
Contents

7 Direct Methods for Solving Linear System 1
7.1 Linear Algebra and Matrix Analysis 2

7.1.1 Linear Vector Spaces 2
7.1.2 Matrix and Vector Algebra 4
7.1.3 Determinants and Permutations 8
7.1.4 Partitioning and Block Matrices 10
7.1.5 Modified Linear Systems 12
7.1.6 The Singular Value Decomposition 14
7.1.7 Norms of Vectors and Matrices 17
7.1.8 Conditioning of Linear Systems 22

Review Questions . 27
Problems . 27
7.2 Elimination Methods . 29

7.2.1 Triangular Matrices 29
7.2.2 Gaussian Elimination 31
7.2.3 Elementary Elimination Matrices 39
7.2.4 Pivoting Strategies 43
7.2.5 Computational Variants 48
7.2.6 Computing the Inverse 52

Review Questions . 55
Problems . 55
7.3 Symmetric Matrices . 56

7.3.1 Symmetric Positive Definite Matrices 56
7.3.2 Cholesky Factorization 61
7.3.3 Inertia of Symmetric Matrices 65
7.3.4 Symmetric Indefinite Matrices 66

Review Questions . 70
Problems . 70
7.4 Banded Linear Systems . 71

7.4.1 Banded Matrices . 71
7.4.2 LU Factorization of Banded Matrices 73
7.4.3 Tridiagonal Linear Systems 77
7.4.4 Inverses of Banded Matrices 81

Review Questions . 82

i

ii Contents

Problems . 82
7.5 Perturbation Theory and Condition Estimation 84

7.5.1 Component-Wise Perturbation Analysis 84
7.5.2 Backward Error Bounds 87
7.5.3 Estimating Condition Numbers 89

Review Questions . 92
Problems . 92
7.6 Rounding Error Analysis . 93

7.6.1 Floating Point Arithmetic 93
7.6.2 Error Analysis of Gaussian Elimination 95
7.6.3 Scaling of Linear Systems 100
7.6.4 Iterative Refinement of Solutions 103
7.6.5 Interval Matrix Computations 106

Review Questions . 110
Problems . 110
7.7 Block Algorithms for Gaussian Elimination 110

7.7.1 Block and Blocked Algorithms 110
7.7.2 Recursive Algorithms 116
7.7.3 Kronecker Systems 117
7.7.4 Linear Algebra Software 119

Review Questions . 121
Problems . 121
7.8 Sparse Linear Systems . 122

7.8.1 Introduction . 122
7.8.2 Storage Schemes for Sparse Matrices 123
7.8.3 Graph representation of sparse matrices. 126
7.8.4 Nonzero Diagonal and Block Triangular Form 128
7.8.5 LU Factorization of Sparse Matrices 130
7.8.6 Cholesky Factorization of Sparse Matrices 132

Review Questions . 136
Problems . 137
7.9 Structured Systems . 138

7.9.1 Toeplitz and Hankel Matrices 138
7.9.2 Cauchy-Like Matrices 139
7.9.3 Vandermonde systems 140

Bibliography 145

Index 150

Chapter 7

Direct Methods for

Solving Linear System

The problem treated in this chapter is the numerical solution of a system Ax = b of
m linear equations in n variables. Systems of linear equations enters at some stage
in almost every scientific computing problem. Often their solution is the dominating
part of the work to solve the problem. Also the solution of a nonlinear problem
is usually accomplished by solving a sequence of linear systems obtained, e.g., by
Newton’s method. Since algorithms for solving linear systems are perhaps the most
widely used in scientific computing, it is of great importance that they are efficient
and reliable.

The linear system Ax = b has a unique solution for all vectors b only if the
matrix A has full row and column rank. If rank (A) < n the system either has many
solutions (is underdetermined) or no solution (is overdetermined). Note that due
to inaccuracy of the elements of A the rank may not be well defined. Under- and
overdetermined systems will be treated in Chapter 8.

Two quite different classes of methods for solving systems of linear equations
are of interest: direct methods and iterative methods. In a direct method the
system is transformed by a sequence of elementary transformed into a system of
simpler form, e.g., triangular or diagonal form, which can be solved in an elementary
way. The most important direct method is Gaussian elimination, which is the
method of choice when the matrix A is of full rank and has no special structure.

Disregarding rounding errors, direct methods give the exact solution after a
finite number of arithmetic operations. Iterative methods, on the other hand, com-
pute a sequence of approximate solutions, which (assuming exact arithmetic) in the
limit converges to the exact solution x. Iterative methods have the advantage that
in general they only require a subroutine for computing the matrix-vector product
Ax for any given vector x. Hence they may be much more efficient than direct
methods when the matrix A is large and matrix-vector multiplication cheap. The
distinction is not sharp since iterative methods are usually applied to a so called
preconditioned version of the system that may involve the solution of a sequence of
simpler auxiliary systems by a direct method. Iterative methods and precondition-
ing techniques are treated in Chapter 11.

1

2 Chapter 7. Direct Methods for Solving Linear System

Many applications give rise to linear systems where the matrix has some special
property that can be used to achieve savings in work and storage. An important
case is when A is symmetric positive definite, when about half the work and storage
can be saved; see Section 7.3. If only a small fraction of the elements in A are
nonzero the linear system Ax = b is called sparse. The simplest case is when A has
a banded structure, but also more general sparsity patterns can be taken advantage
of; see Section 7.8. Indeed, without the exploitation of sparsity many important
problems would be intractable!

There are also some classes of structured matrices, which although not sparse,
have a structure, which can be used to develop fast solution methods. One example
is Vandermonde matrices, which are related to polynomial interpolation. Other
important examples of structured matrices are Toeplitz and Hankel matrices. In
all these instances the n2 elements in the matrix are derived from only (n − 1)
quantities.

Numerical methods for linear systems are a good illustration of the difference
between classical mathematics and practical numerical analysis. Even though the
mathematical theory is simple and the algorithms have been known for centuries,
decisive progress in the development of algorithms has been made during the last few
decades. It is important to note that methods, which are perfectly acceptable for
theoretical use, may be useless for the numerical solution. For example, the explicit
determinant formula (Cramer’s rule) for the inverse matrix and for the solution of
linear systems of equations is extremely uneconomical except for matrices of order
two or three, and matrices of very special structure.

Since critical details in the algorithms can influence the efficiency and accuracy
in a way the beginner can hardly expect the reader is strongly advised to use the
efficient and well-tested software available in the public domain; see Section 7.7.3.

The emphasis in this chapter will be on algorithms for real linear systems,
since (with the exception for Hermitian systems) these occur most commonly in ap-
plications. However, all algorithms given can readily be generalized to the complex
case.

7.1 Linear Algebra and Matrix Analysis

7.1.1 Linear Vector Spaces

We denote the field of real numbers by R and Rn is the vector space of n-tuples of
real numbers. The operation addition and scalar multiplication are defined for all
v ∈ Rn, and have the following properties:

1. the following distributive properties hold:

α(v + w) = αv + αw, (α+ β)v = αv + βv,

for all α, β ∈ K and v, w ∈ W.

2. there is an element 0 ∈ W called the null vector such that v + 0 = v for all
v ∈ Rn;

7.1. Linear Algebra and Matrix Analysis 3

3. for each vector v there exists a vector −v such that v + (−v) = 0;

4. 0 · v = 0 and 1 · v = v where 0 and 1 are the zero and unity in K.

Similar properties hold for the vector space Cn of n-tuples of elements of the field
of complex numbers by C.

If W ⊂ V is a vector space then W is called a vector subspace of V. The
set of all linear combinations of v1, . . . , vk ∈ V form a vector subspace denoted by

span {v1, . . . , vk} =

k
∑

i=1

αivi, αi ∈ K, i = 1 : k.

If S1, . . . ,Sk are vector subspaces of V then their sum defined by

S = {v1 + · · · + vk| vi ∈ Si, i = 1 : k}
is also a vector subspace. The intersection T of a set of vector subspaces is also a
subspace,

T = S1 ∩ S2 · · · ∩ Sk.

(The union of vector spaces is generally no vector space.) If the intersection of the
subspaces are empty, Si ∩ Sj = 0, i 6= j, then the sum of the subspaces is called
their direct sum and denoted by

S = S1 ⊕ S2 · · · ⊕ Sk.

A set of vectors {v1, v2, . . . , vk} in V is said to be linearly independent if

k
∑

i=1

civi = 0, ⇒ c1 = c2 = · · · = ck = 0.

Otherwise, if a nontrivial linear combination of v1, . . . , vk is zero, the vectors are said
to be linearly dependent. Then at least one vector vi will be a linear combination
of the rest.

A basis in V is any set of linearly independent vectors v1, v2, . . . , vn ∈ V such
that all vectors v ∈ V can be uniquely decomposed as

v =

n
∑

i=1

ξivi.

The scalars ξi are called the components or coordinates of v with respect to the
basis {vi}.

If the vector space V has a basis of k vectors, then every system of linearly
independent vectors of V has at most k elements and any other basis of V has
the same number k of elements. The number k is called the dimension of V and
denoted by dim(V).

The standard basis for Cn is the set of unit vectors e1, e2, ..., en, where the
jth component of ei equals 1 if j = i, and 0 otherwise. We shall use the same name
for a vector as for its coordinate representation by a column vector, with respect to
the standard basis. For the the vector space Pn of polynomials of degree less than
n monomials 1, x, . . . , xn−1 form a basis.

4 Chapter 7. Direct Methods for Solving Linear System

7.1.2 Matrix and Vector Algebra

A matrix A is a collection of m× n numbers ordered in m rows and n columns

A = (aij) =









a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn









.

We write A ∈ Rm×n, where Rm×n denotes the set of all real m × n matrices. If
m = n, then the matrix A is said to be square and of order n. If m 6= n, then A is
said to be rectangular. The empty matrix is a matrix of dimension 0 × 0 with no
columns and no rows. Empty matrices are convenient to use as place holders.

A column vector is a matrix consisting of just one column and we write
x ∈ Rm instead of x ∈ Rm×1. Similarly a row vector is a matrix consisting of
just one row.

A linear map from the vector space Cn to Cm is a function f such that

f(αv + βw) = αf(u) + βf(v)

for all α, β ∈ K and u, v ∈ Cn. Let x and y be the column vectors representing the
vectors v and f(v), respectively , using the standard basis of the two spaces. Then
there is a unique matrix A ∈ Cm×n representing this map such that

y = Ax.

This gives a link between linear maps and matrices.
We will follow a convention introduced by Householder1 and use capital letters

(e.g. A,B) to denote matrices. The corresponding lower case letters with subscripts
ij then refer to the (i, j) component of the matrix (e.g. aij , bij). Greek letters
α, β, . . . are usually used to denote scalars. Column vectors are usually denoted by
lower case letters (e.g. x, y).

Two matrices in Rm×n are said to be equal, A = B, if

aij = bij , i = 1 : m, j = 1 : n.

The basic operations with matrices are defined as follows. The product of a matrix
A with a scalar α is

B = αA, bij = αaij .

The sum of two matrices A and B in Rm×n is

C = A+B, cij = aij + bij . (7.1.1)

As a special case of the multiplication rule, if A ∈ Rm×n, x ∈ Rn, then

y = Ax ∈ Rm, yi =
n

∑

j=1

aijxj , i = 1 : m.

1A. S. Householder 1904–1993, American mathematician at Oak Ridge National Laboratory
and University of Tennessee. He pioneered the use of matrix factorization and orthogonal trans-
formations in numerical linear algebra.

7.1. Linear Algebra and Matrix Analysis 5

The product of two matrices A and B is defined if and only if the number of
columns in A equals the number of rows in B. If A ∈ Rm×n and B ∈ Rn×p then

C = AB ∈ Rm×p, cij =

n
∑

k=1

aikbkj , (7.1.2)

and can be computed with mnp multiplications.
Matrix multiplication is associative and distributive,

A(BC) = (AB)C, A(B + C) = AB +AC,

but not not commutative. The product BA is not even defined unless p = m.
Then the matrices AB ∈ Rm×m and BA ∈ Rn×n are both square, but if m 6= n of
different orders. In general, AB 6= BA even when m = n. If AB = BA the matrices
are said to commute.

Example 7.1.1.
If A ∈ Rm×n, B ∈ Rn×p and C ∈ Rp×q, then the productM = ABC ∈ Rm×q

is defined. computing M as (AB)C requires mp(n + q) operations, whereas using
A(BC) requires nq(m + p) operations. These numbers can be very different! For
example, if A and B are square n × n matrices and x a column vector of length n
then computing the product ABx as (AB)x requires n3 + n2 operations whereas
A(Bx) only requires 2n2 operations. When n≫ 1 this makes a great difference!

It is useful to define also array operations, which are carried out element-by-
element on vectors and matrices. Following the convention in Matlab we denote
array multiplication and division by .∗ and ./, respectively. If A and B have the
same dimensions A . ∗ B is the matrix with elements equal to aij · bij and A ./B
has elements aij/bij. (Note that for +,− array operations coincides with matrix
operations so no distinction is necessary.)

The transpose AT of a matrix A = (aij) is the matrix whose rows are the
columns of A, i.e., if C = AT then cij = aji. For a complex matrix we denote by
AH the complex conjugate transpose of A

A = (aij), AH = (āji),

and it holds that (AB)H = BHAH .
Row vectors are obtained by transposing column vectors (e.g. xT , yT). For

the transpose of a product we have

(AB)T = BTAT ,

i.e., the product of the transposed matrices in reverse order.
We recall that r = rank (A) is the number of linearly independent columns

which is the same as the number of linearly independent rows of A. A square matrix
A of order n is said to nonsingular if rank (A) = n. It is left as an exercise to
show that the rank of a sum of two matrices satisfies

rank (A+ B) ≤ rank (A) + rank (B), (7.1.3)

6 Chapter 7. Direct Methods for Solving Linear System

and the rank of a product of two matrices satisfies

rank (AB) ≤ min{rank (A), rank (B)}. (7.1.4)

If A is square and nonsingular there exists an inverse matrix denoted by
A−1 with the property that

A−1A = AA−1 = I.

By A−T we will denote the matrix (A−1)T = (AT)−1. For the inverse of a product
of two matrices we have

(AB)−1 = B−1A−1,

where the product of the inverse matrices are taken in reverse order.
The absolute value of a matrix A and vector b is defined by

|A|ij = (|aij |), |b|i = (|bi|).

We also introduce the partial ordering “≤” for matrices A,B and vectors x, y, which
is to be interpreted component-wise2

A ≤ B ⇐⇒ aij ≤ bij , x ≤ y ⇐⇒ xi ≤ yi.

Further, it is easy to show that if C = AB, then

|cij | ≤
n

∑

k=1

|aik| |bkj |,

and hence |C| ≤ |A| |B|. A similar rule holds for matrix-vector multiplication.
The Euclidean inner product of two vectors x and y in Rn is given by

xT y =

n
∑

i=1

xiyi = yTx, (7.1.5)

and the Euclidian length of the vector x is

‖x‖2 = (xTx)1/2 =

(n
∑

i=1

|xi|2
)1/2

. (7.1.6)

The outer product of x ∈ Rm and y ∈ Rn is the matrix

xyT =







x1y1 . . . x1yn
...

...
xmy1 . . . xmyn






∈ Rm×n. (7.1.7)

For some problems it is more relevant and convenient to work with complex
vectors and matrices. We denote by Cn×m the vector space of all complex n ×m

2Note that A ≤ B in other contexts means that B − A is positive semidefinite.

7.1. Linear Algebra and Matrix Analysis 7

matrices whose components are complex numbers.3 Most concepts introduced here
carry over to complex matrices. Addition and multiplication of vectors and matrices
follow the same rules as before. The Hermitian inner product of two vectors x
and y in Cn is defined by

xHy =

n
∑

k=1

x̄kyk, (7.1.8)

where xH = (x̄1, . . . , x̄n) and x̄k denotes the complex conjugate of xk. Hence

xHy = yHx and xHx is a real number.
Any matrix D for which dij = 0 if i 6= j is called a diagonal matrix. If

x ∈ Rn is a vector then D = diag (x) ∈ Rn×n is the diagonal matrix formed by the
elements of x. For a matrix A ∈ Rn×n the elements aii, i = 1 : n, form the main
diagonal of A, and we write

diag (A) = diag (a11, a22, . . . , ann).

For k = 1 : n − 1 the elements ai,i+k (ai+k,i), i = 1 : n − k form the kth super-
diagonal (subdiagonal) of A. The elements ai,n−i+1, i = 1 : n form the (main)
antidiagonal of A.

The unit matrix In ∈ Rn×n is defined by

In = diag (1, 1, . . . , 1) = (e1, e2, . . . , en),

and the k-th column of In is denoted by ek. We have that In = (δij), where δij is
the Kronecker symbol δij = 0, i 6= j, and δij = 1, i = j. For all square matrices
of order n it holds AIn = InA = A. If the size of the unit matrix is obvious we
delete the subscript and just write I.

Definition 7.1.1.
A matrix A is said to have upper bandwidth r and lower bandwidth s if

aij = 0, j > i+ r, aij = 0, i > j + s,

respectively. This means that the number of non-zero diagonals above and below the
main diagonal are r and s respectively. The maximum number of nonzero elements
in any row is then w = r + s+ 1, which is the bandwidth of A.

For a matrix A ∈ Rm×n which is not square we define the bandwidth as

w = max
1≤i≤m

{j − k + 1 | aijaik 6= 0}.

Note that the bandwidth of a matrix depends on the ordering of its rows and
columns. An important, but hard, problem is to find an optimal ordering of columns
that minimize the bandwidth. However, there are good heuristic algorithms that
can be used in practice and give almost optimal results; see Section 7.6.3.

3In Matlab the only data type used is a matrix with either real or complex elements.

8 Chapter 7. Direct Methods for Solving Linear System

Several classes of band matrices that occur frequently have special names.
Thus, a matrix for which r = s = 1 is called tridiagonal, if r = 0, s = 1 (r = 1,
s = 0) it is called lower (upper) bidiagonal etc. A matrix with s = 1 (r = 1) is
called an upper (lower) Hessenberg matrix.

A matrix A is called symmetric if its elements are symmetric about its main
diagonal, i.e. aij = aji, 1 ≤ i < j ≤ n, or equivalently AT = A. A complex matrix
A is called Hermitian if AH = A and skew-Hermitian if AH = −A. The
product of two Hermitian matrices is symmetric if and only if A and B commute,
that is, AB = BA. If AT = −A, then A is called skew-symmetric.

A square matrix A is called persymmetric if it is symmetric about its an-
tidiagonal, i.e., aij = an−j+1,n−i+1.

7.1.3 Determinants and Permutations

The classical definition of the determinant requires some elementary facts about
permutations, which we now state. Let α = {α1, α2, . . . , αn} be a permutation of
the integers {1, 2, . . . , n}. The pair αr, αs, r < s is said to form an inversion in the
permutation if αr > αs. For example, in the permutation {2, . . . , n, 1} there are
(n − 1) inversions (2, 1), (3, 1), . . . , (n, 1). A permutation α is said to be even and
sign (α) = 1 if it contains an even number of inversions; otherwise the permutation
is odd and sign (α) = −1. The product of two permutations σ and τ is the
composition στ defined by

στ(i) = σ[τ(i)], i = 1 : n.

A transposition τ is a permutation which only interchanges two elements. Any
permutation can be decomposed into a sequence of transpositions, but this decom-
position is not unique.

Lemma 7.1.2.
A transposition τ of a permutation will change the number of inversions in

the permutation by an odd number and thus sign (τ) = −1.

Proof. If τ interchanges two adjacent elements αr and αr+1 in the permutation
{α1, α2, . . . , αn}, this will not affect inversions in other elements. Hence the number
of inversions increases by 1 if αr < αr+1 and decreases by 1 otherwise. Suppose
now that τ interchanges αr and αr+q. This can be achieved by first successively
interchanging αr with αr+1, then with αr+2, and finally with αr+q. This takes q
steps. Next the element αr+q is moved in q − 1 steps to the position which αr

previously had. In all it takes an odd number 2q − 1 of transpositions of adjacent
elements, in each of which the sign of the permutation changes.

Definition 7.1.3.
The determinant of a square matrix A ∈ Rn×n is the scalar

det(A) =
∑

α∈Sn

sign (α) a1,α1
a2,α2

· · · an,αn
, (7.1.9)

7.1. Linear Algebra and Matrix Analysis 9

where the sum is over all permutations of the set {1, . . . , n} and sign (α) = ±1
according to whether α is an even or odd permutation.

Note that there are n! terms in (7.1.9) and each term contains exactly one
factor from each row and each column in A. It follows easily that det(αA) =
αn det(A) and det(AT) = det(A). The matrix A is nonsingular if and only if
det(A) 6= 0.

Theorem 7.1.4.
Let the matrix A be nonsingular. Then the solution of the linear system Ax = b

can be expressed as
xi = det(Aj)/ det(A), i = 1 : n, (7.1.10)

where Aj is the matrix A where the jth column has been replaced by the right hand
side b.

The expression (7.1.10) is known as Cramer’s rule.4 Although elegant, it is
both computationally expensive and numerically instable. It should not be used for
numerical computation except in very special cases.

The direct use of the definition (7.1.9) to evaluate det(A) would require about
nn! operations, which rapidly becomes infeasible as n increases. A much more
efficient way to compute det(A) is by repeatedly using the following properties:

Theorem 7.1.5.

(i) The value of the det(A) is unchanged if a row (column) in A multiplied by a
scalar is added to another row (column).

(ii) The determinant of a triangular matrix equals the product of the elements in
the main diagonal, i.e., if U is upper triangular

det(U) = u11u22 · · ·unn.

(iii) If two rows (columns) in A are interchanged the value of det(A) is multiplied
by (−1).

(iv) The product rule det(AB) = det(A) det(B).

For a linear system Ax = b there are three possibilities: it may have no solu-
tion, one unique solution, or an infinite set of solutions. If b ∈ R(A), or equivalently
rank (A, b) = rank (A), the system is said to be consistent. If r = m then R(A)
equals Rm and the system is consistent for all b. Clearly a consistent linear system
always has at least one solution x.

The corresponding homogeneous linear system Ax = 0 is satisfied by any
x ∈ N (A) and thus has (n − r) linearly independent solutions. It follows that if
a solution to an inhomogeneous system Ax = b exists, it is unique only if r = n,
whence N (A) = {0}.

4Named after the Swiss mathematician Gabriel Cramer 1704–1752.

10 Chapter 7. Direct Methods for Solving Linear System

7.1.4 Partitioning and Block Matrices

A matrix formed by the elements at the intersection of a set of rows and columns
of a matrix A is called a submatrix. For example, the matrices

(

a22 a24

a42 a44

)

,

(

a22 a23

a32 a33

)

,

are submatrices of A. The second submatrix is called a contiguous submatrix since
it is formed by contiguous elements of A.

Definition 7.1.6.
A submatrix of A = (aij) ∈ Rm×n, is a matrix B ∈ Rp×q formed by selecting

p rows and q columns of A,

B =











ai1j1 ai1j2 · · · ai1jq

ai2j1 ai2j2 · · · ai2jq

...
...

. . .
...

aipj1 aipj2 · · · aipjq











,

where
1 ≤ i1 ≤ i2 ≤ · · · ≤ ip ≤ m, 1 ≤ j1 ≤ j2 ≤ · · · ≤ jq ≤ n.

If p = q and ik = jk, k = 1 : p, then B is a principal submatrix of A. If in
addition, ik = jk = k, k = 1 : p, then B is a leading principal submatrix of A.

It is often convenient to think of a matrix (vector) as being built up of con-
tiguous submatrices (subvectors) of lower dimensions. This can be achieved by
partitioning the matrix or vector into blocks. We write, e.g.,

A =











q1 q2 . . . qN

p1 { A11 A12 . . . A1N

p2 { A21 A22 . . . A2N

...
...

...
. . .

...
pM { AM1 AM2 . . . AMN











, x =











p1 { x1

p2 { x2

...
...

pM { xM











(7.1.11)

where AIJ is a matrix of dimension pI ×qJ . We call such a matrix a block matrix.
The partitioning can be carried out in many ways, and is often suggested by the
structure of the underlying problem. For square matrices the most important case
is when M = N , and pI = qI , I = 1 : N . Then the diagonal blocks AII , I = 1 : N ,
are square matrices.

The great convenience of block matrices lies in the fact that the operations
of addition and multiplication can be performed by treating the blocks AIJ as
non-commuting scalars and applying the definitions (7.1.1) and (7.1.2). Therefore
many algorithms defined for matrices with scalar elements have another simple
generalization to partitioned matrices. Of course the dimensions of the blocks must
correspond in such a way that the operations can be performed. When this is the
case, the matrices are said to be partitioned conformally.

7.1. Linear Algebra and Matrix Analysis 11

Let A = (AIK) and B = (BKJ) be two block matrices of block dimensions
M ×N and N × P respectively, where the partitioning corresponding to the index
K is the same for each matrix. Then we have C = AB = (CIJ), where

CIJ =

N
∑

K=1

AIKBKJ , 1 ≤ I ≤M, 1 ≤ J ≤ P.

Often it is convenient to partition a matrix into rows or columns. Let A ∈
Rm×n, B ∈ Rn×p. Then the matrix product C = AB ∈ Rm×p can be written

C = AB = (a1 a2 · · · an)









bT1
bT2
...
bTn









=

n
∑

k=1

akb
T
k , (7.1.12)

where ak ∈ Rm are the columns of A and bTk ∈ Rp the rows in B. Note that each
term in the sum of (7.1.12) is an outer product. The more common inner product
formula is obtained from the partitioning

C = AB =









aT
1

aT
2
...
aT

m









(b1 b2 · · · bp) = (cij), cij = aT
i bj. (7.1.13)

with ai, bj ∈ Rn. Note that when the matrices A and B only have relatively
few nonzero elements the outer product formula (7.1.12) is a more efficient way to
compute AB! Further, if A and x are as in (7.1.11) then the product z = Ax is a
block vector with blocks

zI =
N

∑

K=1

AIKxK , I = 1 : M.

Example 7.1.2.
Assume that the matrices A and B are conformally partitioned into 2×2 block

form. Then
(

A11 A12

A21 A22

) (

B11 B12

B21 B22

)

=

(

A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

)

.

(7.1.14)
Be careful to note that since matrix multiplication is not commutative the order of
the factors in the products cannot be changed! In the special case of block upper
triangular matrices this reduces to

(

R11 R12

0 R22

) (

S11 S12

0 S22

)

=

(

R11S11 R11S12 +R12S22

0 R22S22

)

.

12 Chapter 7. Direct Methods for Solving Linear System

Note that the product is again block upper triangular and its block diagonal simply
equals the products of the diagonal blocks of the factors.

Let

L =

(

L11 0
L21 L22

)

, U =

(

U11 U12

0 U22

)

, (7.1.15)

be 2×2 block lower and upper triangular matrices, respectively. For an upper block
triangular matrix with square diagonal blocks UII , I = 1 : N we have

det(U) = det(U11) det(U22) · · · det(UNN), (7.1.16)

Hence U is nonsingular if and only if all its diagonal blocks are nonsingular. Since
det(L) = det(LT), a similar result holds for a lower block triangular matrix.

If L and U in (7.1.15) are nonsingular with square diagonal blocks, then their
inverses are given by

L−1 =

(

L−1
11 0

−L−1
22 L21L

−1
11 L−1

22

)

, U−1 =

(

U−1
11 −U−1

11 U12U
−1
22

0 U−1
22

)

. (7.1.17)

This can be verified by forming the products L−1L and U−1U using the rule for
multiplying partitioned matrices.

7.1.5 Modified Linear Systems

Consider the block 2 × 2 linear system

(

A B
C D

) (

x
y

)

=

(

b
c

)

.

where A and D are square matrices, and A nonsingular. We can eliminate the
x variables by premultiplying the first block by CA−1 and subtracting from the
second block equations, giving

Sy = c− CA−1b, S = D − CA−1B. (7.1.18)

The matrix S is called the Schur complementof A.5

The elimination can be expressed in matrix form as

(

I 0
−CA−1 I

) (

A B
C D

)

=

(

A B
0 S

)

, (7.1.19)

Inverting the block lower triangular matrix on the left hand side using (7.1.17) we
obtain the block LU factorization

M =

(

A B
C D

)

=

(

I 0
CA−1 I

) (

A B
0 S

)

. (7.1.20)

5Issai Schur (1875–1941) was born in Russia but studied at the University of Berlin, where he
became full professor in 1919. Schur is mainly known for his fundamental work on the theory of
groups but he also worked in the field of matrices.

7.1. Linear Algebra and Matrix Analysis 13

From M−1 = (LU)−1 = U−1L−1 using the formulas (7.1.17) for the inverses of
2× 2 block triangular matrices we get the Schur–Banachiewicz inverse formula6

M−1 =

(

A−1 −A−1BS−1

0 S−1

)(

I 0
−CA−1 I

)

=

(

A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)

. (7.1.21)

Similarly, assuming that D is nonsingular, we can factor M into a product of
a block upper and a block lower triangular matrix

M =

(

I BD−1

0 I

) (

T 0
C D

)

, T = A−BD−1C, (7.1.22)

where T is the Schur complement of D in M . (This is equivalent to block Gaussian
elimination in reverse order.) From this factorization an alternative expression of
M−1 can be derived,

M−1 =

(

T−1 −T−1BD−1

−D−1CT−1 D−1 +D−1CT−1BD−1

)

. (7.1.23)

If A and D are nonsingular the two triangular factorizations (7.1.20) and
(7.1.22) both exist. Then, using (7.1.16), it follows that

det(M) = det(A−BD−1C) det(D) = det(A) det(D − CA−1B).

In the special case that D−1 = λ, B = x, and B = y, this gives

det(A− λxyT) = det(A)(1 − λyTA−1x). (7.1.24)

This shows that det(A− λxyT) = 0 if λ = 1/yTA−1x, a fact which is useful for the
solution of eigenvalue problems.

The following formula gives an expression for the inverse of a matrix A after
it is modified by a matrix of rank p, and is very useful in situations where p≪ n.

Theorem 7.1.7. [Max A. Woodbury [69]]
Let A and D be square nonsingular matrices and let B and C be matrices of

appropriate dimensions such that (A−BD−1C) exists and is nonsingular. Then

(A−BD−1C)−1 = A−1 +A−1B(D − CA−1B)−1CA−1, (7.1.25)

which is the Woodbury formula.

Proof. The result follows directly by equating the (1, 1) blocks in the inverse M−1

in (7.1.21) and (7.1.23).

6Tadeusz Banachiewicz (1882–1954) Polish astronomer and mathematician. In 1919 he became
the director Cracow Observatory. He developed in 1925 a special kind of matrix algebra for
“cracovians”, which brought him international recognition.

14 Chapter 7. Direct Methods for Solving Linear System

If we specialize the Woodbury formula to the case where D is a scalar we get
the well known Sherman–Morrison formula

(A− σbcT)−1 = A−1 + αA−1bcTA−1, α = 1/(σ−1 − cTA−1b). (7.1.26)

It follows that (A−σbcT) is nonsingular if and only if σ 6= 1/cTA−1b. This formula
can be used to cheaply compute the new inverse when a matrix A is modified by
a matrix of rank one. Such formulas are called updating formulas and are widely
used in many contexts.

Frequently it is required to solve a linear problem, where the matrix has been
modified by a correction of low rank. Consider first a linear system Ax = b, where
A ∈ Rn×n is modified by a correction of rank one,

(A− σuvT)x̂ = b. (7.1.27)

Using the Sherman–Morrison formula the solution can be written

(A− σuvT)−1b = A−1b+ αA−1u(vTA−1b), α = 1/(σ−1 − vTA−1u), (7.1.28)

Here x = A−1b is the solution to the original system and vTA−1b = vTx is a scalar.
Hence

x̂ = x+ βw, β = vTx/(σ−1 − vTw), w = A−1u, (7.1.29)

which shows that the solution x̂ can be obtained from x by solving the system
Aw = u. Note that computing A−1 can be avoided.

More generally, consider a linear system where the matrix has been modified
with a matrix of rank p > 1,

(A+ UΣV T)x̂ = b, U, V ∈ Rn×p, (7.1.30)

with Σ ∈ Rp×p nonsingular. Using now the Woodbury formula, we can write

(A− UΣV T)−1b = x+A−1U(Σ−1 − V TA−1U)−1V Tx. (7.1.31)

This formula first requires the solution of the linear systems AW = U with p right
hand sides. The correction is then obtained by solving the linear system of size p×p

(Σ−1 − V TW)z = V Tx,

and forming Wz. If p ≪ n and the solution x = A−1b has been computed by a
direct method it is this scheme is very efficient.

We end this with a note of caution that the updating methods given here can
not be expected to be numerically stable in all cases. In particular, problems will
arise when the initial problem is more illconditioned than the modified one.

7.1.6 The Singular Value Decomposition

The singular value decomposition (SVD) of a matrix A ∈ Rm×n is of great
theoretical and practical importance. Although its history goes back more than a
century its use in numerical computations is much more recent.

7.1. Linear Algebra and Matrix Analysis 15

Theorem 7.1.8. (Singular Value Decomposition.)
Every matrix A ∈ Rm×n of rank r can be written

A = UΣV T , Σ =

(

Σ1 0
0 0

)

∈ Rm×n, (7.1.32)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal, Σ1 = diag (σ1, σ2, . . . , σr), and

σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

(Note that if r = n and/or r = m, some of the zero submatrices in Σ disappear.)
The σi are called the singular values of A and if we write

U = (u1, . . . , um), V = (v1, . . . , vn),

the ui, i = 1, . . . ,m, and vi, i = 1, . . . , n, are left and right singular vectors ,
respectively.

Proof. Let f(x) = ‖Ax‖2 = (xTATAx)1/2, the Euclidian length of the vector
y = Ax, and consider the problem

σ1 := max
x

{f(x) | x ∈ Rn, ‖x‖2 ≤ 1}.

Here f(x) is a convex function7 defined on a convex, compact set. It is well known
(see, e.g., Ciarlet [13, Sec. 7.4]) that the maximum σ1 is then attained on an extreme
point of the set. Let v1 be such a point with σ1 = ‖Av1‖, ‖v1‖2 = 1. If σ1 = 0 then
A = 0, and (7.1.32) holds with Σ = 0, and U and V arbitrary orthogonal matrices.
Therefore, assume that σ1 > 0, and set u1 = (1/σ1)Av1 ∈ Rm, ‖u1‖2 = 1. Let the
matrices

V = (v1, V1) ∈ Rn×n, U = (u1, U1) ∈ Rm×m

be orthogonal. (Recall that it is always possible to extend an orthogonal set of
vectors to an orthonormal basis for the whole space.) Since UT

1 Av1 = σ1U
T
1 u1 = 0

it follows that UTAV has the following structure:

A1 ≡ UTAV =

(

σ1 wT

0 B

)

,

where wT = uT
1 AV1 and B = UT

1 AV1 ∈ R(m−1)×(n−1).

∥

∥

∥

∥

A1

(

σ1

w

)∥

∥

∥

∥

2

=

∥

∥

∥

∥

(

σ2
1 + wTw
Bw

)∥

∥

∥

∥

2

≥ σ2
1 + wTw.

We have UA1y = AV y = Ax and, since U and V are orthogonal, it follows that

σ1 = max
‖x‖2=1

‖Ax‖2 = max
‖y‖2=1

‖A1y‖2,

7A function f(x) is convex on a convex set S if for any x1 and x2 in S and any λ with 0 < λ < 1,
we have f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2).

16 Chapter 7. Direct Methods for Solving Linear System

and hence,

σ1(σ
2
1 + wTw)1/2 ≥

∥

∥

∥

∥

A1

(

σ1

w

)∥

∥

∥

∥

2

.

Combining these two inequalities gives σ1 ≥ (σ2
1 + wTw)1/2, and it follows that

w = 0. The proof can now be completed by an induction argument on the smallest
dimension min(m,n).

The geometrical significance of this theorem is as follows. The rectangular
matrix A represents a mapping from Rn to Rm. The theorem shows that there is
an orthogonal basis in each of these two spaces, with respect to which this mapping
is represented by a generalized diagonal matrix Σ. We remark that a singular value
decomposition A = UΣV H , with U and V unitary, and Σ real diagonal, holds for
any complex matrix A ∈ Cm×n.

The singular values of A are uniquely determined. The singular vector vj ,
j ≤ r, is unique (up to a factor ±1) if σ2

j is a simple eigenvalue of ATA. For
multiple singular values, the corresponding singular vectors can be chosen as any
orthonormal basis for the unique subspace that they span. Once the singular vectors
vj , 1 ≤ j ≤ r have been chosen, the vectors uj, 1 ≤ j ≤ r are uniquely determined,
and vice versa, using

Avj = σjuj , ATuj = σjvj , j = 1, . . . , r. (7.1.33)

If U and V are partitioned according to

U = (U1, U2), U1 ∈ Rm×r, V = (V1, V2), V1 ∈ Rn×r. (7.1.34)

then the SVD can be written in the compact form

A = U1Σ1V
T
1 =

r
∑

i=1

σiuiv
T
i . (7.1.35)

The last expression expresses A as a sum of matrices of rank one.
From (6.2.20) it follows that

ATA = V ΣT ΣV T , AAT = UΣΣTUT .

Thus σ2
j , j = 1, . . . , r are the nonzero eigenvalues of the symmetric and positive

semidefinite matrices ATA and AAT , and vj and uj are the corresponding eigen-
vectors. Hence in principle the SVD can be reduced to the eigenvalue problem for
symmetric matrices. For a proof of the SVD using this relationship see Stewart
[1973, p. 319]. However, this does not lead to a numerically stable way to compute
the SVD, since the singular values are square roots of the eigenvalues.

Definition 7.1.9.
The range of the matrix A ∈ Rm× n, denoted by R(A), is the subspace of

Rm of dimension r = rank (A)

R(A) = {y ∈ Rm| y = Ax, x ∈ Rn}. (7.1.36)

7.1. Linear Algebra and Matrix Analysis 17

The null space N (A) of A is a subspace of Rn of dimension n− r:

N (A) = {x ∈ Rn| Ax = 0}. (7.1.37)

The SVD gives complete information about the four fundamental subspaces
associated with A and AT . It is easy to verify that the range of A and nullspace of
AT are given by

R(A) = R(U1) N (AT) = R(U2) (7.1.38)

Since AT = V ΣTUT it follows that also

R(AT) = R(V1) N (A) = R(V2). (7.1.39)

We immediately find the well-known relations

R(A)⊥ = N (AT), N (A)⊥ = R(AT),

7.1.7 Norms of Vectors and Matrices

In perturbation theory as well as in the analysis of errors in matrix computation it
is useful to have a measure of the size of a vector or a matrix. Such measures are
provided by vector and matrix norms, which can be regarded as generalizations of
the absolute value function on R.

Definition 7.1.10.
A norm on a vector space V ∈ Cn is a function V → R denoted by ‖ · ‖ that

satisfies the following three conditions:

1. ‖x‖ > 0, ∀x ∈ V, x 6= 0 (definiteness)

2. ‖αx‖ = |α| ‖x‖, ∀α ∈ C, x ∈ Cn (homogeneity)

3. ‖x+ y‖ ≤ ‖x‖ + ‖y‖ ∀x, y ∈ V (triangle inequality)

The triangle inequality is often used in the form (see Problem 11)

‖x± y‖ ≥
∣

∣ ‖x‖ − ‖y‖
∣

∣.

The most common vector norms are special cases of the family of Hölder
norms or p-norms

‖x‖p = (|x1|p + |x2|p + · · · + |xn|p)1/p, 1 ≤ p <∞. (7.1.40)

The three most important particular cases are p = 1, 2 and the limit when p→ ∞:

‖x‖1 = |x1| + · · · + |xn|,
‖x‖2 = (|x1|2 + · · · + |xn|2)1/2 = (xHx)1/2, (7.1.41)

‖x‖∞ = max
1≤i≤n

|xi|.

18 Chapter 7. Direct Methods for Solving Linear System

A vector norm‖ · ‖ is called absolute if ‖x‖ = ‖ |x| ‖, and monotone if
|x| ≤ |y| ⇒ ‖x‖ ≤ ‖y‖. It can be shown that a vector norm is monotone if and
only if it is absolute; see Stewart and Sun [61, Theorem II.1.3]. Clearly the vector
p-norms are absolute for all 1 ≤ p <∞.

