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Chapter 8

Linear Least Squares
Problems

8.1 Preliminaries
8.1.1 The Least Squares Principle

A fundamental task in scientific computing is to estimate parameters in a math-
ematical model from collected data which are subject to errors. The influence of
the errors can be reduced by using a greater number of data than the number of
unknowns. If the model is linear, the resulting problem is then to “solve” an in
general inconsistent linear system Az = b, where A € R™*" and m > n. In other
words, we want to find a vector z € R™ such that Ax is in some sense the “best”
approximation to the known vector b € R™.

There are many possible ways of defining the “best” solution to an inconsistent
linear system. A choice which can often be motivated for statistical reasons (see
Theorem 8.1.4) and also leads to a simple computational problem is the following:
Let « be a vector which minimizes the Euclidian length of the residual vector
r = b — Ax; i.e., a solution to the minimization problem

min ||Az — b2, (8.1.1)

where || - ||2 denotes the Euclidian vector norm. Note that this problem is equivalent
to minimizing the sum of squares of the residuals » /", 77. Hence, we call (8.1.1)

a linear least squares problem and any minimizer x a least squares solution
of the system Az =b. !

Example 8.1.1. Consider a model described by a scalar function y(t) = f(z,t),

where z € R" is a parameter vector to be determined from measurements (y;, t;),
i=1,...,m, m>n. In particular let f(z,t) be linear in x,

fla,t) =Y a;,(t).
i=1

1This draft last revised 2003 10 31.
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Then the equations y; = 7, z;¢;(t;), i = 1,...,m form an overdetermined sys-
tem, which can be written in matrix form Ax = b, where a;; = ¢;(;), and b; = y;.

We shall see that a least squares solution z is characterized by r L R(A), where
R(A) the range space of A. The residual vector r is always uniquely determined
and the solution z is unique if and only if rank (A) = n, i.e., when A has linearly
independent columns. If rank (A) < n, we seek the unique least squares solution of
minimum Euclidean norm.

When there are more variables than needed to match the observed data, then
we have an underdetermined problem. In this case we can seek the minimum
norm solution y € R™ of a linear system, i.e. solve

min lyl2, ATy =c, (8.1.2)

where ¢ € R" and ATy = ¢ is assumed to be consistent.

8.1.2 Linear Models and the Gauss—Markoff Theorem

We first need to introduce some concepts from statistics. Let the probability that
random variable y < z be equal to F(x), where F(x) is nondecreasing, right con-
tinuous, and satisfies

0<F(z)<1, F(-o0)=0, F(0)=1.

Then F(z) is called the distribution function for y.
The expected value and the variance of y are defined as the Stieltjes inte-
grals

ﬂw:u:/mwF@, sw—mﬂmﬁzjm@—m%ﬂm,

— 00 — 00

If y = (y1,...,yn)T is a vector of random variables and p = (p1,...,un)7,
wi = E(y;), then we write u = E(y). If y; and y; have the joint distribution F(y;, y;)
the covariance between y; and y; is

oij = E[(yi — pa)(y; — 1y)] = / (yi — 1) (Y5 — 15)dF (yi, ;)
= E(Yiy;) — pitty-
The covariance matrix V- € R™*"™ of y is defined by

V=Y =Elly—my—mw'=Ewy")— "

where the diagonal element ¢ii is the variance of y;.
We now prove some properties which will be useful in the following.
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Lemma 8.1.1.
Let B € R™™ be a matriz and y a random vector with £(y) = p and covariance
matriz V. Then

£(By) = By, V(By) = BVBT.

In the special case that B = bT is a row vector, r = 1, then V(bTy) = p||b||3.

Proof. The first property follows directly from the definition of expected value.
The second follows from the relation

V(By) = E[(Bly — n)(y — n)" B
= BE[(y — w)(y — w)"|B" = BVB".

O

In linear statistical models one assumes that the vector b € R™ of observations
is related to the unknown parameter vector x € R™ by a linear relationship

Az =b+e, (8.1.3)

where A € R™*" is a known matrix, and, € is a vector of random errors. In the
standard case ¢ has zero mean and covariance matrix 021, i.e.,

E(e) =0, V(e) = oI
We also assume that rank (4) = n, and make the following definitions:

Definition 8.1.2.

A function g of the random vector y is called unbiased estimate of a param-
eter 0 if E(g(y)) = 0. When such a function exists, then 0 is called an estimable
parameter.

Definition 8.1.3.

The linear function g = c''y, where ¢ is a constant vector, is a minimum vari-
ance (best) unbiased estimate of the parameter 0 if £(g) = 0, and V(g) is minimized
over all linear estimators.

Gauss gave the method of least squares a sound theoretical basis in [23, 1821],
without any assumptions that the random variables follow a normal distribution.
This contribution of Gauss was somewhat neglected until rediscovered by Markoff
1912. We state the relevant theorem without proof.

Theorem 8.1.4. The Gauss—Markoff theorem.

Consider the linear model (8.1.3), where A € R™*™ is a known matriz, and
€ is a random vector with zero mean and covariance matriz V(e) = o2I. Let &
be the least square estimator, obtained by minimizing over x the sum of squares
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||Az — b||3. Then the best linear unbiased estimator of any linear function g = cT'z

is cT'%. Furthermore, the covariance matric of the estimate & equals
V(@) =V =0?(ATA)! (8.1.4)
and E(s?) = o2, where s? is the quadratic form

1
s? =

b — Az]3.

m—-n

Proof. See Zelen [67]. O

In the next subsection we show that the residual vector # = b — Az satisfies
AT# = 0. Hence there are n linear relations among the m components of #. It can
be shown that the residuals # and therefore also s2 are uncorrelated with Z, i.e.,

V(f,2) =0, V(s?,2) = 0.

In the general univariate linear model the covariance matrix equals V(e) =
o?W, where W € R™*™ is a positive semidefinite symmetric matrix. For full
column rank A and positive definite W the best unbiased linear estimate is the
solution of

min(Az — I W = (Az —b). (8.1.5)

In particular, if the errors are uncorrelated with variances w;; > 0,72 =1,...,m, then
W is diagonal and the best estimate is obtained form the problem the weighted
least squares problem

min [|[D™Y Az —b)|l2, D = diag (y/Wi1,- -+, /Wimm)- (8.1.6)

Hence if the ith equation is scaled by 1/,/wy we get the standard case. This
is consistent with the obvious observation that the larger the variance the smaller
weight should be given to a particular equation. It is important to note that different
scalings will give different solutions, unless the system is consistent, i.e., b € R(A).

8.1.3 Generalized Inverses

IN

The SVD is a powerful tool both for analyzing and solving linear least squares
problems. The reason for this is that the orthogonal matrices that transform A
to diagonal form do not change the l3-norm. We have the following fundamental
result.

Theorem 8.1.5.
Let A € R™*™, rank (A) = r, and consider the general linear least squares
problem

min 2o, S = {z € R"| |}b— Azl = min}. (8.1.7)
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This problem always has a unique solution, which in terms of the SVD of A can be
written as

_ sho0N
x—V< ! O)U b, (8.1.8)

c=UTp= (Cl),
C2

where z1,c¢; € R". Using the orthogonal invariance of the ls norm we have

Proof. Let

R A
=) -5 0) )L =171,

The residual norm will attain its minimum value equal to ||ca||2 for 23 = El_lcl, 29
arbitrary. Obviously the choice zo = 0 minimizes |||z = |[Vz]2 = ||z]]2. O

Note that problem (8.1.7) includes as special cases the solution of both overde-
termined and underdetermined linear systems. We can write z = ATb, where

-1
AT:V(E(l) 8>UTER"X’” (8.1.9)

is the unique pseudo-inverse of A and z is called the pseudo-inverse solution of
Ax =b.

Methods for computing the SVD are described in Sec. 10.8. Note that for
solving least squares problems we only need to compute the singular values, the
matrix V; and vector ¢ = U{'b, where we have partitioned U = (U; Us) and V =
(V4 Vo) so that Uy and V; have r = rank (A) columns. The pseudo-inverse solution
(8.1.9) can then be written

r Tb
szlzflUlTb:Zul -v;, 1 =rank(A). (8.1.10)
g

=1

The matrix A' is often called the Moore—Penrose inverse. Moore 1920
developed the concept of the general reciprocal in 1920. Penrose [1955], gave an
elegant algebraic characterization and showed that X = AT is uniquely determined
by the four Penrose conditions :

(1) AXA=A, (2) XAX =X, (8.1.11)
(3) AxX)T=4X, 4 (xXAT =XA. (8.1.12)
It can be directly verified that X = AT given by (8.1.9) satisfies these four conditions.

In particular this shows that AT does not depend on the particular choices of U and
V in the SVD. (See also Problem 2.)
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The orthogonal projections onto the four fundamental subspaces of A have
the following simple expressions in terms of the pseudo-inverse :

Pray = AAT, Pyary =1 — AAT, (8.1.13)
Priary=ATA,  Pyy=1-AA
These expressions are easily verified using the definition of an orthogonal projection
and the Penrose conditions.

Another very useful characterization of the pseudo-inverse solution is the fol-
lowing:

Theorem 8.1.6. The pseudo-inverse solution x = A'b is uniquely characterized by
the two geometrical conditions

xz 1 N(A), Ax = PR(A) b. (8.1.14)

Proof. These conditions are easily verified from (8.1.10). 0O

In the special case that A € R™*™ and rank (4) = n it holds that
Al = (AT A)~1AT, (AT)T = A(AT A)7? (8.1.15)

These expressions follow from the normal equations (8.2.3) and (8.2.4). Some prop-
erties of the usual inverse can be extended to the pseudo-inverse, e.g., the relations

(Aht=4,  (AHF =@AhT,

easily follow form (8.1.9). In general (AB)T # BTAT. The following theorem gives
a useful sufficient conditions for the relation (AB)T = BT AT to hold.

Theorem 8.1.7.
If Ae R™*", B € R"™", and rank (A) = rank (B) = r, then

(AB)" = BTAT = BT(BBT)"1(ATA)~1AT, (8.1.16)

Proof. The last equality follows from (8.1.15). The first equality is verified by
showing that the four Penrose conditions are satisfied. 0O

A matrix X which only satisfy some of the Penrose conditions is called a
generalized inverse. A matrix X is called an inner inverse or {1}-inverse if
it satisfies condition (1). Any matrix X which satisfies condition (2) is called an
outer inverse or a {2}-inverse. A matrix which satisfies conditions (1) and (3), is
called a {1, 3}-inverse, etc.

Let X be a {1}-inverse of A € C™*™. Then for all b such that Az = b is
consistent z = X is a solution. The general solution can be written

r=Xb+ (I - XAy, yeC"
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Let A € R™*" of rank r and X an {1}-inverse. Then AX A = A and we have
(AX)? = AXAX = AX, (XA)? = XAXA=XA.

This shows that AX and XA are idempotent and therefore (in general oblique)
projectors
AX = PR(A),Sa XA= PT,/\/(A)a

where S and T' are some subspaces complementary to R(A) and N (A), respectively.

If Ais a {1,3}-inverse, then AX is symmetric and therefore is the orthogonal
projector onto R(A). Similarly, if A is a {1,4}-inverse, then X A is symmetric and
therefore the orthogonal projector orthogonal to N'(A).

Theorem 8.1.8.

Let A € R™"™ and b € R™. Then ||Ax — bl|2 is the smallest when x = Xb,
where X is a {1, 3}-inverse.

Conversely, if X € R™*™ has the property that for all b, || Ax —b||2 is smallest
when © = Xb, then X is a {1,3}-inverse.

Theorem 8.1.9.
Let A€ R™*™ and b € R™. If Az = b has a solution, the unique solution for
which ||z||2 is smallest is given by x = Xb, where X is a {1,4}-inverse.
Conversely, if X € R"™ ™ is such that, whenever Ax = b has a solution,
x = Xb is the solution of smallest norm, then X is a {1,4}-inverse.

8.1.4 Matrix Approximation and the SVD

A useful relationship between the SVD and a symmetric eigenvalue problem is given
in the following theorem.

Theorem 8.1.10. Let the SVD of A € R™" be A = UXVT, where U =
R™*™ and V € R™ ™ are orthogonal. Let r = rank (4) < min(m,n) and X1 =
diag (o1,...,0.) > 0. Then it holds that

0 A X 0 0
c_<AT O>_Q 0 - 0]Q7, (8.1.17)
0 0 0

where

Q:i(Ul Ui V202 0 ) (8.1.18)

V2 \ =" 0 V2 Vs

and U and V' have been partitioned conformally. Hence the eigenvalues of C' are
+o1,+09,...,+0., and zero repeated (m +n — 2r) times.

Proof. Form the product on the right hand side of (8.1.17) and note that A =
U121V1T and AT = VlleiT |
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The singular values have the following important extremal property, the min-
imax characterization.

Theorem 8.1.11.

Let A € R™*™ have singular values o1 > o2 > ... > 0, > 0, p = min(m,n),
and S be a linear subspace of R™ of dimension dim (S). Then
A
| Az (8.1.19)

0, = ) .
dim(S)=n—i+1 iig H.’L’”g

Proof. The result is established in almost the same way as for the corresponding
eigenvalue theorem, Theorem 10.3.9 (Fischer’s theorem). O

The minimax characterization of the singular values may be used to establish
the following relations between the singular values of two matrices A and B.

Theorem 8.1.12.
Let A, B € R™*" have singular values 01 > 09 > ... > 0, and 71 > To >
... > 1, respectively, where p = min(m,n). Then

max |o; — 7| < ||A — B2, (8.1.20)
p
> o — 7> < |A- B[} (8.1.21)
=1

Proof. See Stewart [1973, pp. 321-322]. O

Hence perturbations of the elements of a matrix A result in perturbations of
the same, or smaller, magnitude in the singular values. This result is important for
the use of the SVD to determine the “numerical rank” of a matrix; see below.

The eigenvalues of the leading principal minor of order n — 1 of a Hermitian
matrix C' can be shown to interlace the eigenvalues of C, see Theorem 10.3.8. From
the relation (8.1.17) corresponding results can be derived for the singular values of
a matrix A.

Theorem 8.1.13.
Let

A=(Au) eR™" m>n, uvweR™

Then the ordered singular values o; of A interlace the ordered singular values 6; of
A as follows

012>2012>2022>03...20p_1>0p_1 > 0.

Similarly, if A is bordered by a row,

Az(ﬁ) eR™" m>n, veR"
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then
012012>022>202...2 0, 120p120n 2> 0p.

The SVD plays an important role in a number of matrix approximation prob-
lems. In the theorem below we consider the approximation of one matrix by another
of lower rank.

Theorem 8.1.14. Let M**" denote the set of matrices in R™*™ of rank k.
Assume that A € M**™ and consider the problem

min  [[A-X]|, k<
Xempxn

Then the SVD expansion of A truncated to k terms X = B = Zle oiuvl, solves
this problem both for the loa norm and the Frobenius norm. Further, the minimum
distance is given by

|A=Blla =0ors1, A= Blr= (0741 +...+ o))"/
The solution is unique for the Frobenius norm but not always for the lo norm.

Proof. See Mirsky [42] for the l2, norm and Eckhard and Young[20] for the Frobe-

nius norm. |

According to this theorem o; equals the distance in I3 norm to the nearest
matrix of rank ¢ — 1, ¢ < min(m,n). In particular o1 = || A||2.

Inaccuracy of data and rounding errors made during the computation usually
perturb the ideal matrix A. In this situation the mathematical notion of rank may
not be appropriate. For example, let A be a matrix of rank r < n, whose elements
are perturbed by a matrix F of small random errors. Then it is most likely that
the perturbed matrix A + E has full rank n. However, A + E is close to a rank
deficient matrix, and should be considered as numerically rank deficient.

Clearly the numerical rank assigned to a matrix should depend on some
tolerance ¢, which reflects the error level in the data and/or the precision of the
floating point arithmetic used. A useful definition is the following:

Definition 8.1.15.
A matriz A € R™*™ has numerical 0-rank equal to k (k < min{m,n}) if

012 ...20,>02> 011> ...2 0Op,
where 0;, 1 =1,2,...,n are the singular values of A. If we write
A=UxvT =2, VT 4 UpS, Vi,

where Xo = diag (041, ...,0n) then R(Va) = span{vgi1,...,v,} is called the nu-
merical nullspace of A.
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It follows from Theorem 8.1.12, that if the numerical -rank of A equals k, then
rank (A + F) > k for all perturbations such that ||E||s < d, i.e., such perturbations
cannot lower the rank. Definition 8.1.15 is only useful when there is a well defined
gap between o411 and 0. This should be the case if the exact matrix A is rank
deficient but well-conditioned. However, it may occur that there does not exist a
gap for any k, e.g., if o, = 1/k. In such a case the numerical rank of A is not well
defined!

If » < n then the system is numerically underdetermined. Note that this can
be the case even when m > n.

Let A € R™*" be a matrix of rank n with the “thin” SVD A = U; XV 7.
Since A = U1 XVT = U, XU UL VT we have

A= PH, P=U,vVT, H=vxvVT, (8.1.22)

where P € R™*" has orthogonal columns, and H € R™*" is symmetric, positive
semidefinite. The decomposition (8.1.22) is called the polar decomposition of
A, since it can be regarded as a generalization to matrices of the complex number
representation z = rew, r>0.

The significance of the factor P in the polar decomposition is that it is the
closest matrix with orthogonal columns to A.

Theorem 8.1.16.

Let My, «rn denote the set of all matrices in R™*™ with orthogonal columns.
Let A € R™*™ be a given matriz and A = PH its polar decomposition, where P €
Mpxn and H is symmetric positive semidefinite. Then for any matrix Q € M, xn,

[A=Qllr = A= Pl

Proof. This theorem was proved for m = n and general unitarily invariant norms
by Fan and Hoffman [21]. The generalization to m > n follows from the additive
property of the Frobenius norm. 0

An generalization of Theorem 8.1.16 has important application in factor anal-
ysis in statistics.

Theorem 8.1.17.

Let My, «rn denote the set of all matrices in R™*™ with orthogonal columns.
Let A and B be given matrices in R™*". If BT A = PH is the polar decomposition
then for any matriz Q € My, xn it holds that

|[A—BQ|r > |A—-BP|p.

Proof. See P. Schénemann [54]. 0O



8.1. Preliminaries 11

8.1.5 Perturbation Analysis

We now consider the effect of perturbations of A and b on the least squares solution
z. In this analysis the condition number of the matrix A € R"™*" will play a
significant role. The following definition generalizes the condition number (6.6.3) of
a square nonsingular matrix.

Definition 8.1.18.
Let A € R™*™ have rank r > 0 and singular values equal to o1 > 09 > ... >
or > 0. Then the condition number of A is

k(A) = [|All2| ATz = o1 /0,

where the last equality follows from the relations ||Al|s = o1, |Af||2 = oL,

Using the singular value decomposition A = UXV7T we obtain

2
% 8) vt (8.1.23)

ATA=vxTUTu)sv? =v (
Hence, o;(AT A) = 02(A), and it follows that
k(AT A) = K2(A).

This shows that the matriz of the normal equations has a condition number which
is the square of the condition number of A.

We now give a first order perturbation analysis for the least squares problem
when rank (A) = n. Denote the perturbed data A+ JA and b+ db and assume that
J A sufficiently small so that we have rank (A+3JA) = n. Let the perturbed solution
be z + 0x and r + dr, where r = b — Ax is the residual vector. Then, neglecting
second order perturbations, we have

o0r =0b— (A+0A)(z + dx) = (0b— 0Ax) — Adx.
The perturbed solution satisfies
(A+ 5A)T((A + 6A)(z + 6z) — (b+6b)) = 0.
Subtracting AT (Az — b) = 0 and neglecting second order perturbations, we get

5z = (ATA)"LAT(6b — §Ax) + (ATA) 15 ATy, (8.1.24)
or = (I — A(AT A" AT)(5b — 5Az) — A(ATA) 264 1, (8.1.25)

Here we can identify

(ATA)TTAT = AT, AATA) T = AahT,
I—A(ATA)TAT =1 — AAT = Pyar).

Using (8.1.9) and (8.1.23) it follows that
[A 2 = 1A 2 = 1/on,  I(ATA) M2 =1/07,  [|Paanll2 = 1.
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Hence, taking norms in (8.1.25) and (8.1.25) we obtain

1 1 1
|5$H25-—4WMM-+——M5AH2<|ﬂb-%——|ﬂb>, (8.1.26)
On On o

n

1
Jorl < 1601 + oAl (lellz + - vl ). (8.1.27)

A more refined perturbation analysis (see Wedin [65]) shows that if
0= [[AT|2]|dA]2 < 1.

then rank (A + §A) = n, and there are perturbations A and §b such that these
upper bounds are almost attained.

Assuming that = # 0 and setting db = 0, we get a bound for the normwise
relative perturbation

|0z]|2 < H(A)H(SAHZ (1+ Il ) (8.1.28)

]l 142 on 2

Note that if the system Az = b is consistent, then » = 0 and the bound is identical
to that obtained for a square nonsingular linear system. Otherwise, there is a second
term present in the perturbation bound.

An upper bound for the condition number for z in the least squares problems
with respect to A is

ﬁLS::ﬁ(A)(1+- Ill2 ) (8.1.29)

onl|zll2

The two following facts should be noted:
e kg depends not only on A but also on r and therefore on b;

o If |r|l2 < onllz||2 then kis ~ k(A), but if ||r||2 > onl/z||2 the second term in
(8.1.29) will dominate,

Example 8.1.2. The following simple example illustrates the perturbation analysis
above. Consider a least squares problem with

10 1 0 0
A=[0 46|, b=(0], d4=|0 0
00 a 0 6/2

and K(A) =1/ > 1. If a =1 then

0
1 2 (0 1
:C—(O), 51‘—5(1>, r= (1) , (57‘——5 i

For this right hand side ||z|2 = ||r||2 and ks = 1/§ + 1/6% ~ x2(A). This is
reflected in the size of dz.

o
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If instead we take o = §, then a short calculation shows that ||7||2/|z|2 = ¢
and ks = 2/§. The same perturbation A now gives

0
2/(0 o

It should be stressed that in order for the perturbation analysis above to be
useful, the matrix A and vector b should be scaled so that perturbations are “well
defined” by bounds on ||§A|2 and ||b||2. If the columns in A = (ai,az,...,a,)
have widely differing norms, then a much better estimate may often be obtained
by applying (8.1.28) to the scaled problem min; ||AZ — b|2, chosen so that A has
columns of unit length, i.e.,

A=AD™!, Z = Dz, D = diag(||la1]|z2, - - -, [|an||2)-

By Theorem 8.2.5 this column scaling approximately minimizes x(AD~!) over D >
0. Note however that scaling the columns also changes the norm in which the error
in x is measured.

If the rows in A differ widely in norm, then (8.1.28) may also considerably
overestimate the perturbation in x. As remarked above, we cannot scale the rows
in A without changing the least squares solution.

Perturbation bounds with better scaling properties can be obtained by con-
sidering component-wise perturbations.

[0A| < wE, |0b] < wf. (8.1.30)

Substituting in (8.1.25)—(8.1.25) yields the bounds
|62] £ w (JATI(f + Elz]) + [(ATA) T ET|r]) (8.1.31)
or] S w (I — AAT|(f + Elz|) + [(AD)"[ET|r]) . (8.1.32)

where terms of order O(w?) have been neglected. In particular, if E = |A|, f = |b],
we obtain taking norms

6(| £ w (I 1ATI(Bl + [AlleDIl + [ 1(ATATHAT ), (8.1.33)
lorll £ w (Il = AAT|([Alla] + DI+ ITADTLAT|r1]) . (8.1.34)

8.1.6 Backward Error and Stability

An algorithm for solving the linear least squares problem is said to numerically
stable if for any data A and b, there exist small perturbation matrices and vectors
0A and 0b, such that the computed solution Z is the exact solution to

min [|(A + 6A4)z — (b + 6b)]2, (8.1.35)
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where [|[§4] < 7, ||0b|| < 7, with 7 being a small multiple of the unit round-
off u. Methods which explicitly form the normal equations are not backward stable.
However, many methods based on orthogonal factorizations have been proved to be
numerically stable with db = 0.

Any computed solution Z is called a stable solution if it satisfies (8.1.35). This
does not mean that T is close to the exact solution z. If the least squares problem
is ill-conditioned then a stable solution can be very different from z. For a stable
solution the error ||z — Z|| can be estimated using the perturbation results given in
Section 8.1.5.

Many special fast methods exist for solving structured least squares problems,
e.g., where A is a Toeplitz matrix. These methods cannot be proved to be backward
stable, which is one reason why a solution to the following problem is of interest:

Given an alleged solution Z, find the smallest backward error, i.e. a perturba-
tion § A of smallest norm such that Z is the exact solution to the perturbed problem

min || (b + 0b) — (A + 6A)z]|. (8.1.36)

If we could find the backward error of smallest norm, this could be used to verify
numerically the stability properties of an algorithm. There is not much loss in
assuming that 6b = 0 in (8.1.37). Then the optimal backward error in the Frobenius
norm is

nr (%) = min{||6A| F | % solves min ||b— (A + 6A)z||}. (8.1.37)

This the optimal backward error can be found by characterizing the set of all back-
ward perturbations and then finding an optimal bound, which minimizes the Frobe-
nius norm.

Theorem 8.1.19. Let & be an alleged solution and 7 = b — A% # 0. The optimal
backward error in the Frobenius norm is

=y _ { IATF/ (172, if&=0,
e (F) = {min {7772077”':( [A C])} otherwise. (8.1.38)

where
n=|rllz/zl2, O =1~ (FF")/|7]3
and omin([A C]) denotes the smallest (nonzero) singular value of the matriz

[A O] € Rmx(nim),

The task of computing () is thus reduced to that of computing op,in(A).
Since this is expensive, approximations that are accurate and less costly have been
derived. If a QR factorization of A is available lower and upper bounds for ng(Z)
can be computed in only O(mn) operations. Let 71 = Pgra)7 be the orthogonal
projection of 7 onto the range of A. If ||r1]|2 < af|r||2 it holds that

5-1
f2 o1 <nr(7) < V1+a?a, (8.1.39)

where
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1 = [|(AT A+ D)7 2ATE, /||Z] 2. (8.1.40)

Since a — 0 for small perturbations ¢ is an asymptotic upper bound.

Review Questions

1. State the Gauss—Markov theorem.

2. Assume that A has full column rank. Show that the matrix P = A(AT A)~tAT
is symmetric and satisfies the condition P? = P.

3. (a) Give conditions for a matrix P to be the orthogonal projector onto a
subspace S € R™.

(b) Define the orthogonal complement of S in R™.

4. (a) Which are the four fundamental subspaces of a matrix? Which relations
hold between them? Express the orthogonal projections onto the fundamental
subspaces in terms of the SVD.

(b) Give two geometric conditions which are necessary and sufficient conditions
for x to be the pseudo-inverse solution of Az = b.

5. Which of the following relations are universally correct?
(a) N(B) CN(AB).  (b) N(4) CN(AB).  (c) N(AB) C N(A).
(d) R(AB) CR(B). (e) R(AB) CR(A4). (f) R(B)C R(AB).

6. (a) What are the four Penrose conditions for X to be the pseudo-inverse of
A?
(b)A matrix X is said to be a left-inverse if XA = I. Show that a left-
inverse is an {1, 2, 3}-inverse, i.e. satisfies the Penrose conditions (1), (2), and
(3). Similarly show that a right-inverse is an {1, 2,4}-inverse.

7. Let the singular values of A € R™*™ be 01 > --- > 0,. What relations are
satisfied between these and the singular values of

A=(Au), A_<ﬁ‘p>?

v

8. (a) Show that AT = A=! when A is a nonsingular matrix.
(b) Construct an example where G # A" despite the fact that GA = I.

