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Chapter 6

Solving Scalar Nonlinear

Equations

6.1 Some Basic Concepts and Methods

6.1.1 Introduction

In this chapter we study numerical methods for computing accurate approximations
to the roots of a scalar nonlinear equation

f(x) = 0, (6.1.1)

where f(x) is a real-valued function of one variable. This problem has occupied
mathematicians for many centuries and many of the basic methods date back a
long time. In general the roots of (6.1.1) cannot be expressed in closed form. Even
when an explicit solution is available (as, e.g., for the reduced cubic equation), this
is often so complicated that using, e.g., Newton’s method, is more practical; see
Problem 2.3.8.

Numerical methods are iterative in nature. Starting from one or more ini-
tial approximations, they produce a sequence of approximations, which presumably
converges to the desired root. Note that the function f(x) need not be known by a
closed analytical expression. For numerical methods to be applicable it suffices that
f(x), and preferably some of its derivatives, can be evaluated for given numerical
values of x. It is not uncommon with applications where each function value is
obtained by a complicated computation, e.g., by the numerical solution of a differ-
ential equation. The object is then to use as few function evaluations as possible in
order to approximate the root with a prescribed accuracy.

Iterative methods have to be truncated after a finite number of steps and
therefore can yield only approximations to the desired roots. Further, the roundoff
errors that occur in the evaluation of f(x) will limit the accuracy attainable by any
numerical method. The effect of such rounding errors depends on the conditioning
of the roots and is discussed in Section 6.1.3.

With certain methods it is sufficient for convergence to know an initial interval
[a, b], which contains the desired root (and no other root). An important example
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2 Chapter 6. Solving Scalar Nonlinear Equations

is the bisection method described in Section 6.1.2. It is often suitable to use a
hybrid method in which the bisection method is used to roughly locate the root. A
more rapidly convergent method is then used to refine this approximation. These
latter methods make more use of regularity assumptions about f(x), and usually
also require an initial approximation close to the desired root.

The theory of fixed point iteration methods is treated in Sec. 6.1.4 and the
concepts of convergence order and efficiency introduced in Sec. 6.1.5. The secant
method, and other methods based on interpolation are described in Sec. 6.2. In
Sec. 6.4 we briefly consider methods for solving the related problem of finding the
minimum or maximum of a real-valued function g(x). Newton’s method and other
methods of higher order are analyzed in Sections 6.3. A classical problem is that of
determining all real or complex roots of a algebraic equation. Special features and
methods for this problem are taken up in Section 6.5.

Many of the methods for a single equation, such as Newton’s method, are
easily generalized for systems of nonlinear equations. However, unless good approx-
imations to the roots are known, several modifications of the basic methods are
required, see Vol. II, Chapter 11.

6.1.2 The Bisection Method

It is often advisable to start with collecting some qualitative information about the
roots to be computed. One should try to determine how many roots there are and
their approximate location. Such information can often be obtained by graphing
the function f(x). This can be a useful tool for determining the number of roots
and intervals containing each root.

Example 6.1.1.

Consider the equation

f(x) = (x/2)2 − sinx = 0.

In Figure 6.1.2 the graphs of y = (x/2)2 and y = sinx are shown. Observing the
intersection of these we find that the unique positive root lies in the interval (1.8, 2),
probably close to α ≈ x0 = 1.9.

The following intermediate-value theorem can be used to infer that an
interval [a, b] contains at least one root of f(x) = 0.

Theorem 6.1.1.

Assume that the function f(x) is continuous for a ≤ x ≤ b, f(a) 6= f(b), and
k is between f(a) and f(b). Then there is a point ξ ∈ (a, b), such that f(ξ) = k. In
particular, if f(a)f(b) < 0 then the equation f(x) = 0 has at least one root in the
interval (a, b).

A systematic use of the intermediate-value theorem is made in the bisec-

tion method. Assume that f(x) is continuous in the interval (a0, b0) and that
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Figure 6.1.1. Graph of curve y = (x/2)2 − sinx.

f(a0)f(b0) < 0. We shall determine a nested sequence of intervals Ik = (ak, bk),
k = 1, 2, 3, . . ., such that

(a0, b0) ⊃ (a1, b1) ⊃ (a2, b2) ⊂ · · ·

and which all contain a root of the equation f(x) = 0. The intervals are determined
recursively as follows. Given Ik = (ak, bk) compute the midpoint

mk =
1

2
(ak + bk) = ak + 1

2 (bk − ak).. (6.1.2)

and f(mk). The latter expression has the advantage that using this to compute the
midpoint no rounding error occurs in the subtraction (see Theorem 2.2.2).