The vector 2-norm is also called the Euclidean norm. It is invariant under
unitary (orthogonal) transformations since

‖Qx‖2
2 = xHQHQx = xHx = ‖x‖2

2

if Q is orthogonal.
The proof that the triangle inequality is satisfied for the p-norms depends on

the following inequality. Let p > 1 and q satisfy 1/p+ 1/q = 1. Then it holds that

αβ ≤ αp

p
+
βp

q
.

Indeed, let x and y be any real number and λ satisfy 0 < λ < 1. Then by the
convexity of the exponential function it holds that

eλx+(1−λ)y ≤ λex + (1 − λ)ey.

We obqatin the desired result by setting λ = 1/p, x = p logα and x = q log β.
Another important property of the p-norms is the Hölder inequality

|xHy| ≤ ‖x‖p‖y‖q,
1

p
+

1

q
= 1, p ≥ 1. (7.1.42)

For p = q = 2 this becomes the well known Cauchy–Schwarz inequality

|xHy| ≤ ‖x‖2‖y‖2.

Another special case is p = 1 for which we have

|xHy| =

∣

∣

∣

∣

n
∑

i=1

xH
i yi

∣

∣

∣

∣

≤
n

∑

i=1

|xH
i yi| ≤ max

i
|yi|

n
∑

i=1

|xi| = ‖x‖1‖y‖∞. (7.1.43)

Definition 7.1.11.
For any given vector norm ‖ · ‖ on Cn the dual norm ‖ · ‖D is defined by

‖x‖D = max
y 6=0

|xHy|/‖y‖. (7.1.44)

The vectors in the set

{y ∈ Cn | ‖y‖D‖x‖ = yHx = 1}. (7.1.45)

are said to be dual vectors to x with respect to ‖ · ‖.

7.1. Linear Algebra and Matrix Analysis 19

It can be shown that the dual of the dual norm is the original norm (see [61,
Theorem II.1.12]). It follows from the Hölder inequality that the dual of the p-norm
is the q-norm, where

1/p+ 1/q = 1.

The dual of the 2-norm can be seen to be itself. It can be shown to be the only
norm with this property (see [42, Theorem5.4.16]).

The vector 2-norm can be generalized by taking

‖x‖2
2,G = (x, x) = xHGx, (7.1.46)

where G is a Hermitian positive definite matrix. It can be shown that the unit ball
{x : ‖x‖ ≤ 1} corresponding to this norm is an ellipsoid, and hence they are also
called elliptic norms. Other generalized norms are the scaled p-norms defined by

‖x‖p,D = ‖Dx‖p, D = diag (d1, . . . , dn), di 6= 0, i = 1 : n. (7.1.47)

All norms on Cn are equivalent in the following sense: For each pair of norms
‖ · ‖ and ‖ · ‖′ there are positive constants c and c′ such that

1

c
‖x‖′ ≤ ‖x‖ ≤ c′‖x‖′, ∀x ∈ Cn. (7.1.48)

In particular, it can be shown that for the p-norms we have

‖x‖q ≤ ‖x‖p ≤ n(1/p−1/q)‖x‖q, 1 ≤ p ≤ q ≤ ∞. (7.1.49)

For example, setting p = 2 and q = ∞ we obtain

‖x‖∞ ≤ ‖x‖2 ≤ √
n‖x‖∞,

We now consider matrix norms. Given any vector norm, we can construct
a matrix norm by defining

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖ = sup

‖x‖=1

‖Ax‖. (7.1.50)

This norm is called the operator norm, or the matrix norm subordinate to the
vector norm. From the definition it follows directly that

‖Ax‖ ≤ ‖A‖ ‖x‖, ∀x ∈ Cn. (7.1.51)

Whenever this inequality holds, we say that the matrix norm is consistent with
the vector norm.

It is an easy exercise to show that operator norms are submultiplicative,
i.e., whenever the product AB is defined it satisfies the condition

4. N(AB) ≤ N(A)N(B)

Explicit expressions for the matrix norms subordinate to the vector p-norms
are known only for p = 1, 2,∞:

20 Chapter 7. Direct Methods for Solving Linear System

Theorem 7.1.12.
For p = 1, 2 ∞ the matrix subordinate p-norm are given by

‖A‖1 = max
1≤j≤n

m
∑

i=1

|aij |, (7.1.52)

‖A‖2 = max
‖x‖=1

(xHAHAx)1/2 = σ1(A), (7.1.53)

‖A‖∞ = max
1≤i≤m

n
∑

j=1

|aij |. (7.1.54)

Proof. To prove the result for p = 1 we partition A = (a1, . . . , an) by columns For
any x = (x1, . . . , xn)T 6= 0 we have

‖Ax‖1 =

∥

∥

∥

∥

n
∑

j=1

xjaj

∥

∥

∥

∥

1

≤
n

∑

j=1

|xj |‖aj‖1 ≤ max
1≤j≤n

‖aj‖1‖|x‖1.

It follows that ‖Ax‖1 ≤ max
1≤j≤n

‖aj‖1 = ‖ak‖1, for some 1 ≤ k ≤ n. But then

‖Aek‖1 = ‖ak‖1 = max
1≤j≤n

‖aj‖1,

and hence ‖A‖1 ≥ max
1≤j≤n

‖aj‖1. This implies (7.1.52). The formula (7.1.54) for

the matrix ∞-norm is proved in a similar fashion. The expression for the 2-norm
follows from the extremal property

max
‖x‖=1

‖Ax‖2 = max
‖x‖=1

‖UΣV Tx‖2 = σ1(A)

of the singular vector x = v1.

For p = 1 and p = ∞ the matrix subordinate norms are easily computable.
Note that the 1-norm is the maximal column sum and the ∞-norm is the maximal
row sum of the magnitude of the elements. It follows that ‖A‖1 = ‖AH‖∞.

The 2-norm, also called the spectral norm, equals the largest singular value
σ1(A) of A. It has the drawback that it is expensive to compute. but is a useful
analytical tool. Since the nonzero eigenvalues of AHA and AAH are the same it
follows that ‖A‖2 = ‖AH‖2. An upper bound for the matrix 2-norm is

‖A‖2 ≤ (‖A‖1‖A‖∞)1/2. (7.1.55)

The proof of this bound is given as an exercise in Problem 16.
Another way to proceed in defining norms for matrices is to regard Cm×n as

an mn-dimensional vector space and apply a vector norm over that space.

7.1. Linear Algebra and Matrix Analysis 21

Definition 7.1.13.
The Frobenius norm8 is derived from the vector 2-norm

‖A‖F =
(

m
∑

i=1

n
∑

j=1

|aij |2
)1/2

(7.1.56)

The Frobenius norm is submultiplicative, but is often larger than necessary,
e.g., ‖In‖F = n1/2. This tends to make bounds derived in terms of the Frobenius
norm not as sharp as they might be. From (7.1.58) it follows that

1√
n
‖A‖F ≤ ‖A‖2 ≤ ‖A‖F , k = min(m,n). (7.1.57)

Note that ‖AH‖F = ‖A‖F . Useful alternative characterizations of the Frobenius
norm are

‖A‖2
F = trace (AHA) =

k
∑

i=1

σ2
i (A), k = min(m,n), (7.1.58)

where σi(A) are the nonzero singular values of A. Of the matrix norms the 1-,∞-
and the Frobenius norm are absolute, but for the 2-norm the best result is

‖ |A| ‖2 ≤ n1/2‖A‖2.

Table 7.1.1. Numbers γpq such that ‖A‖p ≤ γpq‖A‖q, where A ∈ Cm×n

and rank (A) = r.

p\q 1 2 ∞ F
1 1

√
m m

√
m

2
√
n 1

√
m

√
mn

∞ n
√
n 1

√
n

F
√
n

√
r

√
m 1

The Frobenius norm shares with the 2-norm the property of being invariant
with respect to unitary (orthogonal) transformations

‖QAP‖ = ‖A‖. (7.1.59)

Such norms are called unitarily invariant and have an interesting history; see
Stewart and Sun [61, Sec. II.3].

8Ferdinand George Frobenius (1849–1917) German mathematician, professor at ETH Zürich
(1875–1892) before he succeeded Weierstrass at Berlin University.

22 Chapter 7. Direct Methods for Solving Linear System

Theorem 7.1.14.
Let ‖ · ‖ be a unitarily invariant norm. Then ‖A‖ is a symmetric function of

the singular values
‖A‖ = Φ(σ1, . . . , σn).

Proof. Let the singular value decomposition of A be A = UΣV T . Then the
invariance implies that ‖A‖ = ‖Σ‖, which shows that Φ(A) only depends on Σ.
Since the ordering of the singular values in Σ is arbitrary Φ must be symmetric in
σi, i = 1 : n.

Unitarily invariant norms were characterized by John von Neumann [52], who
showed that the converse of Theorem 7.1.14 is true: A function Φ(σ1, . . . , σn)
which is symmetric in its arguments and satisfies the three properties in the Def-
inition 7.1.10 of a vector norm defines a unitarily invariant matrix norm. In this
connection such functions are called symmetric gauge functions. Two examples
are

‖A‖2 = max
i
σi, ‖A‖F =

(n
∑

i=1

σ2
i

)1/2

.

One use of norms is the study of limits of sequences of vectors and matrices
(see Sec. 9.2.4). Consider an infinite sequence x1, x2, . . . of elements of a vector
space V and let ‖ · ‖ be a norm on V. The sequence is said to converge (strongly if
V is infinite dimensional) to a limit x ∈ V, and we write limk→∞ xk = x if

lim
k→∞

‖xk − x‖ = 0,

For a finite dimensional vector space it follows from the equivalence of norms
that convergence is independent of the choice of norm. The particular choice ‖ ·
‖∞ shows that convergence of vectors in Cn is equivalent to convergence of the
n sequences of scalars formed by the components of the vectors. By considering
matrices in Cm×n as vectors in Cmn the same conclusion holds for matrices.

7.1.8 Conditioning of Linear Systems

Consider a linear system Ax = b where A is nonsingular and b 6= 0. The sensitivity
of the solution x and the inverse A−1 to perturbations in A and b is of practical
importance, since the matrix A and vector b are rarely known exactly. They may be
subject to observational errors, or given by formulas which involve roundoff errors
in their evaluation. (Even if they were known exactly, they may not be represented
exactly as floating-point numbers in the computer.)

We start with deriving some results that are needed in the analysis.

Lemma 7.1.15.
Let E ∈ Rn×n be a matrix for which ‖E‖ < 1. Then the matrix (I − E) is

nonsingular and for its inverse we have the estimate

‖(I − E)−1‖ ≤ 1/(1 − ‖E‖). (7.1.60)

7.1. Linear Algebra and Matrix Analysis 23

Proof. If (I − E) is singular there exists a vector x 6= 0 such that (I − E)x = 0.
Then x = Ex and ‖x‖ = ‖Ex‖ ≤ ‖E‖ ‖x‖ < ‖x‖, which is a contradiction since
‖x‖ 6= 0. Hence (I − E) is nonsingular.

Next consider the identity (I − E)(I − E)−1 = I or

(I − E)−1 = I + E(I − E)−1.

Taking norms we get

‖(I − E)−1‖ ≤ 1 + ‖E‖ ‖(I − E)−1‖,

and (7.1.60) follows. (For another proof, see hint in Problem 7.2.19.)

Corollary 7.1.16.
Assume that ‖B −A‖‖B−1‖ = η < 1. Then it holds that

‖A−1‖ ≤ 1

1 − η
‖B−1‖, ‖A−1 −B−1‖ ≤ η

1 − η
‖B−1‖.

Proof. We have ‖A−1‖ = ‖A−1BB−1‖ ≤ ‖A−1B‖ ‖B−1‖. The first inequality
then follows by taking E = B−1(B − A) = I − B−1A in Lemma 7.1.15. From the
identity

A−1 −B−1 = A−1(B −A)B−1 (7.1.61)

we have ‖A−1 −B−1‖ ≤ ‖A−1‖ ‖B−A‖ ‖B−1‖. The second inequality now follows
from the first.

Let x be the solution x to a system of linear equations Ax = b, and let x+ δx
satisfy the perturbed system

(A+ δA)(x + δx) = b+ δb,

where δA and δb are perturbations in A and b. Subtracting out Ax = b we get

(A+ δA)δx = −δAx+ δb.

Assuming that A and A + δA are nonsingular, we can multiply by A−1 and solve
for δx. This yields

δx = (I +A−1δA)−1A−1(−δAx+ δb), (7.1.62)

which is the basic identity for the perturbation analysis.
In the simple case that δA = 0, we have δx = A−1δb, which implies that

|δx| = |A−1| |δb|, Taking norms

‖δx‖ ≤ ‖A−1‖ ‖δb‖.

24 Chapter 7. Direct Methods for Solving Linear System

Usually it is more appropriate to consider relative perturbations,

‖δx‖
‖x‖ ≤ κ(A, x)

‖δb‖
‖b‖ , κ(A, x) :=

‖Ax‖
‖x‖ ‖A−1‖. (7.1.63)

Here κ(A, x) is the condition number with respect to perturbations in b. It is
important to note that this implies that the size of the residual vector r = b − Ax̄
gives no direct indication of the error in an approximate solution x̄. For this we
need information about A−1 or the condition number κ(A, x).

The inequality (7.1.63) is sharp in the sense that for any matrix norm and
for any A and b there exists a perturbation δb, such that equality holds. From
‖b‖ = ‖Ax‖ ≤ ‖A‖ ‖x‖ it follows that

κ(A, x) ≤ ‖A‖ ‖A−1‖, (7.1.64)

but here equality will hold only for rather special right hand sides b. Equation
(7.1.64) motivates the following definition:

Definition 7.1.17. For a square nonsingular matrix A the condition number is

κ = κ(A) = ‖A‖ ‖A−1‖. (7.1.65)

where ‖ · ‖ denotes any matrix norm.

Clearly κ(A) depends on the chosen matrix norm. If we want to indicate that
a particular norm is used, then we write, e.g., κ∞(A) etc. For the 2-norm we have
using the SVD that ‖A‖2 = σ1 and ‖A−1‖ = 1/σn, where σ1 and σn are the largest
and smallest singular values of A. Hence

κ2(A) = σ1/σn. (7.1.66)

Note that κ(αA) = κ(A), i.e., the condition number is invariant under multiplication
of A by a scalar. From the definition it also follows easily that

κ(AB) ≤ κ(A)κ(B).

Further, for all p-norms it follows from the identity AA−1 = I that

κp(A) = ‖A‖p‖A−1‖p ≥ ‖I‖p = 1,

that is, the condition number is always greater or equal to one.
We now show that κ(A) also is the condition number with respect to pertur-

bations in A.

Theorem 7.1.18.
Consider the linear system Ax = b, where the matrix A ∈ Rn×n is nonsingu-

lar. Let (A+ δA)(x + δx) = b+ δb be a perturbed system and assume that

η = ‖A−1‖ ‖δA‖ < 1.

7.1. Linear Algebra and Matrix Analysis 25

Then (A+ δA) is nonsingular and the norm of the perturbation δx is bounded by

‖δx‖ ≤ ‖A−1‖
1 − η

(‖δA‖ ‖x‖ + ‖δb‖) . (7.1.67)

Proof. Taking norms in equation (7.1.62) gives

‖δx‖ ≤ ‖(I +A−1δA)−1‖ ‖A−1‖
(

‖δA‖ ‖x‖ + ‖δb‖
)

.

By assumption ‖A−1δA‖ ≤ ‖A−1‖ ‖δA‖ = η < 1. Using Lemma 7.1.15 it follows
that (I +A−1δA) is nonsingular and

‖(I +A−1δA)−1‖ ≤ 1/(1 − η),

which proves the result.

In most practical situations it holds that η ≪ 1 and therefore 1/(1 − η] ≈ 1.
Therefore, if upper bounds

‖δA‖ ≤ ǫA‖A‖, ‖δb‖ ≤ ǫb‖b‖, (7.1.68)

for ‖δA‖ and ‖δb‖ are known, then for the normwise relative perturbation it holds
that

‖δx‖
‖x‖ / κ(A)

(

ǫA + ǫb
‖b‖

‖A‖‖x‖

)

.

Substituting b = I, δb = 0 and x = A−1 in (7.1.67) and proceeding similarly
from (A+ δA)(X + δX) = I, we obtain the perturbation bound for X = A−1

‖δX‖
‖X‖ ≤ κ(A)

1 − η

‖δA‖
‖A‖ . (7.1.69)

This shows that κ(A) is indeed the condition number of A with respect to inversion.
The relative distance of a matrix A to the set of singular matrices in some

norm is defined as

dist (A) := min

{‖δA‖
‖A‖ | (A+ δA) singular

}

. (7.1.70)

The following theorem shows that the reciprocal of the condition number κ(A) can
be interpreted as a measure of the nearness to singularity of a matrix A.

Theorem 7.1.19 (Kahan [47]).
Let A ∈ Cn×n be a nonsingular matrix and κ(A) = ‖A‖‖A−1‖ the condition

number with respect to a norm ‖ · ‖ subordinate to some vector norm. Then

dist (A) = κ−1(A). (7.1.71)

26 Chapter 7. Direct Methods for Solving Linear System

Proof. If (A+δA) is singular, then there is a vector x 6= 0 such that (A+δA)x = 0.
Then, setting y = Ax, it follows that

‖δA‖ ≥ ‖δAx‖
‖x‖ =

‖Ax‖
‖x‖ =

‖y‖
‖A−1y‖ ≥ 1

‖A−1‖ =
‖A‖
κ(A)

,

or ‖δA‖/‖A‖ ≥ 1/κ(A).
Now let x be a vector with ‖x‖ = 1 such that ‖A−1x‖ = ‖A−1‖. Set y =

A−1x/‖A−1‖ so that ‖y‖ = 1 and Ay = x/‖A−1‖. Let z be a dual vector to y so
that (see Definition 7.1.11) ‖z‖D‖y‖ = zHy = 1, where ‖ · ‖D is the dual norm.
Then ‖z‖D = 1, and if we take

δA = −xzH/‖A−1‖,

it follows that

(A+ δA)y = Ay − xzHy/‖A−1‖ = (x− x)/‖A−1‖ = 0.

Hence (A+ δA) is singular. Further

‖δA‖‖A−1‖ = ‖xzH‖ = max
‖v‖=1

‖(xzH)v‖ = ‖x‖ max
‖v‖=1

|zHv| = ‖z‖D = 1,

and thus ‖δA‖ = 1/‖A−1‖, which proves the theorem.

The result in Theorem 7.1.19 can be used to get a lower bound for the condition
number κ(A), see, Problem 21. For the 2-norm the result follows directly from the
SVD A = UΣV H . The closest singular matrix then equals A+ δA, where

δA = −σnunv
H
n , ‖δA‖2 = σn = 1/‖A−1‖2. (7.1.72)

Matrices with small condition numbers are said to be well-conditioned. For
any real, orthogonal matrix Q we have κ2(Q) = ‖Q‖2‖Q−1‖2 = 1, so Q is perfectly
conditioned in the 2-norm. Furthermore, for any orthogonal P and Q, we have
κ2(PAQ) = κ2(A), i.e., κ2(A) is invariant under orthogonal transformations.

When a linear system is ill-conditioned, i.e. κ(A) ≫ 1, roundoff errors will in
general cause a computed solution to have a large error. It is often possible to show
that a small backward error in the following sense:

Definition 7.1.20.
An algorithm for solving a linear system Ax = b is said to be (normwise)

backward stable if, for any data A ∈ Rn×n and b ∈ Rn, there exist perturbation
matrices and vectors δA and δb, such that the solution x̄ computed by the algorithm
is the exact solution to a neighbouring system

(A+ δA)x̄ = (b+ δb), (7.1.73)

where
‖δA‖ ≤ c1(n)u‖A‖, ‖δb‖ ≤ c2(n)u‖b‖.

Review Questions 27

A computed solution x̄ is called a (normwise) stable solution if it satisfies (7.1.73).

Since the data A and b usually are subject to errors and not exact, it is
reasonable to be satisfied with the computed solution x̄ if the backward errors δA
and δb are small in comparison to the uncertainties in A and b. As seen from
(7.1.64), this does not mean that x̄ is close to the exact solution x.

Review Questions

1. Define the concepts:

(i) Real symmetric matrix. (ii) Real orthogonal matrix.

(iii) Real skew-symmetric matrix. (iv) Triangular matrix.

(v) Hessenberg matrix.

2. (a) Given a vector norm define the matrix subordinate norm.

(b) Give explicit expressions for the matrix p norms for p = 1, 2,∞.

3. Define the p norm of a vector x. Show that

1

n
‖x‖1 ≤ 1√

n
‖x‖2 ≤ ‖x‖∞,

which are special cases of (7.1.49).

4. Verify the formulas (7.1.21) for the inverse of a 2×2 block triangular matrices.

Problems

1. Show that if R ∈ Rn×n is strictly upper triangular, then Rn = 0.

2. If A and B are square upper triangular matrices show that AB is upper
triangular, and that A−1 is upper triangular if it exists. Is the same true for
lower triangular matrices?

3. To solve a linear system Ax = b, where A ∈ Rn, by Cramer’s rule (see
Equation (7.1.10) requires the evaluation of n + 1 determinants of order n.
Estimate the number of multiplications needed for n = 50 if the determinants
are evaluated in the naive way. Estimate the time it will take on a computer
performing 109 floating point operations per second!

4. Show that if the complex matrix U = Q1+iQ2 is unitary, then the real matrix

Ũ =

(

Q1 −Q2

Q2 Q1

)

is orthogonal.

5. Let A ∈ Rn×n be a given matrix. Show that if Ax = y has at least one solution
for any y ∈ Rn, then it has exactly one solution for any y ∈ Rn. (This is a
useful formulation for showing uniqueness of approximation formulas.)

28 Chapter 7. Direct Methods for Solving Linear System

6. Let A ∈ Rm×n have rows aT
i , i.e., AT = (a1, . . . , am). Show that

ATA =
m

∑

i=1

aia
T
i .

What is the corresponding expression for ATA if A is instead partitioned into
columns?

7. Let S ∈ Rn×n be skew-Hermitian, i.e. SH = −S.

(a) Show that I − S is nonsingular.

(b) Show that the matrix Q = (I−S)−1(I+S), known as the Cayley trans-
form9 is unitary, i.e., QHQ = I.

8. Show that for x ∈ Rn,
lim

p→∞
‖x‖p = max

1≤i≤n
|xi|.

9. Prove that the following inequalities are valid and best possible:

‖x‖2 ≤ ‖x‖1 ≤ n1/2‖x‖2, ‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞.

Derive similar inequalities for the comparison of the operator norms ‖A‖1,
‖A‖2, and ‖A‖∞.

10. Show that any vector norm is uniformly continuous by proving the inequality

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖, x, y ∈ Rn.

11. Show that for any matrix norm there exists a consistent vector norm.

Hint: Take ‖x‖ = ‖xyT ‖ for any vector y ∈ Rn, y 6= 0.

12. Derive the formula for ‖A‖∞ given in Theorem 7.1.12.

13. Make a table corresponding to Table 7.1.1 for the vector norms p = 1, 2,∞.

14. Prove that for any subordinate matrix norm

‖A+B‖ ≤ ‖A‖ + ‖B‖, ‖AB‖ ≤ ‖A‖‖B‖.

15. Show that ‖A‖2 = ‖PAQ‖2 if P and Q are orthogonal matrices.

16. Use the result ‖A‖2
2 = ρ(ATA) ≤ ‖ATA‖, valid for any matrix operator norm

‖ · ‖, where ρ(ATA) denotes the spectral radius of ATA, to deduce the upper
bound in (7.1.55).

17. Prove the expression (7.1.54) for the matrix norm subordinate to the vector
∞-norm.

18. (a) Let T be a nonsingular matrix, and let ‖ · ‖ be a given vector norm. Show
that the function N(x) = ‖Tx‖ is a vector norm.

(b) What is the matrix norm subordinate to N(x)?

(c) If N(x) = maxi |kixi|, what is the subordinate matrix norm?
9Arthur Cayley (1821–1895), English mathematician, is credited with developing the algebra

of matrices. Although he worked as a lawyer for many years before he became Sadlerian professor
at Cambridge in 1863, he has authored more than 900 papers.

7.2. Elimination Methods 29

19. Consider an upper block triangular matrix

R =

(

R11 R12

0 R22

)

,

and suppose that R−1
11 and R−1

22 exists. Show that R−1 exists.

20. Use the Woodbury formula to prove the identity

(I −AB)−1 = I +A(I −BA)−1B.

21. (a) Let A−1 be known and let B be a matrix coinciding with A except in one
row. Show that if B is nonsingular then B−1 can be computed by about 2n2

multiplications using the Sherman–Morrison formula (7.1.26).

(b) Use the Sherman–Morrison formula to compute B−1 if

A =







1 0 −2 0
−5 1 11 −1
287 −67 −630 65
−416 97 913 −94






, A−1 =







13 14 6 4
8 −1 13 9
6 7 3 2
9 5 16 11






,

and B equals A except that the element 913 has been changed to 913.01.

22. Use the result in Theorem 7.1.19 to obtain the lower bound κ∞(A) ≥ 3/(2|ǫ|) =
1.5|ǫ|−1 for the matrix

A =





1 −1 1
−1 ǫ ǫ
1 ǫ ǫ



 , 0 < |ǫ| < 1.

(The true value is κ∞(A) = 1.5(1 + |ǫ|−1).)

7.2 Elimination Methods

7.2.1 Triangular Matrices

An upper triangular matrix is a matrix U for which uij = 0 whenever i > j. A
square upper triangular matrix has form

U =









u11 u12 . . . u1n

u22 . . . u2n

. . .
...

. . . unn









.

If also uij = 0 when i = j then U is strictly upper triangular. Similarly a matrix
L is lower triangular if lij = 0, i < j, and strictly lower triangular if lij = 0,
i ≤ j. Clearly the transpose of an upper triangular matrix is lower triangular and
vice versa.

30 Chapter 7. Direct Methods for Solving Linear System

Triangular matrices have several nice properties. It is easy to verify that
sums, products and inverses of square upper (lower) triangular matrices are again
triangular matrices of the same type. The diagonal elements of the product U =
U1U2 of two triangular matrices are just the product of the diagonal elements in U1

and U2. From this it follows that the diagonal elements in U−1 are the inverse of
the diagonal elements in U .

Triangular linear systems are easy to solve. In an upper triangular linear
system Ux = b, the unknowns can be computed recursively from

xn = bn/unn xi =
(

bi −
n

∑

k=i+1

uikxk

)/

uii, i = n− 1 : 1. (7.2.1)

Since the unknowns are solved for in backward order, this is called back-substitution.
Similarly, in a lower triangular linear system Ly = c, the unknowns can be computed
by forward-substitution.

y1 = c1/u11 yi =
(

ci −
i−1
∑

k=1

likyk

)/

lii, i = 2 : n. (7.2.2)

When implementing a matrix algorithm such as (7.2.1) or (7.2.2) on a com-
puter, the order of operations in matrix algorithms may be important. One reason
for this is the economizing of storage, since even matrices of moderate dimensions
have a large number of elements. When the initial data is not needed for future
use, computed quantities may overwrite data. To resolve such ambiguities in the
description of matrix algorithms it is important to be able to describe computa-
tions in a more precise form. For this purpose we will use an informal programming
language, which is sufficiently precise for our purpose but allows the suppression
of cumbersome details. These concepts are illustrated for the back-substitution
(7.2.1). in the following program where the solution vector x overwrites the data
vector b.

Algorithm 7.2.1 Back-substitution.
Given an upper triangular matrix U ∈ Rn×n and a vector b ∈ Rn, the following

algorithm computes x ∈ Rn such that Ux = b:

for i = n : −1 : 1

s :=

n
∑

k=i+1

uikbk;

bi := (bi − s)/uii;

end

Here := is the assignment symbol and x := y means that the value of y is assigned
to x. Note that in order to minimize round-off errors bi is added last to the sum;
compare the error bound (2.4.3).

7.2. Elimination Methods 31

Another possible sequencing of the operations is:

for k = n : −1 : 1

bk := bk/ukk;

for i = k − 1 : −1 : 1

bi := bi − uikbk;

end

end

Here the elements in U are accessed column-wise instead of row-wise as in the
previous algorithm. Such differences can influence the efficiency when implementing
matrix algorithms. For example, if U is stored column-wise as is the convention in
Fortran, the second version is to be preferred.

We will often use the concept of a flop, to mean roughly the amount of work
associated with the computation

s := s+ aikbkj ,

i.e., one floating point addition and multiplication and some related subscript com-
putation.10 With this notation solving a triangular system requires 1

2n
2 flam.

7.2.2 Gaussian Elimination

Consider a linear system Ax = b, where the matrix A ∈ Rm×n, and vector b ∈ Rm

are given and the vector x ∈ Rn is to be determined, i.e.,









a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

















x1

x2
...
xn









=









b1
b2
...
bm









. (7.2.3)

A fundamental observation is that the following elementary operation can be per-
formed on the system without changing the set of solutions:

• Adding a multiple of the ith equation to the jth equation.

• Interchange two equations.

These correspond in an obvious way to row operations on the augmented matrix
(A, b). It is also possible to interchange two columns in A provided we make the
corresponding interchanges in the components of the solution vector x.

The idea behind Gaussian elimination11 is to use such elementary opera-
tions to eliminate the unknowns in the system Ax = b in a systematic way, so that

10Note that in older textbooks this was called a flop. However, in more recent books (e.g.,
Higham [41, ]) a flop is instead defined as a floating point add or multiply.

11Named after Carl Friedrich Gauss (1777–1855), but known already in China as early as the
first century BC.

32 Chapter 7. Direct Methods for Solving Linear System

at the end an equivalent upper triangular system is produced, which is then solved
by back-substitution. If a11 6= 0, then in the first step we eliminate x1 from the last
(n− 1) equations by subtracting the multiple

li1 = ai1/a11, i = 2 : n,

of the first equation from the ith equation. This produces a reduce system of (n−1)
equations in the (n− 1) unknowns x2 : xn, where the new coefficients are given by

a
(2)
ij = aij − li1a1j , b

(2)
i = bi − li1b1, i = 2 : n.

If a
(2)
22 6= 0, we can next in a similar way eliminate x2 from the last (n− 2) of these

equations. After k − 1 steps, k ≤ min(m,n), of Gaussian elimination the matrix A
has been reduced to the form

A(k) =





















a
(1)
11 a

(1)
12 · · · a

(1)
1k · · · a

(1)
1n

a
(2)
22 · · · a

(2)
2k · · · a

(2)
2n

. . .
...

...
a
(k)
kk · · · a

(k)
kn

...
...

a
(k)
mk · · · a

(k)
mn





















, b(k) =

















b
(1)
1

b
(2)
2

b
(k)
k
...
b
(k)
m

















, (7.2.4)

where we have put A(1) = A, b(1) = b. The diagonal elements a11, a
(2)
22 , a

(3)
33 , . . . ,

which appear during the elimination are called pivotal elements.
Let Ak denote the kth leading principal submatrix of A. Since the determinant

of a matrix does not change under row operations the determinant of Ak equals the
product of the diagonal elements then by (7.2.5)

det(Ak) = a
(1)
11 · · · a(k)

kk , k = 1 : n.

For a square system, i.e. m = n, this implies that all pivotal elements a
(i)
ii , i = 1 : n,

in Gaussian elimination are nonzero if and only if det(Ak) 6= 0, k = 1 : n. In this
case we can continue the elimination until after (n − 1) steps we get the single
equation

a(n)
nn xn = b(n)

n (a(n)
nn 6= 0).

We have now obtained an upper triangular system A(n)x = b(n), which can be
solved recursively by back-substitution (7.2.1). We also have

det(A) = a
(1)
11 a

(2)
22 · · ·a(n)

nn . (7.2.5)

We have seen that if in Gaussian elimination a zero pivotal element is en-

countered, i.e., a
(k)
kk = 0 for some k ≤ n, then we cannot proceed and it seems the

algorithm breaks down.

7.2. Elimination Methods 33

Example 7.2.1. Consider the system
(

ǫ 1
1 1

) (

x1

x2

)

=

(

1
0

)

.

For ǫ 6= 1 this system is nonsingular and has the unique solution x1 = −x2 =
−1/(1 − ǫ). However, when a11 = ǫ = 0 the first step in Gaussian elimination
cannot be carried through. The remedy here is obviously to interchange the two
equations, which directly gives an upper triangular system.

Suppose that in step k of Gaussian elimination we have a
(k)
kk = 0. (The equa-

tions may have been reordered in previous steps, but we assume that the notations
have been changed accordingly.) If A is nonsingular, then in particular its first k
columns are linearly independent. This must also be true for the first k columns

of the reduced matrix. Hence some element a
(k)
ik , i = k : n must be nonzero, say

a
(k)
pk 6= 0. By interchanging rows k and p this element can be taken as pivot and

it is possible to proceed with the elimination. The important conclusion is that
any nonsingular system of equations can be reduced to triangular form by Gaussian
elimination if appropriate row interchanges are used.

Note that when rows are interchanged in A the same interchanges must be
made in the elements of the vector b. Note also that the determinant formula (7.2.5)
must be modified to

det(A) = (−1)sa
(1)
11 a

(2)
22 · · · a(n)

nn , (7.2.6)

where s denotes the total number of row and columns interchanges performed.

If rank (A) < n then it is possible that at some step k we have a
(k)
ik = 0,

i = k : n. If the entire submatrix a
(k)
ij , i, j = k : n, is zero, then rank (A) = k and

we stop. Otherwise there is a nonzero element, say a
(k)
pq 6= 0, which can be brought

into pivoting position by interchanging rows k and p and columns k and q. (Note
that when columns are interchanged in A the same interchanges must be made in
the elements of the solution vector x.) Proceeding in this way any matrix A can
always be reduced to upper trapezoidal form,

A(r) =

























a
(1)
11 · · · a

(1)
1r a

(1)
1,r+1 · · · a

(1)
1n

0
. . .

...
...

...
... a

(r)
rr a

(r)
r,r+1 · · · a

(r)
rn

0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 0 · · · 0

























, b(r) =























b
(1)
1
...

b
(r)
r

b
(r+1)
r+1

...

b
(r+1)
m























. (7.2.7)

Here the number r of linearly independent rows in a matrix A equals the number
of independent columns in A is the rank of A.

From the reduced form (7.2.7) we can read off the rank of A. The two rect-
angular zero blocks in A(r) have dimensions (m − r) × r and (m − r) × (n − r),
respectively. We deduce the following:

34 Chapter 7. Direct Methods for Solving Linear System

1. The system Ax = b has a unique solution if and only if r = m = n.

2. If b
(r+1)
k = 0, k = r + 1 : m, then the system Ax = b is consistent and

has an infinite number of solutions. We can assign arbitrary values to the
last n − r components of (the possibly permuted) solution vector x. The
first r components are then uniquely determined and obtained using back-
substitution with the nonsingular triangular matrix in the upper left corner.

3. If b
(r+1)
k 6= 0, for some k > r, the the system Ax = b is inconsistent and has

no solution. Then we have to be content with finding x such that the residual
vector r = b−Ax is small in some sense.

In principle, the reduced trapezoidal form (7.2.7) obtained by Gaussian elimi-
nation yields the rank of a the matrix A, and also answers the question whether the
given system is consistent or not. However, this is the case only if exact arithmetic
is used. In floating point calculations it may be difficult to decide if a pivot element,
or an element in the transformed right hand side, should be considered as zero or
nonzero. For example, a zero pivot in exact arithmetic will almost invariably be
polluted by roundoff errors in such a way that it equals some small nonzero number.
What tolerance to use to decide when a pivot should be taken to be zero will depend
on the context. In order to treat this question in a satisfactory way we need the
concept numerical rank, which will be introduced in Section 8.3.3.

Another question, which we have to leave unanswered for a while, concerns
underdetermined and overdetermined systems, which arise quite frequently in prac-
tice! Problems where there are more parameters than needed to span the right hand
side lead to underdetermined systems. In this case we need additional information
in order to decide which solution to pick. On the other hand, overdetermined sys-
tems arise when there is more data than needed to determine the solution. In this
case the system usually is inconsistent and there is no solution. Now the question
can be posed, how to find a solution, which in some sense best approximates the
right hand side? These questions are related, are best treated using orthogonal
transformations rather than GE. This topic is again deferred to Chapter 8.

When the matrix A is square and of a full rank Gaussian Elimination can be
described as follows:

Algorithm 7.2.2 Gaussian Elimination; square case.

Given a matrix A = A(1) ∈ Rn×n and a vector b = b(1) ∈ Rn, the following
algorithm reduces the system Ax = b to the upper triangular form, provided that

the pivotal elements a
(k)
kk 6= 0, k = 1 : n:

for k = 1 : n− 1

for i = k + 1 : n

lik := a
(k)
ik /a

(k)
kk ;

for j = k + 1 : n

a
(k+1)
ij := a

(k)
ij − lika

(k)
kj ;

7.2. Elimination Methods 35

end

b
(k+1)
i := b

(k)
i − likb

(k)
k ;

end

end

Note that when lik is computed the element a
(k)
ik is put equal to zero. Thus

memory space can be saved by storing the multipliers in the lower triangular part
of the matrix. If the multipliers lik are saved, then the operations on the vector b
can be deferred to a later stage. This observation is important in that it shows that
when solving a sequence of linear systems

Axi = bi, i = 1 : p,

with the same matrix A but different right hand sides, the operations on A only have
to be carried out once!

From Algorithm 7.2.2 it follows that (n − k) divisions and (n − k)2 multipli-
cations and additions are used in step k to transform the elements of A. A further
(n−k) multiplications and additions are used to transform the elements of b. Sum-
ming over k and neglecting low order terms we find that the total number of flams
required by Gaussian elimination is

∑n−1
k=1 (n− k)2 ≈ n3/3,

∑n−1
k=1 (n− k) ≈ n2/2

for A and each right hand side respectively. Comparing with the approximately
1
2n

2 flops needed to solve a triangular system we conclude that, except for very
small values of n, the reduction of A to triangular form dominates the work.12 (see
Sections 7.4 and 7.8, respectively). Operation counts like these are meant only
as a rough appraisal of the work and one should not assign too much meaning to
their precise value. On modern computer architectures the rate of transfer of data
between different levels of memory often limits the actual performance.

Algorithm 7.2.2 for Gaussian Elimination algorithm has three nested loops. It
is possible to reorder these loops in 3 · 2 · 1 = 6 ways. In each of those version the
operations does the basic operation

a
(k+1)
ij := a

(k)
ij − a

(k)
kj a

(k)
ik /a

(k)
kk ,

and only the ordering in which they are done differs. The version given above uses
row operations and may be called the “kij” variant, where k refers to step number,
i to row index, and j to column index. This version is not suitable for Fortran 77,
and other languages in which matrix elements are stored and accessed sequentially
by columns. In such a language the form “kji” should be preferred, which is the
column oriented variant of Algorithm 7.2.2 (see Problem 5).

We now show that Gaussian elimination can be interpreted as computing the
matrix factorization A = LU . The LU factorization is a prime example of the

12This conclusion is not in general true for banded and sparse systems

36 Chapter 7. Direct Methods for Solving Linear System

decompositional approach to matrix computation. This approach came into favor
in the 1950s and early 1960s and has been named as one of the ten algorithms with
most influence on science and engineering in the 20th century.

For simplicity we assume that m = n and that GE can be carried out without
pivoting. We will show that in this case GE provides a factorization of A into the
product of a unit lower triangular matrix L and an upper triangular matrix U .
Depending on whether the element aij lies on or above or below the principal
diagonal we have

a
(n)
ij =

{

. . . = a
(i+1)
ij = a

(i)
ij , i ≤ j;

. . . = a
(j+1)
ij = 0, i > j.

Thus in GE the elements aij , 1 ≤ i, j ≤ n, are transformed according to

a
(k+1)
ij = a

(k)
ij − lika

(k)
kj , k = 1 : p, p = min(i− 1, j). (7.2.8)

If these equations are summed for k = 1 : p, we obtain

p
∑

k=1

(a
(k+1)
ij − a

(k)
ij) = a

(p+1)
ij − aij = −

p
∑

k=1

lika
(k)
kj .