Problems

1. (a) Compute the pseudo-inverse z' of a column vector z.
(b) Take A= (1 0),B=(1 1)", andshow that 1 = (AB)! # BT AT =1/2.
2. (a) Verify that the Penrose conditions uniquely defines the matrix X. Do it

first for A =X = diag (01, ...,0n), and then transform the result to a general
matrix A.
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3 (a) Show that if w € R™ and w’w = 1, then the matrix P(w) = I — 2ww? is
both symmetric and orthogonal.
(b) Given two vectors z,y € R"™, x # v, ||z||2 = ||y||2, then

Pw)z =y, w=(y—=z)/|y—ze.

4. Let S C R™ be a subspace, P, and P, be orthogonal projections onto S =
R(P1) = R(P2). Show that P, = P, i.e., the orthogonal projection onto S is
unique.

Hint: Show that for any z € R™

[(Pr — Po)z||2 = (Pi2)" (I — Po)z + (P22)" (I — Py)z = 0.

5. (R. E. Cline) Let A and B be any matrices for which the product AB is
defined, and set
B = ATAB, A, = AB\Bl.
Show that AB = AB; = A, B, and that (AB) = Bl Al.
Hint: Use the Penrose conditions.

6. (a) Show that the matrix A € R™*" has a left inverse AL € R"*™ ie.,
AL A = I, if and only if rank(A) = n. Although in this case Az = b € R(A)
has a unique solution, the left inverse is not unique. Find the general form of
YL and generalize the result to A”.

(b) Discuss the right inverse A% in a similar way.
7. Show that AT minimizes [|[AX — I||£.

8. Prove Bjerhammar’s characterization : Let A have full column rank and let B
be any matrix such that ATB =0and (A B) is nonsingular. Then AT = X7

where .
X _
(r)=ta &)

8.2 The Method of Normal Equations

8.2.1 Characterization of Least Squares Solutions

We now show a necessary condition for a vector = to minimize ||b — Ax||s.

Theorem 8.2.1.
Given the matriz A € R™*™ and a vector b € R™. The vector x minimizes
b — Az||2 if and only if the residual vector r = b — Ax is orthogonal to R(A), or

equivalently
AT (b — Az) = 0. (8.2.1)

Proof. Let z be a vector for which AT (b — Ax) = 0. Then for any y € R"
b— Ay = (b — Ax) + A(x — y). Squaring this and using (8.2.1) we obtain

16— Ayl3 = [Ib — Az|3 + [ A(z — I3 > [Ib — Ax]3.
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On the other hand assume that AT (b — Az) = 2 # 0. Then if x —y = —ez we have
for sufficiently small € £ 0,

1= Ayll3 = [Ib — Az||5 — 2¢[| ][5 + €*[| Az]|3 < [|b— Axl3

so = does not minimize ||b — Az|s. 0O

b— Ax
R(A)

[

xT

Figure 8.2.1. Geometric characterization of the least squares solution.

Here AT A € R" " is a symmetric matrix and since
2T AT Az = || Az|)% > 0,
also positive semidefinite. The normal equations AT Az = ATb are consistent since
ATh e R(AT) = R(AT A4),

and therefore a least squares solution always exists.
By Theorem 8.2.1 any least squares solution = will decompose the right hand
side b into two orthogonal components

b=Azx+r, r L Ax. (8.2.2)

Here Az = Pr(ab is the orthogonal projection (see Sec. 8.3.1) onto R(A) and r €
N(AT) (cf. Fig. 8.2.1). Any solution to the (always consistent) normal equations
(8.2.1) is a least squares solution. Note that although the least squares solution x
may not be unique the decomposition in (8.2.2) always is unique.

Theorem 8.2.2.

The matriz AT A is positive definite if and only if the columns of A are linearly
independent, i.e., when rank (A) = n. In this case the least squares solution x is
unique and given by

z=(ATA)"1ATp, (8.2.3)

Proof. If the columns of A are linearly independent, then = # 0 = Az # 0.
Therefore z # 0 = 2T AT Ax = ||Az||3 > 0, and hence AT A is positive definite. On
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the other hand, if the columns are linearly dependent, then for some xy # 0 we have
Azg = 0. Then xOTATA:EO = 0, and therefore AT A is not positive definite. When
AT A is positive definite it is also nonsingular and (8.2.3) follows. 0

For the minimum norm problem (8.1.2) let y be any solution of ATy = ¢, and
write y = y1 + yo2, where y; € R(A). y2 € N(AT). Then ATy, = 0 and hence y; is
also a solution. Since y; | yo we have

lyallz = llyll3 = lly=13 < llyl3,

with equality only if yo = 0. Hence the minimum norm solution lies in R(A) and we
can write y = Az, for some z. Then we have ATy = AT Az = c. If AT has linearly
independent rows the inverse of A7 A exists and the minimum norm solution y € R™
satisfies the normal equations of second kind

y=AATA) e (8.2.4)

8.2.2 Forming and Solving the Normal Equations

From the time of Gauss until the computer age the basic computational tool for solv-
ing (8.1.1) was to form AT A and ATb and solve the normal equations by symmetric
Gaussian elimination (which Gauss did), or later by the Cholesky factorization [7].
We now discuss the numerical implementation of this method. We defer treat-
ment of rank deficient problems to later and assume throughout this section that

rank (4) = n.
The first step is to compute the elements of the symmetric matrix C = AT A
and the vector d = ATb. If A = (ay,as,...,a,) has been partitioned by columns,

we can use the inner product formulation
cik = (AT A)j = al ay, dj =(ATb); =alb, 1<j<k<n. (8.2.5)

Since C' is symmetric it is only necessary to compute and store its lower (or upper)
triangular which requires %mn(n—l— 1) multiplications. Note that if m > n, then the
number of elements %n(n +1) in the upper triangular part of A7 A is much smaller
than the number mn of elements in A. Hence in this case the formation of AT A
and ATb can be viewed as a data compression!

The formulas in (8.2.5) may not be suitable for large problems, where the
matrix A is held in secondary storage, since each column needs to be accessed
many times. An alternative row oriented outer product algorithm only needs one
pass through the data (A,b). Denoting by a’, the ith row of A4, i = 1,...,m, we
have

C=A"A=> aa, d=A"b=> b (8.2.6)
1=1 =1

This is an form, where A7 A is expressed as the sum of m matrices of rank one and
ATb as a linear combination of the transposed rows of A. Using this alternative no
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more storage is needed than that for AT A and ATb. This outer product form is
also preferable if the matrix A is sparse; see the hint to Problem 7.6.1. Note that
both formulas can be combined if we adjoin b to A and form

ATA ATb
T _
(Aab) (Aub) - ( bTA bTb ) .

The matrix C = AT A is symmetric, and if rank (A) = n also positive defi-
nite. Gauss solved the normal equations by symmetric Gaussian elimination, but
computing the Cholesky factorization

C=ATA=RTR, ReR™", (8.2.7)

is now the standard approach. The Cholesky factor R is upper triangular and
nonsingular and can be computed by one of the algorithms given in Sec. 7.4.2. The
least squares solution is then obtained by solving the two triangular systems

RTz =d, Rz = 2. (8.2.8)

Forming and solving the normal equations requires (neglecting lower order terms)
about %an + %n3 flops. If we have several right hand sides b;, i = 1 : p, then the
Cholesky factorization need only be computed once. To solve for each new right
hand side then only needs mn + n? additional flops.

Example 8.2.1.
Linear regression is the problem of fitting a linear model y = o + Bz to a
set of given points (z;,y;), ¢ = 1 : m. This leads to a overdetermined linear system

Z1 Y1

1 x a Y2
B

1 m Ym

Forming the normal equations we get

m Z:il i o ZZl Yi

= (8.2.9)
D T D F B Doty Yi
Eliminating « we obtain the “classical” formulas
8= (Z;il YiTi — mW)/(Zfil a} — miQ),
where . )
U= Nl T= 3L (8.2.10)

are the mean values. The first equation in (8.2.9) gives

Y=o+ [z (8.2.11)
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which shows that (7, Z) lies on the fitted line. This determines o = § — GZ.
A more accurate formula for 8 is obtained by first subtracting out the mean
values from the data. We have

(y—9) = Ble—1)

In the new variables the matrix of normal equation is diagonal. and we find

B =0 i — )i — @) [ S0 (i — 0)°. (8.2.12)
A drawback of this formula is that it requires two passes through the data.

In many least squares problems the matrix A has the property that in each row
all nonzero elements in A are contained in a narrow band. For banded rectangular
matrix A we define:

Definition 8.2.3.
For A € R™*" let f; and l; be the column subscripts of the first and last
nonzero in the ith row of A, i.e.,

fi = mln{j | A4 75 0}, li = max{j | Qi 75 0} (8213)
Then the matriz A is said to have row bandwidth w, where

w= max w;, w; = (I; — fi +1). (8.2.14)

Alternatively w is the smallest number for which it holds that

ajair =0, if [j—k[=w. (8.2.15)

For this structure to have practical significance we need to have w < n.
Matrices of small row bandwidth often occur naturally, since they correspond to a
situation where only variables ” close” to each other are coupled by observations. We
now prove a relation between the row bandwidth of the matrix A and the bandwidth
of the corresponding matrix of normal equations AT A.

Theorem 8.2.4.
Assume that the matric A € R™*™ has row bandwidth w. Then the symmetric

matriz AT A has bandwidth r < w — 1.

Proof. From the Definition 8.2.3 it follows that a;ja;x # 0 = |j — k| < w. Hence,

lj—Fkl>w= (ATA)jk = Zaijaik =0.

i=1
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If the matrix A also has full column rank it follows that we can use the band
Cholesky Algorithm 6.4.6 to solve the normal equations.

The covariance matrix estimate in (8.1.4) can be expressed in terms of the
Cholesky factor as

V =0%(ATA)' =6¢*RTR)"' =¢*R'R7T.

In order to assess the accuracy of the computed least squares estimate of x it is
often required to compute the matrix V, or part of it. The matrix S = R™!, which
is also upper triangular, can be computed from the triangular system RS = I by
back-substitution. Often just the diagonal elements vy; of V = 028S7 are required,
which are the variances of the components of the least squares solution x. These
elements are the 2-norms squared of the rows of S,

n
_ 2 2 S
Visg = O g sy, 1=12,...n.
i=i

In many situations the matrix V only occurs as an intermediate quantity in a
formula. For example the variance of a linear functional ¢ = f7# is equal to o2v,
where

v=fTVf=fTR'RTf=2:T2 2=RTYf

Thus to compute v we only need to solve the triangular system R”z = f and form

2Tz, This is a more stable and efficient approach than using the expression f7V f.
We have r — 7 = —A(ATA)~tATe, where 7+ = b — Af is the least squares

residual and e the random error in the model. Hence r — 7 has covariance matrix

V, = 0?(A(ATA)71AT)2 = 52 A(AT A) 71 AT = U2PR(A).
Note that the orthogonal projector Pr(4) can be computed from
Priay = A(R"R) AT = QQ", Q=AR™%
The normalized residuals are defined by
7 = (diag (V) ~/?#.

Large components in 7 can be assumed to correspond to “bad” data.

8.2.3 Stability and Accuracy with Normal Equations

We now turn to a discussion of the accuracy of the method of normal equations
for least squares problems. First we consider rounding errors in the formation
of the system of normal equations. Using the standard model for floating point
computation we get for the elements ¢;; in the computed matrix C' = fI1(AT A)

Cij = fl<zaikajk> = Zaikag‘k(l + k),
k=1

k=1
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where (see (2.4.4)) |0x] < 1.06(m + 2 — k)u (u is the machine unit). It follows that
the computed matrix satisfies

C=ATA+E, e <1.06um  |aillal. (8.2.16)
k=1

A similar estimate holds for the rounding errors in the computed vector ATb. Note
that it is not possible to show that C' = (A + E)T(A + E) for some small error
matrix E, i.e., the rounding errors in forming the matrix A7 A are not in general
equivalent to small perturbations of the initial data matrix A. From this we can
deduce that the method of normal equations is not backwards stable. The following
example illustrates that when AT A is ill-conditioned, it might be necessary to use
double precision in forming and solving the normal equations in order to avoid loss
of significant information.

Example 8.2.2. (LAucHLI) Consider the system Az = b, where

111 1
€ 0
A= . , b= NE le| < 1.
€ 0
We have, exactly
1+ €2 1 1 1
AT A = 1 1+ ¢2 1 , ATp=|(1],
1 1 1+ €2 1
1 T 1 T
=——(1 1 1 =——(e& -1 -1 -1)".
=gyl Voo r=grale )

Now assume that ¢ = 107%, and that we use eight-digit decimal floating point
arithmetic. Then 1 4 €2 = 1.00000001 rounds to 1, and the computed matrix AT A
will be singular. We have lost all information contained in the last three rows of A!
Note that the residual in the first equation is O(¢?) but O(1) in the others.

Least squares problems of this form occur when the error in some equations
(here 1 + z2 + ®3 = 1) have a much smaller variance than in the others; see
Sec. 8.6.2.

To assess the error in the least squares solution & computed by the method
of normal equations, we must also account for rounding errors in the Cholesky
factorization and in solving the triangular systems. Using Theorem 6.6.6 and
the perturbation bound in Theorem 6.6.2 it can be shown that provided that
2n%/2uk(AT A) < 0.1, the error in the computed solution Z satisfies

[Z — |2 < 2.5n%2ur(AT A)||z|.. (8.2.17)

As seen in Sec. 8.1.5, for “small” residual least squares problem the true condition
number is approximately x(A) = k'/2(ATA). In this case the system of normal
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equations can be much worse conditioned than the least squares problem from which
it originated.

Sometimes ill-conditioning is caused by an unsuitable formulation of the prob-
lem. Then a different choice of parameterization can significantly reduce the con-
dition number. For example, in approximation problems one should try to use
orthogonal, or nearly orthogonal, base functions. In case the elements in A and b
are the original data the ill-conditioning cannot be avoided in this way.

In statistics the linear least squares problem min, ||b — Az||2 derives from a
multiple linear regression problem, where the vector b is a response variable and
the columns of A contain the values of the explanatory variables.

In Secs. 8.3 and 8.4 we consider methods for solving least squares problems
based on orthogonalization. These methods work directly with A and b and are
backwards stable.

8.2.4 Scaling Least Squares Problems

In Sec. 7.7.7 we discussed how the scaling of rows and columns of a linear system
Ax = b influenced the solution computed by Gaussian elimination. For a least
squares problem min,, || Az — b||2 a row scaling of (A, b) is not allowed since such a
scaling would change the exact solution. However, we can scale the columns of A.
If we take © = Dx’, the normal equations will change into

(AD)T(AD)x' = D(ATA)Dz’ = DATb.

Hence this corresponds to a symmetric scaling of rows and columns in AT A. It is
important to note that if the Cholesky algorithm is carried out without pivoting the
computed solution is not affected by such a scaling, c¢f. Theorem 7.5.6. This means
that even if no explicit scaling is carried out, the rounding error estimate (8.2.17)
for the computed solution Z holds for all D,

|D(Z — )2 < 2.5n% ?ur(DAT AD)|| Dz

(Note, however, that scaling the columns changes the norm in which the error in x
is measured.)

Denote the minimum condition number under a symmetric scaling with a
positive diagonal matrix by

k' (AT A) = min k(DAT AD). (8.2.18)
D>0

The following result by van der Sluis [1969] shows the scaling where D is chosen so
that in D(AT A)D all column norms are equal, i.e. D = diag(||aiz,---,||anll2)7?,
comes within a factor of n of the minimum value.

Theorem 8.2.5. Let C' € R™*"™ be a symmetric and positive definite matriz, and
denote by D the set of nxn nonsingular diagonal matrices. Then if in C all diagonal
elements are equal, and C has at most ¢ nonzero elements in any row, it holds that

k(C) <q glei% k(DCD,).
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As the following example shows, this scaling can reduce the condition number
considerably. In cases where the method of normal equations gives surprisingly
accurate solution to a seemingly very ill-conditioned problem, the explanation often
is that the condition number of the scaled problem is quite small!

Example 8.2.3. The matrix A € R?'X® with elements
a=(i—177",  1<i<2l, 1<;j<6

arises when fitting a fifth degree polynomial p(t) = zo + 21t + x2t? + ... + z5t° to
observations at points x; = 0,1,...,20. The condition numbers are

k(AT A) = 4.10 - 10"3, k(DAT AD) = 4.93 - 10°.

where D is the column scaling in Theorem 8.2.5. Thus, the condition number of
the matrix of normal equations is reduced by about seven orders of magnitude by
this scaling!

A simple way to improve the accuracy of a solution T computed by the method
of normal equations is by fixed precision iterative refinement, see Sec. 7.7.8. This
requires that the data matrix A is saved and used to compute the residual vector
b— Az. In this way information lost when AT A was formed can be recovered. If also
the corrections are computed from the normal equations we obtain the following
algorithm:

Iterative Refinement with Normal Equations:
Set x1 = Z, and for s = 1,2, ... until convergence do

rs = b— Axs, RTRéxz, = ATr,

Tsp1 i= Ts + 0Xs.

Here R is computed by Cholesky factorization of the matrix of normal equation
AT A. This algorithm only requires one matrix-vector multiplication each with A
and AT and the solution of two triangular systems. Note that the first step, i.e., for
i = 0, is identical to solving the normal equations. It can be shown that initially
the errors will be reduced with rate of convergence equal to

p = cur/(AT A), (8.2.19)

where c¢ is a constant depending on the dimensions m,n. Several steps of the
refinement may be needed to get good accuracy. (Note that p is proportional to
k'(AT A) even when no scaling of the normal equations has been performed!)

Example 8.2.4. If /(AT A) = k(AT A) and ¢ ~ 1 the error will be reduced to a
backward stable level in p steps if £'/2(ATA) < u=P/P+1)_ (As remarked before
k'2(AT A) is the condition number for a small residual problem.) For example,
with u = 10716, the maximum value of x'/2(AT A) for different values of p are:

10°3,10%4, 108, p=1,2, 0.
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For moderately ill-conditioned problems the normal equations combined with iter-
ative refinement can give very good accuracy. For more ill-conditioned problems
the methods based QR factorization described in Secs. 8.3 and 8.4 are usually to
be preferred.

8.2.5 Methods Based on Gaussian Elimination

The pseudo-inverse of a matrix can also be computed using a LU factorization with
complete pivoting. Usually it will be sufficient to use partial pivoting with a linear
independence check. Let @4 11 be the element of largest magnitude in column p+1.
If |agp+1| < tol, column p + 1 is considered to be linearly dependent and is placed
last. We then look for a pivot element in column p + 2, etc.

Assume now that we have computed the LU factorization

L
I, ATl, = (L;) (U Uz), (8.2.20)

where L11,Uy; € R™ " are triangular and nonsingular. Then by Theorem 8.1.7 we
have

.
L
AN =TI (U; Upp)f (L;) I,

:
e (L
=10, (I, S)TUulLul(T) Iy,

where
T = Ly Ly}, S =Up'Us,

Note the symmetry in the treatment of the L and U factors!

Standard algorithms for solving nonsymmetric linear systems Ax = b are
usually based on LU factorization with partial pivoting. Therefore it seems natural
to consider such factorizations also for least squares problems which are only slightly
overdetermined, i.e., where m —n < n.

A rectangular matrix A € R™*™, m > n, can be reduced by Gaussian elimina-
tion with partial pivoting to an upper triangular form U. In general, column inter-
changes are needed to ensure numerical stability. In the full rank case, rank (4) = n,
the resulting LDU factorization becomes

IT, AT, = (ﬁ;) = LDU = (é;) DU, (8.2.21)

where L1 € R™ " is unit lower triangular, D diagonal, and U € R™*™ is unit upper
triangular and nonsingular. Thus the matrix L has the same dimensions as A and
a lower trapezoidal structure. Computing this factorization requires %n2 (m — %n)

flops.
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Using the LU factorization (8.2.21) and setting & = I1% x, b = II;b, the least
squares problem min, ||Az — b||2 is reduced to

min |[Ly —bl2, DUz =y. (8.2.22)
Y

If partial pivoting by rows is used in the factorization (8.2.21), then L is usually
a well-conditioned matrix. In this case the solution to the least squares problem
(8.2.22) can be computed from the normal equations

LTLy = L™,

without substantial loss of accuracy. This is the approach taken by Peters and
Wilkinson [49, 1970]. The following example shows that this is a more stable method
than using the normal equation AT Az = ATb.

Example 8.2.5. (Noble [43, 1976])
Consider the matrix A and its pseudo-inverse

1 1
1 /2 2-3¢" 243!
= -1 T: —
. 1 1—1—2 1 7 4 6 (0 36_1 _36_1 '

The (exact) matrix of normal equations is

ry_ (3 3
AA—(3 3+2e2>'

If € < \/u, then in floating point computation fI(3 + 2¢?) = 3, and the computed
matrix fI(ATA) has rank one. However, the LU factorization of A is

1 0
A=LDU=1[1 1 10 L1 ,
1 1 0 € 0 1

where L and U are well-conditioned. The correct pseudo-inverse is now obtained

from
I _ 1 —e¢ 1/3 0 1 1 1
F_ 1y—1/7T 17T _
Al=U"D"(L"L)"'L _<0 e)(O 1/2)(0 1 —1)'

and now there is no cancellation. a

Forming the symmetric matrix L™ L requires %nz (m— %n) flops, and comput-
ing its Cholesky factorization takes n®/6 flops. Hence, neglecting terms of order
n?, the total number of flops to compute the least squares solution by the Peters—
Wilkinson method is n?(m — %n) This is always more expensive than the method

of normal equations applied to ATA.
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When m — n < n an algebraic reformulation is advantageous. If we let T =
Lng_l and L1y = z, problem (8.2.22) becomes

(5)- (2

The solution z can be computed from

min
z

2

2= (I, +TTT)"(by + TTby)
=by+ (I, + TTT) 77 (by — Thy)
= by + T (I + TTT) Y (by — Thy). (8.2.23)

The last expression can be evaluated more efficiently if m —n < n and leads to the
most efficient method for solving slightly overdetermined least squares problems.
(Note that for m = n + 1 the inversion in (8.2.23) is reduced to a scalar division.)

Methods based on the factorization (8.2.21) for solving the minimum norm
problem min ||y||2, subject to ATy = ¢ can be similarly developed. Setting ¢ = I11 ¢
and y = [Iyy, we have

g=W0TLNte=L(LTL) U T
For the case m —n < n we note that from U? LT§ = ¢ we have
= L7TU e — (LoL7Y 0 = e — T o (8.2.24)

Hence g2 can be obtained as the solution to the least squares problem
7" - (e
L )27 \0

Jo = (Imn + TTT) 'Te. (8.2.25)

min
Y2

3

2

or using the normal equations,

The reformulation used above for the almost square case follows from a useful
identity, which holds for any matrix S of dimension r X (n — r) of rank 7:

(I, + 8T8)*sT = sT(1,,_, + SST)~L. (8.2.26)

This identity is easily proved using the Woodbury formula (3.1.6). It reduces the
computation of the pseudo-inverse of a matrix of rank r to the computation of the
pseudo-inverse of a matrix of rank (n — r). If n —r < r, there is a great gain in
efficiency.

Review Questions

1. Give a necessary and sufficient condition for z to be a solution to min, || Az —
bl|2, and interpret this geometrically. When is is the least squares solution z
unique? When is r = b — Ax unique?
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. What are the advantages and drawbacks with the method of normal equations

for computing the least squares solution of Az = b7 Give a simple example,
which shows that loss of information can occur in forming the normal equa-
tions.

. Discuss how the accuracy of the method of normal equations can be improved

by (a) scaling the columns of A, (b) iterative refinement.

. Show that the more accurate formula in Example 8.2.1 can be interpreted

as a special case of the method (8.5.5)—(8.5.6) for partitioned least squares
problems.

. (a) Let A € R™*" with m < n. Show that AT A is singular.

(b) Show, using the SVD, that rank (AT A) = rank (AAT) = rank (A).

. Define the condition number k(A) of a rectangular matrix A. What terms in

the perturbation of a least squares solution depend on s and x2, respectively?

Problems

1. In order to estimate the height above sea level for three points, A,B, and C,

the difference in altitude was measured between these points and points D,E,
and F at sea level. The measurements obtained form a linear system in the
heights x4, xp, and x¢ of AB, and C,

1 00 1
0 10 2
0 0 1 A E

1 1 0 B =g
0 -1 1 te 2

1 0 1 1

Show that the least squares solution and residual vector are

1 1
x = 1(5’7’ 12)7, r= Z(—1, 1,0,2,3,-3)7.

and verify that the residual vector is orthogonal to all columns in A.

. (a) Consider the linear regression problem of fitting y(t) = .+ 3(¢t — ¢) by the

method of least squares to the data

t 1 3 4 6 7
ft) —21 —09 —06 06 0.9

With the (unsuitable) choice ¢ = 1,000 the normal equations
5 4979 20\ _ —-2.1
4979 4958111 x1 )\ —2097.3
become very ill-conditioned. Show that if the element 4958111 is rounded to
4958 - 102 then 3 is perturbed from its correct value 0.5053 to —0.1306!
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(b) As shown in Example 8.2.1, a much better choice of base functions is shift-
ing with the mean value of ¢, i.e., taking ¢ = 4.2. However, it is not necessary
to shift with the exact mean; Show that shifting with 4, the midpoint of the
interval (1,7), leads to a very well-conditioned system of normal equations.

3. Denote by z,, the solution to the weighted least squares problem (8.1.6) and
let « be the solution to the corresponding unweighted problem (W = I). Using
the normal equations show that

Ty —x = (ATWTA) AT (W= — 1) (b — Ax). (8.2.27)

Conclude that weighting the rows affects the solution if b ¢ R(A).

4. Assume that rank (4) = n, and put A = (A4,b) € R™* "+ Let the corre-
sponding cross product matrix, and its Cholesky factor be

~  iT % C d = R =z
— AT x _ _
cowra=(§ ). a=(T2)
Show that the solution z and the residual norm p to the linear least squares
problem min, ||b — Az||2 is given by

Rx =z, b — Azll2 = p.

5. Let A € R™*™ and rank (A) = n. Show that the minimum norm solution of
the underdetermined system A7y = ¢ can be computed as follows:
(i) Form the matrix AT A, and compute its Cholesky factorization AT A =
RTR.
(ii) Solve the two triangular systems R”z = ¢, Rz = z, and compute y = Ax.

6. Compute the solution x using the LDU factorization in Example 8.6.2. Com-
pare with the exact solution given in Example 8.2.2.

7. (B. Noble 1976) Consider the matrix A and its generalized inverse

1 1
A=|1 141!
1 1—¢t

(a) Show that The (exact) matrix of normal equations is

v (3 3
AA_(?) 3+262>'

Hence if € < \/u, then in floating point computation fI(3 + 2¢2) = 3, and the
computed matrix fI(ATA) has rank one.

(b) An LU factorization of A is

1 0
A=LU=1|1 1 <(1) 1>.
1 -1 €

Show that here L is well-conditioned. and that the pseudo-inverse can be
stably computed from A" = U~1(LTL)~1LT.
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8.

10.

(S. M. Stiegler [60].) In 1793 the French decided to base the new metric
system upon a unit, the meter, equal to one 10,000,000th part of the distance
from the the north pole to the equator along a meridian arc through Paris.
The following famous data obtained in a 1795 survey consist of four measured
subsections of an arc from Dunkirk to Barcelona. For each subsection the
length of the arc S (in modules), the degrees d of latitude and the latitude L
of the midpoint (determined by the astronomical observations) are given.

Segment Arc length S latitude d  Midpoint L

Dunkirk to Pantheon 62472.59 2.18910°  49° 56’ 30"
Pantheon to Evaux 76145.74 2.66868°  47° 30" 46"
Evaux to Carcassone 84424.55 2.96336°  44° 41’ 48"
Carcassone to Barcelona 52749.48 1.85266°  42° 17" 20"

If the earth is ellipsoidal, then to a good approximation it holds
z+ysin?(L) = S/d,

where z and y are unknown parameters. The meridian quadrant then equals
M =90(z + y/2) and the eccentricity is e is found from 1/e = 3(z/y + 1/2).
Use least squares to determine z and y and then M and 1/e.