We can assume that f(mk) 6= 0, since otherwise we have found a root. The
new interval Ik+1 = (ak+1, bk+1) is then determined by the rule

(ak+1, bk+1) =

{

(mk, bk), if f(mk)f(ak) > 0;
(ak,mk), if f(mk)f(ak) < 0.

(6.1.3)

From the construction it follows immediately that f(ak+1)f(bk+1) < 0 (see also
Figure 6.1.2) and therefore the interval Ik+1 also contains a root of f(x) = 0.

After n bisection steps we have contained a root in the interval (an, bn) of
length 2−n(b0 − a0). If we take mn as an estimate of the root α, we have the error
estimate

|α−mn| < 2−(n+1)(b0 − a0). (6.1.4)

At each step we gain one binary digit in accuracy or, since 10−1 ≈ 2−3.3, on the
average one decimal digit per 3.3 steps. To find an interval of length δ which includes
a root will require about log2((b − a)/δ) evaluations of f . Note that the bisection
algorithm makes no quantitative use of the magnitude of computed function values.
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Figure 6.1.2. The bisection method.

Example 6.1.2.

The bisection method applied to the equation (x/2)2 − sinx = 0, with I0 =
(1.8, 2) gives the sequence of intervals [an, bn], where:

k ak bk mk f(mk)

1 1.8 2 1.9 <0
2 1.9 2 1.95 >0
3 1.9 1.95 1.925 <0
4 1.925 1.95 1.9375 >0
5 1.925 1.9375 1.93125 <0
6 1.93125 1.9375 1.934375 >0

Here after six function evaluations we have α ∈ (1.93125, 1.934375) an interval of
length 0.2 · 2−6 = 0.003125.

Example 6.1.3.

The inequalities a ≤ 1
2 (a + b) ≤ b, where a and b are floating point numbers

with a ≤ b can be violated in base 10 arithmetic. For example, assume that floating
point arithmetic with six decimal digits is used. Taking a = 0.742531 and b =
0.742533 we obtain fl(a+ b) = 1.48506 (rounded) and 1

2 (a+ b) = 0.742530. On the
other hand the inequalities a ≤ a+ 1

2 (b − a) ≤ b are true in base β arithmetic, for
any β. With a and p as given we get the correct value 0.742532.

An algorithmic description of the bisection method is given below. In this
the tolerance τ is increased by the amount umax(|a|, |b|), where u is the machine
precision. This is to guard against the possibility that δ has been chosen smaller
than the spacing between the floating point numbers between a and b.



6.1. Some Basic Concepts and Methods 5

Algorithm 6.1.1 The Bisection Method.

Let f be a given function and I = [a, b] an interval such that b > a and f(a)f(b) ≤ 0.
The algorithm bisect attempts to compute an approximation to a root m ∈ I of
f(x) = 0, with an error less than a specified tolerance τ > 0.

function r = bisect(f, a, b, τ);

fa = f(a);

fb = f(b);

while |b− a| > τ + u · max((|a|, |b|);
m = a+ (b− a)/2;

fm = f(m);

if fm · fa ≤ 0

b = m; fb = fm;

else

a = m; fa = fm;

end;

end;

r = a+ (b− a)/2;

The time required by the bisection algorithm is typically proportional to the
number of function evaluations, other arithmetic operations being insignificant. The
correct subinterval will be chosen in the algorithm as long as the sign of the com-
puted function value f(m) is correctly determined. If the tolerance τ is taken too
“small” or the root is ill-conditioned this may fail to be true in the later steps. Even
then the computed midpoints will stay within a certain domain of uncertainty. Due
to rounding errors there is a limiting accuracy, with which a root can be determined
from approximate function values; see in Section 6.1.3.

The bisection method is optimal for the class of functions that changes sign
on [a, b] in the sense that it minimizes the maximum number of steps over all such
functions. The convergence is rather slow, but independent of the regularity of
f(x). For other classes of functions, e.g., functions that continuously differentiable
on [a, b], methods like Newton’s method, which assume some regularity of f(x) can
achieve significantly faster convergence.

If f(a)f(b) < 0 then by the intermediate value theorem the interval (a, b)
contains at least one root of f(x) = 0. If the interval (a, b) contains several roots of
f(x) = 0, then the bisection method will converge to just one of these. (Note that
there may be one or several roots in (a, b), also in case f(a)f(b) > 0.)