This can also be written

aij =























a
(i)
ij +

i−1
∑

k=1

lika
(k)
kj , i ≤ j;

0 +

j
∑

k=1

lika
(k)
kj , i > j,

or, if we define lii = 1, i = 1 : n,

aij =
r

∑

k=1

likukj , ukj = a
(k)
kj , r = min(i, j). (7.2.9)

However, these equations are equivalent to the matrix equation A = LU , where
L = (lik) and U = (ukj) are lower and upper triangular matrices, respectively.
Hence GE computes a factorization of A into a product of a lower and an upper
triangular matrix, the LU factorization of A.

It was shown in Section 7.2.2 that if A is nonsingular, then Gaussian elimi-
nation can always be carried through provided row interchanges are allowed. Also,
such row interchanges are in general needed to ensure the numerical stability of
Gaussian elimination. We now consider how the LU factorization has to be modi-
fied when such interchanges are incorporated.

Row interchanges and row permutations can be expressed as pre-multiplication
with certain matrices, which we now introduce. A matrix

Iij = (. . . , ei−1, ej , ei+1, . . . , ej−1, ei, ej+1),

7.2. Elimination Methods 37

which is equal to the identity matrix except that columns i and j have been in-
terchanged is called a transposition matrix. If a matrix A is premultiplied by
Iij this results in the interchange of rows i and j. Similarly post-multiplication
results in the interchange of columns i and j. IT

ij = Iij , and by its construction it

immediately follows that I2
ij = I and hence I−1

ij = Iij .

A permutation matrix P ∈ Rn×n is a matrix whose columns are a permu-
tation of the columns of the unit matrix, that is,

P = (ep1
, . . . , epn

),

where (p1, . . . , pn) is a permutation of (1, . . . , n). Notice that in a permutation
matrix every row and every column contains just one unity element. The transpose
PT of a permutation matrix is therefore again a permutation matrix Since P is
uniquely represented by the integer vector (p1, . . . , pn) it need never be explicitly
stored.

If P is a permutation matrix then PA is the matrix A with its rows permuted
and AP is A with its columns permuted. Any permutation may be expressed as
a sequence of transposition matrices. Therefore any permutation matrix can be
expressed as a product of transposition matrices P = Ii1,j1Ii2,j2 · · · Iik,jk

. Since
I−1
ip,jp

= Iip,jp
, we have

P−1 = Iik,jk
· · · Ii2,j2Ii1,j1 = PT ,

that is permutation matrices are orthogonal and PT effects the reverse permutation.
Assume that in the kth step, k = 1 : n − 1, we select the pivot element from

row pk, and interchange the rows k and pk. Notice that in these row interchanges
also previously computed multipliers lij must take part. At completion of the
elimination, we have obtained lower and upper triangular matrices L and U . We
now make the important observation that these are the same triangular factors that
are obtained if we first carry out the row interchanges k ↔ pk, k = 1 : n − 1, on
the original matrix A to get a matrix PA, where P is a permutation matrix, and
then perform Gaussian elimination on PA without any interchanges. This means
that Gaussian elimination with row interchanges computes the LU factors of the
matrix PA. We now summarize the results and prove the uniqueness of the LU
factorization:

Theorem 7.2.1. The LU factorization
Let A ∈ Rn×n be a given nonsingular matrix. Then there is a permutation

matrix P such that Gaussian elimination on the matrix Ã = PA can be carried out
without pivoting giving the factorization

PA = LU, (7.2.10)

where L = (lij) is a unit lower triangular matrix and U = (uij) an upper triangular
matrix. The elements in L and U are given by

uij = ã
(i)
ij , 1 ≤ i ≤ j ≤ n,

38 Chapter 7. Direct Methods for Solving Linear System

and
lij = l̃ij , lii = 1, 1 ≤ j < i ≤ n,

where l̃ij are the multipliers occurring in the reduction of Ã = PA. For a fixed
permutation matrix P , this factorization is uniquely determined.

Proof. We prove the uniqueness. Suppose we have two factorizations

PA = L1U1 = L2U2.

Since PA is nonsingular so are the factors, and it follows that L−1
2 L1 = U2U

−1
1 .

The left-hand matrix is the product of two unit lower triangular matrices and is
therefore unit lower triangular, while the right hand matrix is upper triangular. It
follows that both sides must be the identity matrix. Hence L2 = L1, and U2 = U1.

Writing PAx = LUx = L(Ux) = Pb it follows that if the LU factorization of
PA is known, then the solution x can be computed by solving the two triangular
systems

Ly = Pb, Ux = y, (7.2.11)

which involves about 2 · 1
2n

2 = n2 flops.
Although the LU factorization is just a different interpretation of Gaussian

elimination it turns out to have important conceptual advantages. It divides the
solution of a linear system into two independent steps:

1. The factorization PA = LU .

2. Solution of the systems Ly = Pb and Ux = y.

As an example of the use of the factorization consider the problem of solving
the transposed system ATx = b. Since PTP = I, and

(PA)T = ATPT = (LU)T = UTLT ,

we have that ATPTPx = UT (LTPx) = b. It follows that x̃ = Px can be computed
by solving the two triangular systems

UT c = b, LT x̃ = c. (7.2.12)

We then obtain x = P−1x̃ by applying the interchanges k ↔ pk, in reverse order
k = n − 1 : 1 to x̃. Note that it is not at all trivial to derive this algorithm from
the presentation of Gaussian elimination in the previous section!

In the general case when A ∈ Rm×n of rank (A) = r ≤ min{m,n}, it can
be shown that matrix PrAPc ∈ Rm×n can be factored into a product of a unit
lower trapezoidal matrix L ∈ Rm×r and an upper trapezoidal matrix U ∈ Rr×n.
Here Pr and Pc are permutation matrices performing the necessary row and column
permutations, respectively. The factorization can be written in block form as

PrAPc = LU =

(

L11

L21

)

(U11 U12) , (7.2.13)

7.2. Elimination Methods 39

where the matrices L11 and U11 are triangular and non-singular. Note that the
block L21 is empty if the matrix A has full row rank, i.e. r = m; the block U12 is
empty if the matrix A has full column rank, i.e. r = n.

To solve the system

PrAPc(P
T
c x) = LUx̃ = Prb = b̃, x = Pcx̃,

using this factorization we set y = Ux and consider

(

L11

L21

)

y =

(

b̃1
b̃2

)

.

This uniquely determines y as the solution to L11y = b̃1. Hence the system is
consistent if and only if L21y = b̃2. Further, we have Ux̃ = y, or

(U11 U12)

(

x̃1

x̃2

)

= y.

For an arbitrary x̃2 this system uniquely determines x̃1 as the solution to the tri-
angular system

U11x̃1 = y − U12x̃2.

Thus, if consistent the system has a unique solution only if A has full column rank.

7.2.3 Elementary Elimination Matrices

The reduction of a matrix to triangular form by Gaussian elimination can be ex-
pressed entirely in matrix notations using elementary elimination matrices.
This way of looking at Gaussian elimination, first systematically exploited by J.
H. Wilkinson,13 has the advantage that it suggests ways of deriving other matrix
factorization

Elementary elimination matrices are lower triangular matrices of the form

Lj = I + lje
T
j =



















1
. . .

1
lj+1,j 1

...
. . .

ln,j 1



















, (7.2.14)

where only the elements below the main diagonal in the jth column differ from the

13James Hardy Wilkinson (1919–1986) English mathematician graduated from Trinity College,
Cambridge. He became Alan Turing’s assistant at the National Physical Laboratory in London
in 1946, where he worked on the ACE computer project. He did pioneering work on numerical
methods for solving linear systems and eigenvalue problems and developed software and libraries
of numerical routines.

40 Chapter 7. Direct Methods for Solving Linear System

unit matrix. If a vector x is premultiplied by Lj we get

Ljx = (I + lje
T
j)x = x+ ljxj =



















x1
...
xj

xj+1 + lj+1,jxj

...
xn + ln,jxj



















,

i.e., to the last n − j components of x are added multiples of the component xj .
Since eT

j lj = 0 it follows that

(I − lje
T
j)(I + lje

T
j) = I + lje

T
j − lje

T
j − lj(e

T
j lj)e

T
j = I

so we have
L−1

j = I − lje
T
j .

The computational significance of elementary elimination matrices is that they
can be used to introduce zero components in a column vector x. Assume that
eT

k x = xk 6= 0. We show that there is a unique elementary elimination matrix
L−1

k = I − lke
T
k such that

L−1
k (x1, . . . , xk, xk+1, . . . , xn)T = (x1, . . . , xk, 0, . . . , 0)T .

Since the last n−k components of L−1
k x are to be zero it follows that we must have

xi − li,kxk = 0, i = k + 1 : n, and hence

lk = (0, . . . , 0, xk+1/xk, . . . , xn/xk)T .

The product of two elementary elimination matrices LjLk is a lower triangular
matrix which differs from the unit matrix in the two columns j and k below the
main diagonal,

LjLk = (I + lje
T
j)(I + lke

T
k) = I + lje

T
j + lke

T
k + lj(e

T
j lk)eT

k .

If j ≤ k, then eT
j lk = 0, and the following simple multiplication rule holds:

LjLk = I + lje
T
j + lke

T
k , j ≤ k. (7.2.15)

Note that no products of the elements lij occur! However, if j > k, then in general
eT

j lk 6= 0, and the product LjLk has a more complex structure.
We now show that Gaussian elimination with partial pivoting can be accom-

plished by premultiplication of A by a sequence of elementary elimination matrices
combined with transposition matrices to express the interchange of rows. For sim-
plicity we first consider the case when rank (A) = m = n. In the first step assume
that ap1,1 6= 0 is the pivot element. We then interchange rows 1 and p1 in A by
premultiplication of A by a transposition matrix,

Ã = P1A, P1 = I1,p1
.

7.2. Elimination Methods 41

If we next premultiply Ã by the elementary elimination matrix

L−1
1 = I − l1e

T
1 , li1 = ãi1/ã11, i = 2 : n,

this will zero out the elements under the main diagonal in the first column, i.e.

A(2)e1 = L−1
1 P1Ae1 = ã11e1.

All remaining elimination steps are similar to this first one. The second step is
achieved by forming Ã(2) = P2A

(2) and

A(3) = L−1
2 P2A

(2) = L−1
2 P2L

−1
1 P1A.

Here P2 = I2,p2
, where a

(2)
p2,2 is the pivot element from the second column and

L−1
2 = I − l2e

T
2 is an elementary elimination matrix with nontrivial elements equal

to li2 = ã
(2)
i2 /ã

(2)
22 , i = 3 : n. Continuing, we have after n − 1 steps reduced A to

upper triangular form

U = L−1
n−1Pn−1 · · ·L−1

2 P2L
−1
1 P1A. (7.2.16)

To see that (7.2.16) is equivalent with the LU factorization of PA we first note that
since P 2

2 = I we have after the first two steps that

A(3) = L−1
2 L̃−1

1 P2P1A

where
L̃−1

1 = P2L
−1
1 P2 = I − (P2l1)(e

T
1 P2) = I − l̃1e

T
1 .

Hence L̃−1
1 is again an elementary elimination matrix of the same type as L−1

1 ,
except that two elements in l1 have been interchanged. Premultiplying by L̃1L2 we
get

L̃1L2A
(3) = P2P1A,

where the two elementary elimination matrices on the left hand side combine triv-
ially. Proceeding in a similar way it can be shown that (7.2.16) implies

L̃1L̃2 . . . L̃n−1U = Pn−1 . . . P2P1A,

where L̃n−1 = Ln−1 and

L̃j = I + l̃je
T
j , l̃j = Pn−1 · · ·Pj+1lj, j = 1 : n− 2.

Using the result in (7.2.15), the elimination matrices can trivially be multiplied
together and it follows that

PA = LU, P = Pn−1 · · ·P2P1,

where the elements in L are given by lij = l̃ij , lii = 1, 1 ≤ j < i ≤ n. This is the LU
factorization of Theorem 7.2.1. It is important to note that nothing new, except
the notations, has been introduced. In particular, the transposition matrices and

42 Chapter 7. Direct Methods for Solving Linear System

elimination matrices used here are, of course, never explicitly stored in a computer
implementation.

In Gaussian elimination we use in the kth step the pivot row to eliminate
elements below the main diagonal in column k. In Gauss–Jordan elimination14

the elements above the main diagonal are eliminated simultaneously. After n − 1
steps the matrix A has then been transformed into a diagonal matrix containing the
nonzero pivot elements. Gauss–Jordan elimination was used in many early versions
of linear programming and also for implementing stepwise regression in statistics.

Gauss–Jordan elimination can be described by introducing the elementary
matrices

Mj =

























1 l1j

. . .
...

1 lj−1,j

1
lj+1,j 1

...
. . .

ln,j 1

























. (7.2.17)

If partial pivoting is carried out we can write, cf. (7.2.16)

D = MnM
−1
n−1Pn−1 · · ·M−1

2 P2M
−1
1 P1A,

where the lij are chosen to annihilate the (i, j)th element. Multiplying by D−1 we
get

A−1 = D−1MnM
−1
n−1Pn−1 · · ·M−1

2 P2M
−1
1 P1. (7.2.18)

This expresses the inverse of A as a product of elimination and transposition ma-
trices, and is called the product form of the inverse. The operation count for
this elimination process is ≈ n3/2 flops, i.e., higher than for the LU factorization by
Gaussian elimination. For some parallel implementations Gauss–Jordan elimination
may still have advantages.

To solve a linear system Ax = b we apply these transformations to the vector
b to obtain

x = A−1b = D−1M−1
n−1Pn−1 · · ·M−1

2 P2M
−1
1 P1b. (7.2.19)

This requires n2 flops. Note that no back-substitution is needed!
The stability of Gauss–Jordan elimination has been analyzed by Peters and

Wilkinson [53]. They remark that the residuals b−Ax̄ corresponding to the Gauss–
Jordan solution x̄ can be a larger by a factor κ(A) than those corresponding to the
solution by Gaussian elimination. Although the method is not backward stable in
general it can be shown to be stable for so called diagonally dominant matrices (see
Definition 7.2.4). It is also forward stable, i.e., will give about the same numerical
accuracy in the computed solution x̄ as Gaussian elimination.

14Named after Wilhelm Jordan (1842–1899), who used this method to compute the covariance
matrix in least squares problems.

7.2. Elimination Methods 43

7.2.4 Pivoting Strategies

We saw that in Gaussian elimination row and column interchanges were needed in
case a zero pivot was encountered. A basic rule of numerical computation says that
if an algorithm breaks down when a zero element is encountered, then we can expect
some form of instability and loss of precision also for nonzero but small elements!
Again, this is related to the fact that in floating point computation the difference
between a zero and nonzero number becomes fuzzy because of the effect of rounding
errors.

Example 7.2.2. For ǫ 6= 1 the system
(

ǫ 1
1 1

) (

x1

x2

)

=

(

1
0

)

,

is nonsingular and has the unique solution x1 = −x2 = −1/(1 − ǫ). Suppose
ǫ = 10−6 is accepted as pivot in Gaussian elimination. Multiplying the first equation
by 106 and subtracting from the second we obtain (1−106)x2 = −106. By rounding
this could give x2 = 1, which is correct to six digits. However, back-substituting to
obtain x1 we get 10−6x1 = 1 − 1, or x1 = 0, which is completely wrong.

The simple example above illustrates that in general it is necessary to perform
row (and/or column) interchanges not only when a pivotal element is exactly zero,
but also when it is small. The two most common pivoting strategies are partial
pivoting and complete pivoting. In partial pivoting the pivot is taken as the
largest element in magnitude in the unreduced part of the kth column. In com-
plete pivoting the pivot is taken as the largest element in magnitude in the whole
unreduced part of the matrix.

Partial Pivoting. At the start of the kth stage choose interchange rows k and r,
where r is the smallest integer for which

|a(k)
rk | = max

k≤i≤n
|a(k)

ik |. (7.2.20)

Complete Pivoting. At the start of the kth stage interchange rows k and r and
columns k and s, where r and s are the smallest integers for which

|a(k)
rs | = max

k≤i,j≤n
|a(k)

ij |. (7.2.21)

Complete pivoting requires O(n3) in total compared with only O(n2) for par-
tial pivoting. Hence, complete pivoting involves a fairly high overhead since about
as many arithmetic comparisons as floating point operations has to be performed.
Since practical experience shows that partial pivoting works well, this is the stan-
dard choice. Note, however, that when rank (A) < n then complete pivoting must
be used

A major breakthrough in the understanding of GE came with the famous back-
ward rounding error analysis of Wilkinson [65, ]. Using the standard model for

44 Chapter 7. Direct Methods for Solving Linear System

floating point computation Wilkinson showed that the computed triangular factors
L̄ and Ū of A, obtained by Gaussian elimination are the exact triangular factors of
a perturbed matrix

L̄Ū = A+ E, E = (eij)

where, since eij is the sum of min(i− 1, j) rounding errors

|eij | ≤ 3umin(i− 1, j)max
k

|ā(k)
ij |. (7.2.22)

Note that the above result holds without any assumption about the size of the
multipliers. This shows that the purpose of any pivotal strategy is to avoid growth

in the size of the computed elements ā
(k)
ij , and that the size of the multipliers is of

no consequence (see the remark on possible large multipliers for positive-definite
matrices, Section 7.4.2).

The growth of elements during the elimination is usually measured by the
growth ratio.

Definition 7.2.2.
Let a

(k)
ij , k = 2 : n, be the elements in the kth stage of Gaussian elimination

applied to the matrix A = (aij). Then the growth ratio in the elimination is

ρn = max
i,j,k

|a(k)
ij |/max

i,j
|aij |. (7.2.23)

It follows that E = (eij) can be bounded component-wise by

|E| ≤ 3ρnumax
ij

|aij |F. (7.2.24)

where F the matrix with elements fi,j = min{i− 1, j}. Strictly speaking this is not
correct unless we use the growth factor ρ̄n for the computed elements. Since this
quantity differs insignificantly from the theoretical growth factor ρn in (7.2.23), we
ignore this difference here and in the following. Slightly refining the estimate

‖F‖∞ ≤ (1 + 2 + · · · + n) − 1 ≤ 1

2
n(n+ 1) − 1

and using maxij |aij | ≤ ‖A‖∞, we get the normwise backward error bound:

Theorem 7.2.3.
Let L̄ and Ū be the computed triangular factors of A, obtained by GE with

floating-point arithmetic with unit roundoff u has been used, there is a matrix E
such that

L̄Ū = A+ E, ‖E‖∞ ≤ 1.5n2ρnu‖A‖∞. (7.2.25)

If pivoting is employed so that the computed multipliers satisfy the inequality

|lik| ≤ 1, i = k + 1 : n.

7.2. Elimination Methods 45

Then it can be shown that an estimate similar to (7.2.25) holds with the constant
1 instead of 1.5. For both partial and complete pivoting it holds that

|a(k+1)
ij | < |a(k)

ij | + |lik||a(k)
kj | ≤ |a(k)

ij | + |a(k)
kj | ≤ 2 max

i,j
|a(k)

ij |,

and the bound ρn ≤ 2n−1 follows by induction. For partial pivoting this bound is
the best possible, and can be attained for special matrices. For complete pivoting a
much better bound can be proved, and in practice the growth very seldom exceeds
n; see Section 7.6.2.

A pivoting scheme that gives a pivot of size between that of partial and com-
plete pivoting is rook pivoting. In this scheme we pick a pivot element which is
largest in magnitude in both its column and its row.

Rook Pivoting. At the start of the kth stage rows k and r and columns k and s are
interchanged, where

|a(k)
rs | = max

k≤i≤n
|a(k)

ij | = max
k≤j≤n

|a(k)
ij |. (7.2.26)

We start by finding the element of maximum magnitude in the first column. If this
element is also of maximum magnitude in its row we accept it as pivot. Otherwise
we compare the element of maximum magnitude in the row with other elements in
its column, etc. The name derives from the fact that the pivot search resembles the
moves of a rook in chess; see Figure 7.2.1..

1

0

3

2

1

10

5

0

2

4

1

2

4

5

3

2

9

1

6

2

4

8

7

1

3

•

• •

• •

•

Figure 7.2.1. Illustration of rook pivoting in a 5 × 5 matrix with positive
integer entries as shown. The (2, 4) element 9 is chosen as pivot.

Rook pivoting involves at least twice as many comparisons as partial pivoting.
In the worst case it can take O(n3) comparisons, i.e., the same order of magnitude
as for complete pivoting. Numerical experience shows that the cost of rook pivoting
usually equals a small multiple of the cost for partial pivoting. A pivoting related to
rook pivoting is used in the solution of symmetric indefinite systems; see Sec. 7.3.4.

It is important to realize that the choice of pivots is influenced by the scaling
of equations and unknowns. If, for example, the unknowns are physical quantities a
different choices of units will correspond to a different scaling of the unknowns and
the columns in A. Partial pivoting has the important property of being invariant

46 Chapter 7. Direct Methods for Solving Linear System

under column scalings. In theory we could perform partial pivoting by column
interchanges, which then would be invariant under row scalings. but in practice
this turns out to be less satisfactory. Likewise, an unsuitable column scaling can
also make complete pivoting behave badly.

For certain important classes of matrices a bound independent of n can be
given for the growth ratio in Gaussian elimination without pivoting or with partial
pivoting. For these Gaussian elimination is backward stable.

• If A is real symmetric matrix A = AT and positive definite (i.e. xTAx > 0
for all x 6= 0) then ρn(A) ≤ 1 with no pivoting (see Theorem 7.3.7).

• If A is row or column diagonally dominant then ρn ≤ 2 with no pivoting.

• If A is Hessenberg then ρn ≤ n with partial pivoting.

• If A is tridiagonal then ρn ≤ 2 with partial pivoting.

For the last two cases we refer to Sec. 7.4. We now consider the case when A
is diagonally dominant.

Definition 7.2.4. A matrix A is said to be diagonally dominant by rows, if
∑

j 6=i

|aij | ≤ |aii|, i = 1 : n. (7.2.27)

A is diagonally dominant by columns if AT is diagonally dominant by rows.

Theorem 7.2.5.
Let A be nonsingular and diagonally dominant by rows or columns. Then A

has an LU factorization without pivoting and the growth ratio ρn(A) ≤ 2. If A
is diagonally dominant by columns, then the multipliers in this LU factorization
satisfy |lij | ≤ 1, for 1 ≤ j < i ≤ n.

Proof. (Wilkinson [65, pp.288–289])
Assume that A is nonsingular and diagonally dominant by columns. Then

a11 6= 0, since otherwise the first column would be zero and A singular. In the first
stage of Gaussian elimination without pivoting we have Hence

a
(2)
ij = aij − li1a1j , li1 = ai1/a11, i, j ≥ 2, (7.2.28)

where
n

∑

i=2

|li1| ≤
n

∑

i=2

|ai1|/|a11| ≤ 1. (7.2.29)

For j = i, using the definition and (7.2.29), it follows that

|a(2)
ii | ≥ |aii| − |li1| |a1i| ≥

∑

j 6=i

|aji| −
(

1 −
∑

j 6=1,i

|lj1|
)

|a1i|

=
∑

j 6=1,i

(

|aji| + |lj1||a1i|
)

≥
∑

j 6=1,i

|a(2)
ji |.

7.2. Elimination Methods 47

Hence the reduced matrix A(2) = (a
(2)
ij), is also nonsingular and diagonally dominant

by columns. It follows by induction that all matrices A(k) = (a
(k)
ij), k = 2 : n are

nonsingular and diagonally dominant by columns.
Further using (7.2.28) and (7.2.29), for i ≥ 2,

n
∑

i=2

|a(2)
ij | ≤

n
∑

i=2

(

|aij | + |li1||a1j |
)

≤
n

∑

i=2

|aij | + |a1j |
n

∑

i=2

|li1|

≤
n

∑

i=2

|aij | + |a1j | =

n
∑

i=1

|aij |.

Hence the sum of the moduli of the elements of any column of A(k) does not increase
as k increases. Hence

max
i,j,k

|a(k)
ij | ≤ max

i,k

n
∑

j=k

|a(k)
ij | ≤ max

i

n
∑

j=1

|aij | ≤ 2 max
i

|aii| = 2 max
ij

|aij |.

It follows that

ρn = max
i,j,k

|a(k)
ij |/max

i,j
|aij | ≤ 2.

The proof for matrices which are row diagonally dominant is similar. (No-
tice that Gaussian elimination with pivoting essentially treats rows and columns
symmetrically!)

We conclude that for a row or column diagonally dominant matrix Gaussian
elimination without pivoting is backward stable. IfA is diagonally dominant by rows
then the multipliers can be arbitrarily large, but this does not affect the stability.

If (7.2.27) holds with strict inequality for all i, then A is said to be strictly
diagonally dominant by rows. If A is strictly diagonally dominant, then it can
be shown that all reduced matrices have the same property. In particular, all pivot
elements must then be strictly positive and the nonsingularity of A follows. We
mention a useful result for strictly diagonally dominant matrices.

Lemma 7.2.6.
Let A be strictly diagonally dominant by rows, and set

α = min
i
αi, αi := |aii| −

∑

j 6=i

|aij | > 0, i = 1 : n. (7.2.30)

Then A is nonsingular, and ‖A−1‖∞ ≤ α−1.

Proof. By the definition of a subordinate norm (7.1.50) we have

1

‖A−1‖∞
= inf

y 6=0

‖y‖∞
‖A−1y‖∞

= inf
x 6=0

‖Ax‖∞
‖x‖∞

= min
‖x‖∞=1

‖Ax‖∞.

48 Chapter 7. Direct Methods for Solving Linear System

Assume that equality holds in (7.2.30) for i = k. Then

1

‖A−1‖∞
= min

‖x‖∞=1
max

i

∣

∣

∣

∑

j

aijxj

∣

∣

∣ ≥ min
‖x‖∞=1

∣

∣

∣

∑

j

akjxj

∣

∣

∣

≥ |akk| −
∑

j,j 6=k

|akj | = α.

If A is strictly diagonally dominant by columns, then since ‖A‖1 = ‖AT ‖∞ it
holds that ‖A−1‖1 ≤ α−1. If A is strictly diagonally dominant in both rows and
columns, then from ‖A‖2 ≤

√

‖A‖1‖A‖∞ it follows that ‖A−1‖2 ≤ α−1.

7.2.5 Computational Variants

In Gaussian Elimination, as described in Sec. 7.2.3, the kth step consists of modify-
ing the unreduced part of the matrix by an outer product of the vector of multipliers
and the pivot row. Using the equivalence of Gaussian elimination and LU factor-
ization it is easy to see that the the calculations can be arranged in several diferent
ways so that the elements in L and U are determined directly.

For simplicity, we first assume that any row or column interchanges on A have
been carried out in advance. The matrix equation A = LU written in component-
wise form (see (7.2.9))

aij =

r
∑

k=1

likukj , 1 ≤ i, j ≤ n, r = min(i, j),

together with the normalization conditions lii = 1, i = 1 : n, can be thought of as
n2 + n equations for the n2 + n unknown elements in L and U . We can solve these
equations in n steps, k = 1 : n, where in the kth step we use the equations

akj =
k

∑

p=1

lkpupj , j ≥ k, aik =
k

∑

p=1

lipupk, i > k (7.2.31)

to determine the kth row of U and the kth column of L. In this algorithm the main
work is performed in matrix-vector multiplications.

Algorithm 7.2.3 Doolittle’s Algorithm.

for k = 1 : n

for j = k : n

ukj = akj −
k−1
∑

p=1

lkpupj ;

end

for i = k + 1 : n

7.2. Elimination Methods 49

Figure 7.2.2. Computations in the kth step of Doolittle’s method.

lik =
(

aik −
k−1
∑

p=1

lipupk

)

/ukk;

end

lkk = 1;

end

Since the LU factorization is unique this algorithm produces the same factors
L and U as Gaussian elimination. In fact, successive partial sums in the equations

(7.2.31) equal the elements a
(k)
ij , j > k, in Gaussian elimination. It follows that if

each term in (7.2.31) is rounded separately, the compact algorithm is also numeri-
cally equivalent to Gaussian elimination. If the inner products can be accumulated
in higher precision, then the compact algorithm is less affected by rounding errors.
Algorithm 7.2.3 is usually referred to as Doolittle’s algorithm. In Crout’s algorithm
the upper triangular matrix U is normalized to have a unit diagonal. 15

Algorithm 7.2.5 can be modified to include partial pivoting. Changing the
order of operations, we first calculate l̃ik = likukk, i = k : n, and determine the
element of maximum magnitude. The corresponding row is then permuted to pivotal
position. In this row exchange the already computed part of L and remaining part
of A also take part. Next we normalize by setting lkk = 1, which determines lik,
i = 1 : k, and also ukk. Finally, the remaining part of the kth row in U is computed.

It is possible to sequence the computations in Doolittle’s and Crout’s algo-
rithms in many different ways. Indeed any element in (L\U) can be computed as
soon as the corresponding elements in L to the left and in U above have been deter-

15In the days of hand computations these algorithms had the advantage that they did away with
the necessity in Gaussian elimination to write down ≈ n3/3 intermediate results—one for each
multiplication.

50 Chapter 7. Direct Methods for Solving Linear System

mined. For example, three possible orderings are schematically illustrated below,











1 1 1 1 1
2 3 3 3 3
2 4 5 5 5
2 4 6 7 7
2 4 6 8 9











,











1 3 5 7 9
2 3 5 7 9
2 4 5 7 9
2 4 6 7 9
2 4 6 8 9











,











1 3 5 7 9
2 3 5 7 9
4 4 5 7 9
6 6 6 7 9
8 8 8 8 9











.

Here the entries indicate in which step a certain element lij and rij is computed,
so the first example corresponds to the ordering in the algorithm given above.
(Compare the comments after Algorithm 7.2.2.) Note that it is not easy to do
complete pivoting with any of these variants.

The Bordering Method

Before the kth step, k = 1 : n, of the bordering method we have have computed
the LU-factorization A11 = L11U11 of the leading principal submatrix A11 of order
k − 1 of A. To proceed we seek the LU-factorization

(

A11 a1k

aT
k1 αkk

)

=

(

L11 0
lTk1 1

) (

U11 u1k

0 ukk

)

.

Identifying the (1,2)-blocks we find

L11u1k = a1k, (7.2.32)

which is a lower triangular system for u1k. Identifying the (2,1)-blocks and trans-
posing gives

UT
11lk1 = ak1, (7.2.33)

another lower triangular system for lk1. Finally, from the (2,2)-block we get lTk1u1k+
ukk = αkk, or

ukk = αkk − lTk1u1k. (7.2.34)

Figure 7.2.3. Computations in the kth step of the bordering method.

The main work in this variant is done in solving the triangular systems (7.2.32)
and (7.2.33). A drawback of the bordering method is that it cannot be combined
with partial pivoting.

7.2. Elimination Methods 51

The Sweep Methods

In the column sweep method at the kth step the first k columns of L and U in
LU-factorization of A are computed. Assume that we have computed L11, L21, and
U11 in the factorization

(

A11 a1k

A21 a2k

)

=

(

L11 0
L21 l2k

) (

U11 u1k

0 ukk

)

∈ Rn×k.

As in the bordering method, identifying the (1,2)-blocks we find

L11u1k = a1k, (7.2.35)

a lower triangular system for u1k. From the (2,2)-blocks we get L21u1k + l2kukk =
a2k, or

l2kukk = a2k − L21u1k. (7.2.36)

Together with the normalizing condition that the first component in the vector l2k

equals one this determines ukk and l2k.
Partial pivoting can be implemented with this method as follows. When the

right hand side in (7.2.36) has been evaluated we determine the element of maximum
modulus in the vector a2k −L21u1k. We then permute this element to top position
and perform the same row exchanges in LT

21 and the unprocessed part of A.

Figure 7.2.4. Computations in the kth step of the sweep methods. Left:
The column sweep method. Right: The row sweep method.

In the column sweep method L and U are determined column by column. It
possible to determine L and U row by row. In the kth step of this row sweep
method the kth row of A is processed and we write

(

A11 A12

aT
k1 aT

k2

)

=

(

L11 0
lTk1 1

) (

U11 U12

0 uT
2k

)

∈ Rk×n.

Identifying the (2,1)- and (2,2)-blocks we get

UT
11lk1 = ak1, (7.2.37)

and
uT

2k = aT
k2 − lk1U12. (7.2.38)

52 Chapter 7. Direct Methods for Solving Linear System

Note that Doolittle’s method can be viewed as alternating between the two sweep
methods.

Consider now the case when A ∈ Rm×n is a rectangular matrix with rank (A) =
r = min(m,n). Ifm > n it is advantageous to process the matrix column by column.
Then after n steps we have APc = LU , where L is lower trapezoidal,

L =

(

L11

L21

)

∈ Rm×n, (7.2.39)

and U ∈ Rn×n is square upper triangular. If m < n and the matrix is processed
row by row, we have after n steps an LU factorization with L ∈ Rm×m and

U = (U11 U12) ∈ Rm×n

upper trapezoidal.

7.2.6 Computing the Inverse

If the inverse matrix A−1 is known, then the solution of Ax = b can be obtained
through a matrix vector multiplication by x = A−1b. This is theoretically satisfying,
but in most practical computational problems it is unnecessary and inadvisable to
compute A−1. As succinctly expressed by G. E. Forsythe and C. B. Moler [27]:

Almost anything you can do with A−1 can be done without it!

The work required to compute A−1 is about n3 flops, i.e., three times greater
than for computing the LU factorization. (If A is a band matrix, then the savings
can be much more spectacular; see Sec. 7.4.) To solve a linear system Ax = b the
matrix vector multiplication A−1b requires n2 flops. This is exactly the same as for
the solution of the two triangular systems L(Ux) = b resulting from LU factorization
of A. (Note, however, that on some parallel computers matrix multiplication can
be performed much faster than solving triangular systems.)

One advantage of computing the inverse matrix is that A−1 can be used to
get a strictly reliable error estimate for a computed solution x̄. A similar estimate
is not directly available from the LU factorization. However, alternative ways to
obtain error estimates are the use of a condition estimator (Section 7.5.3) or iterative
refinement (Section 7.6.4).

Not only is the inversion approach three times more expensive but if A is
ill-conditioned the solution computed from A−1b usually is much less accurate than
than that computed from the LU factorization. Using LU factorization the residual
vector of the computed solution will usually be of order machine precision even
when A is ill-conditioned.

Nevertheless, there are some applications where A−1 is required, e.g., in some
methods for computing the matrix square root and the logarithm of a matrix; see
Sec. 9.2.4. The inverse of a symmetric positive definite matrix is needed to obtain
estimates of the covariances in regression analysis. However, usually only certain
elements of A−1 are needed and not the whole inverse matrix.

7.2. Elimination Methods 53

We first consider computing the inverse of a lower triangular matrix L. Setting
L−1 = Y = (y1, . . . , yn), we have LY = I = (e1, . . . , en). This shows that the
columns of Y satisfy

Lyj = ej , j = 1 : n.

These lower triangular systems can be solved by forward substitution. Since the
vector ej has (j−1) leading zeros the first (j−1) components in yj are zero. Hence
L−1 is also a lower triangular matrix, and its elements can be computed recursively
from

yjj = 1/ljj, yij =
(

−
i−1
∑

k=j

likykj

)/

lii, i = j + 1 : n, (7.2.40)

Note that the diagonal elements in L−1 are just the inverses of the diagonal elements
of L. If the columns are computed in the order j = 1 : n, then Y can overwrite L
in storage.

Similarly, if U is upper triangular matrix then Z = U−1 is an upper triangular
matrix, whose elements can be computed from:

zjj = 1/ujj, zij =
(

−
j

∑

k=i+1

uikzkj

)/

uii, i = j − 1 : −1 : 1. (7.2.41)

If the columns are computed in the order j = n : −1 : 1, the Z can overwrite U
in storage. The number of flops required to compute L−1 or U−1 is approximately
equal to n3/6. Variants of the above algorithm can be obtained by reordering the
loop indices.

Now let A−1 = X = (x1, . . . , xn) and assume that an LU factorizationA = LU
has been computed. Then

Axj = L(Uxj) = ej , j = 1 : n, (7.2.42)

and the columns of A−1 are obtained by solving n linear systems, where the right
hand sides equal the columns in the unit matrix. Setting (7.2.42) is equivalent to

Uxj = yj , Lyj = ej, j = 1 : n. (7.2.43)

This method for inverting A requires n3/6 flops for inverting L and n3/2 flops for
solving the n upper triangular systems giving a total of n3 flops.

A second method uses the relation

A−1 = (LU)−1 = U−1L−1. (7.2.44)

Since the matrix multiplication U−1L−1 requires n3/3 flops (show this!) the total
work to compute A−1 by the second method method (7.2.44) also is n3 flops. If we
take advantage of that yjj = 1/ljj = 1, and carefully sequence the computations
then L−1, U−1 and finally A−1 can overwrite A so that no extra storage is needed.

There are many other varaints of computing the inverse X = A−1. From
XA = I we have

XLU = I or XL = U−1.

54 Chapter 7. Direct Methods for Solving Linear System

In the Matlab function inv(A), U−1 is first computed by a column oriented algo-
rithm. Then the system XL = U−1 is solved for X . The stability properties of this
and several other different matrix inversion algorithms are analyzed in [21]; see also
Higham [41, Sec. 14.2].

The inverse can also be obtained from the Gauss–Jordan factorization. Using
(7.2.19) where b is taken to be the columns of the unit matrix, we compute

A−1 = D−1M−1
n−1Pn−1 · · ·M−1

2 P2M
−1
1 P1(e1, . . . , en).

Again n3 flops are required if the computations are properly organized. The method
can be arranged so that the inverse emerges in the original array. However, the
numerical properties of this method are not as good as for the methods described
above.

If row interchanges have been performed during the LU factorization, we have
PA = LU , where P = Pn−1 · · ·P2P1 and Pk are transposition matrices. Then
A−1 = (LU)−1P . Hence we obtain A−1 by performing the interchanges in reverse
order on the columns of (LU)−1.

An approximative inverse of a matrix A = I −B can sometimes be computed
from a matrix series expansion. To derive this we form the product

(I −B)(I +B +B2 +B3 + · · · +Bk) = I −Bk+1.

Suppose that ‖B‖ < 1 for some matrix norm. Then it follows that

‖Bk+1‖ ≤ ‖B‖k+1 → 0, k → ∞,

and hence the Neumann expansion

(I −B)−1 = I +B +B2 +B3 + · · · , (7.2.45)

converges to (I−B)−1. (Note the similarity with the Maclaurin series for (1−x)−1.)
Alternatively one can use the more rapidly converging Euler expansion

(I −B)−1 = (I +B)(I +B2)(I +B4) · · · . (7.2.46)

It can be shown by induction that

(I +B)(I +B2) · · · (I +B2k

) = I +B +B2 +B3 + · · ·B2k+1

.

Finally we mention an iterative method for computing the inverse, the Newton–
Schultz iteration

Xk+1 = Xk(2I −AXk) = (2I −AXk)Xk. (7.2.47)

This is an analogue to the iteration xk+1 = xk(2 − axk), for computing the inverse
of a scalar. It can be shown that if X0 = α0A

T and 0 < α0 < 2/‖A‖2
2, then

limk→∞Xk = A−1. Convergence can be slow initially but ultimately quadratic,

Ek+1 = E2
k, Ek = I −AXk or I −XkA.

Since about 2 log2 κ2(A) (see [59]) iterations are needed for convergence it cannot
in general compete with direct methods for dense matrices. However, a few steps
of the iteration (7.2.47) can be used to improve an approximate inverse.

Review Questions 55

Review Questions

1. How many operations are needed (approximately) for

(a) The LU factorization of a square matrix?

(b) The solution of Ax = b, when the triangular factorization of A is known?

2. Show that if the kth diagonal entry of an upper triangular matrix is zero, then
its first k columns are linearly dependent.

3. What is meant by partial and complete pivoting in Gaussian elimination?
Mention two classes of matrices for which Gaussian elimination can be per-
formed stably without any pivoting?

4. What is the LU -decomposition of an n by n matrix A, and how is it related to
Gaussian elimination? Does it always exist? If not, give sufficient conditions
for its existence.

5. How is the LU -decomposition used for solving a linear system? What are the
advantages over using the inverse of A? Give an approximate operation count
for the solution of a dense linear system with p different right hand sides using
the LU -decomposition.

6. Let B be a strictly lower or upper triangular matrix. Prove that the Neumann
and Euler expansions for (I − L)−1 are finite.

Problems

1. (a) Compute the LU factorization of A and det(A), where

A =







1 2 3 4
1 4 9 16
1 8 27 64
1 16 81 256






.