. Consider the least squares problem min,, ||Az — b||3, where A has full column

rank. Partition the problem as

min
T1,T2

(A, As) (2) —sz.

By a geometric argument show that the solution can be obtained as follows.
First compute x5 as solution to the problem

min | P4, (A2 — D)3
where P{. = I — Py, is the orthogonal projector onto V'(AT). Then compute
29 as solution to the problem
min [ 4121 — (b~ Ago) 3.
Show that if A, B € R™*™ and rank (B) # rank (A) then it is not possible

to bound the difference between At and BT in terms of the difference B — A.
Hint: Use the following example. Let € # 0, o # 0, take

o 0 o €
a=(50) 2=(70)

and show that |[B — Al|2 = ¢, ||BT — AT|]2 > 1/e.
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11. Show that for any matrix A it holds

Al = lin%(ATA +p20) AT = lim AT(AAT 4207 (8.2.28)
H— U

12. (a) Let A = (a1,a2), where af'as = cos, ||a1]2 = ||az||2 = 1. Hence v is the
angle between the vectors a; and as. Determine the singular values and right
singular vectors vy, ve of A by solving the eigenvalue problem for

AT A — 1 cos 7y
cos 7y 1 '

Then determine the left singular vectors uy, us from (7.1.33).
(b) Show that if v < 1, then o1 &~ v/2 and o3 &~ v/v/2 and

ur ~ (a1 + a2)/2, uz = (a1 — az) /7.

8.3 Methods using Orthogonal Factorizations

Orthogonality plays a key role in least squares problems. By Theorem 8.2.2, in the
full rank case, rank (4) = n, the residual r = b — Az can be written

r= PN(AT)Z), PN(AT) =1- A(ATA)ilAT, (8.3.1)

which gives an expression for Pr(4), the orthogonal projector onto R(A), the range
space of A. It follows that any solution to the consistent linear system

Ar = PR(A)Z) (832)

is a least squares solution. In the next section we survey the theory of orthogonal
and oblique projection.

8.3.1 Orthogonal and Oblique Projections

Recall that two vectors v and w in R™ are said to be orthogonal if (v,w) = 0.
A set of vectors vy, ..., v, in R™ is called orthogonal with respect to the Euclidian
inner product if

vl v; =0, i#}J,

and orthonormal if also vJv; = 1,5 = 1 : k. An orthogonal set of vectors is

linearly independent. More generally, a collection of subspaces Sy, ..., S of R™ are
mutually orthogonal if

Ty=0, VoeeS, Vyes;, i#j
The orthogonal complement S+ of a subspace S € R" is defined by

St={yeR" 2Ty=0, z€8S}.
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Let ¢1,...,q, form an orthonormal basis for a subspace S C R™. Such a basis
can always be extended to a full orthonormal basis ¢, ...,q, for R™, and then
S+ = span{qxt1,- -, qn}-

Let ¢1,...,¢, € R™ be orthonormal Then the matrix @ = (¢1,...,qn) €
R™ " m > n, is called an orthogonal matrix and Q7Q = I,. If Q is square
(m =mn) then Q= = Q7 and hence also QQT = I,,. Further,

1 =det(Q"Q) = det(Q") det(Q) = (det(Q))?,

and it follows that det(Q) = +1.
In the complex case, A = (a;;) € C™*™ the Hermitian inner product leads to
modifications in the definition of symmetric and orthogonal matrices. Two vectors

2 and y in C" are called orthogonal if 7y = 0. A square matrix U for which
UHU = I is called unitary. Then

(Ux) Uy = 25 UH Uy = 2y,

and hence unitary matrices have the property that they preserve the Hermitian inner
product. In particular the Euclidian length of a vector is invariant under unitary
transformations, i.e., [|[Uz|3 = ||z||3. Note that when the vectors and matrices are
real the definitions for the complex case are consistent with those made for the real
case.

Any square matrix P € R™*™ such that

P =P (8.3.3)

is called idempotent and a projector. An arbitrary vector v € R™ can be de-
composed in a unique way as

v=Pv+ (I —P)v=uv+0s. (8.3.4)

Here v; = Pv € S is a projection of v onto R(P), the range space of P. Since
Pvg = (P — P?)v = 0 it follows that (I — P) is a projection onto N'(P), the null
space of P.

If P is symmetric, PT = P, then

vivy = (Pv)T(I — P)v =0T P(I — P)v =v"(P — P?)v =0.

It follows that vo L S, i.e., vo lies in the orthogonal complement S+ of S; In this
case P is the orthogonal projector onto S and I — P the orthogonal projector
onto ST. Tt can be shown that the orthogonal projector P onto a given subspace
S is unique, see Problem 1.

Example 8.3.1.
Let Q = (q1,...,9,) € R™*™, m > n, where q1, ..., q, € R™ are orthonormal
vectors. Then the orthogonal projector onto the orthogonal complement of R(Q).

P=1,-QQ", (8.3.5)
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If n =1 then P = I,,, — q1¢{ and the null space N'(P) = span (q;) has dimension
one. P is then called an elementary orthogonal projection.

A projector P such that P # PT is called an oblique projector. We now
briefly review oblique projections and their matrix representations. If ) is an eigen-
value of P then from P2 = P it follows that A> = X\. Hence the eigenvalues of P
are either 1 or 0 and we can write the eigendecomposition

P::th@)(%’ &?k) (%;), (§§>:=(U1Ug% (8.3.6)

where k = trace (P) is the rank of P and
span (U1) = R(P), span (Uz) = N(P).

The matrices U; € R™ ™ and Uy € R" ™ (ny + ny = n), can be chosen as
orthogonal bases for the invariant subspaces corresponding to the eigenvalues 1 or
0, respectively. In terms of this eigendecomposition (8.3.4) can be written

YT . .
v = (Ul Ug) (Y}T) V= (UlyvlT)’U + (UQYVQT)’U = V1 + V2, (837)
2
that is
P=UY!, I-P=UY,. (8.3.8)

If PT = P then P is an orthogonal projector and in (8.3.6) we can take

U = (Uy Uz) orthogonal and Yy = Uy and Ya = Us. The projectors (8.3.7) then take
the form

P=U,U], I—-P=U,U; (8.3.9)

For an orthogonal projector we have
1Polla = U vll2 < Joll2 ¥ veR™, (8.3.10)

where equality holds for all vectors in R(Uy). From this it follows that for an
orthogonal projector |P|l2 = 1. The conversion is also true; P is an orthogonal
projection only if (8.3.10) holds.

When P is not symmetric we call v; = Pv the oblique projection of v
onto R(U;) along R(Us), and the matrix P = U;Y;T is the corresponding oblique
projector. Similarly I—P = UQYQT is the oblique projector onto R(Us) along R(Uy ).

From (8.3.6) we have

el (YU, YU\ (L0
(Y'zT)(Ul U2)_<Y2TU1 veo, ) =\ o 1) (8.3.11)

In particular we have YlTUg =0 and }72TU1 = 0. Hence the columns of 171 Aform a
basis of the orthogonal complement of R(Uz) and, similarly, the columns of Y5 form
a basis of the orthogonal complement of R(Uy ).
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Let Y7 be an orthogonal matrix whose columns span R(Yl) Then there
is a nonsingular matrix G; such that Y, = Y1G. From (8.3.11) it follows that
GTY'U, = I, and hence GT = (Y{'U;)™!. Similarly Yo = (Y, Us)"1Ys is an
orthogonal matrix whose columns span R(Y3). Hence using (8.3.8) the projectors
can be written

P=U,(Y{'U,) YT, I—P=Uy(Y, Uy) 'Y (8.3.12)

u2

ul

Figure 8.3.1. The oblique projection of v on uy along us.

Example 8.3.2.

We illustrate the case when n = 2 and n; = 1. Let the vectors u; and y; be
normalized so that ||uill2 = [|y1]l2 = 1 and let yfu; = cosf, where 6 is the angle
between u; and y;, see Fig. 8.4.1. Since

Hence ||P||2 =1/ cos@ > 1, and || P||2 becomes very large when y; is almost orthog-
onal to u;. When y; = u; we have § = 0 and P is an orthogonal projection.

8.3.2 Gram-Schmidt Orthogonalization

Gram—Schmidt orthogonalization is one of the fundamental algorithms in numeri-

cal linear algebra. Given a sequence of linearly independent vectors aj,as,...,a,
Gram—Schmidt orthogonalization computes orthonormal vectors q1, ¢o, . . ., ¢,. such
that

span [a1,...,ax] = spanlqi,...,qk], k=1:n. (8.3.13)

Algorithm 8.3.1 Classical Gram—Schmidt (CGS).

fork=1:n
(i) If k = 1 then set ¢; = a; else orthogonalize a) against q1,. .., qr—1:

k—1
dr = a — Zrikqi, ra=qlag, i=1:k—1; (8.3.14)
i=1

(ii) Normalize g
rie = ldll2, k= Qr/rn- (8.3.15)
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end;

Note that ¢ # 0, since otherwise ay is a linear combination of the vectors
ai,...,ax—1, which contradicts the assumption. The CGS algorithm requires ap-
proximately mn? multiplications and can be interpreted in matrix terms as follows:

Theorem 8.3.1. The QR Factorization

Let the matriz A = (a1, ag, . .., a,) € R™*™ have linearly independent columns.
Then the Gram—Schmidt algorithm computes unique matrices Q1 € R™*™ with
orthonormal columns and an upper triangular R € R"™*™ with positive diagonal
elements, such that

i1 T2 - Tin
22 T2n

A= (a1,a2,...,a,) = (1,92, -, Gn) . : =Q1R.  (8.3.16)
Ton

Proof. Combining (8.3.14) and (8.3.15) we obtain
k—1 k
ag = Trrqr + Zrikqi = kalJu k=1:n,
i=1 i=1
which is equivalent with (8.3.16). Since the vectors g, are mutually orthogonal by
construction the theorem follows. 0O

Corollary 8.3.2. The factor R in the factorization (8.3.16) equals the Cholesky fac-
tor of AT A. Hence the GS algorithm computes the Cholesky factor directly from A.

Proof. The Cholesky factor R of a nonsingular matrix A7 A is uniquely determined
provided R is normalized to have a positive diagonal. From (8.3.16) we have AT A =
RTQTQ1R = RTR, and the result follows. 0O

For the numerical GS factorization of a matrix A a small reordering of the
above algorithm gives the modified Gram—Schmidt method (MGS). Although
mathematically equivalent to the classical algorithm MGS has greatly superior nu-
merical properties, and is therefore usually to be preferred.

The modified Gram—Schmidt (MGS) algorithm employs a sequence of elemen-
tary orthogonal projections. At the beginning of step k, we have computed

(ql,...,qk_l,a,(ck),...,agf)),

where we have put a; = ag-l), j =1:n. Here a,(ck), ey aﬁ,’“’ have already been made
orthogonal to ¢i,...,qx—1, which are final columns in ;. In the kth step ¢ is

obtained by normalizing the vector al(f),

Gr = al(ck)v ek = |G |l2, k= Qr/Tkks (8.3.17)
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(k) (k)

and then a;'/,,...,an" are orthogonalized against gj
ag-kﬂ) = (I, — qkq,{)ag-k) = ag-k) — Thilk, Thj = qkTag-k), j=k+1:n. (83.18)

After n steps we have obtained the factorization (8.3.16). Note that for n = 2 MGS
and CGS are identical.

Algorithm 8.3.2 Modified Gram—Schmidt.
Given A € R™*" with rank(A) = n the following algorithm computes the factor-
ization A = Q1 R:

fork=1:n
Ao (k). EENTESNTEN
e =ay 5 ik = ||Grll2;
qk = Qr/Tkk;
forj=k+1:n
k
rey = qf al;
k+1 k
a;- T = a§ ) — Tkjqk;
end
end

The operations in Algorithm 8.3.2 can be sequenced so that the elements in R
are computed in a column-wise fashion. However, the row-wise version given above
is more suitable if column pivoting is to be performed; see Sec. 8.4.2.

There is also a square root free version of the modified Gram—Schmidt
orthogonalization method, which results if the normalization of the vectors ¢y is
omitted. In this version one computes scaled factors Q1 = (41, ..,G,) and R so
that

A=QR,
where R is unit upper triangular. We take 7, = 1, dp = % @k, and change (8.3.18)
to

o =™ —Fa,  y=dd A, Gk (8.3.19)

The unnormalized vector §i is just the orthogonal projection of ax onto the com-
plement of spanai,as, ..., ar—1] = spanfqi, gz, ..., qx—1]-
In CGS the orthogonalization of ay in step (8.3.14) can be written

ar =0 - Qr1Qi_1)ar, Qu-1=1(q1,--.,qu-1)-

In MGS the projections r;rq; are subtracted from ay as soon as they are computed,
which corresponds to computing

Gr = — qr—1qt_1) - (I — q1qi )ay.

For k > 2 these two expressions are identical only if the g1, ..., qr—1 are accurately
orthogonal. However, due to round-off there will be a gradual (sometimes catas-
trophic) loss of orthogonality. In this respect CGS and MGS behave very differently.
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In MGS the loss of orthogonality occurs in a predictable manner proportional to
the k(A). This is not the case for CGS.

Loss of orthogonality will occur in orthogonalization whenever cancellation

takes place in subtracting the orthogonal projection on g; from ag), that is when

o = (I qugl)al™, a2 < alla?]2. (8.3.20)

Consider the case of orthogonalizing two vectors. Given a vector ag, we want to
orthogonalize it against a vector q1, ||g1||2 = 1, by computing

Go = az — T12q1, Ti2 = qlTCLQ- (8.3.21)

We use the standard model for floating point computation, and the basic results in
Sec. 2.3.2 to analyze the rounding errors. For the computed scalar product 715 =

fl(qlTag) we get
mu

P12 = ri2| <ymllazll2,  ym = T—maj2’

where w is the unit roundoff. Using |ri2] < |laz|l2 we obtain for g» = fl(az —
fU(r2q1))

lG2 = dall2 < Ym+2]az]|2-

Since ¢ Go = 0, it follows that |¢7 2| < Ym-+2|/az|l2 and the loss of orthogonality

gt 32 " lq1 2| +2Ha2|\2  Ym42
— ~ ~ m ~ — .
g2l llgall2 G2l sing(qr,az)’

(8.3.22)

is proportional to ¢(q1,az2), the angle between ¢; and as.

Example 8.3.3. As an illustration consider the matrix

A= (a1.00) = 1.2969 0.8648
— L ®2) = 02161 0.1441 )

Using the Gram—Schmidt algorithm and IEEE double precision we get

_(0.98640009002732
17 10.16436198585466 | °

12 = qFay = 0.87672336001729,

e oo ((—0-12501001273265 | s
G2 = a2 =201 = | () 75023914025696 ’

_( —0.16436196071471
7=\ 0.98640009421635 |’

and

R =

1.31478090189963 0.87672336001729
0 0.00000000760583 /
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Severe cancellation has taken place when computing ¢», which leads to a serious
loss of orthogonality between ¢; and gs:

qt g = 2.5486557 - 10785,

which should be compared with the unit roundoff 1.11 - 10716, 'We note that the
loss of orthogonality is roughly equal to a factor 1078,

Reorthogonalizing the computed vector aé2) against ¢; we obtain

o = 2.5486557 105, gy = (—0.16436198585466) '

0.98640009002732

The vector ¢y is exactly orthogonal to ¢;.

For MGS the loss of orthogonality can be bounded in terms of the condition
number k(A) also for n > 2. (Note that for n = 2 MGS and CGS are the same.)
In can be shown that if coku < 1, then

= c1
11 = QT Qullz < 7———ru.
1— coku
where ¢; and ¢y denote constants depending on m, n, and the details of the arith-
metic. In contrast, the computed vectors g from CGS may depart from orthogo-
nality to an almost arbitrary extent. The more gradual loss of orthogonality in the
computed vectors g; for MGS is illustrated in the example below; see also Problem 1.

Example 8.3.4. A matrix A € R?**10 was generated by computing
A =Udiag(1,107%,...,107V7T

where U and V are orthonormal matrices. Hence A has singular values o; = 10741,
i = 1:10, and k(A) = 10°. Fig.8.5.1 shows the condition number of A, =
(a1, ...,ax) and the loss of orthogonality in CGS and MGS after k steps as measured
by [ — QF Qkll2-

For MGS the loss of orthogonality is more gradual and proportional to «(Ay),
whereas for CGS the loss of orthogonality is roughly proportional to x2(Ayg),

In some applications it is important not only that the computed Q1 and R are
such that QR accurately represents A, but also that Q; is accurately orthogonal.
We call this the orthogonal basis problem. It can be show that for MGS it holds
that

A+ E=OR, |[Elz<coul A2

However, to satisfy the second condition it is necessary to reorthogonalize the
computed vectors in the Gram-Schmidt algorithm, whenever (8.3.20) is satisfied
for some suitably chosen parameter o < 1 typically chosen in the range [0.1,1/v/2].
In a sense to be made more precise below, one reorthogonalization will always suf-
fice. Hence reorthogonalization will at most double the cost of the Gram—Schmidt
factorization.
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Table 8.3.1. Loss of orthogonality and CGS and MGS.

k1 w(Ak) = Q&Qcll2 [k — Q4 Qull2
1| 1.000e+00 1.110e-16 1.110e-16
2 | 1.335e+401 2.880e-16 2.880e-16
3 | 1.676e+02 7.295e-15 8.108e-15
4 | 1.126e+03 2.835e-13 4.411e-14
5 | 4.853e+05 1.973e-09 2.911e-11
6 | 5.070e+05 5.951e-08 3.087e-11
7 | 1.713e+06 2.002e-07 1.084e-10
8 | 1.158e+07 1.682e-04 6.367e-10
9 | 1.013e+08 3.330e-02 8.779e-09
10 | 1.000e+09 5.446e-01 4.563e-08

For the case n = 2 the following result is known:

Algorithm 8.3.3 Kahan—Parlett algorithm Parlett [48, Sec.6.9].

Suppose that for any given z the expression p := orthog(ay,z) computes an
approximation to the (exact) orthogonal complement p = z — a1 (af'z)/||a1|3 of z
to a1, such that the error satisfies ||p — p||2 < €]|z]|2 for some tiny positive e. Then,
given A = (aq,as), the following algorithm computes a vector g2, which satisfies

32 = g2ll2 < (L + @)ellaz]lz, o @]l < ea|@zll2]lai 2, (8.3.23)

where ¢- is the exact complement of as orthogonal to a;. The first inequality implies
that go is close to a linear combination of a; and as. The second says that go is
nearly orthogonal to a;.

g2 := orthog(a1, az);
if [|g2]l2 < aflaz]|2
Go := orthog(ai,d2); (reorthogonalizegs)
if [[Gall2 > all@2ll2 Gos
else G2 = @2 := 0; (numerically singular case)
end

end

Note that if ||Gz]l2 < a||@2|l2 we conclude that the given vectors (a1, az) are linearly
dependent and and signal this by setting g2 := 0.

When « is large, say a > 1/\/5, then the bounds in (8.3.23) are very good but
reorthogonalization will occur more frequently. If « is small, reorthogonalization
will be rarer, but the bound on orthogonality less good. For larger n there seems to
be a good case for recommending the stringent value o = 1/v/2 or always perform
one step of reorthogonalization (o = 1).

Now consider the case n > 2. Assume we are given a matrix @1 = (g1, ..., qk—1)
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with ||lq1]l2 = ... = ||gk—1]l2 = 1. Adding the new vector ay, we want to compute a
vector ¢ such that

i € span(Q1,ax) L span(Q1).

The solution equals ¢, = ap, — @17, where 7y, solves the least squares problem
min [[a, — Q17k||2-
Tk

We first assume that @)1 is accurately orthogonal. Then it can be rigorously proved
that it suffices to run MGS twice on the matrix (Q1, ax). This generalizes the result
by Kahan-Parlett to n > 2.

To solve the problem, when the columns of @1 are not accurately orthogonal,
we can use iterated Gram—Schmidt methods. In the iterated CGS algorithm we

put (j,(co) = ag, r,(co) :=0, and for p=0,1,... compute

S;gp) — Q?‘j/(cp)a ‘j/(qpﬂ) — (j](cp) _ leép), T}(Cp-kl) — T}(Cp) + S/(gp)'

The first step of this algorithm is the usual CGS algorithm, and each step is a
reorthogonalization. The iterated MGS algorithm is similar, except that each pro-
jection is subtracted as soon as it computed: As in the Kahan—Parlett algorithm,
the iterations can be stopped when Htj,(cpH)Hg > a| gl |2

The iterated Gram—-Schmidt algorithm can be used recursively, adding one
column a at a time, to compute the factorization A = Q1 R. If A has full numer-
ical column rank, then with a = 1/ V2 both iterated CGS and MGS computes a
factor @1, which is orthogonal to almost full working precision, using at most one
reorthogonalization. Hence in this case iterated CGS is not inferior to the iterated
MGS.

8.3.3 Least Squares Problems by Gram—-Schmidt

We now consider the use of the Modified Gram—-Schmidt algorithm for solving linear
least squares problem. It is important to note that because of the loss of orthog-
onality in Q1 computing x by forming c1 = QTb and then solving Rx = c; will
not in general give an accurate solution. Using the MGS factorization in this way
seems to have contributed to an undeserved bad reputation of the method. Used
correctly, as described below, the MGS factorization will give as accurate results as
any competing method.

To solve a least squares problems the MGS algorithm is applied to the aug-
mented matrix (A, b). If we skip the normalization of the (n+1)st column we obtain
a factorization

(4, 0) = (Q1, 7) (g i) (8.3.24)

where r is the residual vector. We have

4z = bl =) ( 7)) =10 =) =l

2
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Let us assume that ¢,11 = r/||r||2 is orthogonal to @;. Then the minimum of
the last expression occurs when Rx — z = 0 and the least squares residual equals
r. Although this assumptions is not true to machine precision, we note that it
is not necessary to assume that )1 is accurately orthogonal for the conclusion to
hold. This heuristic argument leads to the following algorithm for solving linear
least squares problems by MGS, which can be proved to be backward stable for
computing the solution x:

Algorithm 8.3.4 Linear Least Squares Solution by MGS.
Carry out MGS on A € R™*" rank(A) = n, to give Q1 = (¢1,--.,¢») and R, and
put b = b. Compute the vector z = (21,...,2,)" by

fork=1,2,...,n

2= qt b5 b = p®) g
end
r =t

solve Rx = z;

If implemented as above MGS gives very accurate results. Unfortunately, a
common error can still found in some textbooks. This is to compute R by MGS,
but in the final step solve Rx = QTb. This destroys the accuracy and may be one
reason the MGS method is not widely used.

In some applications it is important to use an algorithm which is backwards
stable for the computed residual 7, i.e. we want a relation

(A+E)'F=0, ||E|2 < cullAl2, (8.3.25)
to hold for some constant c¢. This implies that A77 = —ET7, and
IAT7]|2 < cull7]l2]|All2. (8.3.26)

Note that this is much better than if we compute

7= fl(b— fl(Az)) = fI (“’ "”( 196))

even when z is the exact least squares solution. We obtain using (2.3.13) and
Alr=0
AT < nga |AT] (8] + | All])-

From this we get the norm-wise bound
IATF(l2 < 22yl All2([1Bll2 + 02| All2l2]]2),

which is a much weaker than (8.3.26) when, as is often the case, |||z < ||b]|2!

An obvious remedy seems to be to reorthogonalize the computed residual r
against Q1 = (q1,¢2, - -, ¢n). However, to obtain a backward stable algorithm for r
this should be done in reverse order!
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Algorithm 8.3.5 Orthogonal projection by MGS.
To make Algorithm 8.3.3 backward stable for r it suffices to add a loop where the
vector b(" 1) is orthogonalized against ¢n, gn_1,. .., ¢ (note the order):

for k=n,n—1,...,1

zp = @E b, pk) = pFD _
end
r=b;

It can be proved that this step “magically” compensates for the lack of or-
thogonality of ()1 and the 7 computed by Algorithm 8.3.3 satisfies (8.3.25).

A similar idea is used to construct a backward stable algorithm for the mini-
mum norm problem

minfyls,  ATy=ec.

Algorithm 8.3.6 Minimum Norm Solution by MGS.
Carry out MGS on AT € R™*" with rank(A) = n to give Q1 = (q1,...,¢,) and
R. Then the minimum norm solution y = y(*) is obtained from

RT(<17 .. '7<n)T =C

y™ =0;
fork=mn,...,2,1
wr = qiy™; Yy =y — (= G
end
If the columns of @)1 were orthogonal to working accuracy, then wy = 0,
k = m,...,1. Hence w compensates for the lack of orthogonality to make this

algorithm backwards stable!

8.3.4 Householder and Givens Transformations

Orthogonal matrices which are equal to the unit matrix modified by a matrix of rank
one are called elementary orthogonal matrices. Such matrices are flexible and
useful tools for constructing algorithms for solving a variety of problems in linear
algebra. They are attractive since multiplication of a vector with an orthogonal
matrix preserves the Euclidean length and hence there use leads to numerically
stable algorithms.

Recall that a square matrix @ € R™*™, is called orthogonal if QTQ = I.
Then Q' = Q7, and hence QQ7 = I. Taking the determinant of both sides

det(QTQ) = det(QT) det(Q) = det(Q)? = 1.
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and hence det(Q) = £1. A very important class of orthogonal transformations are
matrices of the form
H=1-puu”, B=2/(u"u). (8.3.27)
By construction H is symmetric HT = H, and using (8.3.27) we have
HTH = H? = I — 2puu” + BPu(uu)u® = 1.

Hence H is orthogonal, and H? = I. The product Ha where a is a given vector can
be computed without explicitly forming H itself using

Ha= (I - puu®a = a — fu(ula).

Note that Ha € span[a,u]. We have Hu = —u, i.e., H reverses u. Further Ha = a,
for @ 1 u. Hence H has m—1 eigenvalues equal to +1 and one equal to —1, and thus
det(H) = —1. The effect of the transformation Ha for a general vector a is to reflect
a in the (m — 1) dimensional hyperplane characterized by the normal vector u, see
Fig. 8.5.1. Therefore, H is called an elementary reflector. The use of elementary
reflectors in numerical linear algebra was initiated by A. S. Householder. Matrices
of the form (8.3.27) are therefore often called Householder reflectors and the
vector u is called a Householder vector.

Figure 8.3.2.

Fig. 8.4.1 shows the vector a mapped into Ha by a reflection in the plane with
normal vector u. Note that this is equivalent to subtracting twice the orthogonal
projection onto u. Further the normal v is parallel to the difference (a — Pa). Given
a # 0 € R™, we consider the problem of constructing a plane reflection H € R"™*™
such that multiplication by H zeros all components except the first in a, i.e.,

Ha = toey, o= |a|s2. (8.3.28)

Multiplying (8.3.28) from the left by H and using H? = I it follows that y = Ue;
satisfies UTy = e; or
Hey = ta/o.

Hence (8.3.28) is equivalent to finding a square orthogonal matrix H with its first
column proportional to +a/o. It is easily seen that (8.3.28) is satisfied if we take

u:a$061=<alafo), GZ(Z;)' (8.3.29)
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Note that u differs from a only in its first component. A short calculation shows
that

1/ = 3ulu=J(aFoer) (aFoer) = (0% F 2001 +0%) = o(0 F o).

If a is close to a multiple of eq, then o = |a;| and cancellation may lead to a large
relative error in §. To avoid this we take

u = a+ sign (ay)oey, 1/8=0(o + |a1]), (8.3.30)

which gives
Ha = —sign (a1)oe; = dey.

Note that with this choice of sign the vector a = e; will be mapped onto —e;. (It
is possible to rewrite the formula in (8.3.30) for § so that the other choice of sign
does not give rise to numerical cancellation; for details see Parlett [48, pp. 91].)

The Householder transformation in (8.3.27) does not depend on the scaling of
u. It is often more convenient to scale u so that its first component equals 1. If we
write

U2

H=1-puw”, u= ( 1),
then
B=1+]ai|/o. uz = paz, p=-sign(aq)/(o+ |ail), (8.3.31)

This has the advantage that we can stably reconstruct § from uo using
B=2/(uTu) =2/(1 + uluy).