If we only know (say) a lower bound a < α for the root to be determined we
can proceed as follows. We choose an initial steplength d and in the first hunting

phase compute successively function values f(a+ h), f(a+ 2h), f(a+ 4h), . . ., i.e.
we double the step, until a function value is found such that f(a)f(a + 2kh) < 0.
At this point we have bracketed a root and can initiate the bisection algorithm.

In the bisection method the interval of interest is in each step split into two
subintervals. An obvious generalization is to partition instead into k subintervals,
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for p ≥ 2. In such a multi-section method of order p the interval I = [a, b] is
divided into k subintervals Ii = [xi, xi+1], where

xi = a+ i [(b− a)/p], i = 0 : p.

If there exists only one root in the interval I and we wish to compute it with an
absolute error ǫ, then it is necessary to perform

nk = log2

(b− a

2ǫ

)/

log2(p)

multi-sections of order p. Thus, the efficiency of multi-section of order p compared
to bisection (p = 2) is

n2/(pnp) = log2(p)/p.

Hence if there is a single root in the interval bisection is always preferable. If there
are several roots in the interval multi-section may perform better if the subintervals
can be processed in parallel.

There are several other applications of the bisection algorithm. For example,
in Section 4.4.5 we considered evaluating the nonzero B-splines for a given argument
x. Then we first have to search an ordered sequence of knots τ0, . . . , τm to find the
interval such that τj ≤ x < τj+1. This can be achieved by a slight modification
of the bisection method. A similar problem, important in computer science, is
searching in an ordered register, e.g., a register of employees ordered according to
increasing Social Security number. If the nth number in the register is denoted by
f(n), then searching for a certain number a means that an equation f(n) = a is to
be solved (here f is an increasing, discontinuous function). The bisection method
can also be used in searching an alphabetically ordered register.

In later sections we will study methods for solving a nonlinear equation, which
make more efficient use of computed function values than the bisection method and
possibly also use values of derivatives of f(x). If f(x) is sufficiently regular such
methods can achieve significantly faster convergence.

6.1.3 Attainable Accuracy and Termination Criteria

In the following we denote by f(x) = fl(f(x)) the limited-precision approximation
obtained when f(x) is evaluated in floating point arithmetic. When a monotone
function f(x) is evaluated in floating point arithmetic the resulting approximation
f(x) is not in general monotone. The effect of rounding errors in evaluating a certain
polynomial of fifth degree with a simple zero at x = 1 is illustrated in Figure 6.1.4.
Note the loss of monotonicity caused by rounding errors. This figure also shows
that even if f(a)f(b) < 0, the true equation f(x) = 0 may not have a zero in [a, b]!

Even if the true function value |f(xn)| is “small” one cannot deduce that xn

is close to a zero of f(x) without some assumption about the size of the derivative
of f . We recall some basic results from analysis; for proofs see, e.g., Ostrowski [19,
Chapter 2].



6.1. Some Basic Concepts and Methods 7

0.9985 0.999 0.9995 1 1.0005 1.001 1.0015

−1

−0.5

0

0.5

1

1.5
x 10

−14

Figure 6.1.3. Limited-precision approximation of a continuous function.

Theorem 6.1.2.

Let f(x) be continuous and differentiable in the interval J = [xn − η, xn + η]
for some η > 0. If |f ′(x)| ≥ m1 for all x ∈ J and |f(xn)| ≤ ηm1 then f(x) has
exactly one zero in J .

A root α of f(x) = 0 is said to be simple root if f ′(α) 6= 0. We now derive
an error estimate for a simple root α of f(x), which takes into account errors in the
computed values of f(x). Assume that

f(x) = f(x) + δ(x), |δ(x)| ≤ δ, x ∈ J, (6.1.5)

where δ is an upper bound for rounding and other errors in computed function
values of f(x). Using Theorem 6.1.2 we obtain

|xn − α| ≤ η = (|f(xn)| + δ)/m1, |f ′(x)| ≥ m1, x ∈ J. (6.1.6)

Obviously the best we can hope for is to find an approximation xn such that the
computed function value f(xn) = 0. It follows that for any numerical method,
δ/m1 is an approximate limit for the accuracy with which a simple zero α can be
determined. If f ′(x) does not vary much near xn = α, then we have the approximate
error bound

|xn − α| ≤ δ/m1 ≈ ǫα, ǫα = δ/|f ′(α)|. (6.1.7)

Since this is the best error bound for any method, we call ǫα, the attainable

accuracy for the simple root α, and the interval [α − ǫα, α + ǫα] the domain of

uncertainty for the root α. If |f ′(α)| is small, then ǫα is large and the problem of
computing the root α is ill-conditioned (see again Figure 6.1.3).
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Example 6.1.4.