(b) Solve the linear system Ax = b, where b = (2, 10, 44, 190)T .

2. (a) Show that P = (en, . . . , e2, e1) is a permutation matrix and that P =
PT = P−1, and that Px reverses the order of the elements in the vector x.

(b) Let the matrix A have an LU factorization. Show that there is a related
factorization PAP = UL, where U is upper triangular and L lower triangular.

3. In Algorithm 7.2.2 for Gaussian elimination the elements in A are assessed
in row-wise order in the innermost loop over j. If implemented in Fortran
this algorithm may be inefficient since this language stores two-dimensional
arrays by columns. Modify Algorithm 7.2.2 so that the innermost loop instead
involves a fixed column index and a varying row index.

4. What does M−1
j , where Mj is defined in (7.2.17), look like?

56 Chapter 7. Direct Methods for Solving Linear System

5. Compute the inverse matrix A−1, where

A =





2 1 2
1 2 3
4 1 2



 ,

(a) By solving AX = I, using Gaussian elimination with partial pivoting.

(b) By LU factorization and using A−1 = U−1L−1.

7.3 Symmetric Matrices

7.3.1 Symmetric Positive Definite Matrices

Gaussian elimination can be adopted to several classes of matrices of special struc-
ture. As mentioned in Sec. sec7.2.5, one case when Gaussian elimination can be
performed stably without any pivoting is when A is Hermitian or real symmetric
and positive definite. Solving such systems is one of the most important problems
in scientific computing.

Definition 7.3.1.
A matrix A ∈ Cn×n is called Hermitian if A = AH , the conjugate transpose

of A. If A is Hermitian, then the quadratic form (xHAx)H = xHAx is real and A
is said to be positive definite if

xHAx > 0, ∀x ∈ Cn, x 6= 0, (7.3.1)

and positive semidefinite if xTAx ≥ 0, for all x ∈ Rn. Otherwise it is called
indefinite.

It is well known that all eigenvalues of an Hermitian matrix are real. An
equivalent condition for an Hermitian matrix to be positive definite is that all its
eigenvalues are positive

λk(A) > 0, k = 1 : n.

Since this condition can be difficult to verify the following sufficient condition is use-
ful. A Hermitian matrix A, which has positive diagonal elements and is diagonally
dominant

aii >
∑

j 6=i

|aij |, i = 1 : n,

can be shown to be positive definite, since it follows from Gerschgorin’s Theorem
(Theorem 9.3.1) that the eigenvalues of A are all positive.

Clearly a positive definite matrix is nonsingular, since if it were singular there
should be a null vector x 6= 0 such that Ax = 0 and then xHAx = 0. Positive
definite (semidefinite) matrices have the following important property:

Theorem 7.3.2. Let A ∈ Cn×n be positive definite and let X ∈ Cn×p have full
column rank. Then XHAX is positive definite (semidefinite). In particular any

7.3. Symmetric Matrices 57

principal p× p submatrix

Ã =







ai1i1 . . . ai1ip

...
...

aipi1 . . . aipip






∈ Cp×p, 1 ≤ p < n,

is positive definite definite (semidefinite). In particular, taking p = 1, all diagonal
elements in A are real positive (nonnegative).

Proof. Let x 6= 0 and let y = Xx. Then since X is of full column rank y 6= 0
and xH(XHAX)x = yHAy > 0 by the positive definiteness of A. In particular any
principal submatrix of A can be written as XHAX , where the columns of X are
taken as the columns k = ij, j = 1, . . . , p of the identity matrix. The case when A
is positive semidefinite follows similarly.

A Hermitian or symmetric matrix A of oder n has only 1
2n(n+1) independent

elements. If A also is positive definite then symmetry can be preserved in Gaussian
elimination and the number of operations and storage needed can be reduced by half.
Indeed Gauss’s derived his original algorithm for the symmetric positive definite
systems coming from least squares problems (see Chapter 8). We consider below
the special case when A is real and symmetric but all results are easily generalized
to the complex Hermitian case.

Lemma 7.3.3. Let A be a real symmetric matrix. Then if Gaussian elimination
can be carried trough without pivoting the reduced matrices

A = A(1), A(2), . . . , A(n)

are all symmetric.

Proof. Assume that A(k) is symmetric, for some k, where 1 ≤ k < n. Then by
Algorithm 7.2.2 we have after the k-th elimination step

a
(k+1)
ij = a

(k)
ij − lika

(k)
kj = a

(k)
ij − a

(k)
ik

a
(k)
kk

a
(k)
kj = a

(k)
ji −

a
(k)
jk

a
(k)
kk

a
(k)
ki = a

(k+1)
ji ,

k+ 1 ≤ i, j ≤ n. This shows that A(k+1) is also a symmetric matrix, and the result
follows by induction.

A more general result is the following. Partition the Hermitian positive definite
matrix A as

A =

(

A11 A12

AH
12 A22

)

where A11 is a square matrix, Then by Theorem 7.3.2 both A11 and A22 are Her-
mitian positive definite and therefore nonsingular. It follows that the Schur com-
plement of A11 in A, which is

S = A22 −AH
12A

−1
11 A12

58 Chapter 7. Direct Methods for Solving Linear System

exists and is Hermitian. Moreover, for x 6= 0, we have

xH(A22 −AH
12A

−1
11 A12)x = (yH −xH)

(

A11 A12

AH
12 A22

) (

y
−x

)

> 0

where y = A−1
11 A12x, it follows that S is positive definite.

From Lemma 7.3.3 it follows that in Gaussian elimination without pivoting
only the elements in A(k), k = 2 : n, on and below the main diagonal have to
be computed. Since any diagonal element can be brought in pivotal position by
a symmetric row and column interchange, the same conclusion holds if pivots are
chosen arbitrarily along the diagonal.

Assume that the lower triangular part of the symmetric matrix A is given. The
following algorithm computes, if it can be carried through, a unit lower triangular
matrix L = (lik), and a diagonal matrix D = diag(d1, . . . , dn) such that

A = LDLT . (7.3.2)

Algorithm 7.3.1 Symmetric Gaussian Elimination.

for k = 1 : n− 1

dk := a
(k)
kk ;

for i = k + 1 : n

lik := a
(k)
ik /dk;

for j = k + 1 : i

a
(k+1)
ij := a

(k)
ij − likdkljk;

end

end

end

In the last line we have substituted dkljk for a
(k)
jk .

Note that the elements in L and D can overwrite the elements in the lower
triangular part of A, so also the storage requirement is halved to n(n + 1)/2. The
uniqueness of the LDLT factorization follows trivially from the uniqueness of the
LU factorization.

Using the factorization A = LDLT the linear system Ax = b decomposes into
the two triangular systems

Ly = b, LTx = D−1y. (7.3.3)

The cost of solving these triangular systems is about n2 flams.

Example 7.3.1.
It may not always be possible to perform Gaussian elimination on a sym-

metric matrix, using pivots chosen from the diagonal. Consider, for example, the

7.3. Symmetric Matrices 59

nonsingular symmetric matrix

A =

(

0 1
1 ǫ

)

.

If we take ǫ = 0, then both diagonal elements are zero, and symmetric Gaussian
elimination breaks down. If ǫ 6= 0, but |ǫ| ≪ 1, then choosing ǫ as pivot will not be
stable. On the other hand, a row interchange will in general destroy symmetry!

We will prove that Gaussian elimination without pivoting can be carried out
with positive pivot elements if and only if A is real and symmetric positive definite.
(The same result applies to complex Hermitian matrices, but since the modifi-
cations necessary for this case are straightforward, we discuss here only the real
case.) For symmetric semidefinite matrices symmetric pivoting can be used. The
indefinite case requires more substantial modifications, which will be discussed in
Section 7.3.4.

Theorem 7.3.4.
The symmetric matrix A ∈ Rn×n is positive definite if and only if there exists

a unit lower triangular matrix L and a diagonal matrix D with positive elements
such that

A = LDLT , D = diag (d1, . . . , dn),

Proof. Assume first that we are given a symmetric matrix A, for which Algo-
rithm 7.3.1 yields a factorization A = LDLT with positive pivotal elements dk > 0,
k = 1 : n. Then for all x 6= 0 we have y = LTx 6= 0 and

xTAx = xTLDLTx = yTDy > 0.

It follows that A is positive definite.
The proof of the other part of the theorem is by induction on the order n of

A. The result is trivial if n = 1, since then D = d1 = A = a11 > 0 and L = 1. Now
write

A =

(

a11 aT

a Ã

)

= L1D1L
T
1 , L1 =

(

1 0
d−1
1 a I

)

, D1 =

(

d1 0
0 B

)

,

where d1 = a11, B = Ã − d−1
1 aaT . Since A is positive definite it follows that D1

is positive definite, and therefore d1 > 0, and B is positive definite. Since B is of
order (n−1), by the induction hypothesis there exists a unique unit lower triangular
matrix L̃ and diagonal matrix D̃ with positive elements such that B = L̃D̃L̃T . Then
it holds that A = LDLT , where

L =

(

1 0
d−1
1 a L̃

)

, D =

(

d1 0
0 D̃

)

.

60 Chapter 7. Direct Methods for Solving Linear System

Example 7.3.2. The Hilbert matrix Hn ∈ Rn×n with elements

hij = 1/(i+ j − 1), 1 ≤ i, j ≤ n,

is positive definite. Hence, if Gaussian elimination without pivoting is carried out
then the pivotal elements are all positive. For example, for n = 4, symmetric
Gaussian elimination yields the H4 = LDLT , where

D = diag (1, 1/12, 1/180, 1/2800) , L =







1
1/2 1
1/3 1 1
1/4 9/10 3/2 1






.

Theorem 7.3.4 also yields the following useful characterization of a positive
definite matrix.

Theorem 7.3.5. Sylvester’s Criterion
A symmetric matrix A ∈ Rn×n is positive definite if and only if

det(Ak) > 0, k = 1, 2, . . . , n,

where Ak ∈ Rk×k, k = 1, 2 : n, are the leading principal submatrices of A.

Proof. If symmetric Gaussian elimination is carried out without pivoting then

det(Ak) = d1d2 · · · dk.

Hence det(Ak) > 0, k = 1 : n, if and only if all pivots are positive. However, by
Theorem 7.3.2 this is the case if and only if A is positive definite.

In prove a bound on the growth ratio for the symmetric positive definite we
first show the following

Lemma 7.3.6. For a symmetric positive definite matrix A = (aij) ∈ Rn×n the
maximum element of A lies on the diagonal.

Proof. Theorem 7.3.2 and Sylvester’s criterion imply that

0 < det

(

aii aij

aji ajj

)

= aiiajj − a2
ij , 1 ≤ i, j ≤ n.

Hence

|aij |2 < aiiajj ≤ max
1≤i≤n

a2
ii,

from which the lemma follows.

7.3. Symmetric Matrices 61

Theorem 7.3.7.
Let A be symmetric and positive definite. Then Gaussian elimination without

pivoting is backward stable and the growth ratio satisfies ρn ≤ 1.

Proof. In Algorithm 7.3.1 the diagonal elements are transformed in the k:th step
of Gaussian elimination according to

a
(k+1)
ii = a

(k)
ii − (a

(k)
ki)2/a

(k)
kk = a

(k)
ii

(

1 − (a
(k)
ki)2/

(

a
(k)
ii a

(k)
kk

)

)

.

If A is positive definite so are A(k) and A(k+1). Using Lemma 7.3.6 it follows

that 0 < a
(k+1)
ii ≤ a

(k)
ii , and hence the diagonal elements in the successive reduced

matrices cannot increase. Thus we have

max
i,j,k

|a(k)
ij | = max

i,k
a
(k)
ii ≤ max

i
aii = max

i,j
|aij |,

which implies that ρn ≤ 1.

Any matrix A ∈ Rn×n can be written as the sum of a symmetric and a
skew-symmetric part, A = H + S, where

AH = 1
2 (A+AT), AS = 1

2 (A−AT). (7.3.4)

A is symmetric if and only if AS = 0. Sometimes A is called positive definite if its
symmetric part AH is positive definite. If the matrix A has a positive symmetric
part then its leading principal submatrices are nonsingular and Gaussian elimination
can be carried out to completion without pivoting. However, the resulting LU
factorizing may not be stable as shown by the example

(

ǫ 1
−1 ǫ

)

=

(

1
−1/ǫ 1

)(

ǫ 1
ǫ+ 1/ǫ

)

, (ǫ > 0).

These result can be extended to complex matrices with positive definite Hermitian
part AH = 1

2 (A+AH), for which its holds that xHAx > 0, for all nonzero x ∈ Cn.
Of particular interest are complex symmetric matrices, arising in computational
electrodynamics, of the form

A = B + iC, B,C ∈ Rn×n, (7.3.5)

where B = AH and C = AS both are symmetric positive definite. It can be shown
that for this class of matrices ρn < 3, so LU factorization without pivoting is stable
(see [30]).

7.3.2 Cholesky Factorization

Let A be a symmetric positive definite matrix A. Then the LDLT factorization
(7.3.2) exists and D > 0. Hence we can write

A = LDLT = (LD1/2)(LD1/2)T , D1/2 = diag (
√
d1, . . . ,

√
dn). (7.3.6)

62 Chapter 7. Direct Methods for Solving Linear System

Defining the upper triangular matrix R := D1/2LT we obtain the factorization

A = RTR. (7.3.7)

If we here take the diagonal elements of L to be positive it follows from the unique-
ness of the LDLT factorization that this factorization is unique. The factorization
(7.3.7) is called the Cholesky factorization of A. and R is called the Cholesky
factor of A.16

The Cholesky factorization is obtained if in symmetric Gaussian elimination

(Algorithm 7.3.1) we set dk = lkk = (a
(k)
kk)1/2. This gives the outer product version

of Cholesky factorization in which in the kth step, the reduced matrix is modified
by a rank-one matrix

A(k+1) = A(k) − lkl
T
k ,

where lk denotes the column vector of multipliers.
In analogy to the compact schemes for LU factorization (see Section 7.2.6) it

is possible to arrange the computations so that the elements in the Cholesky factor
R = (rij) are determined directly. The matrix equation A = RTR with R upper
triangular can be written

aij =

i
∑

k=1

rkirkj =

i−1
∑

k=1

rkirkj + riirij , 1 ≤ i ≤ j ≤ n. (7.3.8)

This is n(n + 1)/2 equations for the unknown elements in R. We remark that for
i = j this gives

max
i
r2ij ≤

j
∑

k=1

r2kj = aj ≤ max
i
aii,

which shows that the elements in R are bounded maximum diagonal element in A.
Solving for rij from the corresponding equation in (7.3.8), we obtain

rij =
(

aij −
i−1
∑

k=1

rkirkj

)

/rii, i < j, rjj =
(

ajj −
j−1
∑

k=1

r2kj

)1/2

.

If properly sequenced, these equations can be used in a recursive fashion to compute
the elements in R. For example the elements in R can be determined one row or
one column at a time.

Algorithm 7.3.2 Cholesky Algorithm; column-wise order

for j = 1 : n

for i = 1 : j − 1

16André-Louis Cholesky (1875–1918) was a French military officer involved in geodesy and sur-
veying in Crete and North Africa just before World War I. He developed the algorithm named
after him and his work was posthumously published by a fellow officer, Benoit in 1924.

7.3. Symmetric Matrices 63

rij =
(

aij −
i−1
∑

k=1

rkirkj

)

/rii;

end

rjj =
(

ajj −
j−1
∑

k=1

r2kj

)1/2

;

end

The column-wise ordering has the advantage of giving the Cholesky factors of
all leading principal submatrices of A. An algorithm which computes the elements
of R in row-wise order is obtained by reversing the two loops in the code above.

Algorithm 7.3.3 Cholesky Algorithm; row-wise order.

for i = 1 : n

rii =
(

aii −
i−1
∑

k=1

r2ki

)1/2

;

for j = i+ 1 : n

rij =
(

aij −
i−1
∑

k=1

rkirkj

)

/rii;

end
end

These two versions of the Cholesky algorithm are not only mathematically
equivalent but also numerically equivalent, i.e., they will compute the same Cholesky
factor, taking rounding errors into account. In the Cholesky factorization only











1 2 4 7 11
3 5 8 12

6 9 13
10 14

15











Figure 7.3.1. The mapping of array-subscript of an upper triangular ma-
trix of order 5.

elements in the upper triangular part of A are referenced and only these elements
need to be stored. Since most programming languages only support rectangular
arrays this means that the lower triangular part of the array holding A is not used.
One possibility is then to use the lower half of the array to store RT and not
overwrite the original data. Another option is to store the elements of the upper
triangular part of A column-wise in a vector, see Fig. 7.3.1. which is known as
packed storage. This data is then and overwritten by the elements of R during
the computations. Using packed storage complicates somewhat index computations
but is useful when economizing storage is worthwhile.

64 Chapter 7. Direct Methods for Solving Linear System

Some applications lead to a linear systems where A ∈ Rn×n is a symmetric
positive semidefinite matrix (xTAx ≥ 0 ∀x 6= 0) with rank(A) = r < n. One
example is rank deficient least squares problems; see Section 8.5. Another example
is when the finite element method is applied to a problem where rigid body motion
occurs, which implies r ≤ n − 1. In the semidefinite case a Cholesky factorization
still exists, but symmetric pivoting needs to be incorporated. In the kth elimination

step a maximal diagonal element a
(k)
ss in the reduced matrix A(k) is chosen as pivot,

i.e.,

a(k)
ss = max

k≤i≤n
a
(k)
ii . (7.3.9)

This pivoting strategy is easily implemented in Algorithm 7.3.1, the outer product
version. Symmetric pivoting is also beneficial when A is close to a rank deficient
matrix.

Since all reduced matrices are positive semidefinite their largest element lies
on the diagonal. Hence diagonal pivoting is equivalent to complete pivoting in
Gaussian elimination. In exact computation the Cholesky algorithm stops when all
diagonal elements in the reduced matrix are zero. This implies that the reduced
matrix is the zero matrix.

If A has rank r < n the resulting Cholesky factorization has the upper trape-
zoidal form

PTAP = RTR, R = (R11 R12) (7.3.10)

where P is a permutation matrix and R11 ∈ Rr×r with positive diagonal elements.
The linear system Ax = b, or PTAP (PTx) = PT b, then becomes

RTRx̃ = b̃, x̃ = PTx, b̃ = PT b.

Setting z = Rx̃ the linear system reads

RT z =

(

RT
11

RT
12

)

z =

(

b̃1
b̃2

)

,

and from the first r equations we obtain z = R−T
11 b̃1. Substituting this in the last

n− r equations we get

0 = RT
12z − b̃2 = (RT

12R
−T
11 −I)

(

b̃1
b̃2

)

.

These equations are equivalent to b ⊥ N (A) and express the condition for the linear
system Ax = b to be consistent. If they are not satisfied a solution does not exist.
It remains to solve LT x̃ = z, which gives

R11x̃1 = z −R12x̃2.

For an arbitrarily chosen x̃2 we can uniquely determine x̃1 so that these equations
are satisfied. This expresses the fact that a consistent singular system has an infinite
number of solutions. Finally the permutations are undone to obtain x = P x̃.

7.3. Symmetric Matrices 65

Rounding errors can cause negative elements to appear on the diagonal in
the Cholesky algorithm even when A is positive semidefinite. Similarly, because of
rounding errors the reduced matrix will in general be nonzero after r steps even when
rank (A) = r. The question arises when to terminate the Cholesky factorization of
a semidefinite matrix. One possibility is to continue until

max
k≤i≤n

a
(k)
ii ≤ 0,

but this may cause unnecessary work in eliminating negligible elements. Further
discussion of this aspect is postponed until Chapter 8.

7.3.3 Inertia of Symmetric Matrices

Let A ∈ Cn×n be an Hermitian matrix. The inertia of A is defined as the number
triple in(A) = (π, ν, δ) of positive, negative, and zero eigenvalues of A. If A is
positive definite matrix and Ax = λx, we have

xHAx = λxHx > 0.

Hence all eigenvalues must be positive and the inertia is (n, 0, 0).
Hermitian matrices arise naturally in the study of quadratic forms ψ(x) =

xHAx. By the coordinate transformation x = Ty this quadratic form is transformed
into

ψ(Ty) = yHÂy, Â = THAT.

The mapping of A onto THAT is called a congruence transformation of A, and
we say that A and Â are congruent. (Notice that a congruence transformation
with a nonsingular matrix means a transformation to a coordinate system which
is usually not rectangular.) Unless T is unitary these transformations do not, in
general, preserve eigenvalues. However, Sylvester’s famous law of inertia says that
the signs of eigenvalues are preserved by congruence transformations.

Theorem 7.3.8. Sylvester’s Law of Inertia If A ∈ Cn×n is symmetric and T ∈
Cn×n is nonsingular then A and Â = THAT have the same inertia.

Proof. Since A and Â are Hermitian there exist unitary matrices U and Û such
that

UHAU = D, ÛHÂÛ = D̂,

where D = diag (λi) and D̂ = diag (λ̂i) are diagonal matrices of eigenvalues. By
definition we have in(A) = in(D), in(Â) = in(D̂), and hence, we want to prove that
in(D) = in(D̂), where

D̂ = SHDS, S = UHT Û.

Assume that π 6= π̂, say π > π̂, and that the eigenvalues are ordered so that
λj > 0 for j ≤ π and λ̂j > 0 for j ≤ π̂. Let x = Sx̂ and consider the quadratic form

ψ(x) = xHDx = x̂HD̂x̂, or

ψ(x) =
n

∑

j=1

λj |ξj |2 =
n

∑

j=1

λ̂j |ξ̂j |2.

66 Chapter 7. Direct Methods for Solving Linear System

Let x∗ 6= 0 be a solution to the n− π + π̂ < n homogeneous linear relations

ξj = 0, j > π, ξ̂j = (S−1x)j = 0, j ≤ π̂.

Then

ψ(x∗) =

π
∑

j=1

λj |ξ∗j |2 > 0, ψ(x∗) =

n
∑

j=π̂

λ̂j |ξ̂∗j |2 ≤ 0.

This is a contradiction and hence the assumption that π 6= π̂ is false, so A and Â
have the same number of positive eigenvalues. Using the same argument on −A it
follows that also ν = ν̂, and since the number of eigenvalues is the same δ = δ̂.

Let A ∈ Rn×n be a real symmetric matrix and consider the quadratic equation

xTAx− 2bx = c, A 6= 0. (7.3.11)

The solution sets of this equation are sometimes called conical sections. If b = 0,
then the surface has its center at the origin reads xTAx = c. The inertia of A
completely determines the geometric type of the conical section.

Sylvester’s theorem tells that the geometric type of the surface can be de-
termined without computing the eigenvalues? Since we can always multiply the
equation by −1 we can assume that there are at least one positive eigenvalues.
Then, for n = 2 there are three possibilities:

(2, 0, 0) ellipse; (1, 0, 1) parabola; (1, 1, 0) hyperbola.

In n dimensions there will be n(n+1)/2 cases, assuming that at least one eigenvalue
is positive.

7.3.4 Symmetric Indefinite Matrices

As shown by Example 7.3.1, the LDLT factorization of a symmetric indefinite
matrix, although efficient computationally, may not exist and can be unstable. This
is true even when symmetric row and column interchanges are used, to select at
each stage the largest diagonal element in the reduced matrix as pivot. One stable
way of factorizing an indefinite matrix is of course to compute an unsymmetric
LU factorization using Gaussian elimination with partial pivoting. However, this
factorization does not give the inertia of A and we give up the savings of a factor
one half in d storage.

The following example shows that in order to enable a stable LDLT factor-
ization for a symmetric indefinite matrix A, it is necessary to consider a block
factorization where D is block diagonal with also 2 × 2 diagonal blocks..

Example 7.3.3.
The symmetric matrix

A =

(

ǫ 1
1 ǫ

)

, 0 < ǫ≪ 1,

7.3. Symmetric Matrices 67

is indefinite since det(A) = λ1λ2 = ǫ1−1 < 0. If we compute the LDLT factorization
of A without pivoting we obtain

A =

(

1 0
ǫ−1 1

) (

ǫ 0
0 ǫ− ǫ−1

) (

1 ǫ−1

0 1

)

.

which shows that there is unbounded element growth. However, A is well condi-
tioned with inverse

A−1 =
1

ǫ2 − 1

(

ǫ 1
1 ǫ

)

, 0 < ǫ≪ 1.

It is quite straightforward to generalize Gaussian elimination to use any non-
singular 2 × 2 principal submatrix as pivot. By a symmetric permutation this
submatrix is brought to the upper left corner, and the permuted matrix partitioned
as

PAPT =

(

A11 A12

AT
12 A22

)

, A11 =

(

a11 a21

a21 a22

)

.

Then the Schur complement of A11, S = A22 − AT
12A

−1
11 A12, exists where

A−1
11 =

1

δ12

(

a22 −a21

−a21 a11

)

, δ12 = det(A11) = a11a22 − a2
21. (7.3.12)

We obtain the symmetric block factorization

(

A11 A12

AT
12 A22

)

=

(

I 0
L I

) (

A11 0
0 S

) (

I LT

0 I

)

, (7.3.13)

where L = AT
12A

−1
11 . This determines the first two columns of a unit lower triangular

matrix L = L21 = A21A
−1
11 , in an LDLT factorization of A. The block A22 is

transformed into the symmetric matrix A
(3)
22 = A22 − L21A

T
21 with components

a
(3)
ij = aij − li1a1j − li2a2j , 2 ≤ j ≤ i ≤ n. (7.3.14)

It can be shown that A
(3)
22 is the same reduced matrix as if two steps of Gaussian

elimination were taken, first pivoting on the element a12 and then on a21.
A similar reduction is used if 2 × 2 pivots are taken at a later stage in the

factorization. Ultimately a factorization A = LDLT is computed in which D is
block diagonal with in general a mixture of 1 × 1 and 2 × 2 blocks, and L is unit
lower triangular with lk+1,k = 0 when A(k) is reduced by a 2 × 2 pivot. Since the
effect of taking a 2×2 step is to reduce A by the equivalent of two 1×1 pivot steps,
the amount of work must be balanced against that. The part of the calculation
which dominates the operation count is (7.3.14), and this is twice the work as for
an 1 × 1 pivot. Therefore the leading term in the operations count is always n3/6,
whichever type of pivots is used.

68 Chapter 7. Direct Methods for Solving Linear System

The main issue then is to find a pivotal strategy that will give control of
element growth without requiring too much search. One possible strategy is com-
parable to that of complete pivoting. Consider the first stage of the factorization
and set

µ0 = max
ij

|aij | = |apq|, µ1 = max
i

|aii| = |arr|.

Then if
µ1/µ0 > α = (

√
17 + 1)/8 ≈ 0.6404,

the diagonal element arr is taken as an 1 × 1 pivot. Otherwise the 2 × 2 pivot.
(

app aqp

aqp aqq

)

, p < q,

is chosen. In other words if there is a diagonal element not much smaller than
the element of maximum magnitude this is taken as an 1 × 1 pivot. The magical
number α has been chosen so as to minimize the bound on the growth per stage of
elements of A, allowing for the fact that a 2 × 2 pivot is equivalent to two stages.
The derivation, which is straight forward but tedious (see Higham [41, Sec. 11.1.1])
is omitted here.

With this choice the element growth can be shown to be bounded by

ρn ≤ (1 + 1/ρ)n−1 < (2.57)n−1. (7.3.15)

This exponential growth may seem alarming, but the important fact is that the
reduced matrices cannot grow abruptly from step to step. No example is known
where significant element growth occur at every step. The bound in (7.3.15) can
be compared to the bound 2n−1, which holds for Gaussian elimination with partial
pivoting. The elements in L can be bounded by 1/(1−α) < 2.781 and this pivoting
strategy therefore gives a backward stable factorization.

Since the complete pivoting strategy above requires the whole active submatrix
to be searched in each stage, it requires O(n3) comparisons. The same bound
for element growth (7.3.15) can be achieved using the following partial pivoting
strategy due to Bunch–Kaufman [11]. For simplicity of notations we restrict our
attention to the first stage of the elimination. All later stages proceed similarly.
First determine the off-diagonal element of largest magnitude in the first column,

λ = |ar1| = max
i6=1

|ai1|.

If |a11| ≥ ρλ, then take a11 as pivot. Else, determine the largest off-diagonal element
in column r,

σ = max
1≤i≤n

|air|, i 6= r.

If |a11| ≥ ρλ2/σ, then again take a11 as pivot, else if |arr| ≥ ρσ, take arr as pivot.
Otherwise take as pivot the 2 × 2 principal submatrix

(

a11 a1r

a1r arr

)

.

7.3. Symmetric Matrices 69

Note that at most 2 columns need to be searched in each step, and at most O(n2)
comparisons are needed in all.

Normwise backward stability can be shown to hold also for the Bunch–Kaufman
partial pivoting strategy. However, it is no longer true that the elements of L are
bounded independently of A. The following example (Higham [41, Sec. 11.1.2])
shows that for partial pivoting L is unbounded:

A =





0 ǫ 0
ǫ 0 1
0 1 1



 =





1
0 1
ǫ−1 0 1









0 ǫ
ǫ 0

1









1 0 ǫ−1

1 0
1



 . (7.3.16)

Note that whenever a 2 × 2 pivot is used, we have

a11arr ≤ ρ2|a1r|2 < |a1r|2.

Hence with both pivoting strategies any 2 × 2 block in the block diagonal matrix
D has a negative determinant δ1r = a11arr − a2

1r < 0 and by Sylvester’s Theorem
corresponds to one positive and one negative eigenvalue. Hence a 2×2 pivot cannot
occur if A is positive definite and in this case all pivots chosen by the Bunch–
Kaufman strategy will be 1 × 1.

For solving a linear system Ax = b the LDLT factorization produced by the
Bunch–Kaufman pivoting strategy is satisfactory. For certain other applications
the possibility of a large L factor is not acceptable. A bounded L factor can be
achieved with the modified pivoting strategy suggested in [4]. This symmetric
pivoting is roughly similar to rook pivoting and has a total cost of between O(n2)
and O(n3) comparisons. Probabilistic results suggest that on the average the cost
is only O(n2). In this strategy a search is performed until two indices r and s have
been found such that the element ars bounds in modulus the other off-diagonal
elements in the r and s columns (rows). Then either the 2 × 2 pivot Drs or the
largest in modulus of the two diagonal elements as an 1×1 pivot is taken, according
to the test

max(|arr|, |ass|) ≥ α|ars|.
Aasen [1] has given an algorithm that for a symmetric matrix A ∈ Rn×n

computes the factorization
PAPT = LTLT , (7.3.17)

where L is unit lower triangular and T symmetric tridiagonal.
None of the algorithms described here preserves the band structure of the

matrix A. In this case Gaussian elimination with partial pivoting can be used
but as remarked before this will destroy symmetry and does not reveal the inertia.
For the special case of a tridiagonal symmetric indefinite matrices an algorithm for
computing an LDLT factorization will be given in Sec. 7.4.3.

A block LDLT factorization can also be computed for a real skew-symmetric
matrix A. Note that AT = −A implies that such a matrix has zero diagonal
elements. Further, since

(xTAx)T = xTATx = −xTAx,

70 Chapter 7. Direct Methods for Solving Linear System

it follows that all nonzero eigenvalues come in pure imaginary complex conjugate
pairs. In the first step of the factorization if the first column is zero there is nothing
to do. Otherwise we look for an off-diagonal element ap,q, p > q such that

|ap,q| = max{ max
1<i≤n

|ai,1|, max
1<i≤n

|ai,2|},

and take the 2 × 2 pivot
(

0 −ap,q

ap,q 0

)

.

It can be shown that this pivoting the growth ratio is bounded by ρn ≤ (
√

3)n−2,
which is smaller than for Gaussian elimination with partial pivoting for a general
matrix.

Review Questions

1. (a) Give two necessary and sufficient conditions for a real symmetric matrix
A to be positive definite.

(b) Show that if A is symmetric positive definite so is its inverse A−1.

2. What simplifications occur in Gaussian elimination applied to a symmetric,
positive definite matrix?

3. What is the relation of Cholesky factorization to Gaussian elimination? Give
an example of a symmetric matrix A for which the Cholesky decomposition
does not exist.

4. Show that if A is skew-symmetric, then iA is Hermitian.

5. Show that the Cholesky factorization is unique for positive definite matrices
provided R is normalized to have positive diagonal entries.

6. (a) Formulate and prove Sylvester’s law of inertia.

(b) Show that for n = 3 there are six different geometric types of conical
sections xTAx− 2bTx = c, provided that A 6= 0 and is normalized to have at
least one positive eigenvalue.

Problems

1. If A is a symmetric positive definite matrix how should you compute xTAx
for a given vector x?

2. Show that if A is symmetric and positive definite then |aij | ≤ (aii + ajj)/2.

3. Show by computing the Cholesky factorization A = LLT that the matrix

A =







10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10







7.4. Banded Linear Systems 71

is positive definite.

4. The Hilbert matrix Hn ∈ Rn×n with elements

aij = 1/(i+ j − 1), 1 ≤ i, j ≤ n,

is symmetric positive definite for all n. Denote by H̄4 the corresponding matrix
with elements rounded to five decimal places, and compute its Cholesky factor
L̄. Then compute the difference (L̄L̄T − Ā) and compare it with (A− Ā).

5. Let A + iB be Hermitian and positive definite, where A,B ∈ Rn×n. Show
that the real matrix

C =

(

A −B
B A

)

is symmetric and positive definite. How can a linear system (A+iB)(x+iy) =
b+ ic be solved using a Cholesky factorization of C?

6. Implement the Cholesky factorization using packed storage for A and R.

7.4 Banded Linear Systems

7.4.1 Banded Matrices

Linear systems Ax = b where the matrix A is banded arise in problems where
each variable xi is coupled by an equation only to a few other variables xj such
that |j − i| is small. We make the following definition (note that it applies also to
matrices which are not square):

We recall from Definition 7.1.1 that a matrixA is said to have upper bandwidth
r and lower bandwidth s if

aij = 0, j > i+ r, aij = 0, i > j + s,

respectively. This means that the number of non-zero diagonals above and below the
main diagonal are r and s respectively. The maximum number of nonzero elements
in any row is then w = r + s+ 1, which is the bandwidth of A.

For a matrix A ∈ Rm×n which is not square we define the bandwidth as

w = max
1≤i≤m

{j − k + 1 | aijaik 6= 0}.

Note that the bandwidth of a matrix depends on the ordering of its rows and
columns. An important, but hard, problem is to find optimal orderings that mini-
mize the bandwidth. However, there are good heuristic algorithms that can be used
in practice and give almost optimal results; see Section 7.6.3.

It is convenient to introduce some additional notations for manipulating band
matrices.17

17These notations are taken from Matlab .

72 Chapter 7. Direct Methods for Solving Linear System

Definition 7.4.1.
If a = (a1, a2, . . . , an−r)

T is a column vector with n − r components then
A = diag (a, k), |k| < n, denotes a square matrix of order n with the elements of a
on its kth diagonal; k = 0 is the main diagonal; k > 0 is above the main diagonal;
k < 0 is below the main diagonal.

If A is a square matrix of order n, then diag (A, k) ∈ R(n−k), |k| < n, is the
column vector formed from the elements of the kth diagonal of A.

Assume that A and B are banded matrices of order n, which both have a small
bandwidth compared to n. Then, since there are few nonzero elements in the rows
and columns of A and B the usual algorithms for forming the product AB are not
effective on vector computers. We now give an algorithm for multiplying matrices
by diagonals, which overcomes this drawback.

Lemma 7.4.2.
Let A = diag (a, r) and B = diag (b, s) and set C = AB. If |r + s| ≥ n then

C = 0; otherwise C = diag (c, r+s), where the elements of the vector c ∈ R(n−|r+s|)

are obtained by pointwise multiplication of shifted vectors a and b:

c =































(a1br+1, . . . , an−r−sbn−s)
T , if r, s ≥ 0,

(a|s|+1b1, . . . , an−|r|bn−|r+s|)
T , if r, s ≤ 0.

(0, . . . , 0, a1b1, . . . , an−sbn−s)
T , if r < 0, s > 0, r + s ≥ 0.

(0, . . . , 0, a1b1, . . . , an−|r|bn−|r|)
T , if r < 0, s > 0, r + s < 0.

(a1b|r+s|+1, . . . , an−rbn−|s|, 0, . . . , 0)T , if r > 0, s < 0, r + s ≥ 0.
(ar+1b1, . . . , an−rbn−|s|, 0, . . . , 0)T , if r > 0, s < 0, r + s < 0.

(7.4.1)
Note that when rs < 0, zeros are added at the beginning or end to get a vector c of
length n− |r + s|.

The number of cases in this lemma looks a bit forbidding, so to clarify the
situation a bit more we consider a specific case.

Example 7.4.1.
Let A and B be tridiagonal matrices of size 5 × 5

A =











a1 c1
b1 a2 c2

b2 a3 c3
b3 a4 c4

b4 a5











, B =











d1 f1
e1 d2 f2

e2 d3 f3
e3 d4 f4

e4 d5











.

Then C = AB will be a banded matrix with upper and lower bandwidth equal to
two. The five diagonals of C are

diag (C, 0) = (a1d1, a2d2, a3d3, a4d4, a5d5)

+ (0, b1f1, b2f2, b3f3, b4f4)

+ (c1e1, c2e2, c3e3, c4e4, 0),

7.4. Banded Linear Systems 73

diag (C, 1) = (a1f1, a2f2, a3f3, a4f4)

+ (c1d2, c2d3, c3d4, c4d5),

diag (C,−1) = (b1d1, b2d2, b3d3, b4d4)

+ (a2e1, a3e2, a4e3, a5e4),

diag (C, 2) = (c1f2, c2f3, c3f4),

diag (C,−2) = (b2e1, b3e2, b4e3).

The number of operations are exactly the same as in the conventional schemes, but
only 32 = 9 pointwise vector multiplications are required.

Lemma 7.4.3.
Let A,B ∈ Rn×n have lower (upper) bandwidth r and s respectively. Then the

product AB has lower (upper) bandwidth r + s.

7.4.2 LU Factorization of Banded Matrices

A matrix A for which all nonzero elements are located in consecutive diagonals is
called a band matrix.

Many applications give rise to linear systems Ax = b, where the nonzero
elements in the matrix A are located in a band centered along the principal diagonal.
Such matrices are called band matrices and are the simplest examples of sparse
matrices, i.e., matrices where only a small proportion of the n2 elements are nonzero.
Such matrices arise frequently in, for example, the numerical solution of boundary
value problems for ordinary and partial differential equations.

Several classes of band matrices that occur frequently have special names.
Thus, a matrix for which r = s = 1 is called tridiagonal, if r = 0, s = 1 it is
called (lower) bidiagonal etc. For example, the matrix















a11 a12

a21 a22 a23

a31 a32 a33 a34

a42 a43 a44 a45

a53 a54 a55 a56

a64 a65 a66















has r = 1, s = 2 and w = 4.
Band matrices are well-suited for Gaussian elimination, since if no pivoting

is required the band structure is preserved. Recall that pivoting is not needed for
stability, e.g., when A is diagonally dominant.

Theorem 7.4.4. Let A be a band matrix with upper bandwidth r and lower band
width s. If A has an LU -decomposition A = LU , then U has upper bandwidth r
and L lower bandwidth s.

74 Chapter 7. Direct Methods for Solving Linear System

Proof. The factors L and U are unique and can be computed, for example, by
Doolittle’s method (7.2.15). Assume that the first k − 1 rows of U and columns of
L have bandwidth r and s, that is, for p = 1 : k − 1

lip = 0, i > p+ s, upj = 0, j > p+ r. (7.4.2)

The proof is by induction in k. The assumption is trivially true for k = 1. Since
akj = 0, j > k + r we have from (7.2.9) and (7.4.2)

ukj = akj −
k−1
∑

p=1

lkpupj = 0 − 0 = 0, j > k + r.

Similarly it follows that lik = 0, i > k+ s, which completes the induction step.

A band matrix A ∈ Rn×n may be stored by diagonals in an array of dimension
n× (r + s+ 1) or (r + s+ 1) × n. For example, the matrix above can be stored as

∗ ∗ a11 a12

∗ a21 a22 a23

a31 a32 a33 a34

a42 a43 a44 a45

a53 a54 a55 a56

a64 a65 a66 ∗

, or

∗ a12 a23 a34 a45 a56

a11 a22 a33 a44 a55 a66

a21 a32 a43 a54 a65 ∗
a31 a42 a53 a64 ∗ ∗

.