Algorithm 8.3.7 Let a € R™ be a vector with |la]j2 = ¢ and aTe; = «;. The
following algorithm constructs a Householder transformation H = I — Buu”, where

uTe; = 1, such that Ha = —sign(ay)ée;, where 6 = —sign(aq)o.

[u, B, 6] = house(a)

a1 = a(l);

o = all;
B=1+|ai|/o;
& = —sign (aq)0;
p=—1/(6p);

u=[l;p-a(2:m);

If a matrix A = (aq,...,a,) € R™*"™ is premultiplied by H the product can
be computed in 2mn multiplications as

HA= (Hay,...,Ha,), Haj = aj — B(u”a;j)u. (8.3.32)
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An analogous formula, exists for postmultiplying A with H, where H now acts on
the rows of A. Writing the products HA and AH as

HA= A - pu(uT A), AH = A — B(Au)uT,

shows that in both cases is A altered by a matrix of rank one.

Another useful class of orthogonal transformations are the matrices repre-
senting plane rotations, which are also called Givens rotations after Wallace
Givens, who popularized their use for numerical computations. In R? the matrix
representing a rotation clockwise through an angle 6 is

G(0) = (_CS z> ,  c=cosf, s=siné. (8.3.33)
Note that G1(0) = G(—0), and det G(0) = +1.
In R™ the matrix representing a rotation in the plane spanned by the unit

vectors e; and ej, i < j, is the following rank two modification of the unit matrix
I

i J

1
7 C S
J —s c

1
Premultiplying a vector a = (a1, ..., )T by Gi;(0) we get

ks k # i, j;
Gij(0)a=(ar,...,am)",  ax =1 caitsa;, k=i (8.3.35)
—sq; +caj, k=j.

Thus a plane rotation may be multiplied into a vector at a cost of two additions
and four multiplications. We can determine the rotation G;;(6) so that é&; becomes
zero by taking

c=q;/o, s =aj/o, o= (a?+ a?)lm # 0. (8.3.36)

Note that —G(0) also zeros &; so ¢ and s are only determined up to a factor +1.
To guard against possible overflow, the Givens rotation should be computed
as in the following procedure:

Algorithm 8.3.8 Given (a, 3)T # 0 the algorithm constructs ¢, s, o such that
s2+c?2=1and
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¢, s, 0] = givrot(a, )
if |af > |0]

t=0/a; c=1//1+1t%
s=tc; o=a/g

else

t=a/f; s=1/VvV1+1?
c=ts; o=0/s;

end

Premultiplication of a matrix A € R™*™ with a Givens rotation G;; will only
affect the two rows ¢ and j in A, which are transformed according to

Aik 1= COik + Sajik, (8.3.37)
aji = —saik + cajp, k=1,2,...,n (8.3.38)

The product requires 4n multiplications. An analogous algorithm, which only affects
columns i and j, exists for postmultiplying A with G;;.

Givens rotations can be used in several different ways to construct an orthog-
onal matrix U, which satisfies (8.3.28). Let Gy, k = 2,...,m be a sequence of
Givens rotations, where GGy, is determined to zero the kth component in the vector

a,

Glm NN GlgGlga = oeq.

Note that G will not destroy previously introduced zeros. Another possible se-
quence is Gip—1k, kK = m,m — 1,...,2, where Gj_1 is chosen to zero the kth
component. This demonstrates the flexibility of Givens rotations compared to re-
flectors.

It is essential to note that the matrix G;; is never explicitly formed, but
represented by (4, 7) and the two numbers ¢ and s. When a large number of rotations
need to be stored it is more economical to store just a single number, from which
c and s can be retrieved in a numerically stable way. Since the formula /1 — 22 is
poor if |z| is close to unity a slightly more complicated method than storing just
c or s is needed. In a scheme devised by G. W. Stewart one stores the number ¢
or s of smallest magnitude. To distinguish between the two cases one stores the
reciprocal of ¢. More precisely, if ¢ # 0 we store

_ s iffs[ < ef;
P=\1/e, ifld <|s| -

In case ¢ = 0 we put p = 1, a value that cannot appear otherwise.
To reconstruct the Givens rotation, if p =1, we take s =1, ¢ =0, and

p=15=p c=+v1-3s2, if|p| < 1;
s=vV1-—2¢c2, if|p|>1;
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It is possible to rearrange the Givens rotations so that it uses only two instead
of four multiplications per element and no square root. These modified transfor-
mations called “fast” Givens transformations, and are described in Golub and Van
Loan [29, 1996, Sec.5.1.13].

8.3.5 Householder QR Factorization

Methods for solving the linear least squares problem which, like the SVD, are based
on orthogonal transformations avoid the squaring of the condition number that re-
sults from forming the normal equations. In this section we first develop algorithms
using elementary orthogonal transformations to factor a matrix A € R™*" (m > n)
into the product of a square orthogonal matrix @ € R™*™ and an upper triangular
matrix R € R™*"”. We then show how to use this full QR factorization for
solving linear least squares problems.

Theorem 8.3.3. The Full QR Factorization
Let A € R™*™ with rank (A) = n. Then there is an orthogonal matriz Q €
R™*™ and an upper triangular matriz R with positive diagonal elements such that

A=Q (?) . (8.3.39)

Proof. A constructive proof will be given in Sec. 8.4.3. O

Since @ is orthogonal the singular values of R equal those of A and x(R) =
k(A). Indeed, to compute the SVD of A one can first compute the QR factorization
and then the SVD of R.

The QR factorization can be written

A= (Q1,Q») (g) — Q\R. (8.3.40)

where @ has been partitioned as Q = (Q1,Q2), @1 € R™ ™, Qo € R™*(m~") This
is the the factorization computed by the Gram—Schmidt algorithm. From (8.3.40) it
follows that the columns of ()1 and Q)2 form orthonormal bases for the range space
of A and its orthogonal complement,

R(A) =R(Q1), NMA") =R(Q2), (8.3.41)
and the corresponding orthogonal projections are

Priay=@1Qf,  Pyar) = Q203 (8.3.42)

Note that although the matrix @7 in (8.3.40) is uniquely determined, @2 can be
any orthogonal matrix with range N (AT).

In contrast to the Gram—Schmidt algorithm for computing the QR factoriza-
tion, the methods we now consider represents @ implicitly as a product of House-
holder or Givens matrices. This elegantly avoids the problem with loss of orthogo-
nality in Q!
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The QR factorization of a matrix A € R™*™ of rank n can be computed using
a sequence of n Householder reflectors. Let A = (a1,aq,...,a,), 01 = |la1]2, and
choose H; =1 — ﬁlululT, so that

Hyay = Hy (Of1> = (%1) ; r11 = —sign (a1)oy.

a1
By (8.3.30) we achieve this by choosing 8; = 1 + |a1|/o1,

up = <u}1) ; Uy = sign (on)ar/p, p1=01f1.
H; is then applied to the remaining columns aso, ..., a,, giving
11 712 ... Tin
A — H A= d.22 e d?n
0 ap2 ... Gnn

Here the first column has the desired form and, as indicated by the notation, the
first row is the final first row in R. In the next step the (m — 1) x (n — 1) block in
the lower right corner is transformed. All remaining steps, kK = 2,...,n are similar
to the first. Before the kth step we have computed a matrix of the form

k—1

_ (k) (k)
k=1 (R R
(k) 11 e
AV = ( 0 (i) ), (8.3.43)

where the first k — 1 rows of A*) are rows in the final matrix R, and RY;) is upper
triangular. In step k the matrix a*) is transformed,

(k+1) _ (k) _(Ix O

A H AW, H;, ( 0 Hk) . (8.3.44)
Here H =1 — ﬁkukuf is chosen to zero the elements below the main diagonal in
the first column of the submatrix

AR) (alik)’ B "agc)) c R(m—k-ﬁ-l)x(n—k-i—l)’
.o (k) . (k) . o (k)
ie. Hyay ' =rprer. With op = ||a, "’ ||2, using (8.3.29), we get 1, = —sign (akk )ak,
and o
G, = sign (04,(C ))dgC )/pk, Br =1+ |akk|/ok. (8.3.45)
where py = o3 0k. After n steps we have obtained the QR factorization of A, where
R=R""Y  Q=HH,- - H, (8.3.46)
(kk)

Note that the diagonal elements rp; will be positive if a;  is negative and neg-
ative otherwise. Negative diagonal elements may be removed by multiplying the
corresponding rows of R and columns of Q by —1. 2

2The difference between the Householder and Gram-Schmidt QR algorithms has been aptly

summarized by Trefethen, who calls Gram—-Schmidt triangular orthogonalization as opposed to
Householder which is orthogonal triangularization.
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Algorithm 8.3.9 Householder QR Factorization.
Given a matrix AN = A € R™*™ of rank n, the following algorithm computes R
and Householder matrices:

H;, = diag (I_1, Hy), Hy=1-frupul, k=1,2,...,n, (8.3.47)
so that Q = H1Hy--- H,,.

fork=1,2,...,n

[wk, Bry Trk]) = house(a,(f));
forj=k+1,....n

k
Vik = ﬁku£a§- );
RN ()
Tkj = Q; Viks
k1) _ (k)

(
a; j o VikUk;

&

end
end

The vectors u can overwrite the elements in the strictly lower trapezoidal part
of A. Thus, all information associated with the factors (2 and R can be overwritten
A. The vector (81, ..., 0,) of length n can be recomputed from

B = 51+ [laxl3)'/2,

and therefore need not be saved. The algorithm requires (mn? — n3/3) multiplica-
tions, or n®/3 less than for the MGS method. Note that in the special case that
m = n it would be possible to skip the last step which just computes H,, = —1 and
(n)
Tnn = —0nn -
Following Higham [Eq. (3.8)][33]) we will in the following frequently make use

of the notation

cku
~ = ————- . .4
W= T Ty (8.3.48)

where ¢ denotes a small integer constant.
Theorem 8.3.4.
Let R denote the upper triangular matriz R computed by the Householder QR

algorithm. Then there exists an exactly orthogonal matriz Q € R™*™ (not the
matriz corresponding to exact computation throughout) such that

A+E=Q(§),

where

llejlle < Anllajlle, 7=1:mn,
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As have been stressed before it is usually not advisable to compute the matrix
Q@ in the QR factorization explicitly, even when it is to be used in later calculations.
In the rare case that the Q = HyH,--- H, from the Householder algorithm is
explicitly required it should be accumulated in backward order by taking Q™ = I,,,,
and computing Q@ = Q(®) in 2(m?n — mn? + n3/3) flops by the recursion

Q(kfl) = HkQ(k), k=n:-1:1.

Q(n) = (I(;l) , Or Q(n) = (Imo_n> )

we can similarly accumulate Q1 or Qg separately. mn?—n3/3 and 2m?n—3mn2+n?
flops, respectively; see Problem 3.

It is often advantageous to use column pivoting in the QR factorization and
compute

Note that by setting

AP =Q (g) : (8.3.49)

where P is a permutation matrix. The following simple pivoting strategy, first sug-
gested by Golub, has been shown to work well in practice. Assume that after k steps
in the Householder Algorithm 7.3.3 we have computed the partial QR factorization

R(k-i—l) R(k+1)

AG+D (Hy,---H))AIL, ---TI) = ( 16 A%I%Jrl) , (8.3.50)
Then the pivot column in the next step is chosen as a column of largest norm in
the submatrix

A(kJrl) — (déﬁ:l), o &glkJrl)) c ]_:{/(mfk)x(nfk)7

i.e., Ilx4q is chosen to interchange columns p and k + 1, where p is the smallest
index such that

k k+1 k+1 ~ (k41 :

I [ A A ) S SO ) (8.3.51)

If %™ = 0 then the algorithm terminates with A®*+1) = 0 in (8.3.50). This
pivoting strategy can be viewed as choosing a remaining column of largest distance
to the subspace spanned by the previously chosen columns. This is equivalent to
maximizing the diagonal element rj1 x41.

If the column norms in a*) were recomputed at each stage, then column
pivoting would increase the operation count by 50%. Instead the norms of the
columns of A can be computed initially, and recursively updated as the factorization
proceeds. This reduces the overhead of column pivoting to 0(mn) operations. This

pivoting strategy can also be implemented in the Cholesky and modified Gram—
Schmidt algorithms.
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Since column norms are preserved by left orthogonal transformations it is
easily shown that the elements in R, computed by QR factorization with pivoting,
satisty

J
=Y rh d=k+1.n (8.3.52)
i=k
This implies in particular that |rgg| > |rg;|, 7 > k and that the diagonal elements
form a non-increasing sequence,

|T11| > |T22| >z |Tnn| (8353)

To obtain near-peak performance for large dense matrix computations on cur-
rent computing architectures requires code that is dominated by matrix-matrix
operations since these involve less data movement per floating point computation.
The QR factorization should therefore be organized in partitioned or blocked form,
where the operations have been reordered and grouped into matrix operations.

For the QR factorization A € R™*™ (m > n) is partitioned as

A= (A}, Ay), A € R™¥" (8.3.54)
where nb is a suitable block size and the QR factorization
R
QTa, = ( 01) , Q1= H{Hy - Hp, (8.3.55)

is computed, where H; = I —u;ul are Householder reflections. Then the remaining
columns As are are updated

QT A, = QT <ﬁz) = (22) : (8.3.56)

In the next step we partition Agy = (B1, Bs), and compute the QR factorization of
B; € RU"=")*" Then B, is updated as above, and we continue in this way until
the columns in A are exhausted.

A major part of the computation in spent in the updating step (8.3.56). As
written this step cannot use BLAS-3, which slows down the execution. To achieve
better performance it is essential that this part is sped up. The solution is to aggre-
gate the Householder transformations so that their application can be expressed as
matrix operations. For use in the next subsection, we give a slightly more general
result.

Lemma 8.3.5.
Let Hy1,Ho,...,H, be a sequence of Householder transformations. Set r =
r1 + 12, and assume that

Qi=H,-Hy, =I-YT\Y{',  Qo=H. 41 H =1-Y2DYy,

where Ty, Ty € R™ " are upper triangular matrices. Then for the product Q1Q2 we
have
Q=0Q1Q:= I -VTWWHI -,V ) =T -YTYT) (8.3.57)
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where

Y=, Y, T= (7(;1 _(lel;j%ﬂ)). (8.3.58)

Note that Y is formed by concatenation, but computing the off-diagonal block in T
requires extra operations.

For the partitioned algorithm we use the special case when ro = 1 to aggregate
the Householder transformations for each processed block. Starting with Q1 =
I - TlululT, we set Y =wuy, T = 1 and update

B T
Y = (K ukJrl), T := <€ T TY " ug
Tk

> , k=2:nb. (8.3.59)
Note that Y will have a trapezoidal form and thus the matrices ¥ and R can
overwrite the matrix A. With the representation @ = (I — YTYT) the updating of
As becomes

B=QTA=T-YT"Y")Ay = Ay —YTTYT A,,

which now involves only matrix operations.

This partitioned algorithm requires more storage and operations than the
point algorithm, namely those needed to produce and store the 1" matrices. How-
ever, for large matrices this is more than offset by the increased rate of execution.

As mentioned in Chapter 7 recursive algorithms can be developed into highly
efficient algorithms for high performance computers and are an alternative to the
currently more used partitioned algorithms by LAPACK. The reason for this is
that recursion leads to automatic variable blocking that dynamically adjusts to an
arbitrary number of levels of memory hierarchy.

Consider the partitioned QR factorization

R R
e -l 1)

where Let A; consist of the first [n/2] columns of A. To develop a recursive
algorithm we start with a QR factorization of A; and update the remaining part
Ay of the matrix,

T o R11 T T A12 _ ]'?12
Q1A1_< O)a QlAQ_Ql (A22>_(A22>'

Next Agy is recursively QR decomposed giving Qa, Rao, and Q = Q1Qs.
As an illustration we give below a simple implementation in Matlab, which is
convenient to use since it allows for the definition of recursive functions.

function [Y,T,R] = recqr(Ad)

%

% RECQR computes the QR factorization of the m by n matrix A,
% (m >= n). Output is the n by n triangular factor R, and
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% Q = (I - YTY’) represented in aggregated form, where Y is
% m by n and unit lower trapezoidal, and T is n by n upper
% triangular

[m,n] = size(A);

if n==1
[Y,T,R] = house(A);
else

nl = floor(n/2);

n2 =n - nl; j = nl+l;

[Y1,T1,R1]= recqr(A(1:m,1:n1));

B = A(1:m,j:n) - (Y1*T1’)*(Y1’*A(1l:m,j:n));
[Y2,T2,R2] = recqr(B(j:m,1:n2));

R = [R1, B(1:n1,1:n2); zeros(n-nl,nl), R2];
Y2 = [zeros(nl,n2); Y2];

Y = [Y1, Y2];
T = [T1, -T1*x(Y1’*Y2)*T2; zeros(n2,nl1), T2];
end

)

The algorithm uses the function house(a) to compute a Householder transformation
P =1~ +7uu”, such that Pa = oel, 0 = —sign (a1)||al|2. A serious defect of this
algorithm is the overhead in storage and operations caused by the 7" matrices. In
the partitioned algorithm n/nb T-matrices of size we formed and stored, giving a
storage overhead of %n -nb. In the recursive QR algorithm in the end a T-matrix of
size n x n is formed and stored, leading to a much too large storage and operation
overhead. Therefore a better solution is to use a hybrid between the partitioned
and the recursive algorithm, where the recursive QR algorithm is used to factorize
the blocks in the partitioned algorithm.

8.3.6 Least Squares Problems by QR Factorization

We now show how to use the QR factorization to solve the linear least squares
problem (8.1.1).

Theorem 8.3.6.

Let the QR factorization of A € R™*™ with rank (4) = n < m be given by
(8.3.39). Then the unique solution x to min, ||Az — b||2 and for the corresponding
residual vector r are given by

=R e, c_<cl)_QTb, T_Q<O>, (8.3.60)

C2 C2

and hence ||r||2 = ||c2]|2-
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Proof. Since @ is orthogonal we have

1Az — blI3 = [|Q7 (Az — b)|; = H (}Eﬂ - (Z;)
1

Obviously the minimum residual norm |cz||2 is obtained by taking 2 = R~ 'c;.
With ¢ defined by (8.3.60) and using the orthogonality of @) we have

2

= ||Rz — e13 + llezll3-
2

b=QQ"b = Qic1 + Qacy = Az + 7

which shows the formula for r. ad

By Theorem 8.3.6, when R and Hq, Hs, ..., H, have been computed by Algo-
rithm 8.3.5 the least squares solution = and residual r can be computed from

at (21> —H,---HyHib, Rx=ci,
2

v = Hy- H, (H, (CO ) , (8.3.61)
2
and ||r|l2 = ||ez]l2. Note that the matrix @ should not be explicitly formed.
When rank (A) = m < n, i.e., the matrix A has full row rank, the QR fac-

torization of AT (which is equivalent to the LQ factorization of A) can be used to
solve the minimum norm problem (8.1.2).

Theorem 8.3.7.
Let A € R™*™ with rank (A) = m, have the LQ factorization

A= (L 0) (gg) Q1 € R™™,

Then the general solution to the underdetermined system Ax = b is
Tr = Qlyl + ngg, Yy = Lilb (8362)
where ya is arbitrary. The minimum norm solution is obtained by taking yo = 0,

x=Q L'b. (8.3.63)

Proof. Since A= (L 0)Q" the system Az = b can be written

(L 0)y=b, y= (yl) =Q"x.
Y2
L is nonsingular, and thus y; is determined by Ly; = b. The vector y5 can be chosen
arbitrarily. Further, since ||z||2 = ||Qul|l2 = |ly||2 the minimum norm solution is
obtained by taking yo =0. O
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The operation count mn? — n3/3 for the QR method can be compared with
that for the method of normal equations, which requires %(an + n3/3) multipli-
cations. Hence, for m = n both methods require the same work but for m > n the
QR method is twice as expensive. To compute ¢ by (8.3.61) requires (2mn — n?)
multiplications, and thus to compute the solution for each new right hand side takes
only (2mn —n?/2) multiplications. The Householder QR algorithm, and the result-
ing method for solving the least squares problem are backwards stable, both for z

and r, and the following result holds.

Theorem 8.3.8.

_ Let R denote the computed R. Then there exists an exactly orthogonal matriz
Q € R™*™ (not the matriz corresponding to exact computation throughout) such
that

-~ (R
A+E=((). Il < cull.

where || - || denotes the Frobenius norm, ¢ = 6n(m —n/2+7), and u is the ma-
chine precision. Further, the computed solution T is the exact solution of a slightly
perturbed least squares problem

min | (A + 6A)z — (b+ 68) o,
where the perturbation can be bounded in norm by

16A]lF < cullAllp, (160l < cul[b]ls, (8.3.64)

Proof. See Higham [33, Theorem 19.5]. 0O

A method combining LU factorization and orthogonalization can be developed
by solving the least squares problem in (8.2.22) by an orthogonal reduction of L to
lower triangular form. The solution is then obtained by solving Ly = ¢; by forward

substitution, where
_ L T _[a
L_Q<O), inb_<02).

In Cline’s method, Householder transformations can be used to perform this re-
duction of L. The kth Householder transformation Py is chosen to affect only rows
k,n+1,...,m and zero elements in column k below row n. The total number of
flops required for computing the least squares solution x by Cline’s method is about
nQ(%m— %n) flops. Since the method of normal equations using the Cholesky factor-
ization on ATA requires n2(%m + %n) flops Cline’s method uses fewer operations if
m < %n. Hence for slightly overdetermined least squares problems, the elimination
method combined with Householder transformations is very efficient.

A version solving (8.2.22) with the MGS method has been analyzed by Plem-

mons [50, 1974]. If the lower triangular structure of L is taken advantage of then
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this method requires n2(%m — %n) flops, which is slightly more than Cline’s vari-
ant. Similar methods for the underdetermined case (m < n) based on the LU
decomposition of A have been studied by Cline and Plemmons [17, 1976].

An algorithm similar to Algorithm 8.3.5, but using Givens rotations, can easily
be developed. The greater flexibility of Givens rotations can be taken advantage
of when the matrix A is structured or sparse; see, e.g., Problem 3, where the QR
factorization of a Hessenberg matrix is considered.

Peters and Wilkinson commented in 1970: “FEvidence is accumulating that the
modified Gram—-Schmidt method gives better results than Householder. ... The rea-
sons for this phenomenon appear not to have been elucidated yet.” A key observation
for understanding the good numerical properties of the modified Gram—-Schmidt al-
gorithm is that it can be interpreted as Householder QR factorization applied to
the matrix A augmented with a square matrix of zero elements on top. These two
algorithms are not only mathematically but also numerically equivalent. In the
MGS method the columns are transformed by

a§k+1) = Mka‘gk), My, =1 — qrqy
where M), is the orthogonal projection onto the complement of g;. In the House-
holder method one computes the factorization

0 R
P(3)-(8) rernn

T —€k
Pk—I VkVy Uk_(q;%)'
Here ||vg||3 = 2, and hence Py is a Householder reflection. Because of the special
structure of the augmented matrix the vectors v have a special form. Since the first
n rows are initially zero, the scalar products of the vector vy with later columns will
only involve ¢, and it can be verified that the quantities r;; and g are numerically
equivalent to the quantities computed in the modified Gram—Schmidt method.

8.3.7 Condition and Error Estimation

Using the above pivoting strategy, a lower bound for x(A) = k(R) can be obtained

from the diagonal elements of R. We have |r11| < 01 = || R||2, and since the diagonal
elements of R~! equal r;;*, i = 1,...,n, it follows that r,;}| < o' = ||[R™Y|2,
provided 7y, # 0. Combining these estimates we obtain the lower bound

K(A) = Ul/Un Z |T11/Tnn| (8365)

Although this may considerably underestimate «(A), it has proved to give a fairly
reliable estimate in practice. Extensive numerical testing has shown that (8.3.65)
usually underestimates k(A) only by a factor of 2-3, and seldom by more than 10.

When column pivoting has not been performed, the above estimate of k(A) is
not reliable. Then a condition estimator similar to that described in Sec. 7.6.5 can
be used. Let u be a given vector and define v and w from

RTv = u, Rw =wv.
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We have w = R~} (R~Tu) = (AT A)~!u so this is equivalent to one step of inverse
iteration with AT A, and requires about 0(n?) multiplications. Provided that u is
suitably chosen (cf. Sec. 7.6.5)

ot Jlwll2/ vl

will usually be a good estimate of ;1. We can also take u as a random vector and
perform and 2-3 steps of inverse iteration. This condition estimator will usually
detect near rank deficiency even in the case when this is not revealed by a small
diagonal element in R.

More reliable estimates can be based on the componentwise error bound
(8.1.33) given in Sec. 8.1.5. This estimate has the form

102][cc < w(|[|B1lg1lloc + || [B2]g2]lo0), (8.3.66)
where
By = A", g1 = b+ |Al|z|, By=(ATA)™Y gy =|AT]|r|. (8.3.67)

Consider now a general expression of the form || |B™!|d| «, where d > 0 is a
known nonnegative vector. Writing D = diag (d) and e = (1,1,...,1), we have3

11B"dllss = | 1B [Delloc = [[|B~*Dlefloc = ||B~"Dllloc = |B~"Dllcc.
(8.3.68)

Hence the problem is equivalent to that of estimating ||C||, where C = B~!D.
There are algorithms that produce reliable order-of-magnitude estimates of | CT||; =
|C|ls using only a few matrix-vector products of the form Cz and CTy for some
carefully selected vectors x and y. Since these are rather tricky we will not describe
them in detail here. An excellent discussion is given in Higham [33, Chapter 15].

If A has full rank and A = QR then AT = R7'Q7 and (A")” = QR~T. Hence
the required products can be computed inexpensively.

Review Questions

1 Let w € R", |[w|2 = 1. Show that I — 2ww? is orthogonal. What is the
geometrical significance of the matrix I — 2ww”? Give the eigenvalues and
eigenvectors of these matrices.

2. Define a Givens transformations G;;(¢) € R"*™. Give a geometrical interpre-
tations for the case n = 2.

3. Describe the difference between the classical and modified Gram—Schmidt
methods for computing the factorization A = @1 R. What can be said about
the orthogonality of the computed matrix @; for these two algorithms?

3This clever observation is due to Arioli, Demmel, and Duff [2].
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4. Define the QR factorization of a matrix A € R™*", in the case that rank (4) =

n < m. What is its relation to the Cholesky factorization of AT A?

Problems
1. Compute using Householder reflectors Hy, Hs, the factorization
1 5
R 2 6
T A _ _ _ _
QA—H2H1A—<O)7 A—(a17a2)— 3 7|
4 8

to four decimal places

. Solve the least squares problem min,, || Az — b||2, where

V2 0 1
1 —1], b=|2
11 3

using a QR factorization computed with Givens transformation;

. Suppose the square root free version of modified Gram—Schmidt is used to

compute the factorization 4 = Q1 R. Modify Algorithm 8.3.2 for computing
the least squares solution and residual from this factorization.

. Describe in detail how to compute the QR factorization of a Hessenberg matrix

H € R™ ™ using Givens transformations. For n = 5 such a matrix has the
form

hit hiz hiz hia his
hgl h22 h23 h24 h25

H = haa  hzz has hss
has  has  has
hsa  hss

Approximately how many multiplications are needed for general n?

. (a) If the matrix @ in the QR factorization is explicitly required in the House-

holder algorithm it can be computed by setting Q™ = I,,, and computing
Q = Q) by backward recursion

Q(k—l) — Hk}Q(k)7 k =n: —1 . 1

Show that if advantage is taken of the property that Hy = diag (Ix—1, ﬁk) this
accumulation requires 2(m?n —mn? +n3/3) flops. What is the corresponding
operation count if forward recursion is used?

