matrix, 7
tridiagonal

matrix, 7

vector
orthogonal, 11
orthonormal, 11