Notice that except for a few elements indicated by asterisks in the initial and final
rows, only nonzero elements of A are stored. For example, passing along a row in
the second storage scheme above moves along a diagonal of the matrix, and the
columns are aligned.

For a general band matrix Algorithm 7.2.2, Gaussian elimination without
pivoting, should be modified as follows to operate only on nonzero elements: The
algorithms given below are written as if the matrix was conventionally stored. It
is a useful exercise to rewrite them for the case when A, L, and U are stored by
diagonals!

Algorithm 7.4.1 Banded Gaussian Elimination.
Let A =∈ Rn×n be a given matrix with upper bandwidth r and lower bandwidth
s. The following algorithm computes the LU factorization of A, provided it exists.
The element aij is overwritten by lij if i > j and by uij otherwise.

for k = 1 : n− 1

for i = k + 1 : min(k + s, n)

lik := a
(k)
ik /a

(k)
kk ;

for j = k + 1 : min(k + r, n)

a
(k+1)
ij := a

(k)
ij − lika

(k)
kj ;

end

end

end

7.4. Banded Linear Systems 75

An operation count shows that this algorithm requires t flams, where

t =











nr(s+ 1) − 1
2rs

2 − 1
6r

3, if r ≤ s;

ns(s+ 1) − 2
3s

3, if r = s;

ns(r + 1) − 1
2sr

2 − 1
6s

3, if r > s.

Whenever r ≪ n or s≪ n this is much less than the n3/3 flams required in the full
case.

Analogous savings can be made in forward- and back-substitution. Let L and
U be the triangular factors computed by Algorithm 7.4.2. The solution of the two
banded triangular systems Ly = b and Ux = y are obtained from

yi = bi −
i−1
∑

max(1,i−s)

lijyj , i = 1 : n

xi :=
(

yi −
min(i+r,n)

∑

j=i+1

uijxj

)

/uii, i = n : (−1) : 1.

These algorithms require ns− 1
2s

2 and (n− r
2)(r + 1) flops, respectively. They are

easily modified so that y and x overwrites b in storage.
Unless A is diagonally dominant or symmetric positive definite, partial piv-

oting should be used. The pivoting will cause the introduction of elements outside
the band. This is illustrated below for the case when s = 2 and r = 1 . The first
step of the elimination is shown, where it is assumed that a31 is chosen as pivot and
therefore rows 1 and 3 interchanged:

a31 a32 a33 a34

a21 a22 a23

a11 a12

a42 a43 a44 a45

a53 a54 a55 a56

· · ·

=⇒

u11 u12 u13 u14

l21 a
(2)
22 a

(2)
23 a

(2)
24

l31 a
(2)
32 a

(2)
33 a

(2)
34

a42 a43 a44 a45

a53 a54 a55 a56

· · ·

.

where fill-in elements are shown in boldface. Hence the upper bandwidth of U may
increase to r+s. The matrix L will still have only s elements below the main diago-
nal in all columns but no useful band structure. This can be seen from the example
above where, e.g., the elements l21 and l31 may be subject to later permutations,
destroying the band-structure of the first column.

Example 7.4.2.
A class of matrices with unsymmetric band structure is upper (lower) Hes-

senberg matrices18 for which s = 1 (r = 1). These are of particular interest

18Karl Hessenberg (1904–1959) German mathematician and engineer.

76 Chapter 7. Direct Methods for Solving Linear System

in connection with unsymmetric eigenproblems. An upper Hessenberg matrix of
order five has the structure

H =











h11 h12 h13 h14 h15

h21 h22 h23 h24 h25

0 h32 h33 h34 h35

0 0 h43 h44 h45

0 0 0 h54 h55











.

Performing Gaussian elimination the first step will only affect the first two rows of
the matrix. The reduced matrix is again Hessenberg and all the remaining steps are
similar to the first. If partial pivoting is used then in the first step either h11 or h21

will be chosen as pivot. Since these rows have the same structure the Hessenberg
form will be preserved during the elimination. Clearly only t = 1

2n(n+ 1) flams are
needed. Note that with partial pivoting the elimination will not give a factorization
PA = LU with L lower bidiagonal. Whenever we pivot, the interchanges should
be applied also to L, which will spread out the elements. Therefore L will be lower
triangular with only one nonzero off-diagonal element in each column. However, it
is more convenient to leave the elements in L in place.

If A ∈ Rn×n is Hessenberg then ρn ≤ n with partial pivoting. This follows
the since at the start of the k stage row k + 1 of the reduced matrix has not been
changed and the elements the pivot row has elements of modulus at most k times
the largest element of H .

In the special case when A is a symmetric positive definite banded matrix with
upper and lower bandwidth r = s, the factor L in the Cholesky factorization A =
LLT has lower bandwidth r. From Algorithm 7.3.2 we easily derive the following
banded version:

Algorithm 7.4.2 Band Cholesky Algorithm, column-wise Order.

for j = 1 : n

p = max(1, j − r);

for i = p : j − 1

rij =
(

aij −
i−1
∑

k=p

rkirkj

)

/rii;

end

rjj =
(

ajj −
j−1
∑

k=p

r2kj

)1/2

;

end

If r ≪ n this algorithm requires about 1
2nr(r+3) flops and n square roots. As input

we just need the upper triangular part of A, which can be stored in an n× (r + 1)
array.

7.4. Banded Linear Systems 77

7.4.3 Tridiagonal Linear Systems

A matrix of the form

A =













a1 c2
b2 a2 c3

. . .
. . .

. . .

bn−1 an−1 cn
bn an













. (7.4.3)

is called tridiagonal. Note that the 3n− 2 nonzero elements in A are conveniently
stored in three vectors a, c, and d. A is said to be irreducible if bi and ci are nonzero
for i = 2 : n. Let A be reducible, say ck = 0. Then A can be written as a lower
block triangular form

A =

(

A1 0
L1 A2

)

,

where A1 and A2 are tridiagonal. If A1 or A2 is reducible then this blocking can be
applied recursively until a block form with irreducible tridiagonal blocks is obtained..

If Gaussian elimination with partial pivoting is applied to A then a factoriza-
tion PA = LU is obtained, where L has at most one nonzero element below the
diagonal in each column and U has upper bandwidth two (cf. the Hessenberg case
in Example 7.4.2). If A is diagonally dominant, then no pivoting is requires and
the factorization A = LU exists. By Theorem 7.4.4 it has the form

A = LU =















1
γ2 1

γ3
. . .
. . . 1

γn 1



























α1 c2
α2 c3

. . .
. . .

αn−1 cn
αn













. (7.4.4)

By equating elements in A and LU it is verified that the upper diagonal in U equals
that in A, and for the other elements in L and U we obtain the recursions

α1 = a1, γk = bk/αk−1, αk = ak − γkck, k = 2 : n. (7.4.5)

Note that the elements γk and αk can overwrite bk and ak, respectively. The solution
to the system Ax = f can then be computed by solving Ly = f by Ux = y by back-
and forward-substitution

y1 = f1, yi = fi − γiyi−1, i = 2 : n, (7.4.6)

xn = yn/αn, xi = (yi − ci+1xi+1)/αi, i = n− 1 : 1. (7.4.7)

The total number of flops is about 1.5n for the factorization and 2.5n for the solu-
tion.

If A is tridiagonal then it is easily proved by induction that ρn ≤ 2 with partial
pivoting. This result is a special case of a more general result.

78 Chapter 7. Direct Methods for Solving Linear System

Theorem 7.4.5. [Bothe [10]] If A ∈ Cn×n has upper and lower bandwidth p then
the growth factor in GE with partial pivoting satisfies

ρn ≤ 22p−1 − (p− 1)2p−2.

In particular for a tridiagonal matrix (p = 1) ρn ≤ 2.

When A is symmetric positive definite and tridiagonal (7.4.3)

A =













a1 b2
b2 a2 b3

. . .
. . .

. . .

bn−1 an−1 bn
bn an













, (7.4.8)

we can write the factorization

A = LDLT , D = diag (α1, . . . , αn), (7.4.9)

where L is as in (7.4.4). The algorithm then reduces to

α1 = a1, γk = bk/αk−1, αk = ak − γkbk, k = 2 : n. (7.4.10)

Sometimes it is more convenient to write

A = UTD−1U, D = diag (a1, . . . , an).

In the scalar case U is given by (7.4.4) (with ck = bk), and the elements in U and
D are computed from

α1 = a1, αk = ak − b2k/αk−1. k = 2 : n. (7.4.11)

The recursion (7.4.5) for the LU factorization of a tridiagonal matrix is highly
serial. An algorithm for solving tridiagonal systems, which has considerable inherent
parallelism, is cyclic reduction also called odd-even reduction. This is the most
preferred method for solving large tridiagonal systems on parallel computers.

The basic step in cyclic reduction is to eliminate all the odd unknowns to
obtain a reduced tridiagonal system involving only even numbered unknowns. This
process is repeated recursively until a system involving only a small order of un-
knowns remains. This is then solved separately and the other unknowns can then be
computed in a back-substitution process. We illustrate this process on a tridiagonal
system Ax = f of order n = 23 − 1 = 7. If P is a permutation matrix such that
P (1, 2, . . . , 7) = (1, 3, 5, 7, 2, 4, 6)T the transformed system PAPT (Px) = PT f , will
have the form





















a1 c2
a3 b3 c4

a5 b5 c6
a7 b7

b2 c3 a2

b4 c5 a4

b6 c7 a6









































x1

x3

x5

x7

x2

x4

x6





















=





















f1
f3
f5
f7
f2
f4
f6





















.

7.4. Banded Linear Systems 79

It is easily verified that after eliminating the odd variables from the even equations
the resulting system is again tridiagonal. Rearranging these as before the system
becomes





a′2 c′4
a′6 b′6

b′4 c′6 a′4



 =





x2

x6

x4



 =





f ′
2

f ′
6

f ′
4



 .

After elimination we are left with one equation in one variable

a′′4x4 = f ′′
4 .

Solving for x4 we can compute x2 and x6 from the first two equations in the previous
system. Substituting these in the first four equations we get the odd unknowns
x1, x3, x5, x7. Clearly this scheme can be generalized. For a system of dimension
n = 2p − 1, p steps are required in the reduction. Note, however, that it is possible
to stop at any stage, solve a tridiagonal system and obtain the remaining variables
by substitution. Therefore it can be used for any dimension n.

The derivation shows that cyclic reduction is equivalent to Gaussian elimina-
tion without pivoting on a reordered system. Therefore it is stable if the matrix
is diagonally dominant or symmetric positive definite. In contrast to the conven-
tional algorithm there is some fill during the elimination and about 2.7 times more
operations are needed.

Example 7.4.3.
Consider the linear system Ax = b, where A is a symmetric positive definite

tridiagonal matrix. Then A has positive diagonal elements and the symmetrically
scaled matrix DAD, where D = diag (d1, . . . , dn), di = 1/

√
ai, has unit diagonal

elements. After an odd-even permutation the system has the 2 × 2 block form

(

I F
FT I

) (

x
y

) (

c
d

)

, (7.4.12)

with F lower bidiagonal. After block elimination the Schur complement system
becomes

(I − FTF)x = d− FT c.

Here I − FTF is again a positive definite tridiagonal matrix. Thus the process can
be repeated recursively.

Boundary value problems, where the solution is subject to periodic boundary
conditions, often lead to matrices of the form

B =















a1 c2 b1
b2 a2 c3

. . .
. . .

. . .

bn−1 an−1 cn
c1 bn an















, (7.4.13)

80 Chapter 7. Direct Methods for Solving Linear System

which are tridiagonal except for the two corner elements b1 and c1. We now consider
the is real symmetric case, bi = ci, i = 1 : n Partitioning B in 2 × 2 block form as
above, we seek a factorization

B =

(

A u
vT an

)

=

(

L 0
yT 1

) (

U z
0 dn

)

where u = b1e1+cnen−1, v = c1e1+bnen−1. Multiplying out we obtain the equations

A = LU, u = Lz, vT = yTU, an = yT z + dn

Assuming that no pivoting is required the factorization A = LU , where L and U
are bidiagonal, is obtained using (7.4.5). The vectors y and z are obtained from the
lower triangular systems

Lz = b1e1 + cnen−1, UT y = c1e1 + cnen−1,

and dn = an − yT z. Note that y and z will be full vectors.
Cyclic reduction can be applied to systems Bx = f , where B has the tridiago-

nal form in (7.4.13). If n is even the reduced system obtained after eliminating the
odd variables in the even equations will again have the form (7.4.13). For example,
when n = 23 = 8 the reordered system is

























a1 c2 b1
a3 b3 c4

a5 b5 c6
a7 b7 c8

b2 c3 a2

b4 c5 a4

b6 c7 a6

c1 b8 a8

















































x1

x3

x5

x7

x2

x4

x6

x8

























=

























f1
f3
f5
f7
f2
f4
f6
f8

























.

If n = 2p the process can applied recursively. After p steps one equation in a single
unknown is obtained. Cyclic reduction here does not require extra storage and also
has a slightly lower operation count than ordinary Gaussian elimination.

We finally consider the case when A is a symmetric indefinite tridiagonal
matrix. It would be possible to use LU factorization with partial pivoting, but this
destroys symmetry and gives no information about the inertia of A. Instead a block
factorization A = LDLT can be computed using no interchanges as follows. Set
σ = max1≤i≤n |aij | and α = (

√
5 − 1)/2 ≈= 0.62. In the first stage we take a11 as

pivot if σ|a11| ≥ a2
21. Otherwise we take the 2 × 2 pivot

(

a11 a12

a21 a22

)

.

This factorization can be shown to be normwise backward stable and is a good way
to solve such symmetric indefinite tridiagonal linear systems.

7.4. Banded Linear Systems 81

7.4.4 Inverses of Banded Matrices

It is important to note that the inverse A−1 of a banded matrix in general has no zero
elements. Hence one should never attempt to explicitly compute the elements of the
inverse of a band matrix. Since banded systems often have very large dimensions
even storing the elements in A−1 may be infeasible!

The following theorem states that the lower triangular part of the inverse of
an upper Hessenberg matrix has a very simple structure.

Theorem 7.4.6.
Let H =∈ Rn×n be an upper Hessenberg matrix with nonzero elements in the

subdiagonal, hi+1,i 6= 0, i = 1 : n− 1. Then there are vectors p and q such that

(H−1)ij = piqj , i ≥ j. (7.4.14)

Proof. See Ikebe [46]

A tridiagonal matrix A is both lower and upper Hessenberg. Hence if A is
irreducible it follows that there are vectors x, y, p and q such that

(A−1)ij =

{

xiyj, i ≤ j,
piqj , i ≥ j.

(7.4.15)

Note that x1 6= 0 and yn 6= 0, since otherwise the entire first row or last column
of A−1 would be zero, contrary to the assumption of the nonsingularity of A. The
vectors x and y (as well as p and q) are unique up to scaling by a nonzero factor.
There is some redundancy in this representation since xiyi = piqi. It can be shown
that 3n−2 parameters are needed to represent the inverse, which equals the number
of nonzero elements in A.

The following algorithm has been suggested by N. J. Higham to compute the
vectors x, y, p and q:

1. Compute the LU factorization of A.

2. Use the LU factorization to solve for the vectors y and z, where AT y = e1
and Az = en. Similarly solve for p and r, where Ap = e1 and AT r = en.

3. Set q = p−1
n r and x = y−1

n z.

This algorithm is not foolproof and can fail because of overflow.

Example 7.4.4. Let A be a symmetric, positive definite tridiagonal matrix with
elements a1 = 1,

ai = 2, bi = ci = −1, i = 2 : 5.

82 Chapter 7. Direct Methods for Solving Linear System

Although the Cholesky factor L of A is bidiagonal the inverse

A−1 =











5 4 3 2 1
4 4 3 2 1
3 3 3 2 1
2 2 2 2 1
1 1 1 1 1











.

is full. Here x = p, y = q, can be determined up to a scaling factor from the first
and last columns of A−1.

The inverse of any banded matrix has a special structure related to low rank
matrices. The first study of inverse of general banded matrices was Asplund [5].

Review Questions

1. Give an example of matrix multiplication by diagonals.

2. (a) If a is a column vector what is meant by diag (a, k)?

(b) If A is a square matrix what is meant by diag (A, k)?

3. (a) Let A ∈ Rn×n be a banded matrix with upper bandwidth p and lower
bandwidth q. Show how A can be efficiently stored when computing the LU
factorization.

(b) Assuming that the LU factorization can be carried out without pivoting,
what are the structures of the resulting L and U factors of A?

(c) What can you say about the structure of the inverses of L and U?

4. Let A ∈ Rn×n be a banded matrix with upper bandwidth p and lower band-
width q. Assuming that the LU factorization of A can be carried out without
pivoting, roughly how many operations are needed? You need only give the
dominating term when p, q ≪ n.

5. Give a bound for the growth ratio ρn in Gaussian elimination with partial
pivoting, when the matrix A is: (a) Hessenberg; (b) tridiagonal.

Problems

1. (a) Let A,B ∈ Rn×n have lower (upper) bandwidth r and s respectively. Show
that the product AB has lower (upper) bandwidth r + s.

(b) An upper Hessenberg matrix H is a matrix with lower bandwidth r = 1.
Using the result in (a) deduce that the product of H and an upper triangular
matrix is again an upper Hessenberg matrix.

2. Show that an irreducible nonsymmetric tridiagonal matrix A can be written
A = DT , where T is symmetric tridiagonal and D = diag (dk) is diagonal with

Problems 83

elements

d1 = 1, dk =

k
∏

j=2

cj/bj, k = 2 : n. (7.4.16)

3. (a) Let A ∈ Rn×n be a symmetric, tridiagonal matrix such that det(Ak) 6= 0,
k = 1 : n. Then the decomposition A = LDLT exists and can be computed
by the formulas given in (7.4.10). Use this to derive a recursion formula for
computing det(Ak), k = 1 : n.

(b) Determine the largest n for which the symmetric, tridiagonal matrix

A =















2 1.01
1.01 2 1.01

1.01
. . .

. . .
. . .

. . . 1.01
1.01 2















∈ Rn×n

is positive definite.

4. (a) Show that for λ ≥ 2 it holds that B = µLLT , where

B =















µ −1
−1 λ −1

−1
. . .

. . .
. . . λ −1

−1 λ















, L =















1
−σ 1

−σ . . .
. . . 1

−σ 1















,

and
µ = λ/2 ± (λ2/4 − 1)1/2, σ = 1/µ.

Note that L has constant diagonals.

(b) Suppose we want to solve and equation system Ax = b, where the matrix
A differs from B in the element (1,1),

A = B + δe1e
T
1 , δ = λ− µ, eT

1 = (1, 0, . . . , 0).

Show, using the Sherman–Morrison formula (7.1.26), that the solution x =
A−1b can be computed from

x = y − γL−T f, γ = δ(eT
1 y)/(µ+ δfT f)

where y and f satisfies µLLTy = b, Lf = e1.

5. Consider the symmetric tridiagonal matrix

An =















4 1
1 4 1

1
. . .

. . .
. . . 4 1

1 4















.

84 Chapter 7. Direct Methods for Solving Linear System

For n = 20, 40 use the Cholesky factorization of An and Higham’s algorithm
to determine vectors x and y so that (A−1

n)ij = xiyj for i, j = 1 : n. Verify
that there is a range of approximately θn in the size of the components of
these vectors, where θ = 2 +

√
3.

5. (a) Write a function implementing the multiplication C = AB, where A =
diag (a, r) and B = diag (b, s) both consist of a single diagonal. Use the
formulas in Lemma 7.4.2.

(b) Write a function for computing the product C = AB of two banded
matrices using the w1w2 calls to the function in (a), where and w2 are the
bandwidth of A and B, respectively.

6. Derive expressions for computing δk, k = 1 : n− 1 and αn in the factorization
of the periodic tridiagonal matrix A in (7.4.13).

7. Let B be a symmetric matrix of the form (7.4.13). Show that

B = T + σuuT , u = (1, 0, . . . , 0,−1)T .

where T is a certain symmetric, tridiagonal matrix. What is σ and T . Derive
an algorithm for computing L by modifying the algorithm (7.4.10).

7.5 Perturbation Theory and Condition Estimation

7.5.1 Component-Wise Perturbation Analysis

In Sec. 7.1.8 bounds were derived for the perturbation in the solution x to a linear
system Ax = b, when the data A and b are perturbed. Sharper bounds can often
be obtained in case if the data is subject to the perturbations, which are bounded
component-wise. Assume that

|δaij | ≤ ωeij , |δbi| ≤ ωfi. i, j = 1 : n,

where eij ≥ 0 and fi ≥ 0 are known. These bounds can be written as

|δA| ≤ ωE, |δb| ≤ ωf, (7.5.1)

where the absolute value of a matrix A and vector b is defined by

|A|ij = (|aij |), |b|i = (|bi|).

The partial ordering “≤” for matrices A,B and vectors x, y, is to be interpreted
component-wise19 It is easy to show that if C = AB, then

|cij | ≤
n

∑

k=1

|aik| |bkj |,

and hence |C| ≤ |A| |B|. A similar rule |Ax| ≤ |A| |x| holds for matrix-vector
multiplication.

For deriving the componentwise bounds we need the following result.
19Note that A ≤ B in other contexts means that B − A is positive semidefinite.

7.5. Perturbation Theory and Condition Estimation 85

Lemma 7.5.1.
Let F ∈ Rn×n be a matrix for which ‖ |F | ‖ < 1. Then the matrix (I − |F |) is

nonsingular and
|(I − F)−1| ≤ (I − |F |)−1. (7.5.2)

Proof. The nonsingularity follows form Lemma 7.1.15. Using the identity (I −
F)−1 = I + F (I − F)−1 we obtain

|(I − F)−1| ≤ I + |F ||(I − F)−1|

from which the inequality (7.5.2) follows.

Theorem 7.5.2.
Consider the perturbed linear system (A + δA)(x + δx) = b + δb, where A is

nonsingular. Assume that δA and δb satisfy the componentwise bounds in (7.5.1)
and that

ω‖ |A−1|E ‖ < 1.

Then (A+ δA) is nonsingular and

‖δx‖ ≤ ω

1 − ωκE(A)
‖ |A−1|(E |x| + f)‖, (7.5.3)

where κE(A) = ‖ |A−1|E‖.

Proof. Taking absolute values in (7.1.62) gives

|δx| ≤ |(I +A−1δA)−1| |A−1|(|δA||x| + |δb|). (7.5.4)

Using Lemma 7.5.1 it follows from the assumption that the matrix (I − |A−1|δA|)
is nonsingular and from (7.5.4) we get

|δx| ≤ (I − |A−1||δA|)−1 |A−1|(|δA||x| + |δb|).

Using the componentwise bounds in (7.5.1) we get

|δx| ≤ ω(I − ω|A−1|E)−1|A−1|(E|x| + f), (7.5.5)

provided that ωκE(A) < 1 Taking norms in (7.5.5) and using Lemma 7.1.15 with
F = A−1δA proves (7.5.3).

Taking E = |A| and f = |b| in (7.5.1) corresponds to bounds for the component-
wise relative errors in A and b,

|δA| ≤ ω|A|, |δb| ≤ ω|b|. (7.5.6)

For this special case Theorem 7.5.2 gives

‖δx‖ ≤ ω

1 − ωκ|A|(A)
‖ |A−1|(|A| |x| + |b|) ‖, (7.5.7)

86 Chapter 7. Direct Methods for Solving Linear System

where
κ|A|(A) = ‖ |A−1||A| ‖, (7.5.8)

(or cond (A)) is the Bauer–Skeel condition number of the matrix A. Note that
since |b| ≤ |A| |x|, it follows that

‖δx‖ ≤ 2ω‖ |A−1||A| |x| ‖ +O(ω2) ≤ 2ωκ|A|(A)‖x‖ +O(ω2).

If Â = DA, b̂ = Db where D > 0 is a diagonal scaling matrix, then |Â−1| =

|A−1||D−1|. Since the perturbations scale similarly, δÂ = DδA, δb̂ = Dδb, it follows
that

|Â−1||δÂ| = |A−1||δA|, |Â−1||δb̂| = |A−1||δb|.
Thus the bound in (7.5.7) and also κ|A|(A) are invariant under row scalings.

For the l1-norm and l∞-norm it holds that

κ|A|(A) = ‖ |A−1||A| ‖ ≤ ‖ |A−1| ‖ ‖ |A| ‖ = ‖A−1‖ ‖A‖ = κ(A),

i.e., the solution of Ax = b is no more badly conditioned with respect to the
component-wise relative perturbations than with respect to normed perturbations.
On the other hand, it is possible for κ|A|(A) to be much smaller than κ(A).

The analysis in Sec. 7.1.8 may not be adequate, when the perturbations in
the elements of A or b are of different magnitude, as illustrated by the following
example.

Example 7.5.1.
The linear system Ax = b, where

A =

(

1 104

1 10−4

)

, b =

(

104

1

)

,

has the approximate solution x ≈ (1, 1)T . Assume that the vector b is subject to a
perturbation δb such that |δb| ≤ (1, 10−4)T . Using the ∞-norm we have ‖δb‖∞ = 1,
‖A−1‖∞ = 1 (neglecting terms of order 10−8). Theorem 7.1.18 then gives the gross
overestimate ‖δx‖∞ ≤ 1.

Multiplying the first equation by 10−4, we get an equivalent system Âx = b̂
where

Â =

(

10−4 1
1 10−4

)

, b̂ =

(

1
1

)

.

The perturbation in the vector b is now |δb̂| ≤ 10−4(1, 1)T , and from ‖δb̂‖∞ = 10−4,
‖(Â)−1‖∞ = 1, we get the sharp estimate ‖δx‖∞ ≤ 10−4. The original matrix A
is only artificially ill-conditioned. By a scaling of the equations we obtain a
well-conditioned system. How to scale linear systems for Gaussian elimination is a
surprisingly intricate problem, which is further discussed in Sec. 7.6.3.

Consider the linear systems in Example 7.5.1. Neglecting terms of order 10−8

we have

|Â−1||Â| =

(

10−4 1
1 10−4

) (

10−4 1
1 10−4

)

=

(

1 2 · 10−4

2 · 10−4 1

)

,

7.5. Perturbation Theory and Condition Estimation 87

By the scaling invariance cond (A) = cond (Â) = 1 + 2 · 10−4 in the ∞-norm.
Thus the componentwise condition number correctly reveals that the system is
well-conditioned for componentwise small perturbations.

7.5.2 Backward Error Bounds

We now derive a simple a posteriori bound for the backward error of a computed
solution x̄. These bounds are usually much sharper than a priori bounds and hold
regardless of the algorithm used to compute x̄.

Given x̄, there are an infinite number of perturbations δA and δb for which
(A+ δA)x̄ = b+ δb holds. Clearly δA and δb must satisfy

δAx̄ − δb = b−Ax̄ = r,

where r = b−Ax̄ is the residual vector corresponding to the computes solution. An
obvious choice is to take δA = 0, and δb = −r. If we instead take δb = 0, we get
the following result.

Theorem 7.5.3.
Let x̄ be a purported solution to Ax = b, and set r = b−Ax̄. Then if

δA = rx̄T /‖x̄‖2
2, (7.5.9)

x̄ satisfies (A+ δA)x̄ = b and this has the smallest l2-norm ‖δA‖2 = ‖r‖2/‖x̄‖2 of
any such δA.

Proof. Clearly x̄ satisfies (A + δA)x̄ = b if and only if δAx̄ = r. For any such δA
it holds that ‖δA‖2‖x̄‖2 ≥ ‖r‖2 or ‖δA‖2 ≥ ‖r‖2/‖x̄‖2. For the particular δA given
by (7.5.9) we have δAx̄ = rx̄T x̄/‖x̄‖2 = r. From

‖rx̄T ‖2 = sup
‖y‖2=1

‖rx̄T y‖2 = ‖r‖2 sup
‖y‖2=1

|x̄T y| = ‖r‖2‖x̄‖2,

it follows that ‖δA‖2 = ‖r‖2/‖x̄‖2 and hence the δA in (7.5.9) is of minimum
l2-norm.

Similar bounds for the l1-norm and l∞-norm are given in Problem 5.
It is often more useful to consider the component-wise backward error ω

of a computed solution. The following theorem shows that also this can be cheaply
computed

Theorem 7.5.4. (Oettli and Prager [1964]).
Let r = b−Ax̄, E and f be nonnegative and set

ω = max
i

|ri|
(E|x̄| + f)i

, (7.5.10)

88 Chapter 7. Direct Methods for Solving Linear System

where 0/0 is interpreted as 0. If ω 6= ∞, there is a perturbation δA and δb with

|δA| ≤ ωE, |δb| ≤ ωf, (7.5.11)

such that
(A+ δA)x̄ = b+ δb. (7.5.12)

Moreover, ω is the smallest number for which such a perturbation exists.

Proof. From (7.5.10) we have

|ri| ≤ ω(E|x̄| + f)i,

which implies that r = D(E|x̄|+f), where |D| ≤ ωI. It is then readily verified that

δA = DE diag
(

sign(x̄1), . . . , sign(x̄n)
)

, δb = −Df

are the required backward perturbations.
Further, given perturbations δA and δb satisfying equations (7.5.11)–(7.5.12)

for some ω we have

|r| = |b−Ax̄| = |δAx̄ − δb| ≤ ω(E|x̄| + f).

Hence ω ≥ |ri|/(E|x̄| + f)i, which shows that ω as defined by (7.5.10) is optimal.

In particular we can take E = |A|, and f = |b| in Theorem 7.1.18, to get an
expression for the component-wise relative backward error ω of a computed solution.
This can then be used in (7.5.6) or (7.5.7) to compute a bound for ‖δx‖.

Example 7.5.2. Consider the linear system Ax = b, where

A =

(

1.2969 0.8648
0.2161 0.1441

)

, b =

(

0.8642
0.1440

)

.

Suppose that we are given the approximate solution x̄ = (0.9911,−0.4870)T . The
residual vector corresponding to x̄ is very small,

r = b−Ax̄ = (−10−8, 10−8)T .

However, not a single figure in x̄ is correct! The exact solution is x = (2,−2)T ,
as can readily verified by substitution. Although a zero residual implies an exact
solution, a small residual alone does not necessarily imply an accurate solution.
(Compute the determinant of A and then the inverse A−1!)

It should be emphasized that the system in this example is contrived. In
practice one would be highly unfortunate to encounter such an ill-conditioned 2× 2
matrix.20

20As remarked by a prominent expert in error-analysis “Anyone unlucky enough to encounter
this sort of calamity has probably already been run over by a truck”!

7.5. Perturbation Theory and Condition Estimation 89

7.5.3 Estimating Condition Numbers

The perturbation analysis has shown that the norm-wise relative perturbation in
the solution x of a linear system can be bounded by

‖A−1‖ (‖δA‖ + ‖δb‖/‖x‖) , (7.5.13)

or, in case of componentwise analysis, by

‖ |A−1(| |E|x| + f |) ‖. (7.5.14)

To compute these upper bounds exactly is costly since 2n3 flops are required to
compute A−1, even if the LU factorization of A is known (see Section 7.2.5). In
practice, it will will suffice with an estimate of ‖A−1‖ (or ‖ |A−1| ‖, which need not
be very precise.

The first algorithm for condition estimation to be widely used was suggested
by Cline, Moler, Stewart, and Wilkinson [14]. It is based on computing

y = (ATA)−1u = A−1(A−Tu) (7.5.15)

by solving the two systems ATw = u and Ay = w. A lower bound for ‖A−1‖ is then
given by

‖A−1‖ ≥ ‖y‖/‖w‖. (7.5.16)

If an LU factorization of A is known this only requires O(n2) flops. The computa-
tion of y = A−Tw involves solving the two triangular systems

UT v = u, LTw = v.

Similarly the vector y and w are obtained by solving the triangular systems

Lz = w, Uy = z,

For (7.5.16) to be a reliable estimate the vector u must be carefully chosen so that
it reflects any possible ill-conditioning of A. Note that if A is ill-conditioned this
is likely to be reflected in U , whereas L, being unit upper triangular, tends to be
well-conditioned. To enhance the growth of v we take ui = ±1, i = 1 : n, where the
sign is chosen to maximize |vi|. The final estimate is taken to be

1/κ(A) ≤ ‖w‖/(‖A‖‖y‖), (7.5.17)

since then a singular matrix is signaled by zero rather than by ∞ and overflow
is avoided. We stress that (7.5.17) always underestimates κ(A). Usually the l1-
norm is chosen because the matrix norm ‖A‖1 = maxj ‖aj‖1 can be computed
from the columns aj of A. This is often referred to as the LINPACK condition
estimator. A detailed description of an implementation is given in the LINPACK
Guide, Dongarra et al. [18, 1979, pp. 11-13]. In practice it has been found that the
LINPACK condition estimator seldom is off by a factor more than 10. However,
counter examples can be constructed showing that it can fail. This is perhaps to
be expected for any estimator using only O(n2) operations.

90 Chapter 7. Direct Methods for Solving Linear System

Equation (7.5.15) can be interpreted as performing one step of the inverse
power method on ATA using the special starting vector u. As shown in Sec-
tion 10.4.2 this is a standard method for computing the largest singular value
σ1(A

−1) = ‖A−1‖2. An alternative to starting with the vector u is to use a random
starting vector and perhaps carrying out several steps of inverse iteration with ATA.

An alternative 1-norm condition estimator has been devised by Hager [36] and
improved by Higham [39]. This estimates

‖B‖1 = max
j

n
∑

i=1

|bij |,

assuming that Bx and BTx can be computed for an arbitrary vector x. It can also
be used to estimate the infinity norm since ‖B‖∞ = ‖BT ‖1. It is based on the
observation that

‖B‖1 = max
x∈S

‖Bx‖1, S = {x ∈ Rn | ‖x‖1 ≤ 1}.

is the maximum of a convex function f(x) = ‖Bx‖1 over the convex set S. This
implies that the maximum is obtained at an extreme point of S, i.e. one of the 2n
points

{±ej | j = 1 : n},
where ej is the jth column of the unit matrix. If yi = (Bx)i 6= 0, ∀i, then f(x) is
differentiable and by the chain rule the gradient is

∂f(x) = ξTB, ξi =

{

+1 if yi > 0,
−1 if yi < 0.

If yi = 0, for some i, then ∂f(x) is a subgradient of f at x. Note that the subgradient
is not unique. Since f is convex, the inequality

f(y) ≥ f(x) + ∂f(x)(y − x), ∀x, y ∈ Rn.

is always satisfied.
The algorithm starts with the vector x = n−1e = n−1(1, 1, . . . , 1)T , which is

on the boundary of S. We set ∂f(x) = zT , where z = BT ξ, and find an index j for
which |zj| = maxi |zi|. It can be shown that |zj | ≤ zTx then x is a local maximum.
If this inequaity is satisfied then we stop. By the convexity of f(x) and the fact
that f(ej) = f(−ej) we conclude that f(ej) > f(x). Replacing x by ej we repeat
the process. Since the estimates are strictly increasing each vertice of S is visited
at most once. The iteration must therefore terminate in a finite number of steps.
It has been observed that usually it terminates after just four iterations with the
exact value of ‖B‖1.

We now show that the final point generated by the algorithm is a local max-
imum. Assume first that (Bx)i 6= 0 for all i. Then f(x) = ‖Bx‖1 is linear in a
neighborhood of x. It follows that x is a local maximum of f(x) over S if and only
if

∂f(x)(y − x) ≤ 0, ∀y ∈ S.

7.5. Perturbation Theory and Condition Estimation 91

If y is a vertex of S, then ∂f(x)y = ±∂f(x)i, for some i since all but one component
of y is zero. If |∂f(x)i| ≤ ∂f(x)x, for all i, it follows that ∂f(x)(y − x) ≤ 0
whenever y is a vertex of S. Since S is the convex hull of its vertices it follows
that ∂f(x)(y − x) ≤ 0, for all y ∈ S. Hence x is a locla maximum. In case
some component of Bx is zero the above argument must be slightly modified; see
Hager [36].

Algorithm 7.5.1 Hager’s 1-norm estimator.

x = n−1e

repeat

y = Bx

ξ = sign (y)

z = BT ξ

if ‖z‖∞ ≤ zTx

γ = ‖y‖1; quit

end

x = ej,where|zj| = ‖z‖∞
end

To use this algorithm to estimate ‖A−1‖1 = ‖ |A−1| ‖1, we take B = A−1. In
each iteration we are then required to solve systems Ay = x and AT z = ξ.

It is less obvious that Hager’s estimator can also be used to estimate the
componentwise analysis 7.5.13). The problem is then to estimate a n expression
of the form ‖ |A−1|g‖∞, for a given vector g > 0. Using a clever trick devised by
Arioli, Demmel and Duff [3], this can be reduced to estimating ‖B‖1 where

B = (A−1G)T , G = diag (g1, . . . , gn) > 0.

We have g = Ge where e = (1, 1, . . . , 1)T and hence

‖ |A−1|g‖∞ = ‖ |A−1|Ge‖∞ = ‖ |A−1G|e‖∞ = ‖ |A−1G|‖∞ = ‖(A−1G)T ‖1,

where in the last step we have used that the ∞ norm is absolute (see Sec. 7.1.5).
Since Bx and BT y can be found by solving linear systems involving AT and A the
work involved is similar to that of the LINPACK estimator. This together with
ω determined by (7.5.10) gives an approximate bound for the error in a computed
solution x̄. Hager’s condition estimator is used Matlab .

We note that the unit lower triangular matrices L obtained from Gaussian
elimination with pivoting are not arbitrary but their off-diagonal elements satisfy
|lij | ≤ 1. When Gaussian elimination without pivoting is applied to a row diagonally
dominant matrix it gives a row diagonally dominant upper triangular factor U ∈
Rn×n satisfying

|uii| ≥
n

∑

j=i+1

|uij |, i = 1 : n− 1. (7.5.18)

and it holds that cond(U) ≤ 2n− 1; (see [41, Lemma 8.8].

92 Chapter 7. Direct Methods for Solving Linear System

Definition 7.5.5. For any triangular matrix T the comparison matrix is

M(T) = (mij), mij =

{

|tii|, i = j;
−|tij |, i 6= j;

Review Questions

1. How is the condition number κ(A) of a matrix A defined? How does κ(A)
relate to perturbations in the solution x to a linear system Ax = b, when A
and b are perturbed? Outline roughly a cheap way to estimate κ(A).

Problems

1. (a) Compute the inverse A−1 of the matrix A in Problem 6.4.1 and determine
the solution x to Ax = b when b = (4, 3, 3, 1)T .

(b) Assume that the vector b is perturbed by a vector δb such that ‖δb‖∞ ≤
0.01. Give an upper bound for ‖δx‖∞, where δx is the corresponding pertur-
bation in the solution.

(c) Compute the condition number κ∞(A), and compare it with the bound
for the quotient between ‖δx‖∞/‖x‖∞ and ‖δb‖∞/‖b‖∞ which can be derived
from (b).

2. Show that the matrix A in Example 7.5.2 has the inverse

A−1 = 108

(

0.1441 −0.8648
−0.2161 1.2969

)

,

and that κ∞ = ‖A‖∞‖A−1‖∞ = 2.1617 · 1.5130 · 108 ≈ 3.3 · 108, which shows
that the system is “perversely” ill-conditioned.

3. (Higham [41, p. 144]) Consider the triangular matrix

U =





1 1 0
0 ǫ ǫ
0 0 1



 .

Show that cond (U) = 5 but cond (UT) = 1+2/ǫ. This shows that a triangular
system can be much worse conditioned than its transpose.

4. Let the matrix A ∈ Rn×n be nonnegative, and solve ATx = e, where e =
(1, 1, . . . , 1)T . Show that then ‖A−1‖1 = ‖x‖∞.

5. Let x̄ be a computed solution and r = b − Ax̄ the corresponding residual.
Assume that δA is such that (A+δA)x̄ = b holds exactly. Show that the error
of minimum l1-norm and l∞-norm respectively are given by

δA = r(s1, . . . , sn)/‖x̄‖1, δA = r(0, . . . , 0, sm, 0, . . . , 0)/‖x̄‖∞,
where ‖x̄‖∞ = |xm|, and si = 1, if xi ≥ 0; si = −1, if xi < 0.