(b) Show how we can compute

lecz(@, szcz(lmo_n)

2 —n?/3 and 2m?*n — 3mn? + n3 multiplications, respectively.

separately in mn
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6. Let Q =Q1=(q1,92,...,¢n) € R"™ ™ be a real orthogonal matrix.
(a) Determine a reflector H; = I —2vjvT, such that Hy1q; = e; = (1,0,...,0)%,
and show that H1Q; = Q2 has the form

10 --- 0
0 0
2= : ~ )
: Q2
0
where Q2 = (41, G2, - - -, Gn) € RD*(=1) ig a real orthogonal matrix.

(b) Show, using the result in (a), that @ can be transformed to diagonal form
with a sequence of orthogonal transformations

H, 1---HyHQ =diag(1,...,1,%1).

7. An orthogonal matrix @ such that det(Q) = 1 is called a rotation matrix.
Show that any rotation matrix @Q € R3*3 can be written as a product of three
Givens rotations

Q = G23(9)G12(0)Ga3 ().
The three angles ¢, 0, and 1 are called the Euler angles.
Hint: Consider the QR factorization of Q.

8. Test the recursive QR algorithm recqr(A) given in Sec. sec8.3.6 on some
matrices. Check that you obtain the same result as from the built-in function

qr(A).

8.4 Rank Deficient and Ill-Posed Problems
8.4.1 Regularized Least Squares Problems

In solving linear systems and linear least squares problems failure to detect ill-
conditioning and possible rank deficiency in A can lead to a meaningless solution of
very large norm, or even to breakdown of the numerical algorithm. In this section
we discuss how to assign a numerical rank to a matrix and how algorithms should
be modified to cope with rank deficiency and ill-conditioning.

Example 8.4.1. Consider an example based on the integral equation of the first
kind

1
/1 E(s,t)f(s)ds = g(t), k(s,t)= e (57,

on —1 < ¢ < 1. To compute g(t) given f(s) is well conditioned problem. How-
ever, the inverse problem of reconstructing f(s) given g(¢) is a very ill-conditioned
problem.

The equation can be discretized using a uniform mesh on [-1,1] and the trape-
zoidal rule, giving a finite-dimensional linear system Kf = g, where K € R"*",
and f,g € R". For n = 100 the singular values oy of the matrix K are displayed in
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Figure 8.4.1. Singular values of the matriz K.

logarithmic scale in Figure 8.4.1. Note that for & > 30 all o, are close to roundoff
level, so the numerical rank of K certainly is smaller than 30. This means that
the linear system K f = g is numerically under-determined and has a meaningful
solution only for special right hand sides g.

The choice of the parameter § in Definition 8.1.15 is not always an easy matter.
If the errors in a;; satisfy |e;;| < e, for all 4, j, an appropriate choice is § = (mn)'/2e.
On the other hand, if the absolute size of the errors e;; differs widely, then Defini-
tion 8.1.15 is not appropriate. One could then scale the rows and columns of A so
that the magnitude of the errors become nearly equal. (Note that any such diagonal
scaling D, AD,. will induce the same scaling D, ED, of the error matrix.)

We now consider solving the linear least squares problem

min || Az — b||2, (8.4.1)

where the matrix A is ill-conditioned and possibly rank deficient. If A has numerical
rank equal to k < n, we can get a more stable approximative solution by discarding
terms in the expansion (8.1.10) corresponding to singular values smaller or equal to
J, and take the solution as the truncated SVD (TSVD) solution
Ci
z(d6) = ) —ui (8.4.2)

O
;>0 i

If o), > 6 > 041 then the TSVD solution is z(0) = Alb and solves the related least
squares problem
min || Agz — b||2, A = Z UiuiviT,
;>0

where Ay is the best rank k approximation of A. We have

[A—Akllz =[[AV2]l2 <0, V2= (vk41,.--,0n).
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In general the most reliable way to determine an approximate pseudo-inverse
solution of a numerically rank deficient least squares problems is by first comput-
ing the SVD of A and then using an appropriate truncated SVD solution (8.4.2).
However, this is also an expensive method. In practice the QR factorization often
works as well, provided that some form of column pivoting is carried out.

An alternative to the truncated SVD (TSVD) solution is to consider the
regularized problem

min || Az — b]j3 + || Da3, (8.4.3)

where D = diag (d1, . ..,d,) > 01is a positive diagonal matrix. The problem (8.4.3),
also called a damped least squares problem, is equivalent to the least squares

problem
A A
uD v 0

where the matrix A has been modified by appending the matrix uD. When p > 0
this problem is always of full column rank and has a unique solution. (Often d; is
taken to be proportional to the 2-norm of the jth column in A.)

The solution to problem (8.4.3) satisfies the normal equations

min (8.4.4)

)

2

(ATA + 12Dz = ATb.

However, from the formulation (8.4.4) it is seen that the solution can also be ob-
tained from the QR factorization

(/ﬁ)>_@(§>, (8.4.5)

which can be computed by some of the algorithms described before. The special
structure can be taken advantage of. For example, in the Householder QR factoriza-
tion the shape of the transformed matrix after k = 2 steps is as follows (m = n = 4):

oo oX
oo oo X X
X 4+ + X X X X
+ + X X X X

X

Notice that the first two rows of D have filled in, but the remaining rows of D are
still not touched. For each step k = 1,...,n there are m elements in the current
column to be annihilated. Therefore the operation count for the Householder QR
factorization will increase with n®/3 to mn? flops. A similar increase in operations
occurs in Givens or MGS QR factorizations. If A = R already is in upper triangular
form then the flop count for the reduction is reduced to approximately n3/3 (cf.
Problem 1b).
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If D = I the singular values of the modified matrix in (8.4.4) are equal to
o; = (oi2 + u2)1/2, 1 =1,...,n. In this case the solution can be expressed in terms

of the SVD as

2
73

m. (8.4.6)

n
Ci
z(p) ;choivh fi

The quantities f; are often called filter factors. Notice that as long as y < o; we
have f; = 1, and if u > o; then f; < 1. This establishes a relation to the truncated
SVD solution (8.4.2) which corresponds to a filter factor which is a step function
fi=1if o0; > 6 and f; = 0 otherwise.

Note that the regularized problem (8.4.3) can be used also when m < n (i.e.,
when A has fewer rows than columns). However, in this case it may be better to
consider the regularized problem

x
z
The solution of this problem can be written z = ATy, z = (uD)~1(b — Ax), where

y satisfies the system of normal equations

(AAT + 2Dy = b.

2
min

, subject to (A uD) (i) =b. (8.4.7)

2

Using Theorem 8.3.7, a method for solving problem (8.4.7) is obtained which uses
the QR factorization of the matrix (uD A)”, which can be computed in m?n opera-
tions. Surprisingly, when D = I the two problems (8.4.3) and (8.4.7) are equivalent.
To see this set note that since z = (u)~*(b— Ax), both problems (8.4.4) and (8.4.7)
are equivalent to

min {3 + w2 |3}, r=b- Az

Even with regularization we may not be able to compute the solution of an
ill-conditioned problem with the accuracy that the data allows. In those cases it is
possible to improve the solution by the following iterated regularization scheme.
Take z(®) = 0, and compute a sequence of approximate solutions by

2t = 5@ 4 5500

where §z(?) solves the least squares problem

()e=(7)

This iteration may be implemented very effectively since only the QR factorization
(8.4.5) (with D = I) is needed. The convergence of iterated regularization can be
expressed in terms of the SVD of A.

min , D =p— Az(D, (8.4.8)

2

n 2

2D =3 0%, (0 =1 (SE )q. (8.4.9)

2 2
a (o
i=1 v i T

Thus for ¢ = 1 we have the standard regularized solution and as ¢ — oo (9 — A'b.
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8.4.2 QR Factorization and Rank Deficient Matrices

Although any matrix A € R™*™ has a QR factorization, the following example
shows that this may not always be useful when rank (A) < n:

Example 8.4.2.
For any c and s such that ¢ 4+ s2 = 1 we have

() ) () e

Here rank (A) = 1 < 2 = n. Note that the columns of @ no longer provide
any information about an orthogonal basis for R(A) and its complement.

We now indicate how the QR factorization should be modified in the rank
deficient case.

Theorem 8.4.1.
Given A € R™ ™ with rank (A) = r < min(m,n) there is a permutation
matriz 11 and an orthogonal matrix Q =€ R™*™ such that

ATl = Q <R51 Ro12) (8.4.10)

where R11 € R™" is upper triangular with positive diagonal elements.

Proof. Since rank (A) = r, we can always choose a permutation matrix IT such
that ATl = (A;, A3), where A; € R™*" has linearly independent columns. Then
A has a QR factorization and we can write

where Rj; has positive diagonal elements. From rank (QTAIl) = rank (A) = r
it follows that Rps = 0, since otherwise QT AIl would have more than r linearly
independent rows. [

Note that it is not required that m > n in Theorem 8.4.1. The factorization is
not unique, since there may be several ways to choose the permutation II. Pivoting
strategies for determining a suitable II will be discussed later in this section.

The factorization (8.4.10) can be used to solve rank deficient linear least
squares problems. To simplify notations we assume in the following that II = 1.
(This is no restriction since the column permutation of A can always be assumed
to have been carried out in advance.) Using the invariance of the ly-norm problem

(8.1.1) becomes
Ri1 Rio 1\ _ (a
0 0 xTo C2

min
xT

)

2
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where x and ¢ have been partitioned conformally. Since Rj; is nonsingular the
first r equations can be satisfied for any x5 by taking z; to be the solution to
Ri121 = ¢1 — Riax2. Hence the general least squares solutions can be written

T = Rl_ll(cl - R12I2) = Tp — 01172, (8411)
where xg is arbitrary and
d=Rjl'c;, C=R;R. (8.4.12)

Here C' can be computed by solving n — r triangular systems R11C' = Ri2, which
requires r%(n — r)/2 multiplications.

Taking xo = 0 we we obtain a particular solution x; = d with at most r =
rank(A) nonzero components Any solution x such that Az only involves at most
r columns of A, is called a basic least squares solution. Such a solution is
appropriate when we want to fit a vector b of observations using as few columns of
A as possible. It is not unique and depends on the initial column permutation.

We now show how the pseudo-inverse solution can be computed using the
factorization (8.4.10). Then we want to choose z3 so that ||z||2 is minimized. From
(8.4.11) it follows that this is achieved by solving the linear least squares problem

()], = (5) - (57 ) =,

Note that this problem always has a unique solution x2 and that the pseudo-inverse
solution x = A'b equals the residual of the problem.
To compute x2 we can form and solve the normal equations

(I +CCTyxy =CTd. (8.4.14)

(8.4.13)

= min
T2

min

Alternatively we can use Householder QR factorization

(i) = (7)o (0)-(i)

taking the special structure into account, to obtain x5 from Rcxs = d.

We have
C _ Ri1 Rio Ri'Ris) _
A )= (% ) () o

from which it follows that the nullspace of A is given by

N(A) = R(W), W = (_gq) . (8.4.15)

By Theorem 8.1.7 the pseudo-inverse solution is the unique least squares solution
which satisfies z L A(A4). Hence it can be obtained by Gram—Schmidt orthogonal-

ization applied to
c d
(Inr 0) . (8.4.16)

It is possible to carry the factorization one step further to give the related
complete QR factorization of A.
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Theorem 8.4.2.
Given A € R™*"™ with rank (A) = r < min(m,n). Then there are orthogonal
matrices Q = (Q1,Q2) € R™*™, and V = (V1,V2) € R™*™ such that

A=Q (zg 8) VT (8.4.17)

where R € R"™ " is upper triangular with positive diagonal elements. The pseudo-
inverse of A is then given by

at=v (B 0 or—vigigr
v (" 0)et=virel. (8.4.18)

Proof. Starting from the factorization in (8.4.10) we can determine a sequence of
Householder matrices such that

(R11 Rlz)Pr"'P1:(R O)

Here Py, k = r,r — 1,...,1, is constructed to zero elements in row k and only
affect columns k,7 + 1,...,n. These transformations require r?(n — r) multiplica-
tions. Then (8.4.17) holds with V' = IIP; --- P.. Using the orthogonal invariance
of the ly-norm it follows that x = VlRlelTb is the minimum norm solution of the
least squares problem (8.1.1). Since the pseudo-inverse is uniquely defined by this
property, cf. Theorem 8.1.5, the last assertion follows. 0O

8.4.3 Rank Revealing QR Factorization

In Sec. 8.3.5 we studied the pivoted QR factorization. It was shown that if the pivot
column in each step of the reduction was chosen as a column of largest norm in the
remaining part, then we have the inequalities

J
=Y oy, j=k+1, (8.4.19)
i=k

in particular it holds that |rgx| > |rk;|, 7 > k and the diagonal elements form a
non-increasing sequence, |r11| > |raz| = -+ > |[runl.

Taking x = ey in 01 = max| ;= [[Az[|2 we find that the lower bound |ry;| <
o1(R) for the largest singular value o;. The matrix R~! has diagonal elements
1/rgx and singular values 1/0%(A). Hence we also have the inequality o, < |rpn)-

For a triangular matrix satisfying (8.4.19) we also have the upper bound

o1(R) = ||R|2 < (erj)w .
i<j

and hence o1 (R) < n'/?r1;. Using the interlacing property of singular values (The-
orem 8.1.13), a similar argument gives the upper bounds

op(R) < (n—k+1D)Yrpxl, 1<k<n. (8.4.20)
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If after k steps in the pivoted QR factorization it holds that
|7'k,k| <(n—k+ 1)_1/26,

then o1 (A) = o, (R) < §, and A has numerical rank at most equal to k — 1, and we
should terminate the algorithm. Unfortunately, the converse is not true, i.e., the
rank is not always revealed by a small element |rgg|, & < n. Let R be an upper
triangular matrix whose elements satisfy (8.3.52). The best known lower bound for
the smallest singular value is

On > 3|l /VAT 4+ 60— 1 > 28" r ). (8.4.21)

(For a proof see Lawson and Hanson [38, Ch. 6].)

The lower bound in (8.4.21) can almost be attained as shown in the example
below due to Kahan. Then the pivoted QR factorization may not reveal the rank
of A.

Example 8.4.3. Consider the upper triangular matrix

1 —c —c —c
1 —c —c
R, = diag(1,s,s?, ..., s"" 1) 1 e 24+ =1.
' —c
1

It can be verified that the elements in R,, satisfies the inequalities in (8.4.21), and
that R, is invariant under QR factorization with column pivoting. For n = 100, ¢ =
0.2 the last diagonal element of R is r,,, = s"~! = 0.820. This can be compared with
the smallest singular value which is o,, = 0.368 - 10~8. If the columns are reordered
as (n,1,2,...,n— 1) and the rank is revealed from the pivoted QR factorization!

The above example did inspire research into alternative column permutation
strategies. The following theorem, which we state without proof, shows that a
column permutation II can always be found so that the numerical rank of A is
revealed by the QR factorization of AII.

Theorem 8.4.3. (H. P. Hong and C. T. Pan [1992].)
Let A € R™*™, (m > n), and r be a given integer 0 < r < n. Then there
ezists a permutation matrix 1L, such that the QR factorization has the form

T _ (Ri1 Ry
Q AHT_( o Rl (8.4.22)

with Ri1 € R™" upper triangular, ¢ = \/r(n —r) + min(r,n —r)), and

1
Umin(Rll) 2 —O'T(A), O'maX(Rgg) S COr41 (A) (8423)

c
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Note that the bounds in this theorem are much better than those in (8.4.21).
From the interlacing properties of singular values (Theorem 8.1.13) it follows
by induction that for any factorization of the form (8.4.22) we have the inequalities

Omin(R11) < 0,(A), Omax(R22) > 0r41(A). (8.4.24)

Hence to achieve (8.4.23) we want to choose the permutation IT to maximize opin (R11)
and simultaneously minimize oyax(R22). These two problems are in a certain sense
dual; cf. Problem 2.

Assume now that A has a well defined numerical rank r < n, i.e.,

012 ...20.>0>0,41>...> 0p.

Then the above theorem says that if the ratio oy /og41 is sufficiently large then
there is a permutation of the columns of A such that the rank of A is revealed by
the QR factorization. Unfortunately, to find such a permutation may be a hard
problem. The naive solution, to try all possible permutations, is not feasible since
the cost prohibitive—it is exponential in the dimension n.

Many other pivoting strategies for computing rank revealing QR factorizations
have been proposed. A strategy by T. F. Chan [14] makes use of approximate right
singular vectors of A, which can be determined by inverse iteration (see Sec. 9.4.3).
In case r = n — 1, the column permutation II is constructed from an approximation
to the right singular vector corresponding to the smallest singular value o,,.

8.4.4 The URV and ULV decompositions

In signal processing problems it is often the case that one wants to determine the
rank of A as well as the range (signal subspace) and null space of A. Since the
data analyzed arrives in real time it is necessary to update an appropriate matrix
decompositions at each time step. For such applications the SVD has the disad-
vantage that it cannot in general be updated in less than O(n?) operations, when
rows and columns are added or deleted to A. Although the RRQR decomposition
can be updated, it is less suitable in applications where a basis for the approximate
null space of A is needed, since the matrix W in (8.4.15) cannot easily be updated.
For this reason we introduce the URV decomposition

Riy Ru)\ (VI
A=URVT = (U, U2)< o R;z) (viT) (8.4.25)

where U and V are orthogonal matrices, Ry, € RF*F and
1 2 2\1/2
ox(B) 2 —ox,  ([Ruallr + [ Ra2llz) ™™ < copsa (8.4.26)

Note that here both submatrices Ri2 and Rs> have small elements.
From (8.4.25) we have

R
|AVa]l2 = 12 < Copt1,
Ras

F
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and hence the orthogonal matrix V5 can be taken as an approximation to the nu-
merical null space Ny.

Algorithms for computing an URV decomposition start with an initial QR
decomposition, followed by a rank revealing stage in which singular vectors corre-
sponding to the smallest singular values of R are estimated. Assume that w is a
unit vector such that ||Rw|| = o,. Let P and @ be a orthogonal matrices such that
QTw = e, and PTRQ = R where R is upper triangular. Then

|Ren| = [|IPTRQQ w| = ||PTRw| = on,

which shows that the entire last column in R is small. Given w the matrices P and
@ can be constructed as a sequence of Givens rotations, Algorithms can also be
given for updating an URV decomposition when a new row is appended.

Like the RRQR decompositions the URV decomposition yield approximations
to the singular values. In [41] the following bounds are derived

foi<oi(Ru1) <oy, i=1:r,
and
0i <oi—k(Ra2) <oi/f, i=r+1:n,

where

r=(1- | Rasl3 )1/2
Omin(R11)? — || R22||3

Hence the smaller the norm of the off-diagonal block Ri2, the better the bounds
will be. Similar bounds can be given for the angle between the range of V5 and the
right singular subspace corresponding to the smallest n — r singular values of A.

An alternative decomposition that is more satisfactory for applications where
an accurate approximate null space is needed, is the rank-revealing ULV decom-
position

Ly O T
A=U V. 8.4.27
(L21 L22> ( )

where the middle matrix has lower triangular form. For this decomposition
[AVall2 = [| Lozl F, V=W, V),

and hence the size of || Loy || does not adversely affect the null space approximation.
On the other hand the URV decomposition usually gives a superior approximation
for the numerical range space and the updating algorithm for URV is much simpler.

We finally mention that rank-revealing QR decompositions can be effectively
computed only if the numerical rank r is either high, r =~ n or low, r < n. The low
rank case is discussed in [15]. Matlab templates for rank-revealing UTV decompo-
sitions are described in [22].

An advantage of the complete QR factorization of A is that Va2 gives an or-
thogonal basis for the nullspace N'(A). This is often useful, e.g., in signal processing
applications, where one wants to determine the part of the signal that corresponds
to noise. The factorization (8.4.18) can be generalized to the case when A is only
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numerically rank deficient in a similar way as done above for the QR factorization.
The resulting factorizations have one of the forms

_ R F\ . r B RT 0 T
A—Q<O G>V A_Q<FT GT)V (8.4.28)
where R is upper triangular and
1
or(R) > -, (FNE + 1GIF)? < copsn.

An advantage is that unlike the SVD it is possible to efficiently update the factor-
izations (8.4.28) when rows/columns are added/deleted.

8.4.5 Bidiagonal Decomposition and Least Squares

So far we have considered methods based on the QR factorization of A for solving
least squares problems. It is possible to carry this reduction further using a two-
sided orthogonal factorization.

Theorem 8.4.4.
Any matriz A € R™*™ can be decomposed as

A=UBVT, (8.4.29)

where B is a lower bidiagonal matrix and U and V are orthogonal matrices. In the
nondegenerate case the decomposition is uniquely determined by ui := Uey, which
can be chosen arbitrarily.

Note that, since AT = VBTUT, it follows that an arbitrary matrix A can
alternatively be transformed to upper bidiagonal form.

This decomposition is usually the first step in computing the SVD of A; see
Sec. 9.7. Tt is also powerful tool for solving various least squares problems. We will
give a constructive proof of this theorem below.

In the Golub—Kahan algorithm the reduction is achieved by applying a se-
quence of Householder reflections alternately from left and right. We set A = A(M)
and in the first step compute

a1 0 0 e 0

B2 Q22 G23 -+ Gon
A® = QAP =| 0 Gz as - azn

O de dm3 Tt dmn

First P; is chosen to zero the n—1 elements in the first column of A above the main
diagonal. Next ()7 is chosen to zero the last m — 2 elements in the the first row of
AP;. This transformation does not affect the zeros introduced in the first row.
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All later steps are similar and in the kth step, k = 1 : min(m, n), we compute
A(k+l) _ Qk(A(k)Pk),

where QQr and P, are Householder reflections. Here Py is chosen to zero the last
n—k elements in the kth row of A*). Then @y, is chosen to zero the last m — (k+1)
elements in the kth column of A®) Py,

When m > n the process ends with the factorization

aq
B2 s
UTAV = <]§) , B= Bz € R(MFxn (8.4.30)
. -
ﬁn-{-l
U=Q:1Q2-Qn, V=PP- - P,_;. (8.4.31)

Note that since @, only works on rows k 4+ 1 : m, and Py, only works on columns
k : m. It follows that

up=e;. up,=Ue,=0Q1 - -Qrex, k=2:n, (8.4.32)
v=Ver=P---Peer, k=1:n—-1, v, =e,. (8.4.33)

If m < n then we obtain

aq
B2 a2

UTAV =(B 0), B= By . e R™*™,

Om—1
Bm Qo

U:QlQQ"'mem V=PPFP --P,_1.

The above process can always be carried through although some elements in
B may vanish. Note that the singular values of B equal those of A; in particular
rank (A) = rank (B). Using complex Householder transformations (see Sec. 9.6.2) a
complex matrix A can be reduced to real bidiagonal form. by the algorithm above.

The reduction to bidiagonal form is backward stable in the following sense.
The computed B can be shown to be the exact result of an orthogonal transforma-
tion from left and right of a matrix A + F, where

1Bllr < en®ull A, (8.4.34)

and c is a constant of order unity. Moreover, if we use the information stored to gen-
erate the products U = Q1---Q, and V = Py - - - P,,_5 then the computed matrices
are close to the exact matrices U and V which reduce A + E. This will guaran-
tee that the singular values and transformed singular vectors of B are accurate
approximations to those of a matrix close to A.
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The bidiagonal reduction algorithm as described above requires approximately
4(mn® —n3/3) flops

when m > n, which is twice the work for a Householder QR factorization. The
Householder vectors associated with U can be stored in the lower triangular part of
A and those associated with V' in the upper triangular part of A. Normally U and V'
are not explicitly required. They can be accumulated at a cost of 4(m?n—mn?+ %n3)
and %n?’ flops respectively.

When m > n it is more efficient to use a two-step procedure as originally
suggested by Lawson and Hanson [38] and later analyzed by T. Chan. In the first
step the QR factorization of A is computed (possibly using column pivoting)

AP_Q<§>, R e R™",

which requires 4mn? — 2n? flops. In the second step the upper triangular matrix
R is transformed to bidiagonal form using the algorithm described above. Note
that no advantage can be taken of the triangular structure of R in the Householder
algorithm. Already the first postmultiplication of R with P; will cause the lower
triangular part of R to fill in. Hence the Householder reduction of R to bidiagonal
form will require %n?’ flops. The complete reduction to bidiagonal form then takes
a total of

2(mn? + n®) flops.

This is less than the original Golub-Kahan algorithm when m/n > 5/3. Trefethen
and Bau [62, pp.237-238] have suggested a blend of the two above approaches
that reduces the operation count slightly for 1 < m/n < 2. They note that after
k steps of the Golub—Kahan reduction the aspect ratio of the reduced matrix is
(m —k)/(n— k). and thus increases with k. To minimize the total operation count
one should switch to the Chan algorithm when (m — k)/(n — k) = 2. This gives the
operation count

4(mn? —n3/3 — (m —n)3/6) flops,

a modest approval over the two other methods when n > m > 2n.

If Givens transformation are used to reduce R to upper bidiagonal form it is
possible to take advantage of the triangular form, provided that the elements are
annihilated in a suitable order. In the first major step we can zero the elements
in the first row from right to left, i.e. in the order 7,,...,713. To zero ry; the
columns (j — 1, 5) are rotated using a Givens rotation G;_1; from the right. This
introduces one new non-zero element r; ;_; in the lower triangular part, which can
be annihilated by a rotation of the rows (j — 1,j), applying a Givens rotation
G,_1.; from the left. This is illustrated below, where the element 714 is zeroed by
first rotating columns 3,4 followed by a rotation of rows 3,4.
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® X X X

X X X @

X X X X O
X X X X X O

After zeroing the last n — 2 elements in the first row we continue the reduction on
the triangular submatrix in rows and columns 2 : n in the same fashion.

Since two Givens rotations are needed to zero each of the (n — 1)(n — 2)/2
elements, the operation count turns out to be about the same as for the House-
holder reduction if standard Givens rotations are used. If the transformations are
to be accumulated the Givens reduction will require more work, unless fast Givens
transformations are used.

When A is a banded matrix of bandwidth w > 2 then R will be an upper
triangular banded matrix (w = 2 corresponds to a bidiagonal matrix). In this case
the reduction of R to bidiagonal form can be accomplished by successively reducing
the bandwidth by one. (This algorithm is similar to an algorithm by Schwarz [55]
for reducing a symmetric banded matrix to tridiagonal form.) Each zero element
introduced generates a new nonzero element that has to be chased across the border
of the matrix. Because of this the reduction is expensive unless the bandwidth is
small.

Example 8.4.4.
Let w = 3 and n = 7. The figure below illustrates the steps in zeroing out the
element r13 using Givens rotations applied alternately from the right and left

X X X X X ®
X X X X X X @
X X X d X X X
X X X = X X X @
X X X ® X X X
X X X X
X d X

corresponding to the transformations

Ge7((Ga5((G23(RG23))Gas5))Ger).

Then the elements ri3,...,rp_2, are eliminated in this order. Such “chasing”
algorithms are also commonly used in eigenvalue algorithms. Reduction of an up-
per triangular matrix of bandwidth w to bidiagonal form requires ~ 4n?(w — 2)
multiplications.

We now derive an algorithm for solving the linear least squares problem
min ||Azx — bl|2, where A € R™*" m > n. Let Qo be a Householder reflection
such that

Q1b = Prer. (8.4.35)
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Using the Golub—Kahan algorithm @1 A to lower triangular form. we obtain

UT (b AV) = <510€1 %") , (8.4.36)
where e; is the first unit vector, and B,, is lower bidiagonal,
ap
B2
B, = e R(mFOxn, (8.4.37)
Bn  an
6n+1
and
U=@QiQ2- Qny1.  V=PPy- Py (8.4.38)

(Note the minor difference in notation in that Q41 now zeros elements in the kth
column of A.)
Setting + = Vy and using the invariance of the lo-norm it follows that

oo (- )
= [|Bre1 — Buyll2.