Suppose we have computed the approximation x = 1.93375 to the positive
root to the equation f(x) = sinx − (x/2)2. We have f ′(x) = cosx − x/2 and
it is easily verified that |f(x)| > 1.31 = m1, x ∈ [1.93, 1.94]. Further, using six
decimals we have sin 1.93375 = 0.934852 ± 0.510−6, and (x/2)2 = 0.966875)2 =
0.934847± 0.510−6. Then from (6.1.6) follows the strict error estimate

|x− α| < 6 · 10−6/1.31 < 5.6 · 10−6.

Using the following theorem, an analogous result can be shown for zeros of a
complex function f(z) of a complex variable z.

Theorem 6.1.3.

Let f(z) be analytic in the disc K = {z | |z − z0| ≤ η} for some η > 0. If
|f ′(z)| ≥ m in K and |f(z0)| ≤ ηm then f(z) has a zero inside K.

The multiplicity of a root is defined as follows:

Definition 6.1.4.

Suppose that f(x) is q times continuously differentiable in a neighborhood of
a root α to the equation f(x) = 0. Then α is said to have multiplicity q if

0 6= lim
x→α

|f(x)/(x − α)q| <∞. (6.1.8)

If a root α has multiplicity q then by (6.1.8) f (j)(α) = 0, j < q and from
Taylor’s formula

f(x) =
1

q!
(x− α)qf (q)(ξ), ξ ∈ int(x, α). (6.1.9)

Assuming that |f (q)(x)| ≥ mq, x ∈ J , and proceeding as before, we find that the
attainable accuracy for a root of multiplicity q is given by

|xn − α| ≤ (q! δ/mq)
1/q ≈ ǫα, ǫα = (q! δ/|f (q)(α)|)1/q . (6.1.10)

Comparing this with (6.1.7), we see that because of the exponent 1/q multiple roots
are in general very ill-conditioned. A similar behavior can be expected also when
there are several distinct but “close” roots. An instructive example is the Wilkinson
polynomial, studied in Example 6.5.1.

Example 6.1.5.

The equation f(x) = (x − 2)x + 1 = 0 has a double root x = 1. The (exact)
value of the function at x = 1 + ǫ is

f(x+ ǫ) = (ǫ− 1)(1 + ǫ) + 1 = −(1 − ǫ2) + 1 = ǫ2.
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Now, suppose that we use a floating point arithmetic with eight decimal digits in
the mantissa. Then

fl(1 − ǫ2) = 1, |ǫ| < 1

2

√
2· 10−4,

and for 0.99992929 ≤ x ≤ 1.0000707, the computed value of f(x) will be zero when
f(x) is evaluated using Horner’s rule. Hence the root can only be computed with
about four correct digits, that is, with a relative error equal to the square root of
the machine precision.

Suppose that we want to compute an approximation to a simple root α to
a prescribed accuracy. Provided that the absolute value of the derivative is easy
to estimate it may be possible to interrupt the iterations on the basis of the error
estimate (6.1.7). However, on a computer it is usually more effective to iterate
a few extra times, rather than make the effort to use a special formula for error
estimation.

In subroutines for solving a nonlinear equation it is common practice to use
a termination criterion of the following form. Assuming the method produces a
seqeunce of bracketing intervals [ak, bk] the iterations are terminated if

|bk − ak| ≤ 2u|xn| + τ, (6.1.11)

where τ is a user specified absolute tolerance and u is the rounding unit (see Sec-
tion 2.2).

We must also deal with the possibility that the user specified tolerance is too
small and cannot be attained. If this is the case, then from some step onwards
rounding errors will dominate in the evaluation of f(xn) and the computed values
of f(x) may vary quasi-randomly in the interval (−δ, δ) of attainable accuracy. If
we are using a method like the bisection method, the iterations will continue until
the criterion (6.1.11) is satisfied, but this, of course, does not ensure that the root
actually has been determined to this precision!

The following alternative termination criterion can be used for superlinearly
convergent methods:1 Accept the approximation xn when for the first time the fol-
lowing two conditions are satisfied:

|xn+1 − xn| ≥ |xn − xn−1|, |xn − xn−1| < tol. (6.1.12)

Here tol is a coarse tolerance, used only to prevent the iterations from being termi-
nated before xn even has come close to α. When (6.1.12) is satisfied the attainable
accuracy has been reached and the quantity |xn+1 − xn| usually is a good estimate
of the error |xn − α|. Using this criterion the risk of never terminating the itera-
tions for an ill-conditioned root is quite small. Note also that iteration methods of
superlinear convergence ultimately converge so fast that the cost of always iterating
until the attainable accuracy is obtained may be small, even if the user specified
tolerance is much larger than ǫα.