7.6. Rounding Error Analysis 93

7.6 Rounding Error Analysis

7.6.1 Floating Point Arithmetic

In this section we first recall some basic results for floating point computations. For
a detailed treatment of IEEE floating point standard and floating point arithmetic
we refer Sections 2.2–2.3, Volume I.

If x and y are two floating point numbers, we denote by

fl (x+ y), f l (x− y), f l (x · y), f l (x/y)

the results of floating addition, subtraction, multiplication, and division, which the
machine stores in memory (after rounding or chopping). We will in the following
assume that underflow or overflow does not occur. and that the following standard
model for the arithmetic holds:

Definition 7.6.1.
Assume that x, y ∈ F . Then in the standard model it holds

fl (x op y) = (x op y)(1 + δ), |δ| ≤ u, (7.6.1)

where u is the unit roundoff and “op” stands for one of the four elementary opera-
tions +, −, ·, and /.

The standard model holds with the default rounding mode for computers
implementing the IEEE 754 standard. In this case we also have

fl (
√
x) =

√
x(1 + δ), |δ| ≤ u, (7.6.2)

Bounds for roundoff errors for basic vector and matrix operations can easily
be derived (Wilkinson [66, pp. 114–118]) using the following basic result:

Lemma 7.6.2. [N. J. Higham [41, Lemma 3.1]]
Let |δi| ≤ u, ρi = ±1, i = 1:n, and

n
∏

i=1

(1 + δi)
ρi = 1 + θn.

If nu < 1, then |θn| < γn, where γn = nu/(1 − nu).

For an inner product xT y computed in the natural order we have

fl (xT y) = x1y1(1 + δ1) + x2y2(1 + δ2) + · · · + xnyn(1 + δn)

where
|δ1| < γn, |δr| < γn+2−i, i = 2 : n.

The corresponding forward error bound becomes

|fl (xT y) − xT y| <
n

∑

i=1

γn+2−i|xi||yi| < γn|xT ||y|, (7.6.3)

94 Chapter 7. Direct Methods for Solving Linear System

where |x|, |y| denote vectors with elements |xi|, |yi|.This bound is independent of
the summation order and is valid also for floating point computation with no guard
digit rounding.

For the outer product xyT of two vectors x, y ∈ Rn it holds that fl (xiyj) =
xiyj(1 + δij), δij ≤ u, and so

|fl (xyT) − xyT | ≤ u |xyT |. (7.6.4)

This is a satisfactory result for many purposes, but the computed result is not in
general a rank one matrix and it is not possible to find perturbations ∆x and ∆y
such that fl(xyT) = (x+ ∆x)(x+ ∆y)T . This shows that matrix multiplication in
floating point arithmetic is not always backward stable!

Similar error bounds can easily be obtained for matrix multiplication. Let
A ∈ Rm×n, B ∈ Rn×p, and denote by |A| and |B| matrices with elements |aij | and
|bij |. Then it holds that

|fl (AB) −AB| < γn|A||B|. (7.6.5)

where the inequality is to be interpreted elementwise. Often we shall need bounds
for some norm of the error matrix. From (7.6.5) it follows that

‖fl (AB) −AB‖ < γn‖ |A| ‖ ‖ |B| ‖. (7.6.6)

Hence, for the 1-norm, ∞-norm and the Frobenius norm we have

‖fl (AB) −AB‖ < γn‖A‖ ‖B‖. (7.6.7)

but unless A and B have non-negative elements, we have for the 2-norm only the
weaker bound

‖fl (AB) −AB‖2 < nγn‖A‖2 ‖B‖2. (7.6.8)

In many matrix algorithms there repeatedly occurs expressions of the form

y =
(

c−
k−1
∑

i=1

aibi

)/

d.

A simple extension of the roundoff analysis of an inner product in Sec, 2.4.1 (cf.
Problem 2.3.7) shows that if the term c is added last, then the computed ȳ satisfies

ȳd(1 + δk) = c−
k−1
∑

i=1

aibi(1 + δi), (7.6.9)

where

|δ1| ≤ γk−1, |δi| ≤ γk+1−i, i = 2 : k − 1, |δk| ≤ γ2. (7.6.10)

and γk = ku/(1 − ku) and u is the unit roundoff. Note that in order to prove a
backward error result for GE, that does not perturb the right hand side vector b,

7.6. Rounding Error Analysis 95

we have formulated the result so that c is not perturbed. It follows that the forward
error satisfies

∣

∣

∣ȳd− c+

k−1
∑

i=1

aibi

∣

∣

∣ ≤ γk

(

|ȳd| +
k−1
∑

i=1

|ai||bi|
)

, (7.6.11)

and this inequality holds independent of the summation order.

7.6.2 Error Analysis of Gaussian Elimination

In the practical solution of a linear system of equations, rounding errors are intro-
duced in each arithmetic operation and cause errors in the computed solution. In
the early days of the computer era around 1946 many mathematicians were pes-
simistic about the numerical stability of Gaussian elimination. It was argued that
the growth of roundoff errors would make it impractical to solve even systems of
fairly moderate size. By the early 1950s experience revealed that this pessimism was
unfounded. In practice Gaussian elimination with partial pivoting is a remarkably
stable method and has become the universal algorithm for solving dense systems of
equations.

The bound given in Theorem 7.2.3 is satisfactory only if the growth factor
ρn is not too large, but this quantity is only known after the elimination has been
completed. In order to obtain an a priori bound on ρn we use the inequality

|a(k+1)
ij | = |a(k)

ij − lika
(k)
kj | ≤ |a(k)

ij | + |a(k)
kj | ≤ 2 max

k
|ā(k)

ij |,

valid If partial pivoting is employed. By induction this gives the upper bound
ρn ≤ 2n−1, which is attained for matrices An ∈ Rn×n of the form

A4 =







1 0 0 1
−1 1 0 1
−1 −1 1 1
−1 −1 −1 1






. (7.6.12)

Already for n = 54 we can have ρn = 253 ≈ 0.9 ·1016 and can lose all accuracy using
IEEE double precision (u = 1.11 · 10−16). Hence the worst-case behavior of partial
pivoting is very unsatisfactory.

For complete pivoting, Wilkinson [65, ] has proved that

ρn ≤ (n · 2131/241/3 · · ·n1/(n−1))1/2 < 1.8
√
nn

1
4

log n,

and that this bound is not attainable. This bound is much smaller than that for
partial pivoting, e.g., ρ50 < 530. It was long conjectured that ρn ≤ n for real
matrices and complete pivoting. This was finally disproved in 1991 when a matrix
of order 13 was found for which ρn = 13.0205. A year later a matrix of order 25
was found for which ρn = 32.986.

Although complete pivoting has a much smaller worst case growth factor than
partial pivoting it is more costly. Moreover, complete (as well as rook) pivoting
has the drawback that it cannot be combined with the more efficient blocked meth-
ods of GE (see Sec. 7.5.3). Fortunately from decades of experience and extensive

96 Chapter 7. Direct Methods for Solving Linear System

experiments it can be concluded that substantial growth in elements using partial
pivoting occurs only for a tiny proportion of matrices arising naturally. We quote
Wilkinson [66, pp. 213–214].

It is our experience that any substantial increase in the size of elements
of successive A(k) is extremely uncommon even with partial pivoting.
No example which has arisen naturally has in my experience given an
increase by a factor as large as 16.

So far only two exceptions to the experience related by Wilkinson have been
reported. One concerns linear systems arising from a class of two-point boundary
value problems, when solved by the shooting method. Another is the class of linear
systems arising from a quadrature method for solving a certain Volterra integral
equation. These examples show that GE with partial pivoting cannot be uncondi-
tionally trusted. When in doubt some safeguard like monitoring the element growth
should be incorporated. Another way of checking and improving the reliability of
GE with partial pivoting is iterative refinement, which is discussed in Sec. 7.7.4.

Why large element growth rarely occurs with partial pivoting is still not fully
understood. Trefethen and Schreiber [62] have shown that for certain distributions
of random matrices the average element growth was close to n2/3 for partial pivoting.

We now give a component-wise roundoff analysis for the LU factorization of
A. Note that all the variants given in Sec. 7.2 for computing the LU factorization
of a matrix will essentially lead to the same error bounds, since each does the same
operations with the same arguments. Note also that since GE with pivoting is
equivalent to GE without pivoting on a permuted matrix, we need not consider
pivoting.

Theorem 7.6.3.
If the LU factorization of A runs to completion then the computed factors L̄

and Ū satisfy
A+ E = L̄Ū , |E| ≤ γn|L̄| |Ū |, (7.6.13)

where γn = nu/(1 − nu).

Proof. In the algorithms in Sec 7.2.6) we set lii = 1 and compute the other elements
in L and U from the equations

uij = aij −
i−1
∑

p=1

lipupj , j ≥ i;

lij =
(

aij −
j−1
∑

p=1

lipupj

)

/ujj , i > j,

Using (7.6.11) it follows that the computed elements l̄ip and ūpj satisfy

∣

∣

∣
aij −

r
∑

p=1

l̄ipūpj

∣

∣

∣
≤ γr

r
∑

p=1

|l̄ip| |ūpj |, r = min(i, j).

7.6. Rounding Error Analysis 97

where l̄ii = lii = 1. These inequalities may be written in matrix form

To prove the estimate the error in a computed solution x̄ of a linear system
given in Theorem 7.6.3, we must also take into account the rounding errors per-
formed in the solution of the two triangular systems L̄y = b, Ūx = y. A lower
triangular system Ly = b is solved by forward substitution

lkkyk = bk −
k−1
∑

i=1

lkiyi, k = 1 : n.

If we let ȳ denote the computed solution, then using (7.6.9) –(7.6.10) it is straight-
forward to derive a bound for the backward error in solving a triangular system of
equations.

Using the bound for the backward error the forward error in solving a trian-
gular system can be estimated. It is a well known fact that the computed solution
is far accurate than predicted by the normwise condition number. This has been
partly explained by Stewart [60, p. 231] as follows:

“When a matrix is decomposed by GE with partial pivoting for
size, the resulting L-factor tends to be well conditioned while any ill-
conditioning in the U-factor tends to be artificial.”

This observation does not hold in general, for counter examples exist. However, it
is true of many special kinds of triangular matrices.

Theorem 7.6.4. If the lower triangular system Ly = b, L ∈ Rn×n is solved by
substitution with the summation order outlined above, then the computed solution ȳ
satisfies

(L+ ∆L)ȳ = b, |∆lki| ≤
{

γ2|lki|, i = k
γk+1−i|lki|, i = 1 : k − 1

, k = 1 : n. (7.6.14)

Hence |∆L| ≤ γn|L| and this inequality holds for any summation order.

An analogue result holds for the computed solution to an upper triangular
systems. We conclude the backward stability of substitution for solving triangular
systems. Note that it is not necessary to perturb the right hand side.

Theorem 7.6.5.
Let x̄ be the computed solution of the system Ax = b, using LU factorization

and substitution. Then x̄ satisfies exactly

(A+ ∆A)x̄ = b, (7.6.15)

where δA is a matrix, depending on both A and b, such that

|∆A| ≤ γn(3 + γn)|L̄| |Ū |. (7.6.16)

98 Chapter 7. Direct Methods for Solving Linear System

Proof. From Theorem 7.6.4 it follows that the computed ȳ and x̄ satisfy

(L̄ + δL̄)ȳ = b, (Ū + δŪ)x̄ = ȳ,

where
|δL̄| ≤ γn|L̄|, |δŪ | ≤ γn|Ū |. (7.6.17)

Note that δL̄ and δŪ depend upon b. Combining these results, it follows that the
computed solution x̄ satisfies

(L̄+ δL̄)(Ū + δŪ)x̄ = b,

and using equations (7.6.13)–(7.6.17) proves the backward error

|∆A| ≤ γn(3 + γn)|L̄| |Ū |. (7.6.18)

for the computed solution x̄ given in Theorem 7.6.3.

Note that although the perturbation δA depends upon b the bound on |δA|
is independent on b. The elements in Ū satisfy |ūij | ≤ ρn‖A‖∞, and with partial
pivoting |l̄ij | ≤ 1. Hence

‖ |L̄| |Ū | ‖∞ ≤ 1
2n(n+ 1)ρn,

and neglecting terms of order O((nu)2) in (7.6.18) it follows that

‖δA‖∞ ≤ 1.5n(n+ 1)γnρn‖A‖∞. (7.6.19)

By taking b to be the columns e1, e2,en of the unit matrix in succession
we obtain the n computed columns of the inverse X of A. For the kth column we
have

(A+ ∆Ar)x̄r = er,

where we have written ∆Ar to emphasize that the perturbation is different for each
column. Therefore we cannot say that GE computes the exact inverse corresponding
to some matrix A+ ∆A! We obtain the estimate

‖AX̄ − I‖∞ ≤ 1.5n(n+ 1)γnρn‖A‖∞‖X̄‖∞. (7.6.20)

FromAX̄−I = E it follows that X̄−A−1 = A−1E and ‖X̄−A−1‖∞ ≤ ‖A−1‖∞‖E‖∞,
which together with (7.6.20) can be used to get a bound for the error in the com-
puted inverse. We should stress again that we recommend that computing explicit
inverses is avoided.

The residual for the computed solution satisfies r̄ = b−Ax̄ = δAx̄, and using
(7.6.19) it follows that

‖r̄‖∞ ≤ 1.5n(n+ 1)γnρn‖A‖∞‖x̄‖∞.

This shows the remarkable fact that GE will give a small relative residual even for
ill-conditioned systems. Unless the growth factor is large the quantity

‖b−Ax̄‖∞/(‖A‖∞‖x̄‖∞)

7.6. Rounding Error Analysis 99

will in practice be of the order nu. It is important to realize that this property of
GE is not shared by most other methods for solving linear systems. For example,
if we first compute the inverse A−1 and then x = A−1b the residual r̄ may be much
larger even if the accuracy in x̄ is about the same.

The error bound in Theorem 7.6.3 is instructive in that it shows that a par-
ticularly favourable case is when |L̄| |Ū | = |L̄Ū |. This is true when L̄ and Ū are
nonnegative. Then

|L̄| |Ū | = |L̄Ū | = |A+ ∆A| ≤ |A| + |L̄| |Ū |,

and neglecting terms of order O((nu)2) we find that the computed x̄ satisfies

(A+ ∆A)x̄ = b, |∆A| ≤ 3γn|A|.

A class of matrices for which Gaussian elimination without pivoting gives
positive factors L and U is the following.

Definition 7.6.6.
A matrix A ∈ Rn×n is called totally positive if the determinant of every

square submatrix of A is positive.

It is known (see de Boor and Pinkus [15]) that if A is totally positive, then it
has an LU factorization with L > 0 and U > 0. Since the property of a matrix being
totally positive is destroyed under row permutations, pivoting should not be used
when solving such systems. Totally positive systems occur in spline interpolation.

In many cases there is no a priori bound for the matrix |L̄| |Ū | appearing in
the componentwise error analysis. It is then possible to compute its ∞-norm in
O(n2) operations without forming the matrix explicitly, since

‖ |L̄| |Ū | ‖∞ = ‖ |L̄| |Ū |e ‖∞ = ‖ |L̄| (|Ū |e) ‖∞.

This useful observation is due to Chu and George [12].
An error analysis for the Cholesky factorization of a symmetric positive defi-

nite matrix A ∈ Rn×n is similar to that for LU factorization.

Theorem 7.6.7.
Suppose that the Cholesky factorization of a symmetric positive definite matrix

A ∈ Rn×n runs to completion and produces a computed factor R̄ and a computed
solution x̄ to the linear system. Then it holds that

A+ E1 = L̄Ū , |E1| ≤ γn+1|R̄T | |R̄|, (7.6.21)

and

(A+ E2)x̄ = b, |E2| ≤ γ3n+1|R̄T | |R̄|. (7.6.22)

100 Chapter 7. Direct Methods for Solving Linear System

Theorem 7.6.8. [J. H. Wilkinson [67]]
Let A ∈ Rn×n be a symmetric positive definite matrix. The Cholesky factor

of A can be computed without breakdown provided that 2n3/2uκ(A) < 0.1. The
computed L̄ satisfies

L̄L̄T = A+ E, ‖E‖2 < 2.5n3/2u‖A‖2, (7.6.23)

and hence is the exact Cholesky factor of a matrix close to A.

This is essentially the best normwise bounds that can be obtained, although
Meinguet [50] has shown that for large n the constants 2 and 2.5 in Theorem 7.6.8
can be improved to 1 and 2/3, respectively.

In practice we can usually expect much smaller backward error in the com-
puted solutions than the bounds derived in this section. It is appropriate to recall
here a remark by J. H. Wilkinson (1974):

“All too often, too much attention is paid to the precise error bound
that has been established. The main purpose of such an analysis is
either to establish the essential numerical stability of an algorithm or to
show why it is unstable and in doing so expose what sort of change is
necessary to to make it stable. The precise error bound is not of great
importance.”

7.6.3 Scaling of Linear Systems

In a linear system of equations Ax = b the ith equation may be multiplied by an
arbitrary positive scale factor di, i = 1 : n, without changing the exact solution.
In contrast, such a scaling will usually change the computed numerical solution.
In this section we show that a proper row scaling is important for GE with partial
pivoting to give accurate computed solutions, and give some rules for scaling.

We first show that if the pivot sequence is fixed then Gaussian elimination is
unaffected by such scalings, or more precisely:

Theorem 7.6.9.
Denote by x̄ and x̄′ the computed solutions obtained by GE in floating point

arithmetic to the two linear systems of equations

Ax = b, (DrADc)x
′ = Drb,

where Dr and Dc are diagonal scaling matrices. Assume that the elements of Dr

and Dc are powers of the base of the number system used, so that no rounding
errors are introduced by the scaling. Then if the same pivot sequence is used and
no overflow or underflow occurs we have exactly x̄ = Dcx̄

′, i.e., the components in
the solution differ only in the exponents.

Proof. The proof follows by examination of the scaling invariance of the basic step
in Algorithm 7.2.2

a
(k+1)
ij = a

(k)
ij − (a

(k)
ik a

(k)
kj)/a

(k)
kk .

7.6. Rounding Error Analysis 101

This result has the important implication that scaling will affect the accuracy
of a computed solution only if it leads to a change in the selection of pivots. When
partial pivoting is used the row scaling may affect the choice of pivots; indeed we
can always find a row scaling which leads to any predetermined pivot sequence.
However, since only elements in the pivotal column are compared, the choice of
pivots is independent of the column scaling. Since a bad choice of pivots can give
rise to large errors in the computed solution, it follows that for GE with partial
pivoting to give accurate solutions a proper row scaling is important.

Example 7.6.1. The system Ax = b in Example 7.5.1 has the solution x =
(0.9999, 0.9999)T , correctly rounded to four decimals. Partial pivoting will here
select the element a11 as pivot. Using three-figure floating point arithmetic, the
computed solution becomes

x̄ = (0, 1.00)T (Bad!).

If GE instead is carried out on the scaled system Âx = b̂, then a21 will be chosen
as pivot, and the computed solution becomes

x̄ = (1.00, 1.00)T (Good!).

From the above discussion we conclude that the need for a proper scaling is
of great importance for GE to yield good accuracy. An discussed in Sec, 7.5.3, an
estimate of κ(A) is often used to access the accuracy of the computed solution. If,
e.g., the perturbation bound (7.1.64) is applied to the scaled system (DrADc)x

′ =
Drb

‖D−1
c δx‖

‖D−1
c x‖ ≤ κ(DrADc)

‖Drδb‖
‖Drb‖

. (7.6.24)

Hence if κ(DrADc) can be made smaller than κ(A), then it seems that we might
expect a correspondingly more accurate solution. Note however that in (7.6.24) the
perturbation in x is measured in the norm ‖D−1

c x‖, and we may only have found
a norm in which the error looks better! We conclude that the column scaling Dc

should be chosen in a way that reflects the importance of errors in the components
of the solution. If |x| ≈ c, and we want the same relative accuracy in all components
we may take Dc = diag(c).

We now discuss the choice of row scaling. A scheme which is sometimes
advocated is to choose Dr = diag (di) so that each row in DrA has the same l1-
norm, i.e.,

di = 1/‖aT
i ‖1, i = 1 : n. (7.6.25)

(Sometimes the l∞-norm, of the rows are instead made equal.) This scaling, called
row equilibration, can be seen to avoid the bad pivot selection in Example 7.5.1.
However, suppose that through an unfortunate choice of physical units the solution
x has components of widely varying magnitude. Then, as shown by the following

102 Chapter 7. Direct Methods for Solving Linear System

example, row equilibration can lead to a worse computed solution than if no scaling
is used!

Example 7.6.2. Consider the following system

A =





3 · 10−6 2 1
2 2 2
1 2 −1



 , b =





3 + 3 · 10−6

6
2



 |ǫ| ≪ 1

which has the exact solution x = (1, 1, 1)T . The matrix A is well-conditioned,
κ(A) ≈ 3.52, but the choice of a11 as pivot leads to a disastrous loss of accuracy.
Assume that through an unfortunate choice of units, the system has been changed
into

Â =





3 2 1
2 · 106 2 2
106 2 −1



 ,

with exact solution x̂ = (10−6, 1, 1)T . If now the rows are equilibrated, the system
becomes

Ã =





3 2 1
2 2 · 10−6 2 · 10−6

1 2 · 10−6 −10−6



 , b̃ =





3 + 3 · 10−6

6 · 10−6

2 · 10−6



 .

GE with column pivoting will now choose a11 as pivot. Using floating point arith-
metic with precision u = 0.47 · 10−9 we get the computed solution of Âx = b̂

x̄ = (0.999894122 · 10−6, 0.999983255, 1.000033489)T .

This has only about four correct digits, so almost six digits have been lost!

A theoretical solution to the row scaling problem in GE with partial pivoting
has been given by R. D. Skeel [56, ]. He shows a pivoting rule in GE should
depend not only on the coefficient matrix but also on the solution. Hence sepa-
rating the matrix factorization from the solution of the linear system may lead to
instability. His scaling rule is based on minimizing a bound on the backward error
that contains the quantity

maxi(|DrA||x̄|)i

mini(|DrA||x̄|)i
.

Scaling Rule: (R. D. Skeel) Assume that mini(|A||x|)i > 0. Then scale the
rows of A and b by Dr = diag (di), where

di = 1/(|A||x|)i, i = 1 : n. (7.6.26)

A measure of ill-scaling of the system Ax = b is

σ(A, x) = max
i

(|A||x|)i/min
i

(|A||x|)i. (7.6.27)

7.6. Rounding Error Analysis 103

This scaling rule gives infinite scale factors for rows which satisfy (|A||x|)i = 0.
This may occur for sparse systems, i.e., when A (and possibly also x) has many
zero components. In this case a large scale factor di should be chosen so that the
corresponding row is selected as pivot row at the first opportunity.

Unfortunately scaling according to this rule is not in general practical, since
it assumes that the solution x is at least approximately known. If the components
of the solution vector x are known to be of the same magnitude then we can take
|x| = (1, . . . , 1)T in (7.6.26), which corresponds to row equilibration. Note that this
assumption is violated in Example 7.6.2.

7.6.4 Iterative Refinement of Solutions

So far we have considered ways of estimating the accuracy of computed solutions.
We now consider methods for improving the accuracy. Let x̄ be any approximate
solution to the linear system of equations Ax = b and let r = b − Ax̄ be the
corresponding residual vector. Then one can attempt to improve the solution by
solving the system Aδ = r for a correction δ and taking xc = x̄ + δ as a new
approximation. If no further rounding errors are performed in the computation of
δ this is the exact solution. Otherwise this refinement process can be iterated. In
floating-point arithmetic with base β this process of iterative refinement can be
described as follows:

s := 1; x(s) := x̄;

repeat

r(s) := b−Ax(s); (inprecision u2 = β−t2)

solve Aδ(s) = r(s); (inprecision u1 = β−t1)

x(s+1) := x(s) + δ(s);

s := s+ 1;

end

When x̄ has been computed by GE this approach is attractive since we can use the
computed factors L̄ and Ū to solve for the corrections

L̄(Ūδ(s)) = r(s), s = 1, 2,

The computation of r(s) and δ(s), therefore, only takes n2+2· 12n2 = 2n2 flops, which
is an order of magnitude less than the n3/3 flops required for the initial solution.

We note the possibility of using extended precision t2 > t1 for computing the
residuals r(s); these are then rounded to single precision u1 before solving for δ(s).
Since x(s), A and b are stored in single precision, only the accumulation of the inner
product terms are in precision u2, and no multiplications in extended precision
occur. This is also called mixed precision iterative refinement as opposed to fixed
precision iterative refinement when t2 = t1.

Since the product of two t digit floating point numbers can be exactly repre-
sented with at most 2t digits inner products can be computed in extended precision

104 Chapter 7. Direct Methods for Solving Linear System

without much extra cost. If fle denotes computation with extended precision and ue

the corresponding unit roundoff then the forward error bound for an inner product
becomes

|fl (fle((xT y)) − xT y| < u|xT y| + nue

1 − nue/2
(1 + u)|xT ||y|, (7.6.28)

where the first term comes form the final rounding. If |xT ||y| ≤ u|xT y| then the
computed inner product is almost as accurate as the correctly rounded exact re-
sult. However, since computations in extended precision are machine dependent it
has been difficult to make such programs portable.21 The recent development of
Extended and Mixed Precision BLAS (Basic Linear Algebra Subroutines) (see [49])
may now make this more feasible!

In the ideal case that the rounding errors committed in computing the correc-
tions can be neglected we have

x(s+1) − x = (I − (L̄Ū)−1A)s(x̄− x).

where L̄ and Ū denote the computed LU factors of A. Hence the process converges
if

ρ = ‖(I − (L̄Ū)−1A‖ < 1.

This roughly describes how the refinement behaves in the early stages, if extended
precision is used for the residuals. If L̄ and Ū have been computed by GE using
precision u1, then by Theorem 7.2.3 we have

L̄Ū = A+ E, ‖E‖∞ ≤ 1.5n2ρnu1‖A‖∞,

and ρn is the growth factor. It follows that an upper bound for the initial rate of
convergence is given by

ρ = ‖(L̄Ū)−1E‖∞ ≤ n2ρnu1κ(A).

When also rounding errors in computing the residuals r(s) and the corrections
δ(s) are taken into account, the analysis becomes much more complicated. The
behavior of iterative refinement, using t1-digits for the factorization and t2 = 2t1
digits when computing the residuals, can be summed up as follows:

1. Assume that A is not too ill-conditioned so that the first solution has some
accuracy, ‖x − x̄‖/‖x‖ ≈ β−k < 1 in some norm. Then the relative error
diminishes by a factor of roughly β−k with each step of refinement until we
reach a stage at which ‖δc‖/‖xc‖ < β−t1 , when we may say that the solution
is correct to working precision.

2. In general the attainable accuracy is limited to min(k + t2 − t1, t1) digits,
which gives the case above when t2 ≥ 2t1. Note that although the computed
solution improves progressively with each iteration this is not reflected in a
corresponding decrease in the norm of the residual, which stays about the
same.

21It was suggested that the IEEE 754 standard should require inner products to be precisely
specified, but that did not happen.

7.6. Rounding Error Analysis 105

Iterative refinement can be used to compute a more accurate solution, in case A
is ill-conditioned. However, unless A and b are exactly known this may not make
much sense. The exact answer to a poorly conditioned problem may be no more
appropriate than one which is correct to only a few places.

In many descriptions of iterative refinement it is stressed that it is essential
that the residuals are computed with a higher precision than the rest of the compu-
tation, for the process to yield a more accurate solution. This is true if the initial
solution has been computed by a backward stable method, such as GE with partial
pivoting, and provided that the system is well scaled. However, iterative refinement
using single precision residuals, can considerably improve the quality of the solution,
for example, when the system is ill-scaled, i.e., when σ(A, x) defined by (7.6.27) is
large, or if the pivot strategy has been chosen for the preservation of sparsity, see
Section 7.6.

Example 7.6.3. As an illustration consider again the badly scaled system in
Example 7.6.1

Ã =





3 2 1
2 2 · 10−6 2 · 10−6

1 2 · 10−6 −10−6



 , b̃ =





3 + 3 · 10−6

6 · 10−6

2 · 10−6



 ,

with exact solution x̃ = (10−6, 1, 1)T . Using floating point arithmetic with unit
roundoff u = 0.47 · 10−9 the solution computed by GE with partial pivoting has
only about four correct digits. From the residual r = b̃−Ãx̄ we compute the Oettli–
Prager backward error ω = 0.28810 · 10−4. The condition estimate computed by
(7.5.17) is 3.00 · 106, and wrongly indicates that the loss of accuracy should be
blamed on ill-conditioning.

With one step of iterative refinement using a single precision residual we get

x̃ = x̄+ d = (0.999999997 · 10−6 1.000000000 1.000000000)
T
.

This is almost as good as for GE with column pivoting applied to the system Ax = b.
The Oettli–Prager error bound for x̃ is ω = 0.54328 · 10−9, which is close to the
machine precision. Hence one step of iterative refinement sufficed to correct for
the bad scaling. If the ill-scaling is worse or the system is also ill-conditioned then
several steps of refinement may be needed.

The following theorem states that if GE with partial pivoting is combined
with iterative refinement in single precision then the resulting method will give a
small relative backward error provided that the system is not too ill-conditioned or
ill-scaled.

Theorem 7.6.10. (R. D. Skeel.)
As long as the product of cond(A−1) = ‖|A||A−1|‖∞ and σ(A, x) is sufficiently

less than 1/u, where u is the machine unit, it holds that

(A+ δA)x(s) = b+ δb, |δaij | < 4nǫ1|aij |, |δbi| < 4nǫ1|bi|, (7.6.29)

106 Chapter 7. Direct Methods for Solving Linear System

for s large enough. Moreover, the result is often true already for s = 2, i.e., after
only one improvement.

Proof. For exact conditions under which this theorem holds, see Skeel [57, ].

As illustrated above, GE with partial or complete pivoting may not provide
all the accuracy that the data deserves. How often this happens in practice is not
known. In cases where accuracy is important the following scheme, which offers
improved reliability for a small cost is recommended.

1. Compute the Oettli–Prager backward error ω using (7.5.10) with E = |A|,
f = |b|, by simultaneously accumulating r = b − Ax̄ and |A||x̄| + |b|. If ω is
not sufficiently small go to 2.

2. Perform one step of iterative refinement using the single precision residual r
computed in step 1 to obtain the improved solution x̃. Compute the backward
error ω̃ of x̃. Repeat until the test on ω̃ is passed.

7.6.5 Interval Matrix Computations

In order to treat multidimensional problems interval vectors [x] = ([xi]) with interval
components [xi] = [xi, xi]), i = 1 : n and interval matrices [A] = ([aij]) with interval
elements [aij] = [aij , aij], i = 1 : m, j = 1 : n, are introduced.

Operations between interval matrices and interval vectors are defined in an
obvious manner. The interval matrix-vector product [A][x] is the smallest inter-
val vector, which contains the set {Ax | A ∈ [A], x ∈ [x]}, but normally does not
coincide with it. By the inclusion property it holds that

{Ax | A ∈ [A], x ∈ [x]} ⊆ [A][x] =

(n
∑

j=1

[aij][xj]

)

. (7.6.30)

In general there will be an overestimation in enclosing the image with an interval
vector caused by the fact that the image of an interval vector under a transfor-
mation in general is not an interval vector. This phenomenon, intrinsic to interval
computations, is called the wrapping effect.

Example 7.6.4.
We have

A =

(

1 1
−1 1

)

, [x] =

(

[0, 1]
[0, 1]

)

, ⇒ A[x] =

(

[0, 2]
[−1, 1]

)

.

Hence b = (2 −1)
T ∈ A[x], but there is no x ∈ [x] such that Ax = b. (The

solution to Ax = b is x = (3/2 1/2)T .)

7.6. Rounding Error Analysis 107

The magnitude of an interval vector or matrix is interpreted component-wise
and defined by

| [x] | = (| [x1] |, | [x2] |, . . . , | [xn] |)T ,

where the magnitude of the components are defined by

| [a, b] | = max{|x| | x ∈ [a, b]}, (7.6.31)

The ∞-norm of an interval vector or matrix is defined as the ∞-norm of their
magnitude,

‖ [x] ‖∞ = ‖ | [x] | ‖∞, ‖ [A] ‖∞ = ‖ | [A] | ‖∞. (7.6.32)

In implementing matrix multiplication it is important to avoid case distinc-
tions in the inner loops, because that would make it impossible to use fast vector and
matrix operations. Using interval arithmetic it is possible to compute strict enclo-
sures of the product of two matrices. Note that this is needed also in the case of the
product of two point matrices since rounding errors will in general occur. In this case
we want to compute an interval matrix [C] such that fl(A ·B) ⊂ [C] = [Cinf , Csup].
The following simple code does that using two matrix multiplications:

setround(−1); Cinf = A · B;

setround(1); Csup = A · B;

Here and in the following we assume that the command setround(i), i = −1, 0, 1
sets the rounding mode to −∞, to nearest, and to +∞, respectively.

We next consider the product of a point matrix A and an interval matrix
[B] = [Binf , Bsup]. The following code, suggested by A. Neumeier, performs this
using four matrix multiplications:

A− = min(A, 0); A+ = max(A, 0);

setround(−1);

Cinf = A+ · Binf +A− ·Bsup;

setround(1);

Csup = A− · Binf +A+ ·Bsup;

(Note that the commands A− = min(A, 0) and A+ = max(A, 0) acts component-
wise.) Rump [55] gives an algorithm for computing the product of two interval
matrices using eight matrix multiplications. He also gives several faster implemen-
tations, provided a certain overestimation can be allowed.

A square interval matrix [A] is called nonsingular if it does not contain a
singular matrix. An interval linear system is a system of the form [A]x = [b], where
A is a nonsingular interval matrix and b an interval vector. The solution set of such
an interval linear system is the set

X = {x | Ax = b, A ∈ [A], b ∈ [b]}. (7.6.33)

Computing this solution set can be shown to be an intractable problem (NP-
complete). Even for a 2 × 2 linear system this set may not be easy to represent.

108 Chapter 7. Direct Methods for Solving Linear System

-

6

−100 100

−50

100

200

x

y

Figure 7.6.1. The solution set (solid line) and its enclosing hull (dashed
line) for the linear system in Example 7.6.5.

Example 7.6.5. (Hansen [37, Chapter 4])
Consider a linear system with

[A] =

(

[2, 3] [0, 1]
[1, 2] [2, 3]

)

, [b] =

(

[0, 120]
[60, 240]

)

. (7.6.34)

The solution set X in (7.6.33) is the star shaped region in Fig. 7.6.1.

An enclosure of the solution set of an interval linear system can be computed
by a generalization of Gaussian elimination adopted to interval coefficients. The
solution of the resulting interval triangular system will give an inclusion of the
solution set. Realistic bounds can be obtained in this way only for special classes
of matrices, e.g., for diagonally dominant matrices and tridiagonal matrices; see
Hargreaves [38]. For general systems this approach unfortunately tends to give
interval sizes which grow exponentially during the elimination. For example, if [x]
and [y] are intervals then in the 2 × 2 reduction

(

1 [x]
1 [y]

)

∼
(

1 [x]
0 [y] − [x]

)

.

If [x] ≈ [y] the size of the interval [y]− [x] will be twice the size of [x]. This growth
is very likely to happen. Even for well-conditioned linear systems the elimination
can break down prematurely, because all remaining possible pivot elements contain
zero.

A better way to compute verified bounds on a point or interval linear system
uses an idea that goes back to E. Hansen [1965]. In this an approximate inverse C
is used to precondition the system. Assuming that an initial interval vector [x(0)]

7.6. Rounding Error Analysis 109

is known, such that [x(0)] ⊇ X where X is the solution set (7.6.33). An improved
enclosure can then be obtained as follows:

By the inclusion property of interval arithmetic, for all Ã ∈ [A] and b̃ ∈ [b] it
holds that

Ã−1b̃ = Cb̃+ (I − CÃ)Ã−1b̃ ∈ C [b] + (I − C [A])[x(0)] =: [x(1)].

This suggests the iteration known as Krawczyck’s method

[x(i+1)] =
(

C [b] + (I − C[A])[x(i)]
)

∩ [x(i)], i = 0, 1, 2, . . . , (7.6.35)

for computing a sequence of interval enclosures [x(i)] of the solution. Here the
interval vector [c] = C [b] and interval matrix [E] = I−C [A] need only be computed
once. The dominating cost per iteration is one interval matrix-vector multiplication.

As approximate inverse we can take the inverse of the midpoint matrix C =
(mid [A])−1. An initial interval can be chosen of the form

[x(0)] = Cmid [b] + [−β, β]e, e = (1, 1, . . . , 1),

with β sufficiently large. The iterations are terminated when the bounds are no
longer improving. A measure of convergence can be computed as ρ = ‖[E]‖∞.

Rump [55, 54] has developed a Matlab toolbox INTLAB (INTerval LABora-
tory). This is very efficient and easy to use and includes many useful subroutines.
INTLAB uses a variant of Krawczyck’s method, applied to a residual system, to
compute an enclosure of the difference between the solution and an approximate
solution xm = Cmid [b]; see Rump [55].

Example 7.6.6.
A method for computing an enclosure of the inverse of an interval matrix can

be obtained by taking [b] equal to the identity matrix in the iteration (7.6.35) and
solving the system [A][X] = I. For the symmetric interval matrix

[A] =

(

[0.999, 1.01] [−0.001, 0.001]
[−0.001, 0.001] [0.999, 1.01]

)

the identity C = mid [A] = I is an approximate point inverse. We find

[E] = I − C[A] =

(

[−0.01, 0.001] [−0.001, 0.001]
[−0.001, 0.001] [−0.01, 1.001]

)

,

and as an enclosure for the inverse matrix we can take

[X(0)] =

(

[0.98, 1.02] [−0.002, 0.002]
[−0.002, 0.002] [0.98, 1.02]

)

.

The iteration

[X(i+1)] =
(

I + E[X(i)]
)

∩ [X(i)], i = 0, 1, 2,

converges rapidly in this case.

110 Chapter 7. Direct Methods for Solving Linear System

Review Questions

1. The result of a roundoff error analysis of Gaussian elimination can be stated
in the form of a backward error analysis. Formulate this result. (You don’t
need to know the precise expression of the constants involved.)

2. (a) Describe the main steps in iterative refinement with extended precision for
computing more accurate solutions of linear system.

(b) Sometimes it is worthwhile to do a step of iterative refinement in using
fixed precision. When is that?

Problems

1. Compute the LU factors of the matrix in (7.6.12).

7.7 Block Algorithms for Gaussian Elimination

7.7.1 Block and Blocked Algorithms

In block matrix algorithms most part of the arithmetic operations consists of matrix
multiplications. Because of this these algorithms can achieve high performance
on modern computers. The following distinction between two different classes of
algorithms is important to emphasize, since they have different stability properties.

As a first example, consider the inverse of a block lower triangular matrix

L =











L11

L21 L22

...
...

. . .

Ln,1 Ln,2 · · · Lnn











, (7.7.1)

If the diagonal blocks Lii, i = 1 : 2, are nonsingular, it is easily verified that the
inverse also will be block lower triangular,

L−1 =











Y11

Y21 Y22

...
...

. . .

Yn,1 Yn,2 · · · Ynn











, (7.7.2)

In Sec. 7.1.5 we showed that the inverse in the 2 × 2 case is

L−1 =

(

L−1
11 0

−L−1
22 L21L

−1
11 L−1

22

)

.

Note that we do not assume that the diagonal blocks are lower triangular.

7.7. Block Algorithms for Gaussian Elimination 111

In the general case the blocks in the inverse can be computed a block column at
a time from a straightforward extension of the scalar algorithm (7.2.40). Identifying
blocks in the jth block column, of the equation LY = I, we for j = 1 : n,

LjjYjj = I, LiiYij = −
i−1
∑

k=j

LikYkj , i = j + 1 : n. (7.7.3)

These equations can be solved for Yjj , . . . , Ynj , by the scalar algorithms described
in Sec. 7.2. The main arithmetic work will take place in the matrix-matrix multipli-
cations LikYkj . This is an example of a true block algorithm, which is a obtained
by substituting in a scalar algorithm operations on blocks of partitioned matrices
regarded as non-commuting scalars.