Hence if y solves the bidiagonal least squares problem

2 2

min [ Bny — Bre2, (8.4.39)

then z = Vy minimizes || Az — b||o.
The least squares solution to (8.4.39) is obtained by a QR factorization of B,,,
which takes the form

p1 B2 ¢1
p2 O3 ®2
Gu(B | ey = F| ) - o saa0)
" L0, :
Pn | &n
¢n+1

where G, is a product of n Givens rotations. The solution is obtained by back-
substitution from R,y = d,,. The norm of the corresponding residual vector equals
|¢dnt1]|.- To zero out the element B3 we premultiply rows (1,2) with a rotation Gia,

giving
<01 81><041 0 51>:<P1 62 ¢_>1)
—s51 B2 az| 0 0 p2|o2 )’

(Here and in the following only elements affected by the rotation are shown.) Here
the elements p1, 02 and ¢; in the first row are final, but ps and ¢o will be transformed
into po and ¢9 in the next step.
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Continuing in this way in step j the rotation G ;11 is used to zero the element
Bj+1. In steps, j =2 :n — 1, the rows (7, j + 1) are transformed

<Cj Sa>< pj 0 ¢j)_<pj Oj41 | 0 >
—Sj € Bi+1 ajp1 | 0 0 Pjt1 | djn

Gj =cjbj,  Gjy1= =505, pj=\/P5+ B,

Oj+1 = 8jQj41,  Pnt1 = Cj041.

where

Note that by construction |¢;11| < ¢;. Finally, in step n we obtain

(Cn 5n>( Pn (bn)_(pn fbn >
—Sn  Cn Brn+1| O 0| Pnt1 /-

After n steps, we have obtained the factorization (8.4.40) with

G =Gy Ga3Gra.

Now consider the result after & < n steps of the above bidiagonalization
process have been carried out. At this point we have computed Q1,Q2, ..., Qk+1,
Py, Ps, ..., Py such that the first & columns of A are in lower bidiagonal form, i.e.

Qi1 Q201 AP P - Py <I(;“) - <l?)k) _ <Ik6r1) B

where B, € R*+tD*k i5 3 leading submatrix of B,,. Multiplying both sides with
@Q1Q2 - - - Qr+1 and using orthogonality we obtain the relation

AVj, = Up1 By, = By, + Brsrvkpier, k=1:n, (8.4.41)

where

1
P1P2Pk((;€> :Vk:(vla"'vvk)v

I
Q1Q2 - Qrs1 < kgl) =Ugs1 = (U1, .., Uks1)-

If we consider the intermediate result after applying also Pj41 the first & + 1 rows
have been transformed into bidiagonal form, i.e.

(Ix41 0)Qug1-+-Q2QrAPIPsy--- Py = (Br agpyrept1) (Iep1 0).

Transposing this gives a second relation

Uil A= BViE + apreniav o, (8.4.42)
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We now show that the bidiagonalization can be stopped prematurely if a zero
element occurs in B. Assume first that the first zero element to occur is a1 = 0.
Then we have obtained the decomposition

= B, 0
U1 AVi = ( 0 Ax )’
where Aj, € Rm—F—1x(n=k) and

U1 = Qii1 - Q2Q1, Vi = PyPy--- Py,

are square orthogonal matrices. Then, setting z = Viy, the transformed least
squares problem takes the form
. y= (yl> , (8.4.43)
2 Y2

By 0 y1\ _ [ Biea
0 A2 Y2 0
y1 € RF, 4o € R"*. This problem is separable and decomposes into two indepen-
dent subproblems

min
Y

win B — frerlly,  minfAepallo (8.4.44)
1 2

By construction Bj has nonzero elements in its two diagonals. Thus it has full
column rank and the solution y; to the first subproblem is unique. Further, the
minimum norm solution of the initial problem is obtained simply by taking y = 0.
We call the first subproblem (8.4.44) a core subproblem. It can be solved by QR
factorization exactly as outlined for the full system when k& = n.

When Bi+1 = 0 is the first zero element to occur then the reduced problem
has a similar separable form similar to (8.4.44). The core subproblem is now

aq

B2

Buyy = prer, By = e RF<F, (8.4.45)

Br o

Here By, is square and lower triangular, and the solution y; is obtained by forward
substitution. Taking y» = 0 the corresponding residual b — AV'y is zero and hence
the original system Az = b is consistent.

We give two simple examples of when premature termination occurs. First
assume that b L R(A). Then the reduction will terminate with a; = 0. The core
system is empty and x = Vys = 0 is the minimal norm least squares solution.

If the bidiagonalization instead terminates with 8o = 0, then the system Ax =
b is consistent and the minimum norm solution equals

= (f1/ar)vi, v =Viep = Prej4.

Paige and Strakos [46] have shown the following important properties of the
core subproblem obtained by the bidiagonalization algorithm:
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Theorem 8.4.5.

Assume that the bidiagonalization of (b A) terminates prematurely with
ar =0 or Bg+1 = 0. Then the core corresponding subproblem (8.4.44) or (8.4.45) is
manimally dimensioned. Further, the singular values of the core matriz By, or By,
are simple and the right hand side Be; has nonzero components in along each left
singular vector.

Proof. Sketch: The minimal dimension is a consequence of the uniqueness of the
decomposition (8.4.36), as long as no zero element in B appears. That the matrix
By, has simple singular values follows from the fact that all subdiagonal elements
are nonzero. The same is true for the square bidiagonal matrix (By, 0) and therefore
also for By. Finally, if Se; did not have nonzero components along a left singular
vector, then the reduction must have terminated earlier. For a complete proof we
refer to [46].) 0O

In many applications the numerical rank of the matrix A is much smaller
than min{m,n}. For example, in multiple linear regression often some columns are
nearly linearly dependent. Then one wants to express the solution by restricting it
to lie in a lower dimensional subspace. This can be achieved by neglecting small
singular values of A and using a truncated SVD solution; see Sec. 8.4.1. In partial
least squares (PLS) method this is achieved by a partial bidiagonalization of the
matrix (b A). It is known that PLS often gives a faster reduction of the residual
than TSVD.

We remark that the solution steps can be interleaved with the reduction to
bidiagonal form. This makes it possible to compute a sequence of approzrimate
solutions xp = Py Py - - - Pyyr, where y;, € RF solves

min ||f1e1 — Bryll2, k=1,2,3,..... (8.4.46)
y

After each (double) step in the bidiagonalization we advance the QR decomposition
of Bi. The norm of the least squares residual corresponding to xj is then given by

16— Azll2 = |@rs1]-

The sequence of residual norms is nonincreasing. We stop and accept z = Viyx
as an approximate solution of the original least squares problem. if this residual is
sufficiently small. This method is called the Partial Least Squares (PLS) method
in statistics.

The sequential method outlined here is mathematically equivalent to a method
called LSQR, which is a method of choice for solving sparse linear least squares.
LSQR uses a Lanczos-type process for the bidiagonal reduction, which works only
with the original sparse matrix. A number of important properties of the succes-
sive approximations xj in PLS are best discussed in connection with LSQR; see
Sec. 10.6.4.
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Review Questions

1.

When and why should column pivoting be used in computing the QR factor-
ization of a matrix? What inequalities will be satisfied by the elements of R
if the standard column pivoting strategy is used?

. Show that the singular values and condition number of R equal those of A.

Give a simple lower bound for the condition number of A in terms of its
diagonal elements. Is it advisable to use this bound when no column pivoting
has been performed?

. Give a simple lower bound for the condition number of A in terms of the

diagonal elements of R. Is it advisable to use this bound when no column
pivoting has been performed?

. What is meant by a Rank-revealing QR factorization? Does such a factoriza-

tion always exist?

. How is the numerical rank of a matrix A defined? Give an example where the

numerical rank is not well determined.

Problems

1.

(a) Describe how the QR factorizations of a matrix of the form

A mXxXn
<MD>’ AeR ,

where D € R™*"™ is diagonal, can be computed using Householder transfor-
mations in mn? flops.

(b) Estimate the number of flops that are needed for the reduction using
Householder transformations in the special case that A = R is upper triangu-
lar? Devise a method using Givens rotations for this special case!

Hint: In the Givens method zero one diagonal at a time in R working from
the main diagonal inwards.

. Let the vector v, ||v]|2 = 1, satisfy || Av||2 = €, and let IT be a permutation such

that
wa| = Jw]oe, Mo =uw.
(a) Show that if R is the R factor of AII, then |r,,| < n'/?e.

Hint: Show that € = ||Rw||2 > |rnnwy| and then use the inequality |w,| =
[wlloe > n=12[|w]l2.

(b) Show using (a) that if v = v, the right singular vector corresponding to
the smallest singular value o, (A), then

on(A) =02 |1l
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4. Consider a nonsingular 2 x 2 upper triangular matrix and its inverse

_(a b 1 (a7t atbe?t
R_<O c)’ R _(O c ! '

(a) Suppose we want to choose II to mazimize the (1,1) element in the QR
factorization of RII. Show that this is achieved by taking IT = I if |a| >
Vb2 + 2, else II = TI;2, where II;5 interchanges columns 1 and 2.

(b) Unless b = 0 the permutation chosen in (a) may not minimize the (2,2)
element in the QR factorization of RII. Show that this is achieved by taking
O =1if et > /a2 +b%(ac)~2 else IT = ;2. Hence, the test compares
row norms in R~! instead of column norms in R.

. To minimize ||z||2 is not always a good way to resolve rank deficiency, and

therefore the following generalization of problem (8.4.13) is often useful: For
a given matrix B € RP*™ consider the problem

melg | Bx]|2, S={xeR"|||Az — b||]2 = min}.
(a) Show that this problem is equivalent to
min | (BC)a> — (Bd)||,

where C' and d are defined by (8.4.12).

(b) Often one wants to choose B so that || Bz||2 is a measure of the smoothness
of the solution z. For example one can take B to be a discrete approximation
to the second derivative operator,

1 -2 1
B = . . ' c R(n72)><n'
1 -2 1
Show that provided that N'(A)NN(B) = () this problem has a unique solution,
and give a basis for N'(B).

. Let A € R™*™ with rank(A) = r. A rank revealing LU factorizations of the

form

L
11 AIl, = <Li> (U Ur2),

where I1; and ITs are permutation matrices and L1, U1 € R™*" are triangular
and nonsingular can also be used to compute pseudo-inverse solutions = = Afb.
Show, using Theorem 8.1.7 that

t
At =T, (1, ) Ui'Ly (IT> I,

where T = L21L1_11, S = U1_11U12. (Note that S is empty if r = n, and T
empty if r = m.)
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6. Consider the block upper-bidiagonal matrix

B, (C;
A= By (O
B3

Outline an algorithm for computing the QR factorization of A, which treats
one block row at a time. (It can be assumed that A has full column rank.)
Generalize the algorithm to an arbitrary number of block rows!

7. (a) Suppose that we have computed the pivoted QR factorization of A,

QT Al = (g) € R™Xn,

of a matrix A € R™*". Show that by postmultiplying the upper triangular
matrix R by a sequence of Householder transformations we can transform R
into a lower triangular matrix L = RP € R"*"™ and that by combining these
two factorizations we obtain

QT ATIP — (ﬁ) . (8.4.47)

This factorization, introduced by G. W. Stewart, who calls it the QLP de-
composition of A.

(b) Show that the total cost for computing the QLP decomposition is roughly
2mn? + 2n3/3 flops. How does that compare with the cost for computing the
bidiagonal decomposition of A?

(c) Show that the two factorizations can be interleaved. What is the cost for
performing the first k steps?

8. Work out the details of an algorithm for transforming a matrix A € R™*" to
lower bidiagonal form. Consider both cases when m > n and m < n.

Hint: It can be derived by applying the algorithm for transformation to upper
bidiagonal form to AT.

8.5 Some Structured Least Squares Problems
8.5.1 Banded Least Squares Problems

We now consider orthogonalization methods for the special case when A is a banded
matrix of row bandwidth w, see Definition 8.2.3. From Theorem 8.2.4 we know
that the matrix AT A will also be a banded matrix with only the first r = w — 1
superdiagonals nonzero. Since the factor R in the QR factorization equals the
unique Cholesky factor of AT A it will have only w nonzeros in each row.

Even though the final factor R is independent of the row ordering in A, the
intermediate fill-in will vary. For banded rectangular matrices the QR factorization
can be obtained efficiently by sorting the rows of A and suitably subdividing the
Householder transformations. The rows of A should be sorted by leading entry
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order (i.e., increasing minimum column subscript order) That is, if f;,i =1,2,...,m
denotes the column indices of the first nonzero element in row 7 we should have,

i<k=fi <fi

Such a band matrix can then be written as

Ay
Ay
A= . g<n

) 3

Aq
is said to be in standard form. where in block A; the first nonzero element of each
row is in column ¢. The Householder QR process is then applied to the matrix in ¢

major steps. In the first step a QR decomposition of the first block A; is computed,
yielding R;. Next at step k, k =2 : q, Rx—1 will be merged with Ay yielding

Ry
Qf( flkl) = Ry.

Since the rows of block Ay has their first nonzero elements in column k, the first
k —1 rows of Ri_1 will not be affected. The matrix @) can be implicitly represented
in terms of the Householder vectors of the factorization of the subblocks. This
sequential Householder algorithm, which is also described in [38, Ch.27], requires
(m 4+ 3n/2)w(w + 1) multiplications or about twice the work of the less stable
Cholesky approach. For a detailed description of this algorithm, see Lawson and
Hanson [38, Ch. 11].

In Sec. 4.6.4 we considered the interpolation of a function f where with a
linear combination of m + k B-splines of degree k, see (4.6.18), on A = {zg <
z1 < -+ < Ty }. Assume that we are given function values f; = f(7;), where
T < T < ...< T, are distinct points and n > m + k. Then we consider the least
squares approximation problem

n m—1
minZe?, €5 = W; (f7 — Z CiBi,k-i-l (T7)> (851)
Jj=1

i=—k

where w; are positive weights. This is an overdetermined linear system for c;,
i = —k,...,m—1. The elements of its coefficient matrix B; 41(7;) can be evaluated
by the recurrence (4.6.19). The coefficient matrix has a band structure since in the
jth row the ith element will be zero if 7; & [z;, ®itx+1]. It can be shown, see de
Boor [1978, p. 200], that the coefficient matrix will have full rank equal to m + & if
and only if there is a subset of points 7; satisfying

Tj—p—1 < Tj <Xy, Vi=1,2,....m+k. (852)
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Example 8.5.1.
The least squares approximation of a discrete set of data by a linear combi-
nation of cubic B-splines gives rise to a banded linear least squares problem. Let

s(t) = x;By(t),
=1

where B;(t), j = 1 : n are the normalized cubic B-splines, and let (y;,t;), i =1:m
be given data points. If we determine x to minimize

m

> (s(t) —9:)* = | Az —y|3.

i=1

then A will be a banded matrix with w = 4. In particular if m = 13, n = 8 the
matrix may have the form shown in Fig. 8.4.2. Here A consists of blocks AL,
k=1:7. In the Fig. 8.4.2 we also show the matrix after the first three blocks have
been reduced by Householder transformations Hi,..., Hg. Elements which have
been zeroed by H; are denoted by j and fill-in elements by +. In step & = 4 only
the indicated part of the matrix is involved.

X X X X
1 x x x +
1 2 x x + +
3 4 X X +
3 4 5 x +
6 7 8 x
6 7 8 9
6 7 8 9
X X X X
X X X X
X X X X
X X X X
X X X X

Figure 8.5.1. A banded rectangular matriz A after k = 3 steps in the QR
reduction.

In the algorithm the Householder transformations can also be applied to one
or several right hand sides b to produce

C_CgTb_(Cl>7 c; € R™
2
The least squares solution is then obtained from Rx = c¢; by back-substitution.

The vector ¢y is not stored but used to accumulate the residual sum of squares
7113 = llez1l3.
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It is also possible to perform the QR factorization by treating one row at
a time using Givens’ rotations. Each step then is equivalent to updating a full
triangular matrix formed by columns f;(A) to l;(A). Further, if the matrix A is
in standard form the first f;(A) rows of R are already finished at this stage. The
reader is encouraged to work through Example 8.5.1 below in order to understand
how the algorithm proceeds!

8.5.2 Two-Block Least Squares Problems
In many least squares problem min, |Az — b||3, A € R™*" the unknowns can be

naturally partitioned into two groups,

min
T1,T2

(A, As) (””1) - bH2, (8.5.3)

T2

with n; and ns components, respectively, n = n; + ns. Assume that the matrix
A= (A; Ay) has full column rank.

Let Pr(a,) be the orthogonal projection onto R(A;). For any x5 we can split
the vector b — Asxs = r1 + 72 into two orthogonal components

T = Pra(b— A2x2), 12 = (I — Pr(a,))(b— A2x2).

Then the problem (8.5.3) takes the form

min
ZT1,T2

(Arz1 — 1) — Pyoar (b — Am)HQ. (8.5.4)
Here, since r1 € R(A1) the variables z1 can always be chosen so that Ajxy —ry. It
follows that x5 is the solution to the reduced least squares problem

min [| Py ar)(A222 = b)|2. (8.5.5)
When this reduced problem has been solved for x5 the unknowns x; can be com-

puted from the least squares problem

leilnHAl,Tl — (b—AgLL‘g)Hg. (856)

Sometimes it may be advantageous to carry out a partial QR factorization,
where only the first k& < n columns are orthogonalized. Suppose that after k£ steps
of MGS, we have computed the partial factorization

Rii Ry 2
(A,b) = (Qp, AFTD p+Y [0 T 0
0 0 1

where Rj; is nonsingular. Then we can decompose the residual as r = b — Ax =
r1 + 19, 1 L ro, where

ry = bk _ A(ktD)

r1 = Qr(zr — Ri2x2 — Ri121), 2.
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Then x is the solution to the reduced least squares problem

(k+1) _ A(k+1)x2||2.

min ||b
o
With x5 known x7 can been computed by back-substitution from
Ri1z1 = 2 — Ri2o.

In some applications, e.g., when A has block angular structure (see Sec. 8.5.4), it
may be preferable instead not to save Ri; and Ry2 and instead to refactorize A;
and solve (8.5.6) for z.

8.5.3 Block Triangular Form of a Rectangular Matrix

An arbitrary rectangular matrix A € R™*" m > n, can by row and column
permutations be brought into the block triangular form

An Uns Upy
PAQ = A, U |, (8.5.7)
A,

where the diagonal block Ay, is underdetermined (i.e., has more columns than rows),
As is square and A, is overdetermined (has more rows than columns), and all three
blocks have a nonzero diagonal; see the example in Figure 7.6.4. The submatrices
A, and A} both have the strong Hall property. The off-diagonal blocks denoted by
U are possibly nonzero matrices of appropriate dimensions. This block triangular
form (8.5.7) of a sparse matrix is based on a canonical decomposition of bipartite
graphs.

X X & X X | X
® X X X X
X X ®
® X X
X ® X
® X
X Q& | X
® X
®
X
xX X
X

Figure 8.5.2. The coarse block triangular decomposition of A.

We call the decomposition of A into the submatrices Ay, A, and A, the
coarse decomposition. One or two of the diagonal blocks may be absent in the
coarse decomposition. It may be possible to further decompose the diagonal blocks
in (8.5.7) to obtain the fine decompositions of these submatrices. Each of the
blocks Aj and A, may be further decomposable into block diagonal form,

Ahl Avl
Ah = - ) AU = - )
App Ay
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where each Ap1,..., App is underdetermined and each A,1,..., Ay, is overdeter-
mined. The submatrix A; may be decomposable in block upper triangular form
Asl U12 . U17t
ASQ . U27t
As = , , (8.5.8)
Ast
with square diagonal blocks Agq,..., Ass which have nonzero diagonal elements.

The resulting decomposition can be shown to be essentially unique. Any one block
triangular form can be obtained from any other by applying row permutations that
involve the rows of a single block row, column permutations that involve the columns
of a single block column, and symmetric permutations that reorder the blocks.

An algorithm for the more general block triangular form described above due
to Pothen and Fan depends on the concept of matchings in bipartite graphs. The
algorithm consists of the following steps:

1. Find a maximum matching in the bipartite graph G(A) with row set R and
column set C.

2. According to the matching, partition R into the sets VR, SR, HR and C into
the sets VC,SC, HC corresponding to the horizontal, square, and vertical
blocks.

3. Find the diagonal blocks of the submatrix A, and A, from the connected
components in the subgraphs G(A,) and G(Ap,). Find the block upper trian-
gular form of the submatrix A, from the strongly connected components in
the associated directed subgraph G(A4;), with edges directed from columns to
rOws.

The reordering to block triangular form in a preprocessing phase can save work
and intermediate storage in solving least squares problems. If A has structural rank
equal to n, then the first block row in (8.5.7) must be empty, and the original least
squares problem can after reordering be solved by a form of block back-substitution.
First compute the solution of

min || Ay Zy — byl|2, (8.5.9)
where # = QTz and b = Pb have been partitioned conformally with PAQ in (8.5.7).
The remaining part of the solution Z, ..., Z; is then determined by
. k
Agdi=bi— Y Uyi;, i=k,...21L (8.5.10)
j=i+1

Finally, we have x = QZ. We can solve the subproblems in (8.5.9) and (8.5.10) by
computing the QR decompositions of A, and As;, i =1,...,k. Since A,1,..., Asp
and A, have the strong Hall property the structures of the matrices R; are correctly
predicted by the structures of the corresponding normal matrices.
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If the matrix A has structural rank less than n, then we have an underde-
termined block Ap. In this case we can still obtain the form (8.5.8) with a square
block A;1 by permuting the extra columns in the first block to the end. The least
squares solution is then not unique, but a unique solution of minimum length can
be found as outlined in Section 2.7.

8.5.4 Block Angular Least Squares Problems

There is often a substantial similarity in the structure of many large scale sparse
least squares problems. In particular, the problem can often be put in the following
bordered block diagonal or block angular form:

A B 1 by
Ay B> 2 ba
A= . | oz= o, b= T ], (8511
An | By oM b
TM+1
where
A; e R™XM o B e R™MXMM =12 ..., M,
and
m=mj+meo-+---+my, n=mni+ng+ -+ nNp41.
Note that the variables xi,...,x5s are coupled only to the variables zjs41, which

reflects a “local connection” structure in the underlying physical problem. Appli-
cations where the form (8.5.11) arises naturally include photogrammetry, Doppler
radar and GPS positioning, and geodetic survey problems.

The normal matrix of A in (8.5.11) is of doubly bordered block diagonal form,

ATA, ATB,

ATA, AfB;
ATA = :

AT Ay | AT By
BTA, BFA, --- BLAy| C

where

M
€= > Bl ~ Ry iR

=1

and Rjs1 is the Cholesky factor of C. We assume in the following that rank (A) =
n, which implies that the matrices AT A;, i = 1,2,..., M, and C are positive def-
inite. It is easily seen that then the Cholesky factor R of ATA will have a block



86 Chapter 8. Linear Least Squares Problems

structure similar to that of A,

R1 Sl
R2 SQ

R : (8.5.12)
Ry Sumr
| Rarga

where R; € R"*" the Cholesky factor of AT A;, is nonsingular and
Si = (AR DBy, i=1,...,M+1.

An algorithm for least squares problems of block angular form based on QR
factorization of A proceeds in the following three steps:

1. Fori=1,2,..., M reduce the diagonal block A; to upper triangular form by a
sequence of orthogonal transformations applied to (A;, B;) and the right-hand
side b;, yielding

R, S; e
Q7 (4i, B;) = ( 0 Ti) ; Qb = (dz) :

It is usually advantageous to continue the reduction in step 1 so that the

matrices T3, 1 = 1,..., M, are brought into upper trapezoidal form.
2. Set
Ty dy
T = ) d=
Ty dM

and compute the QR decomposition

~7 ([ Ry41 cv+
QM+1(T d)_< 0 dMJrl .

The solution to min ||Tzpr41—d||2 is then obtained from the triangular system
TM 41

Rypriwaer = ey,
and the residual norm is given by p = ||dar+1]|2-

3. For i = M,...,1 compute xy,...,x1 by back-substitution in the triangular
systems
Rixi = C; — SfL'IMJrl.

In steps 1 and 3 the computations can be performed in parallel on the M
subsystems. There are alternative ways to organize this algorithm. Note that when
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Zps+1 has been computed in step 2, then the vectors z;, ¢ = 1,..., M, solves the
least squares problem

min [|Aiz; — gill2,  gi = bi = Bizaria.

Hence it is possible to discard the R;,S; and ¢; in step 1 if the QR factorizations
of A; are recomputed in step 3. In some practical problems this modification can
reduce the storage requirement by an order of magnitude, while the recomputation
of R; may only increase the operation count by a few percent.

Using the structure of the R-factor in (8.5.12), the diagonal blocks of the
variance-covariance matrix C' = (RTR)~! = R"!R~T can be written

Cm+,m+1 = Ryf Rafyrs
Cii = RN+ WWoRST, W =S8Ry}, i=1,...,M. (85.13)

If we compute the QR decompositions

Q(VIV> = (%) i=1,...,M,

we have I + WIW,; = UIU; and then
Cii = (UR;DHT(WURT), i=1,...,M.

This assumes that all the matrices R; and S; have been retained.

8.5.5 Kronecker Product Problems

Sometimes least squares problems occur which have a highly regular block structure.
Here we consider least squares problems of the form

min || (A ® B)a — d||s, (8.5.14)

where the A ® B is the Kronecker product of A € R™*™ and B € RP*4. This
product is the mp x nqg block matrix,

annB  ai2B -+ a1, B

ang aggB s agnB
AR B = . .

amlB am2B e amnB

Problems of Kronecker structure arise in several application areas including signal
and image processing, photogrammetry, and multidimensional approximation. It
applies to least squares fitting of multivariate data on a rectangular grid. Such
problems can be solved with great savings in storage and operations. Since often
the size of the matrices A and B is large, resulting in models involving several
hundred thousand equations and unknowns, such savings may be essential.
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We recall from Sec. 7.7.3 the important rule (7.7.14) for the inverse of a Kro-
necker product
(Ao By '=A"1® B

It follows that if P and @) are orthogonal n x n matrices then P® @ is an orthogonal
n? x n? matrix. This rule for the inverse holds also for pseudo-inverses.

Lemma 8.5.1.
Let AT and BT be the pseudo-inverses of A and B. Then

(A® B)f = At @ B

Proof. The theorem follows by verifying that X = A" @ B satisfies the four
Penrose conditions in (8.1.11)—(8.1.12). 0O

Using Lemmas 7.7.6 and 8.5.1 the solution to the Kronecker least squares
problem (8.5.14) can be written

z=(A® B)vecC = (AT @ BY)vecC = vec (BTC(AN)T). (8.5.15)

This formula leads to a great reduction in the cost of solving Kronecker least squares
problems. For example, if A and B are both m X n matrices, the cost of computing
is reduced from O(m?n?*) to O(mn?).

In some areas the most common approach to computing the least squares
solution to (8.5.14) is to use the normal equations. If we assume that both A and
B have full column rank, then we can use the expressions

At = (AT A)~1AT, B = (BTB)'BT.

However, because of the instability associated with the explicit formation of AT A
and BT B, an approach based on orthogonal decompositions should generally be
preferred. If we have computed the complete QR decompositions of A and B,

Ry 0 Ry O
Anl—@( 0 O>V1T, BHQ—Q2< 0 O)VJ,
with Ry, Ry upper triangular and nonsingular, then from Section 2.7.3 we have

R7Y 0 R;Y 0
AT—Hlvl(g) 0) 1, BT—HQVQ(S O)Q?

These expressions can be used in (8.5.15) to compute the pseudo-inverse solution
of problem (8.5.14) even in the rank deficient case.

We finally note that the singular values and singular vectors of the Kronecker
product A® B can be simply expressed in terms of the singular values and singular
vectors of A and B.
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Lemma 8.5.2. Let A and B have the singular value decompositions
A=U2 VT, B = U5,V .
Then we have

A®B = (U @U) (21 ® 82) (Vi @ Vo).

Proof. The proof follows from Lemma 8.5.1. 0

Review Questions

1. What is meant by the standard form of a banded rectangular matrix A7 Why
is it important that a banded matrix is permuted into standard form before
its orthogonal factorization is computed?

2. In least squares linear regression the first column of A often equals the vector
a; =e=(1,1,...,1)T (cf. Example 8.2.1). Setting A = (e Az ), show that
performing one step in MGS is equivalent to “subtracting out the means”.

Problems

1. Consider the two-block least squares problem (8.5.3). Work out an algorithm
to solve the reduced least squares problem ming, || Pya7)(A222 — b)[[2 using
the method of normal equations.

Hint: First show that Pyary(4) = I — A1 (RTRy)7* AT where R; is the
Cholesky factor of AT A;.

2. (a) Suppose we want to fit two set of points (z;,%;) € R?, i = 1,...,p, and
t=p+1,...,m, to two parallel lines

cx + sy = hq, cx+sy=nhe, E+s2=1,
so that the sum of orthogonal distances are minimized. Generalize the ap-
proach of Example 8.6.3 to sketch an algorithm for solving this problem.

(b) Modify the algorithm in (a) to fit two orthogonal lines.
3. Use the Penrose conditions to prove the formula

(A® B)! = A" @ BT,

where ® denotes the Kronecker product
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8.6 Generalized Least Squares

8.6.1 Generalized Least Squares

Let A € R™" m > n, and let B € R™*™ be symmetric positive semidefinite.
Augmented linear systems of the form

(& 5)(2)=() (86.1)

in (8.6.1) occur in many application areas since they represent the condition for
equilibrium of a physical system. The system (8.6.1) is often called a saddle-point
system or, in optimization, a KKT (Karush-Kuhn-Tucker) system. The system
matrix in (8.6.1) is symmetric but in general indefinite; it is nonsingular if and only
if

1. A has full column rank;

2. the matrix (B A) has full row rank.

A unified formulation of generalized least squares and minimum norm prob-

lems can be obtained as follows.

Theorem 8.6.1. If B is positive definite then the linear system (8.6.1) is nonsin-
gular and gives the condition for the solution of the two problems:

mxin LAz —b||3-0 + 'z, (8.6.2)

msin Lls—bllp, subject to ATs=c, (8.6.3)
where ||z||2 = 2T Gx for any symmetric positive definite matriz G.

Proof. If B is symmetric positive definite so is B~1. The system (8.6.1) can be
obtained by differentiating (8.6.2) to give

ATB™ Y (Az —b) +c =0,

and setting s = B~1(b — Ax). The system can also be obtained by differentiating
the Lagrangian

1
L(z,s) = ESTBS —sTo4 2T (ATs — ¢)
of (8.6.3), and equating to zero. Here x is the vector of Lagrange multipliers. O
Remark: Theorem 8.6.1 can be generalized to to the semidefinite case, see

Gulliksson and Wedin [31, Theorem 3.2]. A case when B is indefinite and nonsin-
gular is considered in Sec. 8.6.4

If we take ¢ = 0 in Theorem 8.6.1, then the solution x gives the best linear
unbiased estimate for the linear model

Az +e=b, V() =o*B".
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The standard linear least squares problem (8.1.1) is obtained by taking B = I.
Taking B = I in problem (8.6.3), we have s = r = b — Az and this problem
becomes

1
min §||7° — b2, subject to ATr =c¢, (8.6.4)

i.e. to find the point s closest to b in the set of solutions to the underdetermined
linear system A”r = ¢. This problem frequently occurs as a subproblem in linearly
constrained optimization. Another application, for which ¢ = 0, is in structural
optimization, where A7 is called the equilibrium matrix, B the element flexibility
matrix, y is the force, and x a Lagrange multiplier vector.

There are two different approaches to the solution of systems of the form (8.6.1).
In the range space method the y variables are eliminated to obtain the gener-
alized normal equations

ATB Az = ATB b —c. (8.6.5)

From the assumptions in Theorem 8.6.1, it follows that the matrix ATB~1A is
symmetric, positive definite. The normal equations can be solved for x, and then
y obtained by solving Bs = b — Az. Setting B = W and ¢ = 0 in (8.6.2) gives a
weighted linear least squares problem; see Sec. 8.6.2.

ATB'Az = A"B ' —¢, y=B'(b— Ax). (8.6.6)

For B = I the first equation in (8.6.6) is the normal equations for the least squares
problem. If B is positive definite then one way to solve these equations is to compute
the Cholesky factorization B = RT R and then solve

min | R~ (Az — b)]|» (8.6.7)
using the QR factorization of R~'A. However, a more stable approach is to use
a generalized QR (GQR) factorization of the matrix pair A, B; to be described in

Sec. 8.6.3.
Using (8.6.5) the solution to problem (8.6.4) can be written

r=0b— Az = Pyaryb+ A(ATA) e (8.6.8)

InTparticular, taking b = 0, this is the minimum norm solution of the system
A ilc‘.che null space method the solution y to (8.6.6) is split as

y=y1+y2 1 €R(A), y2eN(AT). (8.6.9)

Let 41 be the minimum norm solution of ATy = c¢. This can be computed using the
QR factorization of A. If we set Q@ = (Q1 Q2 ) then

y1=Q1z1, m1=R e
Next ys is obtained by solving the reduced system

QgBQQZQ = Qg(b - By1)7 Y2 = QQZQ. (8.6.10)
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Finally, form
y=Q121 + Q220 and z=R'QT(b—Vy).

In the special case that B = I the generalized least squares problems associ-
ated with (8.6.1) simplify to

min ||y — b||3 subject to ATy =, (8.6.11)
y

min{||b — Az||5 + 2¢"x}. (8.6.12)

When a Householder QR factorization is available the algorithm is as follows:
-T d T z —1
z=R "¢, ! =Q" b, r=Q 7)) x =R "(d-=2).

Assuming that the matrix M = AT B! A has rank n, a first order perturbation
analysis for the generalized least squares problem can be obtained. We assume that
B is not perturbed and for simplicity take ¢ = 0. Proceeding as in Sec. 8.1.5, we
denote the perturbed data A + §A and b + §b and the perturbed solution x + dx
and s + §s.

The perturbed solution satisfies the system

((AﬁSA)T At)aA) (Z) - <b25b> : (8.6.13)

Subtracting the equations (8.6.13) and neglecting second order quantities the per-
turbations 6s = B~ 97 and x satisfy the linear system

B A s 0b — 0Ax
(4 o) ()= ("sar) (36.14)
From the Schur—Banachiewicz formula (see Sec. 7.1.5) it follows that the inverse of
the matrix in this system equals

B A\ ' [((I-B'AM'AT)B-! B-'AM!
AT 0 = M*lATBfl —M71 . (8615)

where M = AT B~'A is the negative Schur complement. Hence we obtain

6o =MTATB 1 (6b— 6A%) + M 16AT3, (8.6.16)
6r = (B—AM'AT)B71(0b— 6A %) — AM 16 A”3, (8.6.17)

Taking norms in (8.6.17) and (8.6.17) we obtain

8]z 14~ AT B (lab] + IISA] l])) + M| 15A] 1sll,  (8.6.18)

o7l £ 1(B — AM~TAT) B (|ab + 16A] [|]) (8.6.19)
+{1AM T A5, (8.6.20)
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8.6.2 Weighted Problems

We now consider a simple special case of the generalized least squares problem. In
the general univariate linear model (8.1.5) the covariance matrix W is a positive
diagonal matrix

W = o?diag (wy,ws, . .., wmy) > 0.

The corresponding problem then is the weighted linear least squares problem
(8.1.5)

min | D(Az — b)||la, D =W~Y2 =diag(dy,ds,...,dn). (8.6.21)

When the ith component of the error vector in the linear model has small variance
then d; = 1/\/w;; will be large. In the limit when some d; tend to infinity, the
corresponding ith equation becomes a linear constraint.

We assume in the following that the matrix A is row equilibrated, that is,

max |a;| =1, i=1:m.
1<j<n

and that the rows of A are ordered so that the weights satisfy
co>dy>dy > >dy > 0. (8622)

We call a weighted least squares problems stiff if d; > d,,,; see Example 8.2.2.
For stiff problems the condition number x(DA) will be large. An upper bound is
given by
k(DA) < k(D)k(A) = v&(A).

It is important to note that this does mot mean that the problem of computing z
from given data {D, A, b} necessarily is ill-conditioned. Problems with extremely
ill-conditioned weight matrices arise, e.g., in electrical networks, certain classes of
finite element problems, and interior point methods for constrained optimization.

In many cases it is possible to compute A= DA, b = Db and solve this as a
standard least squares problem

min || Az — b|).
x

However, if the weights dy, . .., d,, vary widely in magnitude this is not in general a
numerically stable approach. Special care may be needed in solving stiff weighted
linear least squares problems. In general the method of normal equations is not
well suited for solving stiff problems. To illustrate this, we consider the important
special case where only the first p equations are weighted:

yALY (b
Ao be
A; € RP*" and Ay € RU™=P)X" Such problems occur, for example, when the
method of weighting is used to solve least squares problems with the linear equality

2

, (8.6.23)
2

min
xT
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constraints A;xz = by; see Section 5.1.4. For this problem the matrix of normal
equations becomes

A
B=(yAT AT) (7,421) =y ATA, + AJA,.

If v > u=/2 (u is the unit roundoff) and ATA; is dense, then B = AT A will be
completely dominated by the first term and the data contained in As may be lost.
However, if the number p of very accurate observations is less than n, then the
solution depends critically on the less precise data in As. (The matrix in Example
2.2.1 is of this type.) We conclude that for weighted least squares problems with
~v > 1 the method of normal equations generally is not well behaved.

We now consider the use of methods based on the QR decomposition of A
for solving weighted problems. We first examine the Householder QR method, and
show by an example that this method can give poor accuracy for stiff problems
unless the algorithm is extended to include row interchanges.

Example 8.6.1.
Consider the least squares problem ([51]) with

0 2 1 3

v v O 2y
A= , b=

v 0 ~ 2y

0 1 1 2

The exact solution is equal to z = (1,1, 1). Using exact arithmetic we obtain after
the first step of QR decomposition of A by Householder transformations the reduced
matrix 1 1/2 1 —1/2
27— 2 —37 2
A(Q): _%7_21/2 %7_2_
1 1

1/2

If v > u~! the terms —2'/2 and —271/2 in the first and second rows are lost.
However, this is equivalent to the loss of all information present in the first row
of A. This loss is disastrous because the number of rows containing large elements
is less than the number of components in z, so there is a substantial dependence of
the solution x on the first row of A. (However, compared to the method of normal
equations, which fails already when v > «~1/2, this is an improvement!)

The Householder algorithm can be extended to include row interchanges. In
each step a pivot column is first selected in the reduced matrix, and then the element
of largest absolute value in the pivot column is permuted to the top. The resulting
algorithm has good stability properties for stiff problems as well.

There is no need to perform row pivoting in Householder QR, provided that
an initial row sorting is performed, where the rows are sorted after decreasing so
that

max |ai;| > max|aq;| > --- > max|aq;]|. (8.6.24)
J J J
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For example, in Example 8.6.1 the two large rows will be permuted to the top of
the matrix A. The Householder algorithm then works well without any further row
interchanges.

The stability of row sorting has been shown by Cox and Higham [18]. Note
that row sorting has the advantage over row pivoting in that after sorting the rows
any library routine can be used for the QR factorization. In particular this allows
for the use of BLAS 3 subroutines, which is not the case for row pivoting.

It is also essential that column pivoting is performed when QR decomposition
is used for weighted problems. To illustrate the need for column pivoting, consider
an example of the form (8.6.23), where

11 1
Al_(1 1 —1)’

Then stability is lost without column pivoting because the first two columns of the
matrix A; are linearly dependent.

When column pivoting is introduced this difficulty disappears. With QR fac-
torization with complete pivoting we will mean that both row sorting (or row
pivoting) and column pivoting is used.

Another suitable transformation for weighted problems is to make a prelimi-
nary LU factorization of the matrix A. If the problem has the form (8.6.23) with
rank (A;) = p, then p steps of Gaussian elimination are performed on the weighted
system using row and column pivoting. The resulting factorization can be written

11, (7;141> Il. = LDU, (8.6.25)
2

where II,. and II. are permutation matrices, and

L1 mxn (Ull U12) nxn
L= €eR , U= €eR .
(L21 L22> I

Here L1; € RP*P is unit lower triangular, and Uy; € RP*P is unit upper triangular.
Assuming that A has full rank, D is nonsingular. Then (4.4.1) is equivalent to

min || Ly — I1,.b||2, DUz = y.
Y

The least squares problem in y is usually well-conditioned, since any ill-conditioning
from the weights is usually reflected in D. We illustrate the method in a simple
example. For a fuller treatment of weighted and the general linear model, see Bjorck
[11, Chap.3].

Example 8.6.2. In Example 8.2.2 it was shown that the method of normal equa-
tions can fail. After multiplication with v = ¢! this becomes

1 11 1
0

A= . ’b_()
0

€
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which is of the form (8.6.23) with p = 1. After one step of Gaussian elimination we
have the factorization A = LDU, where

1

As is easily verified L and U are well-conditioned. Setting DUz = y, the solution
can be accurately computed by first solving the normal equations LT Ly = LTb for
y and then finding = by back-substitution and scaling. O

8.6.3 Generalized Orthogonal Decompositions

The motivation for introducing different generalizations of orthogonal decomposi-
tions is basically to avoid the explicit computation of matrix products and quotients
of matrices. For example, let A and B be square and nonsingular matrices and as-
sume we need the SVD of AB~! (or AB). Then the explicit calculation of AB™!
(or AB) may result in a loss of precision and should be avoided.

Consider a pair of matrices A € R™*™ and B € R™*P. The generalized QR
(GQR) decomposition of A and B is written

A=QR, B=QTZ, (8.6.26)

where Q € R™*™ and Z € RP*P are orthogonal matrices and R and T have one of
the forms

R_(R61> (m>n), R=(Ru Ri) (m<n), (8.6.27)

and
T=(0 Ti2) (m<p), T = (T21> (m > p). (8.6.28)

If B is square and nonsingular GQR implicitly gives the QR factorization of B! A.
There is also a similar generalized RQ factorization related to the QR factorization of
AB~!. Routines for computing a GQR decomposition of are included in LAPACK.
These decompositions allow the solution of very general formulations of several least
squares problems.

8.6.4 Indefinite Least Squares
The indefinite least squares problem (ILS) has the form

min(b — Az)T J(b — Az), (8.6.29)

x

where A € R™*" m > n, and b € R™ are given and J is a signature matrix,
i.e. a diagonal matrix with elements equal to +1. In the following we assume for
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simplicity that
_(L, O _
J_<O —Iq>’ p+q=m, (8.6.30)

While the standard least squares is obtained if p = 0 or ¢ = 0, for pg # 0 the
problem is to minimize an indefinite quadratic form.
The normal equations
ATJ(b— Az) =0 (8.6.31)

give first order conditions for optimality. In the following we assume that the
Hessian matrix ATJA is positive definite. Then the ILS problem has a unique
solution.

Chandrasekaran, Gu and Sayed [16] proposed a QR-Cholesky method for solv-
ing the ILS problem. It uses a QR factorization

A=QR= (g;) R, Qi eRPX" (Q,eRI*" (8.6.32)

Then
ATJA = R™(QTQ1— Q5 Q2)R,

and it follows that R is nonsingular and QT Q1 — Q3 Q5 is positive definite. Using
(8.6.32) the normal equations (8.6.31) can be written

(QT Q1 — Q5 Q2)Rz = Q" Jb. (8.6.33)
Using the Cholesky factorization QT Q1 — QT Q2 = UTU, this becomes
UTURz = QT Jb,

which can be solved by one forward and two backward substitutions.

The operation count for the QR~Cholesky algorithm is approximately n?(5m—
n), which can be compared to the normal equations n2(m + n/ 3).

Sometimes it is useful to consider hyperbolic rotations G of the form

G ( c —5) , c=coshf, s=sinh0, (8.6.34)

-5 c
and ¢ —s2 = 1. The matrix G is S-orthogonal, GTSG =1, for the signature matrix
S = diag (1, -1).
A hyperbolic rotation can be used to zero a selected component in a vector.
Provided that |a| > |G| and
s=p0/la, c=+/(1+3)1—-5s), o0=ac,

we have s2 + ¢2 =1 and
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A matrix representing a rotation a hyperbolic rotation in R™ in the plane spanned
by the unit vectors e; and e;, i < j, is obtained as for Givens’ rotations; see (8.3.34).

Thee condition number of G in (8.6.34) is not bounded, and to form a prod-
uct Gz the straightforward way is not numerically stable. Instead we note the
equivalence of

a(=)=(2) o(2)=(5 () -(2). e

where G is an orthogonal Givens rotation. The mixed method where Z; is deter-
mined from the hyperbolic rotation and then £; from the equivalent Givens rotation

& = (z; — szj)/c, & = —s&; + cxj, (8.6.36)
has been shown to be numerically more stable.

A hyperbolic QR factorization method for solving the indefinite least squares
problem has been devised by Bojanczyk, Higham and Patel [13]. We first use
Householder transformations to compute the factorization

(D=2
0 I As Ay
where A has been partitioned conformally with J.

8.6.5 Orthogonal Regression

We consider here the following orthogonal regression problem. Let y; € R"”,
i =1:m, be m > n given points. We want to determine a hyperplane M in R"
such that the sum of squares of the orthogonal distances from the given points to
M is minimized. The equation for the hyperplane can be written

c'z2=h, zceR" |cl2=1,
where ¢ € R™ is the normal vector of M, and |h| is the orthogonal distance form
the origin to the plane. Then the orthogonal projections of the points y; onto M
are given by

zi =y — (c"yi — h)e. (8.6.37)
It is readily verified that the point z; lies on M and the residual (z; —y;) is parallel to
c and hence orthogonal to M. It follows that the problem is equivalent to minimizing

m

> (c"yi = h)?,  subjectto |c]lz = 1.

i=1
If we put Y = (y1,...,9m) € R™™ and e = (1,...,1)T, this problem can be
written in matrix form

o (i)

, subjectto |¢|2=1. (8.6.38)
2

min
c,h
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For a fixed ¢, this expression is minimized when the residual vector (Y7¢ — he) is
orthogonal to e, that is €X' (YTc — he) = eTYTc — hele = 0. Since eTe = m it

follows that ) )
h=—c'Ye=c"y, g=—Ye, (8.6.39)
m m

where ¢ is the mean value of the given points y;. Hence h is determined by the
condition that the mean value g lies on the optimal plane M.

We now subtract the mean value § from the each given point, and form the
matrix

Y:(g17"'7gm)7 gi:yi_g, 121,7m
Since by (8.6.39)

problem (8.6.38) is equivalent to

min 1Y Tc||z, lell2 =1 (8.6.40)

By the min-max characterization of the singular values (Theorem 8.1.11) a solution
to (8.6.40) is ¢ = v, where v, is a right singular vector of Y7 corresponding to the
singular value o,,. Hence, a solution to problem (8.6.38) is given by

m

C = Un, h:’U;I;g, Z(U;I;yi_h)zzana
=1

The fitted points z; € M are obtained from
% = Gi — (U §i)vn + 9,

i.e., by first orthogonalizing the shifted points g; against v,, and then adding the
mean value back.

Note that in contrast to the TLS problem the orthogonal regression problem
always has a solution. The solution is unique when ¢,,_1 > o,, and the minimum
sum of squares equals 02. We have o, = 0, if and only if the given points y;,
i =1,...,m all lie on the hyperplane M. In the extreme case, all points coincide
and then Y = 0, and any plane going through ¥ is a solution.

The above method solves the problem of fitting a (n — 1) dimensional linear
manifold to a given set of points in R. It is readily generalized to the fitting of an
(n — p) dimensional manifold by orthogonalizing the shifted points y against the p
left singular vectors of Y corresponding to p smallest singular values. A least squares
problem that often arises is to fit to given data points a geometrical element, which
may be defined in implicit form. For example, the problem of fitting circles, ellipses,
spheres, and cylinders arises in applications such as computer graphics, coordinate
meteorology, and statistics. Such problems are nonlinear and will be discussed in
Sec. 11.4.7.
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Example 8.6.3.
Suppose we want to fit by orthogonal regression m pair of points (x;,y;) € R2,
i=1,...,m, to a straight line

ct+sy=~h, +s>=1.

First compute the mean values of z; and y; and the QR factorization of the matrix
of shifted points

T Y1

_ T2 Y2

YT = : : _Q(lg>,
Tm  Ym

where R is an upper triangular 2 x 2 matrix. Since the singular values and right
singular vectors of YT and R are the same, it suffices to compute the SVD

- T11 T12 o 01 O ’U?
(5 ) (5 0) ()

where o1 > o9 > 0. (A stable algorithm for computing the SVD of an upper
triangular matrix is given in Algorithm 9.4.2; see also Problem 9.4.5.) Then the
coefficients in the equation of the straight line are given by

(c 5) = of, h:vg(f”).

Y

If 05 = 0 but o1 > 0 the matrix Y has rank one. In this case the given points lie on
a straight line. If oy =09 =0, then Y =0, and z; =z, y; = g foralli =1,...,m.
Note that us is uniquely determined if and only if o1 # 09. It is left to the reader
to discuss the case o1 = g9 # 0!

8.6.6 Linear Equality Constraints

In some least squares problems in which the unknowns are required to satisfy a
system of linear equations exactly. One source of such problems is in curve and
surface fitting, where the curve is required to interpolate certain data points.

Given matrices A € R™*"™ and B € RP*™ we consider the problem LSE to
find a vector x € R™ which solves

min ||[Az — b||2  subject to Bx = d. (8.6.41)

A solution to problem (8.6.41) exists if and only if the linear system Bz = d is
consistent. If rank (B) = p then B has linearly independent rows, and Bz = d is
consistent for any right hand side d. A solution to problem (8.6.41) is unique if and
only if the null spaces of A and B intersect only trivially, i.e., if N(A)NN(B) = {0},
or equivalently

rank A =n. 8.6.42
(5) (5.6.42)
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If (8.6.42) is not satisfied then there is a vector z # 0 such that Az = Bz = 0.
Hence if = solves (8.6.41) then x + z is a different solution. In the following we
therefore assume that rank (B) = p and that (8.6.42) is satisfied.

A robust algorithm for problem LSE should check for possible inconsistency
of the constraints Bx = d. If it is not known a priori that the constraints are
consistent, then problem LSE may be reformulated as a sequential least squares
problem

glelgl |Az — 0|2, S ={z|||Bx —d|2 =min }. (8.6.43)

The most natural way to solve problem LSE is to derive an equivalent uncon-
strained least squares problem of lower dimension. There are basically two different
ways to perform this reduction: direct elimination and the null space method.
We describe both these methods below.

In the method of direct elimination we start by reducing the matrix B to
upper trapezoidal form. It is essential that column pivoting is used in this step. In
order to be able to solve also the more general problem (8.6.43) we will compute a
QR factorization of B. By Theorem 8.4.1 (see next section) there is an orthogonal
matrix U € RP*P and a permutation matrix IIg such that

QEBllp = (Rgl Rg2) , R eR™, (8.6.44)

where r = rank(B) < p and Rj; is upper triangular and nonsingular. Using this
factorization, and setting T = Hg:r, the constraints become

_ _ _ - - d
(Ri11, R12)T = R11Z1 + Ri12@2 = dy, d= di = (J;) , (8.6.45)

where dy = 0 if and only if the constraints are consistent. If we apply the permu-
tation IIp also to the columns of A and partition the resulting matrix conformally
with (8644), AHB = (Al,AQ). then Az — b= A1Z1 + A2%T2 — b. Solving (8645)
for z; = Rl_l1 (ch — R12T2), and substituting, we find that the unconstrained least
squares problem

min ||A2.’Z‘2 - B”g, Ag S Rmx(n—r) (8646)
2
Ay = Ay — AR} Ri,  b=0b— ARy dy.

is equivalent to the original problem LSE. Here A, is the Schur complement of Ry

in
(R_ll R_12>
A Ay )
It can be shown that if the condition in (8.6.42) is satisfied, then rank (As) = r.
Hence the unconstrained problem has a unique solution, which can be computed
from the QR factorization of As,.

In the null-space method, assuming that rank (B) = p, we compute the QR
factorization

BT =U (}EB> , Rp € RP*P, (8.6.47)
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where Rp is upper triangular and nonsingular. Using Theorem 8.3.7 we find that
the general solution of the system Bx = d can be written as

=1 + Qayo, z1 = B'd=Q1R;"d. (8.6.48)

where U = (Q1,Q2), Q1 € R™P, and Q, € R™*("~P), (Note that Qs gives an
orthogonal basis for the null space of B.) Hence, Az — b = Ax; + AQay2 — b,
y2 € R"7P  and it remains to solve the unconstrained least squares problem

min [(AQ2)yz — (b — Az1)[2. (8.6.49)

Let y2 = (AQ2)!(b— A1) be the minimum length solution to (8.6.49), and let = be
defined by (8.6.48). Then since 1 L Q2y2 it follows that

2113 = llz13 + 1Q2p215 = llz1l13 + llyal3

and x is the minimum norm solution to problem LSE.
If (8.6.42) is satisfied it follows that rank (AQ2) = n—p. Then we can compute
the QR factorization

asae) = (1),

where R4 is upper triangular and nonsingular. The unique solution to (8.6.49) can
then be computed from

Rays = c1, c= (21) = QL (b— Axy), (8.6.50)
2

and we finally obtain z = 7 + (Q2y2, the unique solution to problem LSE.

The method of direct elimination and the null space method both have good
numerical stability. The operation count for the method of direct elimination is
slightly lower because Gaussian elimination is used to derive the reduced uncon-
strained problem.

Review Questions

1. What is meant by a saddle-point system? Which two optimization problems
give rise to saddle-point systems?

2. Show the equivalence of the hyperbolic and the Givens rotations in (8.6.35).

Problems

1. Consider the overdetermined linear system Az = b in Example 8.2.2. Assume
that €2 < u, where u is the unit roundoff, so that fI(1+ €2) = 1.
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(a) Show that the condition number of A is k = ¢ 13 + €2 ~ e~ 1/3.

(b) Show that if no other rounding errors are made then the maximum devia-
tion from orthogonality of the columns computed by CGS and MGS, respec-
tively, are

€ K
CGS: |¢fql =1/2, MGS : |q§q1|:%§ﬁu.

Note that for CGS orthogonality has been completely lost!

2. Assume that A € R™*™ is symmetric and positive definite and B € R™*" a
matrix with full column rank. Show that

o (A BY_( I 0\(A 0)\(I A'B
“\BT o) \BTa' 1)\0o -s)\o 1 )

where S = BT A=!B is the Schur complement (cf. (6.2.12)). Conclude that
M is indefinite! (M is called a saddle point matrix.)

8.7 Total Least Squares
8.7.1 The Total Least Squares Problem

In the standard linear model (8.1.3) it is assumed that the vector b € R™ is related
to the unknown parameter vector x € R™ by a linear relation Az = b + e, where
A € R™*™ ig an exactly known matrix and e a vector of random errors. If the
components of e are uncorrelated, have zero means and the same variance, then
by the Gauss—Markoff theorem (Theorem 8.1.4) the best unbiased estimate of z is
obtained by solving the least squares problem

min ||7]|2, Az =b+r. (8.7.1)

The assumption in the least squares problem that all errors are confined to
the right hand side b is frequently unrealistic, and sampling or modeling errors often
will affect also the matrix A. In the errors-in-variables model it is assumed that
a linear relation

(A+E)x=b+r,

where the rows of the errors (F, r) are independently and identically distributed
with zero mean and the same variance. If this assumption is not satisfied it might
be possible to find scaling matrices D = diag (dy,...,dy), T = diag (d1, ..., dn+1),
such that D(A, b)T) satisfies this assumptions.

Estimates of the unknown parameters z in this model can be obtained from
the solution of the total least squares (TLS) problem*

r}gin”(r, E)|lr, (A+ E)x=b+r, (8.7.2)

4The term “total least squares problem” was coined by Golub and Van Loan in [28]. The
concept has been independently developed in other areas. For example, in statistics this is also
known as ”latent root regression”.
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where || - || denotes the Frobenius matrix norm defined by

IAl: = aZ = trace (AT A).
4,J
The constraint in (8.7.2) implies that b + r € R(A 4+ E). Thus the total least
squares is equivalent to the problem of finding the “nearest” compatible linear
system, where the distance is measured by the Frobenius norm. If a minimizing
perturbation (E, r) has been found for the problem (8.7.2) then any z satisfying
(A4 E)x = b+ r is said to solve the TLS problem.