In the special case that L is a lower triangular matrix this implies that all
diagonal blocks Lii and Yii, i = 1 : n, are lower triangular. In this case the equations
in (7.7.3) can be solved by back-substitution. The resulting algorithm is then just
a scalar algorithm in which the operations have been grouped and reordered into
matrix operations. Such an algorithm is called a blocked algorithm. Blocked
algorithms have the same stability properties as their scalar counterparts. This is
not true for general block algorithms, which is why the distinction is important to
make.

In Sec. 7.1.5 we gave, using slightly different notations, the block LU factor-
ization

A =

(

A11 A12

A21 A22

)

=

(

I 0
A21A

−1
11 I

) (

A11 A12

0 S

)

, (7.7.4)

for a 2×2 block matrix, with square diagonal blocks. Here S = A22−A21A
−1
11 A12 is

the Schur complement. Note that the diagonal blocks in the block lower triangular
factor in (7.7.4) are the identity matrix. Hence, this is a true block algorithm.

In a blocked LU factorization algorithm, the LU factors should have the form

A =

(

L11 0
L21 L22

) (

U11 U12

0 U22

)

,

where L11, L22 are unit lower triangular and U11 , U22 are upper triangular. Such
a factorization can be computes as follows. We first compute the scalar LU factor-
ization A11 = L11U11, and then compute

L21 = A21U
−1
11 , U12 = L−1

11 A12, S22 = A22 − L21U12.

Finally compute the scalar factorization S22 = L22U22.
In the general case a blocked algorithm for the LU factorization of a block

matrix

A =









A11 A12 . . . A1N

A21 A22 . . . A2N
...

...
. . .

...
AN1 AN2 . . . ANN









, (7.7.5)

having square diagonal blocks. Let L and U be partitioned conformally with A.
Equating blocks in the product A = LU , we obtain, assuming that all inverses
exist, the following block LU algorithm:

112 Chapter 7. Direct Methods for Solving Linear System

Algorithm 7.7.1 Blocked LU Factorization.

for k = 1 : N

Skk = Akk −
k−1
∑

p=1

LkpUpk;

Skk = LkkUkk

for j = k + 1 : N

Ljk =
(

Ajk −
k−1
∑

p=1

LjpUpk

)

U−1
kk ;

end

for j = 1 : k − 1

Ujk = L−1
kk

(

Ajk −
k−1
∑

p=1

LjpUpj

)

;

end
end

Here the LU-decompositions Skk = LkkUkK of the modified diagonal blocks
are computed by a scalar LU factorization algorithm. However, the dominating
part of the work is performed in matrix-matrix multiplications. The inverse of the
triangular matrices L−1

kk and U−1
kk are not formed but the off-diagonal blocks Ukj and

Ljk (which in general are full matrices) are computed by triangular solves. Pivoting
can be used in the factorization of the diagonal blocks. As described the algorithm
does not allow for row interchanges between blocks. This point is addressed In the
next section.

As with the scalar algorithms there are many possible ways of sequencing the
block factorization. The block algorithm above computes in the kth major step the
kth block column of L and U . In this variant at step k only the kth block column
of A is accessed, which is advantageous from the standpoint of data access.

A block LU factorization algorithm differs from the blocked algorithm above
in that the lower block triangular matrix L has diagonal blocks equal to unity.
Although such a block algorithm may have good numerical stability properties
this cannot be taken for granted, since in general they do not perform the same
arithmetic operations as in the corresponding scalar algorithms. It has been shown
that block LU factorization can fail even for symmetric positive definite and row
diagonally dominant matrices.

One class of matrices for which the block LU algorithm is known to be stable
is block tridiagonal matrices that are block diagonally dominant. .

Definition 7.7.1. (see Demmel et al. [16])
A general matrix A ∈ Rn×n is said to be block diagonally dominant by columns,

with respect to a given partitioning, if it holds i.e.

‖A−1
jj ‖−1 ≥

∑

i6=j

‖Aij‖, j = 1 : n. (7.7.6)

7.7. Block Algorithms for Gaussian Elimination 113

A is block diagonally dominant by rows, if AT is (strictly) diagonally dominant
by columns.

Note that for block size 1 the usual property of (point) diagonal dominance
is obtained. For the 1 and ∞-norms diagonal dominance does not imply block
diagonal dominance Neither does and the reverse implications hold.

Analogous to the Block LU Algorithm in Section 7.7.1 block versions of the
Cholesky algorithm can be developed. If we assume that A has been partitioned
into N × N blocks with square diagonal blocks we get using a block column-wise
order:

Algorithm 7.7.2 Blocked Cholesky Algorithm.

for j = 1 : N

Sjj = Ajj −
j−1
∑

k=1

RT
jkRjk;

Sjj = RT
jjRjj

for i = j + 1 : N

RT
ij =

(

Aij −
j−1
∑

k=1

RT
ikRjk

)

(Rjj)
−1;

end
end

Note that the diagonal blocksRjj are obtained by computing the Cholesky fac-
torizations of matrices of smaller dimensions. The right multiplication with (Rjj)

−1

in the computation of RT
jk is performed by solving the triangular equations of the

form RT
jjRij = ST . The matrix multiplications dominate the arithmetic work in

the block Cholesky algorithm.
In deriving the block LU and Cholesky algorithms we assumed that the block

sizes were determined in advance. However, this is by no means necessary. A more
flexible way is to advance the computation by deciding at each step the size of the
current pivot block. The corresponding blocked formulation then uses a 3×3 block
structure, but the partitioning changes after each step.

Suppose that a partial LU factorization so that

P1A =





L11

L21 I
L31 0 I









U11 U12 U13

Ã22 Ã23

Ã32 Ã33



 .

has been obtained, where P1 is a permutation matrix and L11, U11 ∈ Rn1×n1 . To
advance the factorization compute the LU factorization with row pivoting

P2

(

Ã22

Ã32

)

=

(

L22

L32

)

U22,

114 Chapter 7. Direct Methods for Solving Linear System

where L22, U22 ∈ Rn2×n2 . The permutation matrix P2 has to be applied also to
(

Ã23

Ã33

)

:= P2

(

Ã23

Ã33

)

,

(

L21

L31

)

:= P2

(

L21

L31

)

.

We then solve for U23 and update A33 using

L22U23 = Ã23, Ã33 = A33 − L32U23.

The factorization has now been advanced one step to become

P2PA =





L11

L21 L22

L31 L32 I









U11 U12 U13

U22 U23

A33



 .

We can now repartition so that the first two block-columns in L are joined into a
block of n1 +n2 columns and similarly the first two block-rows in U joined into one
block of n1 + n2 rows. The blocks I and A33 in L and U are partitioned into 2×2
block matrices and we advance to the next block-step. This describes the complete
algorithm since we can start the algorithm by taking n1 = 0.

The above algorithm is sometimes called right-looking, referring to the way
in which the data is accessed. The corresponding left-looking algorithm goes as
follows. Assume that we have computed

PA =





L11

L21 I
L31 0 I









U11 A12 A13

A22 A23

A32 A33



 .

To advance the factorization we solve first a triangular system L11U12 = A12 to
obtain U12 and then compute

(

Ã22

Ã32

)

=

(

A22

A32

)

−
(

L21

L31

)

U12,

We then compute the LU factorization with row pivoting

P2

(

Ã22

Ã32

)

=

(

L22

L32

)

U22,

and replace
(

Ã23

Ã33

)

= P2

(

A23

A33

)

,

(

L21

L31

)

:= P2

(

L21

L31

)

.

The factorization has now been advanced one step to become

P2PA =





L11

L21 L22

L31 L32 I









U11 U12 A13

U22 A23

A33



 .

Note that in this version the blocks in the last block column of A are referenced
only in the pivoting operation, but this can be postponed.

7.7. Block Algorithms for Gaussian Elimination 115

Block LU factorizations appears to have been first proposed for block tridi-
agonal matrices, which often arise from the discretization of partial differential
equations. For a symmetric positive definite matrix the recursion (7.4.11) is easily
generalized to compute the following block-factorization:

A = UTD−1U, D = diag (Σ1, . . . ,Σn),

of a symmetric positive definite block-tridiagonal matrix with square diagonal
blocks. We obtain

A =















D1 AT
2

A2 D2 AT
3

A3
. . .

. . .
. . .

. . . AT
N

AN DN















, UT =















Σ1

A2 Σ2

A3
. . .
. . .

. . .

AN ΣN















,

where

Σ1 = D1, Σk = Dk −AkΣ−1
k−1A

T
k , k = 2 : N. (7.7.7)

To perform the operations with Σ−1
k , k = 1 : N the Cholesky factorization of these

matrices are computed by a scalar algorithm. After this factorization has been
computed the solution of the system

Ax = UTD−1Ux = b

can be obtained by block forward- and back-substitution UT z = b, Ux = Dz.
Note that the blocks of the matrix A may again have band-structure, which

should be taken advantage of! A similar algorithm can be developed for the un-
symmetric block-tridiagonal case.

For block tridiagonal matrices the following result is known:

Theorem 7.7.2. (Varah [64])
Let the matrix A ∈ Rn×n be block tridiagonal and have the block LU fac-

torization A = LU , where L and U are block bidiagonal, and normalized so that
Ui,i+1 = Ai,i+1. Then if A is block diagonally dominant by columns

‖Li,i−1‖ ≤ 1, ‖Ui,i‖ ≤ ‖Ai,i‖ + ‖Ai−1,i‖. (7.7.8)

If A is block diagonally dominant by rows

‖Li,i−1‖ ≤ Ai−1,i‖
‖Ai,i−1‖

, ‖Ui,i‖ ≤ ‖Ai,i‖ + ‖Ai−1,i‖. (7.7.9)

These results can be extended to full block diagonally dominant matrices, by
using the key property that block diagonal dominance is inherited by the Schur
complements obtained in the factorizations.

116 Chapter 7. Direct Methods for Solving Linear System

7.7.2 Recursive Algorithms

In the 2×2 case the block LU factorization Algorithm 7.7.1 is obtained by equating

A =

(

A11 A12

A21 A22

)

=

(

L11 0
L21 L22

) (

U11 U12

0 U22

)

. (7.7.10)

We get

L11U11 = A11,

L21 = A21U
−1
11 , U12 = L−1

11 A12,

Ã22 = A22 − L21U12,

L22U22 = Ã22.

Hence the LU factorization of A can be reduced to the LU factorization of two
smaller matrices A11 and Ã22, two triangular solves with matrix right hand sides,
and one matrix update A22 − L21U12.

Similarly for the Cholesky factorization equating

(

A11 AT
21

A21 A22

)

=

(

L11 0
L21 L22

)(

LT
11 LT

21

0 LT
22

)

, (7.7.11)

gives

L11L
T
11 = A11,

LT
21 = L−1

11 A
T
21,

L22L
T
22 = A22 − L21L

T
21.

It is possible to derive “divide and conquer” algorithms for the LU and
Cholesky algorithms, by using the 2 × 2 block versions recursively. see [24].

Algorithm 7.7.3 Recursive Cholesky Factorization.

Let A ∈ Rn×n be a symmetric positive definite matrix. The following recursive
algorithm computes the Cholesky factorization of A.

function L = rchol(A);

[n, n] = size(A);

if n 6= 1

%RecursiveCholesky

k = floor(n/2)

L11 = rchol(A(1 : k, 1 : k));

L21 = (L11−1A(1 : k, k + 1 : n))′;

L22 = rchol(A(1 : k, 1 : k) − L21 ∗ L21′);

L = [L11 zeros(k, n− k);L21 L22];

7.7. Block Algorithms for Gaussian Elimination 117

else

L = sqrt(A);

end;

This is not a toy algorithm, but can be developed into an efficient algorithm
for parallel high performance computers!

An intriguing question is whether it is possible to multiply two matrices A ∈
Rm×n, and B ∈ Rn×p in less than mnp (scalar) multiplications. The answer is
yes! Strassen [1969] developed a fast algorithm for matrix multiplication based on
the following method for multiplying 2 × 2 block matrices. Assume that m,n, p
are even and partition each of A, B and the product C ∈ Rm×p, into four equally
sized blocks. Then, as can be verified by substitution, the product C = AB can be
computed using the following formulas:

(

A11 A12

A21 A22

) (

B11 B12

B21 B22

)

=

(

P1 + P4 − P5 + P7 P3 + P5

P2 + P4 P1 + P3 − P2 + P6

)

,

where

P1 = (A11 +A22)(B11 +B22), P2 = (A21 +A22)B11,

P3 = A11(B12 − B22), P4 = A22(B21 −B11),

P5 = (A11 +A12)B22, P6 = (A21 −A11)(B11 +B12),

P7 = (A12 −A22)(B21 +B22).

The key property of Strassen’s algorithm is that only seven matrix multiplica-
tions and eighteen matrix additions are needed, instead of the eight matrix mul-
tiplications and four matrix additions required using conventional block matrix
multiplications. Since for large dimensions multiplication of two matrices is more
expensive (n3) than addition (n2) this will lead to a saving in operations.

Strassen’s algorithm can be used recursively. to multiply two square matrices
of dimension n = 2k. The number of multiplications is then reduced from n3 to
nlog2 7 = n2.807.... (The number of additions is of the same order.) Even with
just one level of recursion Strassen’s method is faster in practice when n is larger
than about 100, see Problem 2. However, there is some loss of numerical stability
compared to conventional matrix multiplication, see Higham [41, Ch. 23].

By using the block formulation recursively, and Strassen’s method for the
matrix multiplication it is possible to perform the LU factorization in O(nlog2 7)
operations.

7.7.3 Kronecker Systems

Linear systems where the matrix is a Kronecker product22 arise in several ap-
plication areas such as signal and image processing, photogrammetry, multidimen-
sional data fitting, etc. Such systems can be solved with great savings in storage

22Leopold Kronecker (1823–1891) German mathematician. He is known also for his remark
“God created the integers, all else is the work of man”.

118 Chapter 7. Direct Methods for Solving Linear System

and operations. Since often the size of the matrices A and B is large, resulting in
models involving several hundred thousand equations and unknowns, such savings
may be essential.

Definition 7.7.3.
Let A ∈ Cm×n and B ∈ Cp×q be two matrices. Then the Kronecker product

of A and B is the mp× nq block matrix

A⊗B =





a11B a12B · · · a1nB
...

...
...

am1B am2B · · · amnB



 . (7.7.12)

We now state without proofs some elementary facts about Kronecker products.
From the definition (7.7.12) it follows that

(A+B) ⊗ C = (A⊗ C) + (B ⊗ C),

A⊗ (B + C) = (A⊗B) + (A⊗ C),

A⊗ (B ⊗ C) = (A⊗B) ⊗ C,

(A⊗B)T = AT ⊗BT .

Further we have the important mixed-product relation, which is not so obvious:

Lemma 7.7.4.
Let A ∈ Rm×n, B ∈ Rp×q, C ∈ Rn×k, and D ∈ Rq×r. Then the ordinary

matrix products AC and BD are defined, and

(A⊗B)(C ⊗D) = AC ⊗BD. (7.7.13)

Proof. Let A = (aik) and C = (ckj). Partitioning according to the sizes of B and
D, A⊗B = (aikB) and C⊗D = (ckjD). Hence, the (i, j)th block of (A⊗B)(C⊗D)
equals

n
∑

k=1

aikBckjD =

(n
∑

k=1

aikckj

)

BD,

which is the (i, j)th element of AC times BD, which is the (i, j)th block of (A ⊗
B)(C ⊗D).

If A ∈ Rn×n and B ∈ Rp×p are non-singular, then then by Lemma 7.7.4

(A−1 ⊗B−1)(A ⊗B) = In ⊗ Ip = Inp.

It follows that A⊗B is nonsingular and

(A⊗B)−1 = A−1 ⊗B−1. (7.7.14)

We now introduce an operator closely related to the Kronecker product, which
converts a matrix into a vector.

7.7. Block Algorithms for Gaussian Elimination 119

Definition 7.7.5. Given a matrix C = (c1, c2, . . . , cn) ∈ Rm×n we define

vec (C) =









c1
c2
...
cn









, (7.7.15)

that is, the vector formed by stacking the columns of C into one long vector.

We now state an important result which shows how the vec-function is related
to the Kronecker product.

Lemma 7.7.6.
If A ∈ Rm×n, B ∈ Rp×q, and C ∈ Rq×n, then

(A⊗B)vecC = vecX, X = BCAT . (7.7.16)

Proof. Denote the kth column of a matrix M by Mk. Then

(BCAT)k = BC(AT)k = B

n
∑

i=1

akiCi

= (ak1B ak2B . . . aknB) vecC,

where Let A = (aij). But this means that vec (BCAT) = (A⊗B)vecC.

Let A ∈ Rn×n and B ∈ Rp×p be non-singular, and C ∈ Rp×n. Consider the
Kronecker linear system

(A⊗B)x = vecC, (7.7.17)

which is of order np. Then by (7.7.14) the solution can be written

x = (A−1 ⊗B−1)vecC = vec (X), X = B−1CA−T . (7.7.18)

where C is the matrix such that c = vec (C). This reduces the operation count for
solving (7.7.17) from O(n3p3) to O(n2p+ np2).

7.7.4 Linear Algebra Software

The first collection of high quality software was a series of algorithms written in
Algol 60 that appeared in a handbook edited by Wilkinson and Reinsch [68, ].
This contains 11 subroutines for linear systems, least squares, and linear program-
ming and 18 routines for the algebraic eigenvalue problem.

The collection LINPACK of Fortran subroutines for linear systems that fol-
lowed contained several important innovations; see Dongarra et al. [18, ]. As
much as possible of the computations were performed by calls to so called Basic
Linear Algebra Subprograms (BLAS) [48]. These identified frequently occurring

120 Chapter 7. Direct Methods for Solving Linear System

vector operations in linear algebra such as scalar product, adding of a multiple of
one vector to another. For example, the operations

y := αx+ y, α := α+ xT y

in single precision was named SAXPY. By carefully optimizing these BLAS for each
specific computer performance could be enhanced without sacrificing portability.
LINPACK was followed by EISPACK, a collection of routines for the algebraic
eigenvalue problem; see Smith et al. [58, ], B. S. Garbow et al. [29, ].

The original BLAS, now known as Level 1 BLAS, were found to be unsatis-
factory for vector computers, the level 2 BLAS for matrix-matrix operations were
introduced in 1988 [20]. These operations involve one matrix A and one or several
vectors x and y, e.g., the real matrix-vector products

y := αAx+ βy, y := αATx+ βy,

and
x := Tx, x := T−1x, x := T Tx,

where α and β are scalars, x and y are vectors, A a matrix and T an upper or
lower triangular matrix. The corresponding operations on complex data are also
provided.

In most computers in use today the key to high efficiency is to avoid as much
as possible data transfers between memory, registers and functional units, since
these can be more costly than arithmetic operations on the data. This means
that the operations have to be carefully structured. The LAPACK collection of
subroutines [2] was initially released in 1992 to address these questions. LAPACK
was designed to supersede and integrate the algorithms in both LINPACK and
EISPACK. The subroutines are restructured to achieve much greater efficiency on
modern high-performance computers. This is achieved by performing as much as
possible of the computations by calls to so called Level 2 and 3 BLAS. These enables
the LAPACK routines to combine high performance with portable code and is also
an aid to clarity, portability and modularity.

Level 2 BLAS involve O(n2) data, where n is the dimension of the matrix
involved, and the same number of arithmetic operations. However, on computers
with hierarchical memories, as is now the rule, they failed to obtain adequate per-
formance. Therefore level 3 BLAS were finally introduced in 1990 [19]. These were
derived in a fairly obvious manner from some level 2 BLAS, by replacing the vectors
x and y by matrices B and C,

C := αAB + βC, C := αATB + βC, C := αABT + βC,

and
B := TB, B := T−1B, B := T TB,

Since level 3 BLAS use O(n2) data but perform O(n3) arithmetic operations
and gives a surface-to-volume effect for the ratio of data movement to operations.
This avoids excessive data movements between different parts of memory hierarchy.
Level 3 BLAS are used in LAPACK, the linear algebra package that is the successor

Review Questions 121

of LINPACK, which achieves close to optimal performance on a large variety of
computer architectures.

LAPACK is continually improved and updated and is available for free from
http://www.netlib.org/lapack95/. Several specila forms of matrices are sup-
ported by LAPACK: General

General band
Positive definite
Positive definite packed
Positive definite band
Symmetric (Hermitian) indefinite
Symmetric (Hermitian) indefinite packed
Triangular
General tridiagonal
Positive definite tridiagonal

The LAPACK subroutines form the backbone of Cleve Moler’s Matlab system,
which has simplified matrix computations tremendously.

LAPACK95 is a Fortran 95 interface to the Fortran 77 LAPACK library. It is
relevant for anyone who writes in the Fortran 95 language and needs reliable software
for basic numerical linear algebra. It improves upon the original user-interface to
the LAPACK package, taking advantage of the considerable simplifications that
Fortran 95 allows. LAPACK95 Users’ Guide provides an introduction to the design
of the LAPACK95 package, a detailed description of its contents, reference manuals
for the leading comments of the routines, and example programs.

Review Questions

1. How many operations are needed (approximately) for

(a) The LU factorization of a square matrix?

(b) The solution of Ax = b, when the triangular factorization of A is known?

2 To compute the matrix product C = AB ∈ Rm×p we can either use an
outer product or an inner product formulation. Discuss the merits of the two
resulting algorithms when A and B have relatively few nonzero elements.

Problems

1. Assume that for the nonsingular matrix An−1 ∈ R(n−1)×(n−1) we know the
LU factorization An−1 = Ln−1Un−1. Determine the LU factorization of the
bordered matrix An ∈ Rn×n,

An =

(

An−1 b
cT ann

)

=

(

Ln−1 0
lT 1

) (

Un−1 u
0 unn

)

.

122 Chapter 7. Direct Methods for Solving Linear System

Here b, c ∈ Rn−1 and ann are given and l, u ∈ Rn−1 and unn are to be
determined.

2. The methods of forwards- and back-substitution extend to block triangular
systems. Show that the 2 × 2 block upper triangular system

(

U11 U12

U22

) (

x1

x2

)

=

(

b1
b2

)

can be solved by block back-substitution provided that the diagonal blocks
U11 and U22 are square and nonsingular.

3. Write a recursive LU Factorization algorithm based on the 2 × 2 block LU
algorithm.

4. (a) Let A ∈ Rm×n, B ∈ Rn×p, with m and n even. Show that, whereas con-
ventional matrix multiplication requires mnp multiplications (M) and m(n−
1)p additions (A) to form the product C = AB ∈ Rm×p, Strassen’s algorithm,
using conventional matrix multiplication at the block level, requires

7

8
mnp M +

7

8
m(n− 2)p+

5

4
n(m+ p) + 2mp A.

(b) Show, using the result in (a), that if we assume that “M ≈ A”, Strassen’s
algorithm is cheaper than conventional multiplication when mnp ≤ 5(mn +
np+mp).

5. Show the equality
vec (A)T vec (B) = trace (ATB). (7.7.19)

7.8 Sparse Linear Systems

7.8.1 Introduction

A matrix A ∈ Rn×n is called sparse if only a small fraction of its elements are
nonzero. Similarly, a linear systems Ax = b is called sparse if its matrix A is
sparse. The simplest class of sparse matrices is the class of banded matrices treated
in Sec. 7.4. These have the property that in each row all nonzero elements are
contained in a relatively narrow band centered around the main diagonal. Matrices
of small bandwidth occur naturally, since they correspond to a situation where only
variables ”close” to each other are coupled by observations.

Large sparse linear systems of more general structure arise in numerous areas
of application such as the numerical solution of partial differential equations, math-
ematical programming, structural analysis, chemical engineering, electrical circuits
and networks, etc. Large could imply a value of n in the range 1,000–1,000,000.
Typically, A will have only a few (say, 5–30) nonzero elements in each row, regard-
less of the value of n. In Fig. 7.8.1 we show a sparse matrix of order 479 with 1887
nonzero elements and its LU factorization. It is a matrix W called west0479 in
the Harwell–Boeing sparse matrix test collection, see Duff, Grimes and Lewis [23].
It comes from a model due to Westerberg of an eight stage chemical distillation
column. Other applications may give pattern with quite different characteristics.

7.8. Sparse Linear Systems 123

0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

nz = 1887
0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

nz = 16777

Figure 7.8.1. Nonzero pattern of a matrix W and its LU factors.

For many sparse linear systems iterative methods (see Chapter 11) may be
preferable to use. This is particularly true of linear systems derived by finite differ-
ence methods for partial differential equations in two and three dimensions. In this
section we will study elimination methods for sparse systems. These are easier to
develop as black box algorithms. Iterative methods, on the other hand, often have
to be specially designed for a particular class of problems.

When solving sparse linear systems by direct methods it is important to avoid
storing and operating on the elements which are known to be zero. One should
also try to minimize fill-in as the computation proceeds, which is the term used
to denote the creation of new nonzeros during the elimination. For example, as
shown in Fig. 7.8.1, the LU factors of W contain 16777 nonzero elements about
nine times as many as in the original matrix. The object is to reduce storage and
the number of arithmetic operations. Indeed, without exploitation of sparsity, many
large problems would be totally intractable.

7.8.2 Storage Schemes for Sparse Matrices

A simple scheme to store a sparse matrix is to store the nonzero elements in an
unordered one-dimensional array AC together with two integer vectors ix and jx
containing the corresponding row and column indices.

ac(k) = ai,j , i = ix(k), j = jx(k), k = 1 : nz.

Hence A is stored in “coordinate form” as an unordered set of triples consisting of
a numerical value and two indices. This scheme is very convenient for the initial
representation of a general sparse matrix. Note that further nonzero elements are
easily added to the structure. This coordinate form is very convenient for the
original input of a sparse matrix. A drawback is that using this storage structure
it is difficult to access the matrix A by rows or by columns, which is needed for the
implementation of Gaussian elimination.

124 Chapter 7. Direct Methods for Solving Linear System

Example 7.8.1. The matrix

A =











a11 0 a13 0 0
a21 a22 0 a24 0
0 a32 a33 0 a35

0 a42 0 a44 0
0 0 0 a54 a55











,

is stored in coordinate form as

AC = (a13, a22, a21, a33, a35, a24, a32, a42, a44, a55, a54, a11)

i = (1, 2, 2, 3, 3, 2, 3, 4, 4, 5, 5, 1)

j = (3, 2, 1, 3, 5, 4, 2, 2, 4, 5, 4, 1)

In some applications, one encounters matrices of banded structure, where the
bandwidth differs from row to row. For this class of matrices, called variable-band
matrices, we define

fi = fi(A) = min{j | aij 6= 0}, lj = lj(A) = min{i | aij 6= 0}. (7.8.1)

Here fi is the column subscript of the first nonzero in the i-th row of A, and similarly
lj the row subscript of the first nonzero in the jth column of A. We assume here and
in the following that A has a zero free diagonal. From the definition it follows that
fi(A) = li(A

T). Hence for a symmetric matrix A we have fi(A) = li(A), i = 1 : n.

Definition 7.8.1.
The envelope (or profile) of A is the index set

Env (A) = {(i, j) | fi ≤ j ≤ i; or lj ≤ i < j; }. (7.8.2)

The envelope of a symmetric matrix is defined by the envelope of its lower (or upper)
triangular part including the main diagonal.

For a variable band matrix it is convenient to use a storage scheme, in which
every element aij , (i, j) ∈ Env (A) is stored. This means that zeros outside the
envelope are exploited, but those inside the envelope are stored. This storage scheme
is useful because of the important fact that only zeros inside the envelope will suffer
fill-in during Gaussian elimination.

The proof of the following theorem is left as an exercise.

Theorem 7.8.2.
Assume that the triangular factors L and U of A exist. Then it holds that

Env (L+ U) = Env (A),

i.e., the nonzero elements in L and U are contained in the envelope of A.

7.8. Sparse Linear Systems 125

One of the main objectives of a sparse matrix data structure is to economize on
storage while at the same time facilitating subsequent operations on the matrix. We
now consider storage schemes that permits rapid execution of the elimination steps
when solving general sparse linear systems. Usually the pattern of nonzero elements
is very irregular, as illustrated in Fig. 7.8.1. We first consider a storage scheme for
a sparse vector x. The nonzero elements of x can be stored in compressed form
in a vector xc with dimension nnz, where nnz is the number of nonzero elements in
x. Further, we store in an integer vector ix the indices of the corresponding nonzero
elements in xc. Hence the sparse vector x is represented by the triple (nnz, xc, ix),
where

xck = xix(k), k = 1 : nnz.

Example 7.8.2. The vector x = (0, 4, 0, 0, 1, 0, 0, 0, 6, 0) can be stored in com-
pressed form as

xc = (1, 4, 6), ix = (5, 2, 9), nnz = 3

Operations on sparse vectors are simplified if one of the vectors is first un-
compressed, i.e, stored in a full vector of dimesnion n. Clearly this operation can
be done in time proportional to the number of nonzeros, and allows direct random
access to specified element in the vector. Vector operations, e.g., adding a multiple
a of a sparse vector x to an uncompressed sparse vector y, or computing the inner
product xT y can then be performed in constant time per nonzero element. Assume,
for example, that the vector x is held in compressed form as nnz pairs of values
and indices, and y is held in a full length array. Then the operation y := a ∗ x + y
may be expressed as

for k = 1 : nnz, y(ix(k)) := a ∗ xc(k) + y(ix(k));

A matrix can be stored as a collection of sparse row vectors, where each row
vector is stored in AC in compressed form. The corresponding column subscripts
are stored in the integer vector jx, i.e., the column subscript of the element ack
is given in jx(k). Finally we need a third vector ia(i), which gives the position in
the array AC of the first element in the ith row of A. For example, the matrix in
Example 7.8.1 is stored as

AC = (a11, a13 | a21, a22, a24 | a32, a33, a35 | a42, a44 | a54, a55),

ia = (1, 3, 6, 9, 11, 13),

jx = (1, 3, 1, 2, 4, 2, 3, 5, 2, 4, 4, 5).

Alternatively a similar scheme storing A as a collection of column vectors may be
used. A drawback with these schemes is that it is expensive to insert new nonzero
elements in the structure when fill-in occurs.

The components in each row need not be ordered; indeed there is often little
advantage in ordering them. To access a nonzero aij there is no direct method

126 Chapter 7. Direct Methods for Solving Linear System

of calculating the corresponding index in the vector AC. Some testing on the
subscripts in jx has to be done. However, more usual is that a complete row of
A has to be retrieved, and this can be done quite efficiently. This scheme can be
used unchanged for storing the lower triangular part of a symmetric positive definite
matrix.

If the matrix is stored as a collection of sparse row vectors, the entries in a
particular column cannot be retrieved without a search of nearly all elements. This
is needed, for instance, to find the rows which are involved in a stage of Gaussian
elimination. A solution is then to store also the structure of the matrix as a set of
column vectors. If a matrix is input in coordinate form it the conversion to this
storage form requires a sorting of the elements, since they may be in arbitrary order.
Such a sortin can be done very efficiently in O(n) +O(τ) time.

Another way to avoid extensive searches in data structures is to use a linked
list to store the nonzero elements. Associated with each element is a pointer to the
location of the next element in its row and a pointer to the location of the next
element in its column. If also pointer to the first nonzero in each row and column
are stored there is a total overhead of integer storage of 2(τ + n), where τ is the
number of nonzero elements in the factors and n is the order of the matrix. This
allows fill-ins to be added to the data structure with only two pointers being altered.
Also the fill-in can be placed anywhere in storage so no reorderings are necessary.
Disadvantages are that indirect addressing must be used when scanning a row or
columnand that the elements in one row or column can be scattered over a wide
range of memory.

An important distinction is between static storage structures that remain
fixed and dynamic structures that can accommodate fill-in. If only nonzeros are
to be stored, the data structure for the factors must dynamically allocate space for
the fill-in during the elimination. A static structure can be used when the location
of the nonzeros in the factors can be predicted in advance, as is the case for the
Cholesky factorization.

7.8.3 Graph representation of sparse matrices.

In the method of normal equations for solving sparse linear least squares problems
an important step is to determine a column permutation P such that the matrix
PTATAP has a sparse Cholesky factor R, and to then generate a storage structure
for R. This should be done symbolically using only the nonzero structure of A
(or ATA) as input. To perform such tasks the representation of the structure of a
sparse matrix as a directed or undirected graph is a powerful tool.

A useful way to represent the structure of a symmetric matrix is by an undi-
rected graph G = (X,E), consisting of a set of nodes X and a set of edges E
(unordered pairs of nodes). A graph is ordered (labeled) if its nodes are labeled.
The ordered graph G(A) = (X,E), representing the structure of a symmetric ma-
trix A ∈ Rn×n, consists of nodes labeled 1, . . . , n and edges (xi, xj) ∈ E if and only
if aij = aji 6= 0. Thus there is a direct correspondence between nonzero elements
and edges in its graph; see Figure 6.4.1.

7.8. Sparse Linear Systems 127

A =

0

B

B

B

B

B

B

B

@

× × × ×

× × ×

× × × ×

× ×

× ×

× ×

× ×

1

C

C

C

C

C

C

C

A

3 2 1

4

57

6

Figure 7.8.2. The matrix A and its labeled graph.

Two nodes, x and y, are said to be adjacent if there is an edge (x, y) ∈ E.
The adjacency set of x in G is defined by

AdjG(x) = {y ∈ X | x and y are adjacent}.

The number of nodes adjacent to x is denoted by |AdjG(x)|, and is called the degree
of x. A path of length l ≥ 1 between two nodes, u1 and ul+1, is an ordered set of
distinct nodes u1, . . . , ul+1, such that

(ui, ui+1) ∈ E, i = 1, . . . , l.

If there is such a chain of edges between two nodes, then they are said to be
connected. If there is a path between every pair of distinct nodes, then the graph
is connected. A disconnected graph consists of at least two separate connected
subgraphs. (Ḡ = (X̄, Ē) is a subgraph of G = (X,E) if X̄ ⊂ X and Ē ⊂ E.) If
G = (X,E) is a connected graph, then Y ⊂ X is called a separator if G becomes
disconnected after the removal and the nodes Y .

A symmetric matrix A is said to be reducible if there is a permutation matrix
P such that PTAP is block diagonal. Such a symmetric permutation PTAP of A
corresponds to a reordering of the nodes in G(A) without changing the graph. It
follows that the graph G(PTAP) is connected if and only if G(A) is connected. It is
then easy to prove that A is reducible if and only if its graph G(A) is disconnected.

The structure of an unsymmetric matrix can similarly be represented by a
directed graph G = (X,E), where the edges now are ordered pairs of nodes. A
directed graph is strongly connected if there is a path between every pair of
distinct nodes along directed edges.

The structure of a symmetric matrix A can be represented by the undirected
graph of A.

Definition 7.8.3.

128 Chapter 7. Direct Methods for Solving Linear System

The ordered undirected graph G(A) = (X,E) of a symmetric matrix A ∈ Rn×n

consists of a set of n nodes X together with a set E of edges, which are unordered
pairs of nodes. The nodes are labeled 1, 2 : n where n, and nodes i and j are joined
by an edge if and only if aij = aji 6= 0, i 6= j. We then say that the nodes i and
j are adjacent. The number of edges incident to a node is called the degree of the
node.

The important observation is that for any permutation matrix P ∈ Rn×n the
graphs G(A) and G(PAPT) are the same except that the labelling of the nodes are
different. Hence the unlabeled graph represents the structure of A without any
particular ordering. Finding a good permutation for A is equivalent to finding a
good labeling for its graph.

7.8.4 Nonzero Diagonal and Block Triangular Form

Before performing a factorization of a sparse matrix it is often advantageous to
perform some pre-processing. An arbitrary square nonsingular matrix A ∈ Rn×n

there always is a row permutation P such that PA has nonzero elements on it
diagonal. Further, there is a row permutation P and column permutation Q such
that PAQ has a nonzero diagonal and block triangular structure

PAQ =









A11 A12 . . . A1,t

A22 . . . A2,t

. . .
...
Att









(7.8.3)

with square nonsingular diagonal blocks A11, . . . , Att. The off-diagonal blocks are
possibly nonzero matrices of appropriate dimensions. Using this structure a linear
system Ax = b or PAQy = c, where y = QTx, c = Pb, reduces to

Aiiyi = ci −
n

∑

j=i+1

Aijxj , j = n : −1 : 1. (7.8.4)

Hence we only need to factorize the diagonal blocks. This block back-subsitution
can lead to significant savings.

If we require that the diagonal blocks are irreducible, then the block triangular
form (7.8.3) can be shown to be essentially unique. Any one block triangular form
can be obtained from any other by applying row permutations that involve the rows
of a single block row, column permutations that involve the columns of a single block
column, and symmetric permutations that reorder the blocks. A square matrix
which can be permuted to the form (7.8.3), with t > 1, is said to be reducible;
otherwise it is called irreducible.

In the symmetric positive definite case a similar reduction to block upper
triangular form can be considered, where Q = PT . Some authors reserve the terms
reducible for the case, and use the terms bi-reducible and bi-irreducible for the
general case.

7.8. Sparse Linear Systems 129

⊗ × × ×

⊗ × × × ×

× ⊗

⊗ × ×

× ⊗ ×

⊗ ×

× ⊗ ×

⊗ ×

⊗

Figure 7.8.3. The block triangular decomposition of A.

An arbitrary rectangular matrix A ∈ Rm×n has a block triangular form called
the Dulmage–Mendelsohn form. If A is square and nonsingular this is the form
(7.8.3). The general case is based on a canonical decomposition of bipartite graphs
discovered by Dulmage and Mendelsohn. In the general case the first diagonal
block may have more columns than rows, the last diagonal block more rows than
column. All the other diagonal blocks are square and nonzero diagonal entries.This
block form can be used for solving least squares problems by a method analogous
to back-substitution.

The bipartite graph associated with A is denoted by G(A) = {R,C,E},
where R = (r1, . . . , rm) is a set of vertices corresponding to the rows of A and
C = (c1, . . . , cm) a set of vertices corresponding to the columns of A. E is the set
of edges, and {ri, cj} ∈ E if and only if aij 6= 0. A matching in G(A) is a subset of
its edges with no common end points. In the matrix A this corresponds to a subset
of nonzeros, no two of which belong to the same row or column. A maximum
matching is a matching with a maximum number r(A) of edges. The structural
rank of A equals r(A). Note that the mathematical rank is always less than or
equal to its structural rank. For example, the matrix

(

1 1
1 1

)

has structural rank 2 but numerical rank 1.
For the case when A is structurally nonsingular matrix there is a two-stage

algorithm for permuting A to block upper triangular form. In the first stage a
maximum matching in the bipartite graph G(A) with row set R and column set C
is found. In the second stage the block upper triangular form of each submatrix
determined from the strongly connected components in the graph G(A), with edges
directed from columns to rows.

If A has structural rank n but is numerically rank deficient it will not be pos-
sible to factorize all the diagonal blocks in (7.8.3). In this case the block triangular
structure given by the Dulmage–Mendelsohn form cannot be preserved, or some
blocks may become severely ill-conditioned.

Note that for some applications, e.g., for matrices arising from discretizations
of partial differential equations, it may be known a priori that the matrix is irre-

130 Chapter 7. Direct Methods for Solving Linear System

ducible. In other applications the block triangular decomposition may be known in
advance from the underlying physical structure. In both these cases the algorithm
discussed above is not useful.

7.8.5 LU Factorization of Sparse Matrices

Hence the first task in solving a sparse system is to order the rows and columns so
that Gaussian elimination applied to the permuted matrix PAQ does not introduce
too much fill-in. To find the optimal ordering, which minimizes the number of
nonzero in L and U is unfortunately a hard problem. This is because the number
of possible orderings of rows and columns is very large, (n!)2, wheras solving a
linear system only takes O(n3) operations. Fortunately, there are heuristic ordering
algorithms which do a god job at approximately minimizing fill-in. These orderinga
usually also nearly minimize the arithmetic operation count.

Example 7.8.3.
The ordering of rows and columns in Gaussian elimination may greatly affect

storage and number of arithmewtic operations as shown by the following example.
Let

A =













× × × . . . ×
× ×
× ×
...

. . .

× ×













, PAPT =













× ×
. . .

...
× ×

× ×
× . . . × × ×













.

Matrices, or block matrices of this structure are called arrowhead matrices and
occur in many applications.

If the (1, 1) element in A is chosen as the first pivot the fill in will be total
and n3/3 operations required for the LU factorization. In PAPT the orderings of
rows and columns have been reversed. Now there is no fill-in except in the last
step of, when pivots are chosen in natural order.Only about 2n flops are required
to perform the factorization.