The TLS solution will depend on the scaling of the data (A, b). In the following
we assume that this scaling has been carried out in advance, so that any statistical
knowledge of the perturbations has been taken into account. In particular, the TLS
solution depends on the relative scaling of A and b. If we scale x and b by a factor
~ we obtain the scaled TLS problem

rginH(E, )| e (A+E)x=b+r.

Clearly, when ~y is small perturbations in b will be favored. In the limit when v — 0
we get the ordinary least squares problem. Similarly, when v is large perturbations
in A will be favored. In the limit when 1/y — 0, this leads to the data least
squares (DLS) problem

mbinHEHF, (A+ E)z =, (8.7.3)
where it is assumed that the errors in the data is confined to the matrix A.

8.7.2 Total Least Squares Problem and the SVD

In the following we assume that b ¢ R(A), for otherwise the system is consistent.
The constraint in (8.7.2) can be written

(b+r A+E)<_x1) =0.

This constraint is satisfied if the matrix (b4 A+ E) is rank deficient and (-1 z )"

lies in its nullspace. Hence the TLS problem involves finding a perturbation matrix

having minimal Frobenius norm, which lowers the rank of the matrix (b A).
The total least squares problem can be analyzed in terms of the SVD

k+1
(b A)=UsV"=> g/, (8.7.4)
i=1

where 01 > ... > 0, > op41 > 0 are the singular values of (b A). By Theo-
rem 8.1.13 the singular values of ; of A interlace those of (b A), i.e.,

012&1202>"'20n2&n20n+1- (875)
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Assume first that rank (4) = n and that 6,, > 041, which implies that o, > op41.
Then by Theorem 8.1.14 the unique perturbation of minimum norm || (r E)|r
that makes (A 4+ E)x = b+ r consistent is the rank one perturbation

(r E)=—0pi1Uni10, 4, (8.7.6)

for which ming , || (r E)||Fr = ont1. From (8.7.5), using the orthogonality of the
right singular vectors we find that op41uny1 = (b A)v,y1. Multiplying (8.7.6)
from the right with v, 11 gives

(b A)vpyr=—(r E)vpgr. (8.7.7)

Writing the relation (A + E)z = b+ r in the form

v (L)=-0 ()

and comparing with (8.7.7) it is easily seen that the TLS solution can be written
in terms of the right singular vector v, 41 as

r=—wly, vy = (Z) , (8.7.8)

If w = 0 then the TLS problem has no solution. Note that this is the case if and

only if b has no component along u,+1. (This case can only occur when &, = 0,41,

since otherwise it can be shown that the TLS problem has a unique solution.) In

this “nongeneric” case the theory and solution methods become more complicated.
Suppose now that 0,41 is a repeated singular value,

01 >> >0 > Opy1 =0 = Onyl.

and let v = V22 be any unit vector in the subspace R(V2), where Va = (vg41,. .., Unt1)
is the matrix consisting of the right singular vectors corresponding to the minimal
singular values. Let () be a Householder transformation such that.

w 0
VQQ_(@/ Vz’)

Then is w # 0 a TLS solution of minimum norm is given by (8.7.8). Otherwise we
have a nongeneric problem.

One way to avoid the complications of nongeneric problems is to compute a
regular core TLS problem by bidiagonalizing of the matrix (b A). This will be
discussed in Sec. 8.7.4.

8.7.3 Conditioning of the TLS Problem

We now consider the conditioning of the total least squares problem and its rela-
tion to the least squares problem. We denote those solutions by xzrrs and zpg
respectively.
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The TLS solution can also be characterized by

bTh BT A -1\ -1
(ATb ATA) (xTLS> = On41 (xTLS) ) (8'7'9)

ie, (=1 arps)” isan eigenvector corresponding to the smallest eigenvalue A, 11 =
o2 41 of the “square” of (b A). This eigenvector is characterized by the property
that it minimizes the Rayleigh quotient, that is min, p(z) = o2, where

)T

(b—Ax)T(b—Az) __|Irl3

plz) = xTr+1 2+ 1

(8.7.10)

This also shows that whereas the LS solution minimizes ||r||2 the TLS solution
minimizes ||7|2/(||2]|3 + 1)'/2.
From the last block row of (8.7.9) it follows that

(ATA— o2, Darrs = ATb. (8.7.11)

Hence, if we assume that 6, > 0,41 it follows that the matrix (ATA — o2 1)
is symmetric positive definite, which ensures that the TLS problem has a unique
solution.

This can be compared with the corresponding normal equations for the least

squares solution zrg,
ATAILS — ATb (8712)

In (8.7.11) a positive multiple of the unit matrix is subtracted from the matrix AT A
of normal equations. Thus TLS can be considered as a deregularizing procedure.
(Compare Sec. 8.4.1, where a multiple of the unit matrix was added to improve
the conditioning.) Hence the TLS solution is always worse conditioned than the LS
problem, From a statistical point of view this can be interpreted as removing the
bias by subtracting the error covariance matrix (estimated by o2 I from the data
covariance matrix AT A. Subtracting (8.7.12) from (8.7.12) we get

2 T 2 -1
ITLS —TLS = UnJrl(A A- 0n+11) rLs-
Taking norms we obtain

lzrrs — xrsl2 ony
lzLslle  ~ 62 -0l

)

which shows that when the difference &, —0,+1 < &y, is small then the TLS solution
can differ much from the LS solution. It can be shown that an approximate condition
number for the TLS solution is
01 0
Krns A e = (A)
Op — On41 On — On+1

(8.7.13)

When 6, — 0,41 < 6, the TLS condition number can be much worse than for the
LS problem.
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Figure 8.7.1. Condition numbers ks and krrs as function of 5 = ||rpsl2-

Example 8.7.1.
Consider the overdetermined system

[71 O T C1
0 & (xl) =|e|. (8.7.14)
0 0 2 8

Trivially, the LS solution is xrs = (c1/61,c2/62)T, ||rrslla = |B8]. If we take

61 =c1=1,69 =cy=107% then 215 = (I, 1)T independent of 3, and hence does
not reflect the ill-conditioning of A. However,

rLs(A,b) = k(4) (1 + @)

612152

will increase proportionally to §. The TLS solution is of similar size as the LS
solution as long as |3| < 62. However, when |3| > 62 then ||zrLs|2 becomes large.
In Figure 8.7.1 the two condition numbers are plotted as a function of § €
[1078,10~%]. For 8 > 6 the condition number x7rg grows proportionally to 3%. It
can be verified that ||x7p 5|2 also grows proportionally to 2.
Setting ¢; = c2 = 0 gives x5 = 0. If |3| > 02(A), then o2(A4) = 03(A4,b) and
the TLS problem is nongeneric.

8.7.4 Bidiagonalization and TLS Problems.

Consider the total least squares (TLS) problem

IginH(E, )| F, (A+E)x=b+r.
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It was shown in Sec. 8.4.5 that we can always find square orthogonal matrices U k41
and Vy = P, P, - -+ Py, such that

ad > 6 € Bk 0
UL, (b AVy) = ( 101 o 4, ) (8.7.15)
where
oy
B2 a2
Bk: .. .. ER(k+1)Xk,
Br g
Br+1
and
Bjaj }é O, ] = 1 . k (8716)

Setting = = Vj, <Z>, the approximation problem Ax = b then decomposes

into the two subproblems
By ~ Ber, Az = 0.

It seems reasonable to simply take z = 0, and separately solve the first subproblem,
which is the minimally dimensioned core subproblem. Setting

~ I ~ I
VkZW(S), Uk+1=Uk+1(k6rl),

(b AVk) = Uk-i—l (5161 Bk).
If x = Viy € R(Vi) then

it follows that

(A+ E)x = (A+ E)YWy = (Up1Br + EVi)y = B1Up 161 + 1,
Hence the consistency relation (A + Ej)x = b+ r becomes
(B + F)y=pier+s, F=UL EVi, s=Ul,r (8.7.17)
Using the orthogonality of Ug; and V4 it follows that
1B, ")l = (. 5)]l . (.7.15)

Hence to minimize ||(E,r)||r we should take yj, to be the solution to the TLS core
subproblem
rrblisn I(E, $)|lF, (Br + F)y = Bie1 + s. (8.7.19)

From (8.7.16) and Theorem 8.4.5 it follows that the singular values of the matrix
By, are simple and that the right hand side fe; has nonzero components along each
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left singular vector. This TLS problem therefore must have a unique solution. Note
that we can assume that By1 # 0, since otherwise the system is compatible.
To solve this subproblem we need to compute the SVD of the bidiagonal matrix

B1 o

B2 a2
(Bre1, Bi) = Bs € RIFx(kFL), (8.7.20)

ag
Br+1

The SVD of this matrix
(Bie1, By) = Pdiag(o1,...,0111)Q", P,Q € RFFDx(+D)

can be computed, e.g., by the implicit QR-SVD algorithm; see Sec. 9.7.6. (Note
that the first stage in this is a transformation to bidiagonal form, so the work in
performing the reduction (8.7.15) has not been wasted!) Then with

w
Gr+1 = Qer11 = ( ) .

z

Here it is always the case that w # 0 and the solution to the original TLS problem
(8.7.19) equals

—1
IrTLS — ka = —Ww sz

Further the norm of the perturbation equals

min [|[(E,7)||F = 0k+1-
E,r

8.7.5 Some Generalized TLS Problems

We now consider the more general TLS problem with d > 1 right-hand sides

gnr;”(E F)lp, (A+ E)YX =B+ F, (8.7.21)
where B € R™*?, The consistency relations can be written

(B+F A+E)(‘)§d> —0,

Thus we now seek perturbations (F, F') that reduces the rank of the matrix (A4, B)
by d. We call this a multidimensional TLS problem. As remarked before, for

this problem to be meaningful the rows of the error matrix (£, F') should be
independently and identically distributed with zero mean and the same variance.
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Note that the multidimensional problem is different from solving d one-dimensional
TLS problems with right-hand sides by, ...,b4. This is because in the multidimen-
sional problem we require that the matrix A be similarly perturbed for all right-
hand sides. This is in contrast to the usual least squares solution and may lead to
improved predicted power of the TLS solution.

The solution to the TLS problem with multiple right-hand sides can be ex-
pressed in terms of the SVD

_ 2 Vi
e m-wo (M) (V). (5.7.22)
where ¥ = diag (01,...,0,), X2 = diag (6p+1,.-.,0n+d), and U and V are parti-

tioned conformally. The minimizing perturbation is given by
(F E)=-U%Vy =—(B A)WV,

for which || (F E)|lr = Z?:l ony; and
Via
(B+F A+E)V;=0, Vz=( )

where Vis € R™. If 6,, > 0,11, where 6;, i = 1,...,n, are the singular values of
A, it can be shown that V5 is nonsingular. Then the solution to the TLS problem
is unique and given by

X = —VauV,' e RV

Otherwise assume that o > ogy1 = -+ = opy1, K < n, and set Vo =
(Vk+41s- -, Untd). Let @ be a product of Householder transformations such that
' 0

where I' € R%*? is lower triangular. If I' is nonsingular, then the TLS solution of
minimum norm is given by
X=-2T""

In many parameter estimation problems, some of the columns are known ex-
actly. It is no restriction to assume that the error-free columns are in leading
positions in A. In the multivariate version of this mixed LS-TLS problem one
has a linear relation

(A1, A2+ E2)X = B+ F, A e R

where A = (A1, As) € R™*™ n = ny + ng. It is assumed that the rows of the
errors (Ey, F) are independently and identically distributed with zero mean and
the same variance. The mixed LS-TLS problem can then be expressed

glllf} ||(E2, F)HF, (Al, Ag + E2)X =B + F. (8723)
25
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When A, is empty, this reduces to solving an ordinary least squares problem. When
A, is empty this is the standard TLS problem. Hence this mixed problem includes
both extreme cases.

The solution of the mixed LS-TLS problem can be obtained by first computing
a QR factorization of A and then solving a TLS problem of reduced dimension.

Algorithm 8.7.1 Mixed LS-TLS problem

Let A= (A;, Ay) € R™*™, n =ny +ng, m>n,and B € R™*?. Assume that the
columns of A; are linearly independent. Then the following algorithm solves the
mixed LS-TLS problem (8.7.23).

Step 1. Compute the QR factorization

B R _ (B Ri
(Alu A27 B)_Q(())’ R_( 0 R22>7

where @ is orthogonal, and Ri; € R™*™ | Ryy € R(m2+d)x(n24d) are ypper trian-
gular. If n; = n, then the solution X is obtained by solving R11 X = Rj2 (usual
least squares); otherwise continue (solve a reduced TLS problem).

Step 2. Compute the SVD of R
Ry =UXVT, Y = diag (01, ..., Onytd),
where the singular values are ordered in decreasing order of magnitude.
Step 3a. Determine k < ng such that
Ok > Ok41 =+ = Opytd = 0,

and set Vag = (Vk41,...,Un,+d). If 1 > 0 then compute V2 by back-substitution
from

Vi
R11Vig = —R12Vao, Vo= <V12> )
22

else set Vo = Voo

Step 3b. Perform Householder transformations such that

VQQ—@ 3)

where I' € R?*4 is upper triangular. If T' is nonsingular then the solution is
X =-21""
Otherwise the TLS problem is nongeneric and has no solution.

Note that the QR factorization in the first step would be the first step in
computing the SVD of A.
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8.7.6 Iteratively Reweighted Least Squares.

In some applications it might be more adequate to solve the problem
min || Az — b|, (8.7.24)

for some [,-norm with p # 2. For p = 1 the solution may not be unique, while
for 1 < p < oo the problem (8.7.24) is strictly convex and hence has exactly one
solution. Minimization in the /1-norm or [,-norm is more complicated since the
function f(x) = |Az — b||, is not differentiable for p = 1, co.

Example 8.7.2. To illustrate the effect of using a different norm we consider the
problem of estimating the scalar x from m observations b € R™. This is equivalent
to minimizing ||Ax — bl|,, with A = e = (1,1,...,1)T. It is easily verified that if
by > by > ... > by, then the solution x, for some different values p are

Ty = bmis, (m odd)
1
$2=—(b1+b2+...+bm),
m
1
0o = =(b bm).
z 5 (b1 + bm)

These estimates correspond to the median, mean, and midrange respectively. Note
that the estimate x1 is insensitive to the extreme values of b;, while x, only depends
on the extreme values. The lo, solution has the property that the absolute error in
at least n equations equals the maximum error.

The simple example above shows that the {; norm of the residual vector has
the advantage of giving a solution that is robust, i.e., a small number of isolated
large errors will usually not change the solution much. A similar effect is also
achieved with p greater than but close to 1.

For solving the [, norm problem when 1 < p < 3, the iteratively reweighted
least squares (IRLS) method (see Osborne [44, 1985]) can be used to reduce the
problem to a sequence of weighted least squares problems.

We start by noting that, provided that |r;(x)] = |b — Az|; > 0,i=1,...,m,
the problem (8.7.24) can be restated in the form min, ¢(z), where

U(x) =Y |r@)P =D |ri(@) P ri()*. (8.7.25)
i=1 i=1
This can be interpreted as a weighted least squares problem
min | D(r)P=2/2(b — Ax)|s,  D(r) = diag (|r]), (8.7.26)

where diag (|r|) denotes the diagonal matrix with ith component |r;]|.
The diagonal weight matrix D(r)®~2)/2 in (8.7.26) depends on the unknown
solution z, but we can attempt to use the following iterative method.
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Algorithm 8.7.2
IRLS for I, Approximation 1 < p < 2

Let z(®) be an initial approximation such that 7’50) =(b—Az); #£0,i=1,...,n.
for k=0,1,2,...
r) = (b— Az®);

Dy = diag ((r™)) 727,
solve 5z from
n;in ||Dk(r(k) - A5$)H2;

2D () | k).

end

Since Db = Dy (r*) — Az(®) it follows that z(*+1) in IRLS solves min, || Dy,(b—
Ax)ll2, but the implementation above is to be preferred. It has been assumed that
in the IRLS algorithm, at each iteration rl(k) # 0,7 =1,...,n. In practice this
cannot be guaranteed, and it is customary to modify the algorithm so that

Dy, = diag ((100ue + [r®)]) 7272,

where u is the machine precision and e’ = (1,...,1) is the vector of all ones.
Because the weight matrix Dy, is not constant, the simplest implementations of IRLS
recompute, e.g., the QR factorization of DiA in each step. It should be pointed out
that the iterations can be carried out entirely in the r space without the x variables.
Upon convergence to a residual vector 7op¢ the corresponding solution can be found
by solving the consistent linear system Az = b — rops.

It can be shown that in the [, case any fixed point of the IRLS iteration
satisfies the necessary conditions for a minimum of t(x). The IRLS method is
convergent for 1 < p < 3, and also for p = 1 provided that the /3 approximation
problem has a unique nondegenerate solution. However, the IRLS method can be
extremely slow when p is close to unity.

Review Questions

1. Formulate the total least squares (TLS) problem. The solution of the TLS
problem is related to a theorem on matrix approximation. Which?

Problems and Computer Exercises
1. Consider a TLS problem where n =1 and

C=(Ab) = ((1) g)
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Show that the unique minimizing AC' gives

C+AC=(A+Eb+r)= <8 g)
so the perturbed system is not compatible, but that an arbitrary small per-
turbation e in the (2,1) element will give a compatible system with solution
x=2]e.

2. Write a MATLAB program for fitting a straight line cix 4+ coy = h to given
points (z;,y;) € R?, i =1,2,...,m. Follow the outline in Example 8.6.3. Use
the Algorithm 10.4.2 to compute the SVD of R. The program should handle
all exceptional cases, e.g., ¢; = 0 or and/or ¢y = 0.

3. (a) Let A € R™*"™, m > n, b € R™, and consider the total least squares
(TLS) problem. ming . |(E,7)||r, where (A+ E)x = b+r. If we have the QR

factorization
T (S (R =z
Q(A,b)—(o), S—(O p).

then the ordinary least squares solution is x5 = R~ 'z, ||r||2 = p.
Show that if a TLS solution z7rg exists, then it holds

RT 0 R z rrrs \ _ o ITLS
2T p 0 p -1 )" 1 -1 )¢

where 0,41 is the smallest singular value of (4, b).

(b) Write a program using inverse iteration to compute xrpg, i.e., for k =
0,1,2,..., compute a sequence of vectors z(**t1) by

R 0\ (R 2\ (y*tY _ (2@ (k+1) _  (k+1)
<ZT p><0 p)(—a ) e

As starting vector use 2 = 276 on the assumption that xprs is a good
approximation to zrg. Will the above iteration always converge? Try to
make it fail!

(¢) Study the effect of scaling the right hand side in the TLS problem by
making the substitution z := 0z, p := 0p. Plot ||xrrs(0) —xLs||2 as a function
of § and verify that when 6 — 0, then 75 — zp5s.

Hint For generating test problems it is suggested that you use the function
qmult(A) from the MATLAB collection of test matrices by N. Higham to
generate a matrix C = (A4, b) = Q1 * D * Q3 where Q; and Q3 are random
real orthogonal matrices and D a given diagonal matrix. This allows you to
generate problems where C' has known singular values and vectors.

Notes

Several of the great mathematicians at the turn of the 19th century worked on meth-
ods for solving overdetermined linear systems. Laplace in 1799 used the principle of
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minimizing the sum of absolute errors |r;|. This leads to a solution x that satisfies
at least n equations exactly. The method of least squares was first published as an
algebraic procedure by Legendre 1805 in [39]. Gauss justified the least squares prin-
ciple as a statistical procedure in [24], where he claimed to have used the method
since 1795. This led to one of the most famous priority dispute in the history of
mathematics. Gauss further developed the statistical aspects in 1821-1823. For an
interesting accounts of the history of the invention of least squares, see Stiegler [60,
1981].

Because of its success in analyzing astronomical data the method of least
squares rapidly became the method of choice when analyzing observation. Geodetic
calculations was another early area of application of the least squares principle. In
the last decade applications in control and signal processing has been a source of
inspiration for developments in least squares calculations.

The singular value decomposition was independently developed by E. Beltrami
1873 and C. Jordan 1874; see G. W. Stewart [57, 1993] for an interesting account of
the early history of the SVD. The first stable algorithm for computing the SVD the
singular value was developed by Golub, Kahan and Wilkinson in the late 1960’s.
Several other applications of the SVD to matrix approximation can be found in
Golub and Van Loan [29, Sec.12.4].

A good introduction to generalized inverses Ben-Israel and Greville [5]. These
should be used with caution since they tend to hide the computational difficulties
involved with rank deficient matrices. A more complete and thorough treatment is
given in the monograph by the same authors [6]. The use of generalized inverses in
geodetic calculations is treated in Bjerhammar [8].

Peters and Wilkinson [49, 1970] developed methods based on Gaussian elim-
ination from a uniform standpoint and the excellent survey by Noble [43, 1976].
Sautter [53, 1978] gives a detailed analysis of stability and rounding errors of the
LU algorithm for computing pseudo-inverse solutions.

The different computational variants of Gram—Schmidt have an interesting his-
tory. The “modified” Gram—Schmidt (MGS) algorithm was in fact already derived
by Laplace in 1816 as an elimination method using weighted row sums. Laplace
did not interpret his algorithm in terms of orthogonalization, nor did he use it for
computing least squares solutions! Bienaymé in 1853 gave a similar derivation of
a slightly more general algorithm; see Bjorck [10, 1994]. What is now called the
“classical” Gram—Schmidt (CGS) algorithm first appeared explicitly in papers by
Gram 1883 and Schmidt 1908. Schmidt treats the solution of linear systems with
infinitely many unknowns and uses the orthogonalization as a theoretical tool rather
than a computational procedure.

In the 1950’s algorithms based on Gram—Schmidt orthogonalization were fre-
quently used, although their numerical properties were not well understood at the
time. Bjorck [9] analyzed the modified Gram—Schmidt algorithm and showed its
stability for solving linear least squares problems.

The systematic use of orthogonal transformations to reduce matrices to sim-
pler form was initiated by Givens [25, 1958] and Householder [36, 1958]. The ap-
plication of these transformations to linear least squares is due to Golub [26, 1965],
where it was shown how to compute a QR factorization of A using Householder
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transformations.

How to find the optimal backward error for the linear least squares problem
was an open problem for many years, until it was elegantly answered by Karlsson et
al. [64]; see also [37]. Gu [30] gives several approximations to that are optimal up to
a factor less than 2. Optimal backward perturbation bounds for underdetermined
systems are derived in [61]. The extension of backward error bounds to the case of
constrained least squares problems is discussed by Cox and Higham [19].

The QR algorithm for banded rectangular matrices was first given by Reid [52].
Rank-revealing QR (RRQR) decompositions have been studied by a number of au-
thors. A good survey can be found in Hansen [32]. The URV and ULV decomposi-
tions were introduced by G. W. Stewart [56, 58].

The systematic use of GQR as a basic conceptual and computational tool
are explored by [45]. These generalized decompositions and their applications are
discussed in [1]. Algorithms for computing the bidiagonal decomposition are due to
Golub and Kahan [27, 1965]. The partial least squares (PLS) method, which has
become a standard tool in chemometrics, goes back to Wold et al. [66].

The term “total least squares problem”, which was coined by Golub and Van
Loan [28], renewed the interest in the “errors in variable model”. A thorough and
rigorous treatment of the TLS problem is found in Van Huffel and Vandewalle [63].
The important role of the core problem for weighted TLS problems was discovered
by Paige and Strakos [47].

Modern numerical methods for solving least squares problems are surveyed in
the two comprehensive monographs [38] and [11]. The latter contains a bibliography
of 860 references, indicating the considerable research interest in these problems.
Hansen [32] gives an excellent survey of numerical methods for the treatment of
numerically rank deficient linear systems arising, for example, from discrete ill-
posed problems.
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minimum norm solution by, 42
Orthogonal projection by, 41
modified Gram—Schmidt, 36
augmented linear system, 90
augmented system, 90-92, 96

B-splines
cubic, 81
banded matrix
bidiagonal reduction, 72
of standard form, 80
bandwidth
row, 20
bidiagonal reduction, 69—72
banded matrix, 72
bidiagonalization
for TLS, 107-109
block angular form, 85-87
doubly bordered, 85
block angular problem
QR algorithm, 87
block triangular form, 83
coarse decomposition, 83
fine decomposition, 83

CGS, see classical Gram—Schmidt
Cholesky factorization, 19
column pivoting, 50

column scaling, 13
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optimal, 23
condition estimation, 5657
condition number
general matrix, 11
covariance matrix, 3, 4, 21
block angular problem, 87
estimate, 21

data least squares problem, 104
direct elimination

method of, 101
distribution function, 2

elementary reflector, 43
error

componentwise estimate, 57
errors-in-variable model, 103
expected value, 2

filter factor, 62
Fischer’s theorem, 8
flop count
Householder QR, 58
normal equations, 19
QR factorization, 49, 77
banded, 80
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fundamental subspaces, 6

Gauss—Markoff’s theorem, 3
generalized inverse, 6-7
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Gram—Schmidt
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modified, 36
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Householder vector, 43
hyperbolic rotations, 97

indefinite least squares problem, 96
inverse
left, 16
IRLS, see iteratively reweighted least
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iteratively reweighted least squares, 112—
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Kronecker
least squares problem, 87-89

Lagrange multipliers, 90
latent root regression, 103
least squares
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general problem, 4
principle of, 2
problem, 1
solution, 1
total, 103-111
with linear equality constraints,
100
least squares problem
damped, 61
indefinite, 96
Kronecker, 87-89
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stiff, 93
weighted, 93
left-inverse, 15
linear model
general univariate, 4
standard, 3
linear regression, 19
linear system
augmented, 90
underdetermined, 91
LU factorization, 25
of rectangular matrix, 7

matrix

idempotent, 32
orthogonal, 32, 43
unitary, 32
matrix approximation, 9-10
mean, 112
median, 112
MGS, see modified Gram—Schmidt
midrange, 112
minimax characterization
of singular values, 8
minimum distance
between matrices, 9
minimum norm solution, 2
Moore—Penrose inverse, 5

normal equations, 17
accuracy of, 21-25
generalized, 91
iterative refinement, 24
method of, 18-21
scaling of, 23

normalized residual, 21

null space method, 91, 101

nullspace
numerical, 9

from SVD, 9
numerical rank, 9

by SVD, 59-61

oblique projector, 32
orthogonal, 31
complement, 31
matrix, 32, 43
projector, 32
orthogonal projections, 6
orthogonal projector, 31
orthogonal regression, 98-99
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loss of, 3640
orthonormal, 31

Partial least squares method, 76
Penrose conditions, 5
perturbation

component-wise, 13
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orthogonal, 32 generalized, 109
pseudo-inverse, 5 mixed, 110
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Kronecker product, 88 truncated SVD, 59-61
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pseudo-inverse solution
by LU factorization, 7 ULV decomposition, 68
underdetermined problem, 2
QR decomposition underdetermined system
Kronecker product, 88 general solution, 54
row pivoting, 94 minimum norm solution, 54
row sorting, 94 URV decomposition, 67
QR factorization, 35, 47 )
backward stability, 49, 55 variance, 2
vector

column pivoting, 50

complete, 64
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59

of banded matrix, 82

rank revealing, 66

orthogonal, 31
orthonormal, 31

weighted problem
condition number, 93

range space method, 91
regularization, 61-62
filter factor, 62
residual
normalized, 21
right-inverse, 15

saddle-point system, 90
signature matrix, 96
singular value decomposition, 761
sparse matrix
block angular form, 85-87
block triangular form, 83
SVD, see singular value decomposi-
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and pseudo-inverse, 47
Kronecker product, 89
SVD solution
truncated, 60