For variable-band matrices no fill-in occurs in L and U outside the envelope.
One strategy therefore is to choose P and Q to approximately minimize the envelope
of PAQ. (Note that the reordered matrix PAPT in Example 7.8.3 has a small enve-
lope but A has a full envelope!) For symmetric matrices the reverse Cuthill–McKee
ordering is often used. In the unsymmetirc case one can determine a reordering of
the columns by applying this algorithm to the symmetric structure of A+AT .

Perhaps surprisingly, the orderings that approximately minimize the total fill-
in in LU factorization tend not to give a small bandwidth. Typically, the factors L
and U instead have their nonzeros scattered throughout their triangular parts. A
simple column reordering is to sort the columns by increasing column count, i.e. by
the number of nonzeros in each column. This can often give a substantial reduction
of the fill-in in Gaussian elimination. In Figure 7.8.5 we show the LU factorization

7.8. Sparse Linear Systems 131

of the matrix W reordered after column count and its LU factors. The number of
nonzeros in L and U now are 6604, which is a substantial reduction.

0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

nz = 1887
0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

nz = 6604

Figure 7.8.4. Nonzero pattern of a matrix and its LU factors after re-
ordering by increasing column count.

An ordering that often performs even better is the so called column minimum
degree ordering shown in Figure 7.8.5. The LU factors of the reordered matrix now
containg 5904 nonzeros. This column ordering is obtained by using the symmetric
minimum degree described in the next section on the matrix WTW . Matlab

uses an implementation of this ordering algorithm that does not actually form the
matrix WTW . For the origin and details of this code we refer to Gilbert, Moler,
and Schreiber [33].

0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

nz = 1887
0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

nz = 5904

Figure 7.8.5. Nonzero pattern of a matrix and its LU factors after mini-
mum degree ordering.

132 Chapter 7. Direct Methods for Solving Linear System

For unsymmetric systems some kind of stability check on the pivot elements
must be performed during the numerical factorization. Therefore the storage struc-
ture for L and U cannot be predicted from the structure of A only. but must be
determined dynamically during the numerical elimination phase.

Matlab uses the column sweep method with partial pivoting due to Gilbert
and Peierls [34] for computing the LU factorization a column of L and U at a time.
In this the basic operation is to solve a series of sparse triangular system involving
the already computed part of L. The column-oriented storage structure is set up
dynamically as the factorization progresses. Note that the size of storage needed
can not be predicted in advance. The total time for this LU factorization algorithm
can be shown to be proportional to the number of arithmetic operations plus the
size of the result.

Other sparse LU algorithms reorders both rows and columns before the nu-
merical factorization. One of the most used ordering algorithm is the Markowitz
algorithm. To motivate this suppose that Gaussian elimination has proceeded
through k stages and let A(k) be the remaining active submatrix. Denote by ri is
the number of nonzero elements in the ith row and cj is the number of nonzero
elements in the jth column of A(k). In the Markowitz algorithm one performs a
row and column interchange so that the product

(ri − 1)(cj − 1),

is minimized. (Some rules for tie-breaking are also needed.) This is equivalent to a
local minimization of the fill-in at the next stage, assuming that all entries modified
were zero beforehand. This choice also minimizes the number of multplications
required for this stage.

With such an unsymmetric reordering there is a conflict with ordering for
sparsity and for stability. The ordering for sparsity may not give pivotal elements
which are acceptable from the point of numerical stability. Usually a threshold
pivoting scheme is used to minimize the reorderings. This means that the chosen
pivot is restricted by an inequality

|a(k)
ij | ≥ τ max

r
|a(k)

rj |, (7.8.5)

where τ , 0 < τ ≤ 1, is a predetermined threshold value. A value of τ = 0.1 is
usually recommended as a good compromise between sparsity and stability. (Note
that the usual partial pivoting strategy is obtained for τ = 1.) The condition (7.8.5)
ensures that in any column that is modified in an elimination step the maximum
element increases in size by at most a factor of (1 + 1/τ). Note that a column is
only modified if the pivotal row has a nonzero element in that column. The total
number of times a particular column is modified during the complete elimination
is often quite small if the matrix is sparse. Furthermore, it is possible to monitor
stability by, for example, computing the relative backward error, see Sec. 7.5.2.

7.8.6 Cholesky Factorization of Sparse Matrices

If A is symmetric and positive definite, then the Cholesky factorization is numer-
ically stable for any choice of pivots along the diagonal. We need only consider

7.8. Sparse Linear Systems 133

symmetric permutations PAPT , where P can be chosen with regard only to spar-
sity. This, leads to a substantial increase in the efficiency of the sparse Cholesky
algorithm since a static storage structure can be used.

We remark that the structure predicted for R from that of PTAP by perform-
ing the Cholesky factor symbolically, is such that R + RT will be at least as full
as PAPT . In Figure 7.8.6 we show the nonzero pattern of the matrix S = WWT ,
where W is the matrix west0479, and its Cholesky factor.

0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

nz = 7551
0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

nz = 30141

Figure 7.8.6. Nonzero pattern of a matrix and its Cholesky factor.

The Cholesky factorization of a sparse symmetric positive definite matrix A
can be divided into four separate steps:

1. Determine a permutation P such that PTAP has a sparse Cholesky factor L.

2. Perform a symbolic Cholesky factorization of PAPT and generate a storage
structure for R.

3. Form PTAP and store in data structure for R.

4. Compute numerically the Cholesky factor R such that PTAP = RTR.

We stress that steps 1 and 2 are done symbolically, only working on the struc-
ture of A. The numerical computations take place in steps 3 and 4 a static storage
scheme can be used.

Example 7.8.4.
To illustrate the symbolic factorization we use the sparse symmetric matrix A

134 Chapter 7. Direct Methods for Solving Linear System

with Cholesky factor R

A =



















× × × ×
× × ×

× × × ×
× ×
× ×

× ×
× ×



















, R =



















× × × ×
× × + +

× + + × ×
× +

×
×

×



















,

where × and + denote a nonzero element. We show only the nonzero structure of
A and R, not any numerical values. The five elements marked + are the fill-in that
occur in the Cholesky factorization.

Graph theory provides a powerful tool for the analysis and implementation of
ordering algorithms. In the following we restrict ourselves to the case of a symmetric
structure. Below is the ordered graph G(A), of the matrix in Example 7.8.4.

3 2 1

4

57

6

Figure 7.8.7. The labeled graph of the matrix A.

Example 7.8.5.
The labelled graph suggest that row and columns of the matrix in Exam-

ple 7.8.5 is rearranged in order 4, 5, 7, 6, 3, 1, 2. With this ordering the Cholesky
factor of the matrix PAPT will have no fill-in!

PAPT =



















× ×
× ×

× ×
× ×

× × × ×
× × × ×

× × ×



















, R =



















× ×
× ×

× ×
× ×

× ×
× ×

×



















,

From the graph G(ATA) the structure of the Cholesky factor R can be pre-
dicted by using a graph model of Gaussian elimination. The fill-in under the factor-
ization process can be analyzed by considering a sequence of elimination graphs
that can be recursively formed as follows. We take G0 = G(A), and form Gi from
G(i−1) by removing the node i and its incident edges and adding fill edges. The fill
edges in eliminating node v in the graph G are

{(j, k) | (j, k) ∈ AdjG(v), j 6= k}.

7.8. Sparse Linear Systems 135

Thus the fill edges correspond to the set of edges required to make the adjacent
nodes of v pairwise adjacent. The filled graph GF (A) of A is a graph with n
vertices and edges corresponding to all the elimination graphs Gi, i = 0, . . . , n− 1.
The filled graph bounds the structure of the Cholesky factor R,

G(RT +R) ⊂ GF (A). (7.8.6)

Under a no-cancellation assumption, the relation (7.8.6) holds with equality.
The following characterization of the filled graph describes how it can be

computed directly from G(A).

Theorem 7.8.4. Let G(A) = (X,E) be the undirected graph of A. Then (xi, xj)
is an edge of the filled graph GF (A) if and only if (xi, xj) ∈ E, or there is a path
in G(A) from node i to node j passing only through nodes with numbers less than
min(i, j).

Consider the structure of the Cholesky factor R = (rij . For each row i ≤ n
we define γ(i) by

γ(i) = min{j > i | rij 6= 0}, (7.8.7)

that is γ(i) is the column subscript of the first off-diagonal nonzero element in row
i of R. If row i has no off-diagonal nonzero, then γ(i) = i. Clearly γ(n) = n.
The quantities γ(i), i = 1 : n can be used to represent the structure of the sparse
Cholesky factor R. For the matrix R in Example 7.8.4 we have

i 1 2 3 4 5 6 7
γ(i) 2 3 6 4 5 6 7

We now introduce the elimination tree corresponding to the structure of the
Cholesky factor. The tree has n nodes, labelled form 1 to n. For each i if γ(i) > j,
then node γ(i) is the parent of node i in the elimination tree and node j is one
of possible several child nodes of node γ(i). If the matrix is irreducible then n is
the only node with γ(n) = n and is the root of the tree. There is exactly one path
from node i to the root. If node j lies on the pathe from node i to the root, then
node j is an ancestor to node i and node j is a descendant of node i.

The most widely used algorithm for envelope reduction for symmetric matrices
is the reverse Cuthill–McKee ordering. This works on the graph G(A) as
follows:

1. Determine a starting node and label this 1.

2. For i = 1 : n − 1 find all unnumbered nodes adjacent to the node with label
i, and number them in increasing order of degree.

3. The reverse ordering is obtained by reversing the ordering just determined.

The reversal of the Cuthill–McKee ordering in step 3 was suggested by Alan
George, who noticed that it often was much superior to the original ordering pro-
duced by steps 1 and 2 above. In order for the algorithm to perform well it is

136 Chapter 7. Direct Methods for Solving Linear System

necessary to choose a good starting node; see George and Liu [31, Section 4.3.3].
In Fig. 7.8.2 we show the structure of the matrix from Fig. 7.8.1 and its Cholesky
factor after reverse Cuthill–McKee reordering. The number of non-zero elements in
the Cholesky factor is 23, 866.

0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

nz = 7551
0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

nz = 23596

Figure 7.8.8. Matrix and its Cholesky factor after reverse Cuthill–McKee
reordering.

As for unsymmetric matrices, the orderings that approximately minimize the
total fill-in in the Cholesky factor tend to have their nonzeros scattered throughout
the matrix. For some problems, such orderings can reduce fill-in by one or more
orders of magnitude over the corresponding minimum bandwidth ordering.

In the symmetric case ri = ci for the Markowitz ordering. It is then equivalent
to minimizing ri, and the resulting algorithm is called the minimum-degree al-
gorithm. The minimum degree ordering can be determined using a graph model of
the Cholesky factorization. At the same time the nonzero structure of the Cholesky
factor R can be determined and a storage structure for R generated. The minimum-
degree algorithm ordering algorithm has been subject to an extensive development.
Very efficient implementations now exist. For details we refer to George and Liu
[31, Chapter ] and [32].

Figure 7.8.3 shows the structure of the matrix from Fig. 7.8.1 and its Cholesky
factor after minimum-degree reordering. The number of non-zero elements in the
Cholesky factor is reduced to 12, 064. For nested dissection orderings, see George
and Liu [31, Chapter 8].

Review Questions

1. Describe the coordinate form of storing a sparse matrix. Why is this not
suitable for performing the numerical LU factorization?

Problems 137

0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

nz = 7551
0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

nz = 8911

Figure 7.8.9. Matrix and its Cholesky factor after minimum-degree reordering.

2. Give an example of a sparse matrix A, which suffers extreme fill-in in Gaussian
elimination..

3. Describe the Markowitz algorithm for ordering rows and columns of a non-
symmetric matrix before factorization.

4. Describe threshold pivoting. Why is this used instead of partial pivoting in
some schemes for LU factorization?

5. What does the reverse Cuthill–McKee ordering minimize?

Problems

1. Let A,B ∈ Rn×n be sparse matrices. Show that the number of multiplications
to compute the product C = AB is

∑n
i=1 ηiθi, where ηi denotes the number

of nonzero elements in the ith column of A and θi the number of nonzeros in
the ith row of B.

Hint: Use the outer product formulation C =
∑n

i=1 a.ib
T
i .

2. (a) It is often required to add a multiple a of a sparse vector x to another
sparse vector y. Show that if the vector x is held in coordinate form as nx
pairs of values and indices, and y is held in a full length array this operation
may be expressed thus:

for k = 1 : nx

y(index(k)) = a ∗ x(k) + y(index(k));

(b) Give an efficient algorithm for computing the inner product of two com-
pressed vectors.

138 Chapter 7. Direct Methods for Solving Linear System

3. Consider a matrix with the symmetric structure

A =















× ×
× × ×

× × ×
× × ×
× × ×

× × ×















.

(a) What is the envelope of A? Where will fill-in occur during Gaussian
elimination?

(b) Draw the undirected graph G, which represents the sparsity structure of A.

7.9 Structured Systems

The coefficient matrices in systems of linear equations arising from signal processing,
control theory and linear prediction often have some special structure that can be
taken advantage of. Several classes of such structured systems can be solved by fast
methods inO(n2) operations, or by super-fast methods even inO(n log n) operations
rather than O(n3) otherwise required by Gaussian elimination. This has important
implications for many problems in signal restoration, acoustics, seismic exploration
and many other application areas. Since the numerical stability properties of super-
fast methods are generally either bad or unknown we consider only fast methods in
the following.

7.9.1 Toeplitz and Hankel Matrices

Note: The following subsection are not yet complete and will be amended.
A Toeplitz matrix T is a matrix whose entries are constant along every

diagonal; T = (ti−j)1≤i,j≤n,

T =









t0 t1 . . . tn−1

t−1 t0 . . . tn−2

...
...

. . .
...

t−n+1 t−n+2 . . . t0









∈ Rn×n,

and is defined by the 2n − 1 values of t−n+1, . . . , t0, . . . , tn−1. Toeplitz matrices
arising in applications are often large, and dimensions of 10, 000 not uncommon.
Consequently there is a need for special fast methods for solving Toeplitz systems.
In large problems also storage requirements are important. The original matrix T
only requires 2n− 1 storage. However, if standard factorization methods are used,
at least n(n+ 1)/2 storage is needed.

A Hankel matrix is a matrix whose elements are constant along every an-

7.9. Structured Systems 139

tidiagonal, i.e.,H = (hi+j−2)1≤i,j≤n

H =









h0 h1 . . . hn−1

...
...

. . .
...

hn−2 hn−1 . . . h2n−3

hn−1 hn . . . h2n−2









∈ Rn×n.

Reversing the rows (or columns) of a Hankel matrix we get a Toeplitz matrix. Hence
methods developed for solving Toeplitz systems apply also to Hankel systems.

7.9.2 Cauchy-Like Matrices

A Cauchy matrix is a matrix of the following form:

C =

(

1

yi − zj

)

1≤i,j≤n

, ai, bj ∈ Rp. (7.9.1)

where we assume that yi 6= zj for 1 ≤ i, j ≤ n.

Example 7.9.1. Consider the problem of finding the coefficients of a rational
function

r(x) =
n

∑

j=1

aj
1

x− yj
,

which satisfies the interpolation conditions r(xi) = fi, i = 1, . . . , n. With a =
(a1, . . . , an), f = (f1, . . . , fn) this leads to the linear system Ca = f , where C is
the Cauchy matrix in (7.9.1).

Cauchy gave in 1841 the following explicit expression for the determinant

det(C) =

∏

1≤i<j≤n

(yj − yi)(zj − zi)

∏

1≤i≤j≤n

(yj + zi)
.

We note that any row or column permutation of a Cauchy matrix is again a Cauchy
matrix. This property allows fast and stable version of Gaussian to be developed
for Cauchy systems.

Many of these methods also apply in the more general case of Loewner ma-
trices of the form

C =

(

aT
i bj

yi − zj

)

1≤i,j≤n

, ai, bj ∈ Rp. (7.9.2)

140 Chapter 7. Direct Methods for Solving Linear System

Example 7.9.2. The most famous example of a Cauchy matrix is the Hilbert
matrix, which is obtained by taking yi = zi = i− 1/2:

Hn ∈ Rn×n, hij =
1

i+ j − 1
.

For example,

H4 =







1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7






.

The Hilbert matrix is symmetric and positive definite Hankel matrix. It is also
totally positive . The inverse of Hn is known explicitly and has integer elements.
Hilbert matrices of high order are known to be very ill-conditioned; for large n it
holds that κ2(Hn) ∼ e3.5n.

7.9.3 Vandermonde systems

In Chapter 4 the problem of interpolating given function values f(αi), i = 1, . . . , n
at distinct points αi with a polynomial of degree ≤ n − 1 was shown to lead to
a linear system of equations with matrix M = [pj(αi)]

m
i,j=1. In the case of the

power basis pj(z) = zj−1, the matrix M equals V T , where V is the Vandermonde
matrix

V = [αi−1
j]ni,j=1 =









1 1 · · · 1
α1 α2 · · · αn
...

... · · ·
...

αn−1
1 αn−1

2 · · · αn−1
n









. (7.9.3)

Hence the unique polynomial P (z) satisfying the interpolating conditions P (αi) =
fi, i = 1, . . . , n is given by

P (z) = (1, z, . . . , zn−1)a,

where a is the solution of the dual Vandermonde system.

V Ta = f (7.9.4)

One of the most efficient ways to determine P (x) is by Newton’s interpolation
formula, which uses the basis polynomials

Q1(z) = 1, Qk(z) = (z − α1) · · · (z − αk−1), k = 2 : n− 1.

We write the polynomial in the form

P (z) = (Q1(z), Q2(z), . . . , Qn(z))c,

where c are the divided differences of f1 : fn. These divided differences can be
recursively computed, see Section 4.?. This leads to the algorithm below for com-
puting the coefficient vector a in the power basis. Note that the algorithm operates
directly on the αj ’s and the matrix V T is never formed,

7.9. Structured Systems 141

Algorithm 7.9.1 Dual Vandermonde System

Given distinct scalars α1, α2, . . . , αn and f = (f1, f2, . . . , fn)T the following algo-
rithm solves the dual Vandermonde system V Ta = f :

a = dvand(α, f)
a := f ;
for k = 1 : n− 1

for j = n : (−1) : k + 1
aj := (aj − aj−1)/(αj − αj−k)

end
end
for k = n− 1 : (−1) : 1

for j = k : n− 1
aj := aj − αk ∗ aj+1

end
end

The accuracy of this algorithm depends on the ordering of the interpolation
points αi. Often the best ordering is the monotone ordering for which

α1 < α2 · · · < αn.

If moreover 0 ≤ α1 this algorithm often gives remarkably accurate solutions.
To interpret the Newton interpolation algorithm in matrix terms we define

lower bidiagonal matrices

Lk(α) =

(

Ik−1 0
0 Bn−k+1(α)

)

, k = 1, . . . , n− 1,

where

Bp(α) =









1
−α 1

. . .
. . .

−α 1









∈ Rp×p.

We further let

Dk = diag (1, . . . , 1, (αk+1 − α1), . . . , (αn − αn−k)).

Then we find that the dual Vandermonde algorithm can be written as

c = UT f, UT = D−1
n−1Ln−1(1) · · ·D−1

1 L1(1),

a = LT c, LT = LT
1 (α1)L

T
2 (α2) · · ·LT

n−1(αn−1).

Systems of equations with Vandermonde matrix

V x = b (7.9.5)

142 Chapter 7. Direct Methods for Solving Linear System

are called primal Vandermonde systems and occur, e.g., in approximation of linear
functionals (see Chapter 4). The matrix representation of the algorithm for the
dual Vandermonde system allows us to derive an algorithm also for solving primal
Vandermonde systems.

Since a = V −T f = LTUT f , we have V −T = LTUT . Transposing this relation
and find

V −1 = UL,

Hence the solution to the primal system V x = b is given by x = V −1b = U(Lb) or

d = Lb, L = Ln−1(αn−1) · · ·L2(α2)L1(α1)

x = Uf, U = MT
1 D

−1
1 · · ·MT

n−1D
−1
n−1

This gives rise to the following algorithm:

Algorithm 7.9.2 Primal Vandermonde System

Given distinct scalars α1, α2, . . . , αn and b = (b1, b2, . . . , bn)T the following algo-
rithm solves the primal Vandermonde system V x = b:

x = pvand(α, b)
x := b;
for k = 1 : n− 1

for j = n : (−1) : k + 1
xj := xj − αk ∗ xj−1

end
end
for k = n− 1 : (−1) : 1

for j = k + 1 : n
xj := xj/(αj − αj−k)

end
for j = k : n− 1
xj := xj − xj+1

end
end

This is the Björck–Pereyra algorithm. It solves primal Vandermonde sys-
tems with only 1

2n(n+1)(3A+2M) operations, where A and M denotes one floating
point addition and multiplication, respectively. Note also that no extra storage is
needed since a can overwrite f .

Notes

Although the history of Gaussian elimination goes back at least to Chinese mathe-
maticians about 250 B.C., there was no practical experience of solving large linear

7.9. Structured Systems 143

systems until the advent of computers in the 1940s. Gaussian elimination was the
first numerical algorithm to be subjected to a rounding error analysis. In 1946 there
was a mood of pessimism about the stability of Gaussian elimination. Hotelling [44]
had produced bounds showing that the error in the solution would be proportional
to 4n, which suggested that it would be impossible to solve even systems of mod-
est order. A few years later J. von Neumann and H. H. Goldstein published more
relevant error bounds. In 1948 A. M. Turing wrote a remarkable paper [63], where
he formulated the LU factorization and introduced matrix condition numbers. The
more or less final form of error analysis of Gaussian elimination was given by J. H.
Wilkinson [65]. For a more detailed historical perspective of Gaussian elimination
we refer to N. J. Higham [41, Sec. 9.13].

Rook pivoting for nonsymmetric matrices was introduced by Neal and Poole in
[51]. Related pivoting strategies for symmetric indefinite matrices were introduced
earlier by Fletcher [26].

The idea of doing only half the elimination for symmetric systems, while pre-
serving symmetry is probably due to Gauss, who first sketched his elimination al-
gorithm in 1809. The Cholesky method is named after Andre-Louis Cholesky, who
was a French military officer. He devised his method to solve symmetric, positive
definite system arising in a geodetic survey in Crete and North Africa just before
World War I.

The literature on linear algebra is very extensive. For a theoretical treatise a
classical source is Gantmacher [28, ]. Several nonstandard topics are covered
in depth in two excellent volumes by Horn and Johnson [42, ] and [43, ].

An interesting survey of classical numerical methods in linear algebra can be
found in Faddeev and Faddeeva [25, ], but many of the methods treated are
now dated. A compact, lucid and modern presentation is given in Householder [45,
]. Bellman [7, ] is an original and readable complementary text.

An up to date and indispensable book for of anyone interested in computa-
tional linear algebra is Golub and Van Loan [35, ]. The book by Higham [41,
] is a wonderful and useful source book for information about the accuracy and
stability of algorithms in numerical linear algebra. Other excellent textbooks on
matrix computation include Stewart [60, ]. For results on on perturbation the-
ory and related topics a very complete reference book is Stewart and Sun [61, ].
In particular, an elegant treatise on norms and metrics is found in [61, Chapter II].

Direct methods for sparse symmetric positive definite systems are covered in
George and Liu [31, ], while a more general treatise is given by Duff et al. [22,
].

Bauer [6] was the first to study componentwise perturbation theory. This did
not catch on in English publications until Skeel took it up in two papers [56, ],
and [57, ].

A gallery of test matrices is documented in N. J. Higham [40]. available from
the Web,; see also [41, Appendix D].

144 Chapter 7. Direct Methods for Solving Linear System

Bibliography

[1] Jan Ole Aasen. On the reduction of a symmetric matrix to tridiagonal form.
BIT, 11:233–242, 1971.

[2] Edward Anderson, Zhaojun Bai, Christian Bischof, S. Blackford, J. Dem-
mel, J. Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammarling,
A. McKenney, and Danny Sorensen, editors. LAPACK Users’ Guide. SIAM,
Philadelphia, PA, third edition, 1999.

[3] Mario Arioli, James W. Demmel, and Iain S. Duff. Solving sparse linear systems
with sparse backward error. SIAM J. Matrix Anal. Appl., 10:165–190, 1989.

[4] Cleve Ashcraft, Roger G. Grimes, and John G. Lewis. Accurate symmetric
indefinite linear system solvers. SIAM J. Matrix Anal. Appl., 20:2:513–561,
1998.

[5] Edgar Asplund. Inverses of matrices {aij} which satisfy aij = 0 for j > i+ p.
Math. Scand., 7:57–60, 1959.

[6] F. L. Bauer. Genauigkeitsfragen bei der Lösung linearer Gleichungssysteme.
Z. Angew. Math. Mech., 46:7:409–421, 1966.

[7] Richard Bellman. Introduction to Matrix Analysis. SIAM, Philadelphia, PA,
1995.

[8] Åke Björck and Tommy Elfving. Algorithms for confluent Vandermonde sys-
tems. Numer. Math., 21:130–137, 1973.

[9] Åke Björck and Victor Pereyra. Solution of Vandermonde system of equations.
Math. Comp., 24:893–903, 1970.

[10] Z. Bothe. Bounds for rounding errors in the Gaussian elimination for band
systems. J. Inst. Maths. Applics., 16:133–142, 1975.

[11] James R. Bunch and Linda Kaufman. Some stable methods for calculating
inertia and solving symmetric linear systems. Math. Comp., 31:163–179, 1977.

[12] Eleanor Chu and Alan George. A note on estimating the error in gaussian
elimination without pivoting. ACM SIGNUM Newsletter, 20:2:2–7, 1985.

145

146 Bibliography

[13] Philippe G. Ciarlet. Introduction to Numerical Linear Algebra and Optimiza-
tion. Cambridge University Press, Cambridge, UK, 1989.

[14] Alan K. Cline, Cleve B. Moler, George W. Stewart, and James H. Wilkinson.
An estimate for the condition number of a matrix. SIAM J. Numer. Anal.,
16:368–375, 1979.

[15] Carl de Boor and Allan Pinkus. Backward error analysis for totally positive
linear systems. Numer. Math., 27:485–490, 1977.

[16] James W. Demmel, Nicholas J. Higham, and Robert S. Schreiber. Stability of
block LU factorizations. Numer. Linear Algebra Appl., 2:173–190, 1995.

[17] Inderjit S. Dhillon. Reliable computation of the condition number of a tridi-
agonal matrix in O(n) time. SIAM J. Matrix Anal. Appl., 19:3:776–796, 1998.

[18] J. J. Dongarra, James R. Bunch, Cleve B. Moler, and George W. Stewart.
LINPACK Users’ Guide. SIAM, Philadelphia, PA, 1979.

[19] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set of level 3
basic linear algebra subprograms. ACM Trans. Math. Software, 16:1–17, 1988.

[20] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. A extended set
of Fortran Basic Linear Algebra Subprograms. ACM Trans. Math. Software,
14:1–17, 1988.

[21] Jeremy Du Croz and Nicholas J. Higham. Stability of methods for matrix
inversion. IMA J. Numer. Anal., 12:1–19, 1992.

[22] Iain S. Duff, A. M. Erisman, and John K. Reid. Direct Methods for Sparse
Matrices. Oxford University Press, London, 1986.

[23] Iain S. Duff, Roger G. Grimes, and John G. Lewis. Sparse matrix test problems.
ACM Trans. Math. Software, 15:1:1–14, 1989.

[24] Erik Elmroth, F. G. Gustavson, Isak Jonsson, and Bo Kågström. Recursive
blocked algorithms and hybrid data structures for dense matrix library soft-
ware. SIAM Review, 46:1, 2004.

[25] D. K. Faddeev and V. N. Faddeeva. Computational Methods of Linear Algebra.
W. H. Freeman, San Francisco, CA, 1963.

[26] Roger Fletcher. Factorizing symmetric indefinite matrices. Linear Algebra
Appl., 14:257–272, 1976.

[27] George E. Forsythe and Cleve B. Moler. Computer Solution of Linear Algebraic
Systems. Prentice-Hall, Englewood Cliffs, NJ, 1967.

[28] F. R. Gantmacher. The Theory of Matrices. Vols. I and II. Chelsea Publishing
Co, New York, 1959.

Bibliography 147

[29] B. S. Garbow, J. M. Boyle, J. J. Dongarra, and G. W. Stewart. Matrix Eigen-
systems Routines: EISPACK Guide Extension. Springer-Verlag, New York,
1977.

[30] Alan George, Kkakim D. Ikramov, and Andrey B. Kucherov. On the growth
factor in Gaussian elimination for generalized Higham matrices. Numer. Linear
Algebra Appl., 9:107–114, 2002.

[31] Alan George and Joseph W. Liu. Computer Solution of Large Sparse Positive
Definite Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[32] Alan George and Joseph W. Liu. The evolution of the minimum degree ordering
algorithm. SIAM Review, 31:1–19, 1989.

[33] John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in Matlab:
Design and implementation. SIAM J. Matrix Anal. Appl., 9:862–874, 1992.

[34] John R. Gilbert and Tim Peierls. Sparse partial pivoting in time proportional
to arithmetic operations. SIAM J. Sc. Statist. Comput., 13:1:333–356, 1988.

[35] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore, MD, third edition, 1996.

[36] William W. Hager. Condition estimates. SIAM J. Sci. Statist. Comput., 5:311–
316, 1984.

[37] Eldon Hansen. Topics in Interval Analysis. Oxford University Press, Oxford,
1969.

[38] G. I. Hargreaves. Interval analysis in MATLAB. Numer. anal. report 418,
Department of Mathematics, University of Manchester, 2002.

[39] Nicholas J. Higham. FORTRAN codes for estimating the one-norm of a real or
complex matrix, with application to condition estimation. ACM Trans. Math.
Software, 14:4:381–396, 1988.

[40] Nicholas J. Higham. The Matrix Computation Toolbox, 1995.
http://www.ma.man.ac.uk/~higham/mctoolbox.

[41] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, PA, second edition, 2002.

[42] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University
Press, Cambridge, UK, 1985.

[43] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge
University Press, Cambridge, UK, 1991.

[44] Harold Hotelling. Some new methods in matrix calculus. Ann. Math. Statist.,
14:1–34, 1943.

148 Bibliography

[45] Alston S. Householder. The Theory of Matrices in Numerical Analysis. Dover,
New York, 1975.

[46] Yasuhiko Ikebe. On inverses of Hessenberg matrices. Linear Algebra Appl.,
24:93–97, 1979.

[47] W. M. Kahan. Numerical linear algebra. Canad. Math. Bull., 9:757–801, 1966.

[48] Charles L. Lawson, Richard J. Hanson, D. R. Kincaid, and Fred T. Krogh. Ba-
sic linear algebra subprograms for Fortran usage. ACM Trans. Math. Software,
5:308–323, 1979.

[49] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Ka-
han, A. Kapur, M. C. Martin, T. Tung, and D. J. Yoo. Design, implementation
and testing of extended and mixed precision BLAS. LAPACK working note
149 Tech. Report CS-00-451, Department of Computer Science, University of
Tennessee, Knoxville, TN, 2000.

[50] Jean Meinguet. Refined error analysis of Cholesky factorization. SIAM J.
Numer. Anal., 20:1243–1250, 1983.

[51] Larry Neal and George Poole. A geometric analysis of Gaussian elimination.
II. Linear Algebra Appl., 173:239–264, 1992.

[52] John von Neumann. In A. H. Taub, editor, Collected Works. Pergamon Press,
New York, 1962.

[53] G. Peters and James H. Wilkinson. On the stability of Gauss–Jordan elimina-
tion with pivoting. Comm. ACM, 18:20–24, 1975.

[54] S. M. Rump. Fast and parallel interval arithmetic. BIT, 39:3:534–554, 1999.

[55] Siegfrid M. Rump. INTLAB—INTerval LABoratory. In T. Csendes, editor,
Developments in Reliable Computing, pages 77–104. Kluwer Academic Pub-
lishers, Dordrecht, 1999.

[56] Robert D. Skeel. Scaling for stability in Gaussian elimination. J. Assoc. Com-
put. Mach., 26:494–526, 1979.

[57] Robert D. Skeel. Iterative refinement implies numerical stability for Gaussian
elimination. Math. Comput., 35:817–832, 1980.

[58] B. T. Smith, J. M. Boyle, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B.
Moler. Matrix Eigensystems Routines—EISPACK Guide. Springer-Verlag,
New York, second edition, 1976.

[59] Torsten Söderström and G. W. Stewart. On the numerical properties of an
iterative method for computing the Moore–Penrose generalized inverse. SIAM
J. Numer. Anal., 11:61–74, 1974.

Bibliography 149

[60] George W. Stewart. Matrix Algorithms Volume I: Basic Decompositions.
SIAM, Philadelphia, PA, 1998.

[61] George W. Stewart and Ji guang. Sun. Matrix Perturbation Theory. Academic
Press, Boston, MA, 1990.

[62] Lloyd N. Trefethen and Robert S. Schreiber. Average-case stability of Gaussian
elimination. SIAM J. Matrix Anal. Appl., 11:335–360, 1990.

[63] A. M. Turing. Rounding-off errors in matrix processes. Quart. J. Mech. Appl.
Math., 1:287–308, 1948.

[64] James M. Varah. On the solution of block-tridiagonal systems arising from
certain finite-difference equations. Math. Comp., 26(120):859–869, 1972.

[65] James H. Wilkinson. Error analysis of direct methods of matrix inversion. J.
ACM, 8:281–330, 1961.

[66] James H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press,
Oxford, 1965.

[67] James H. Wilkinson. A priori error analysis of algebraic processes. In Pro-
ceedings International Congress Math., pages 629–639. Izdat. Mir, Moscow,
1968.

[68] James H. Wilkinson and C. Reinsch, editors. Handbook for Automatic Com-
putation. Vol. II, Linear Algebra. Springer-Verlag, New York, 1971.

[69] Max A. Woodbury. Inverting modified matrices. Memorandum Report 42,
Statistical Research Group, Princeton, 1950.

Index

algorithm
LDLT , 57
1-norm estimator, 90
back-substitution, 30

banded, 74
band LU, 74
band-Cholesky, 76
block Cholesky, 112
block LU factorization, 111
block-Cholesky factorization, 112
Cholesky factorization, 62
forward-substitution

banded, 74
Gaussian elimination, 34
recursive Cholesky factorization,

115
Vandermonde system, 139

dual, 138
antidiagonal, 7
arithmetic

floating-point, 92
standard model, 92

array operations, 5
arrowhead matrix, 127

back-substitution, 29
banded, 74

banded matrix, 72
banded systems, 70–76
bandwidth

lower, 7
of LU factors, 73
upper, 7

bidiagonal matrix, 8, 73
BLAS, 103
block diagonally dominant, 111
block triangular form, 125–127

algorithm, 127
block triangular structure, 125
bordered matrix, 120
bordering method, 49

Cauchy matrix, 136
Cauchy–Schwarz inequality, 18
Cayley transform, 27
Cholesky factorization, 61–76

backward error, 98, 99
symbolic, 133

componentwise perturbation bound, 84
condition estimation, 88–91

Hager’s, 89
LINPACK’s, 89

condition number
of matrix, 24

convergence
of vectors and matrices, 22

Cramer’s rule, 2, 9
Crout’s algorithm, 49
cyclic reduction, 78

decomposition
SVD, 15

diagonally dominant, 56
distance

to singular matrices, 25
Doolittle’s algorithm, 49
dual

norm, 18
vector, 18

dual norm, 18
Dulmage–Mendelsohn form, 126

element growth, 43, 45
in complete pivoting, 94

150

Index 151

in partial pivoting, 94
partial pivoting, 95

elimination
right-looking, 111

elliptic norm, 18
envelope

of LU factors, 123
of matrix, 123

error
floating point rounding, 93

error bounds
a posteriori, 86, 87
backward, 86

Euler expansion, 53
expansion

Euler, 53
Neumann, 53

fill-in, 122
flam, 30
flam count

Gaussian elimination, 34
triangular system, 35

flop count
LDLT , 58
banded back-substitution, 74
banded LU, 74
condition estimation, 88
Gauss–Jordan elimination, 42
Hessenberg system, 75
inverse matrix, 53
tridiagonal system, 77

forward-substitution, 29
banded, 74

Gauss–Jordan elimination, 42
Gaussian elimination, 31–51

backward error, 44
block algorithms, 109–116
compact schemes, 49, 109
rounding error analysis, 92–99
scaling invariance, 99

GE, see Gaussian elimination
Gerschgorin’s Theorem, 56
graph

bipartite, 126

elimination, 132
filled, 132
ordered, 131
undirected, 131

growth rate, 43
growth ratio, 43

Hölder inequality, 18
Hankel matrix, 136
Hessenberg matrix, 8, 75
Hilbert matrix, 137

ill-conditioned
artificial, 86

Inertia
of symmetric matrices, 64–65

inertia of matrix, 65
inner product, 6

accurate, 103
error analysis, 92

INTLAB, 108
inverse

approximative, 53
of band matrix, 80
product form of, 42

inverse matrix, 6
irreducible matrix, 126
iterative refinement

error bound, 104
of solutions, 102–105

Krawczyck’s method, 108
Kronecker

product, 117
Kronecker product, 117
Kronecker symbol, 7

left-looking, 113
linear map, 4
linear system

consistent, 9
homogeneous, 9
ill-scaling, 101
scaling, 99–102
scaling rule, 101

linearly independent

152 Index

vectors, 3
LU factorization, 35–38

Doolittle’s algorithm, 48
theorem, 37

magnitude
of interval, 106

matrix
arrowhead, 127
banded, 72
bidiagonal, 8, 73
block, 10
bordered, 120
congruent, 64
diagonally dominant, 45–47, 111
elementary elimination, 39
Hermitian, 8
Hessenberg, 8, 75
indefinite, 55
inverse, 6, 51–54
permutation, 36
persymmetric, 8
positive definite, 45, 55–60
rank of, 33
semidefinite, 55
skew-Hermitian, 8
sparse, 121
symmetric, 55
totally positive, 98
trapezoidal form, 33
tridiagonal, 8, 73
variable-band, 123
well-conditioned, 26

matrix multiplication
error bound, 93

maximum matching, 126

Neumann expansion, 53
Newton–Schultz iteration, 54
no-cancellation assumption, 132
norm

consistent, 19
dual, 18
Frobenius, 20
matrix, 19
operator, 19

scaled, 18
spectral, 20
submultiplicative, 19
subordinate, 19
unitarily invariant, 21
vector, 17
weighted, 18

null space (of matrix), 16

odd-even reduction, 78
Oettli–Prager error bounds, 87
ordering

Markowitz, 129
minimum-degree, 133
reverse Cuthill–McKee, 128, 133

outer product, 6

packed storage, 63
partitioning

conformal, 10
partitioning (of matrix), 10
permutation

even, 8
odd, 8
sign of, 8

permutation matrix, 36
perturbation

of linear systems, 86
perturbation bound

for linear system, 24
component-wise, 85

pivotal elements, 31
pivoting

Bunch–Kaufman, 68
complete, 42
for sparsity, 127–133
partial, 42
rook, 44

positive semidefinite matrices, 64

range (of matrix), 16
rank

structural, 127
reducible matrix, 126
right-looking, 113
rook pivoting, 44

Index 153

Schur
complement, 12, 66

Schur–Banachiewicz formula, 13
Sherman–Morrison formula, 14
singular value, 15
singular value decomposition, 14–15
singular vector, 15
sparse matrix

block triangular form, 125–127
irreducible, 126
reducible, 126

standard basis, 3
storage scheme

compressed form, 124
dynamic, 125
static, 125

Strassen’s algorithm, 116
submatrix, 10

principal, 10
subspaces

dimension, 3
intersection of, 3
sum of, 3

SVD, see singular value decomposi-
tion

compact form, 16
sweep method, 50
Sylvester’s

criterion, 59
law of inertia, 65

symmetric
gauge functions, 21
indefinite matrix, 66–69
matrix, 55
pivoting, 63

Toeplitz matrix, 136
totally positive, 137
transformation

congruence, 64
transpose (of matrix), 5
transposition, 8

matrix, 36
triangular

factorization, see LU factorization
matrix, 29

systems of equations, 30
tridiagonal

matrix, 8, 73
systems, 81

tridiagonal matrix
periodic, 79
symmetric indefinite, 80

Woodbury formula, 13
wrapping effect, 105