1This criterion was suggested by the Norwegian computer scientist Jan Garwick.
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6.1.4 Fixed-Point Iteration

We now introduce a very general class of iteration methods, which includes many
important root finding methods as special cases.

Let φ be a continuous function and {xn} the sequence generated by

xn+1 = φ(xn), n = 0, 1, 2, . . . . (6.1.13)

for some initial value x0. Assuming that limn→∞ xn = α, it follows that

α = lim
n→∞

xn = lim
n→∞

φ(xn) = φ(α), (6.1.14)

i.e., the limiting value α is a root of the equation x = φ(x). We call α a fixed point

of the mapping x→ φ(x) and the iteration (6.1.13) a fixed point iteration.
An iterative method for solving an equation f(x) = 0 can be constructed

by rewriting it in the equivalent form x = φ(x), which then defines a fixed point
iteration (6.1.13). Clearly this can be done in many ways. For example, let g(x) be
any function such that g(α) 6= 0 and set

φ(x) = x− f(x)g(x). (6.1.15)

Then α is a solution to f(x) = 0 if, and only if, α is a fixed point of φ
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Figure 6.1.4. The fixed point iteration xk+1 = e−xk , x0 = 0.3.

Example 6.1.6.

The equation x+ lnx = 0 can, for example, be written as:

(i) x = − lnx; (ii) x = e−x; (iii) x = (x+ e−x)/2.

Each of these give rise to a different fixed point iteration. Results from the first
eight iterations

xn+1 = e−xn , x0 = 0.3,
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are pictured in Figure 6.2.1. The convergence is slow and we get x9 = 0.5641
(correct value 0.567143).

As was shown already in Section 1.2, the iteration (6.1.13) may not converge
even if the initial value x0 is chosen arbitrarily close to a root. If limn→∞ xn = α for
all x0 in a sufficiently close neighborhood of α the α is called a point of attraction

otherwise α is a point of repulsion.
We shall see that under certain conditions the fixed-point problem has a unique

solution and that the iteration defined by (6.1.13) converges to this solution. A
sufficient condition for (6.1.13) to generate a convergent sequence is given in the
following theorem.

Theorem 6.1.5.

Suppose that the function φ(x) has a real fixed point α, and that in the closed
interval

J = {x | |x− α| ≤ ρ}
x→ φ(x) is a contraction mapping, i.e.,

|φ(s) − φ(t)| ≤ C|s− t|, 0 ≤ C < 1, (6.1.16)

for arbitrary points s and t in J . Then for all x0 ∈ J the fixed-point iteration
xn = φ(xn−1), generates a sequence {xn} such that:

(a) xn ∈ J , n = 1, 2, . . .;

(b) limn→∞ xn = α,

(c) α is the only root in J of x = φ(x).

Proof. We first prove assertion (a), by induction. Suppose that xn−1 ∈ J . Then
by (6.1.16) it follows that

|xn − α| = |φ(xn−1) − φ(α)| ≤ C|xn−1 − α| ≤ Cρ.

Hence xn ∈ J and (a) is proved. Repeated use of the inequality above gives

|xn − α| ≤ C|xn−1 − α| ≤ · · · ≤ Cn|x0 − α|,

and since C < 1, the result (b) follows. Suppose, finally, that x = φ(x) has another
root β ∈ J , β 6= α. Then, by (6.1.16)

|α− β| = |φ(α) − φ(β)| < |α− β|,

a contradiction; thus (c) follows.

Observe that the contractive Lipschitz condition (6.1.16) implies the continuity
of φ. If φ′(x) exists, then a sufficient condition for (6.1.16) to hold is that

|φ′(x)| ≤ C < 1, ∀ x ∈ J, (6.1.17)
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since then by the mean value theorem we have for x, y ∈ J that

|φ(x) − φ(y)| = |φ′(ζn)||x− y| < |x− y|, ζn ∈ J.

On the other hand if |φ′(α)| > 1 then the iterative method (6.1.13) diverges. The
four different cases that occur, depending on the sign and magnitude of φ′(α) were
illustrated in Figures 1.2.1a–d.

There is an analogue result valid for functions φ(z) of a complex variable z.
Assume that φ(z) is defined and analytic in the circle

K = {z | |z − α| ≤ ρ},

where α is a fixed point. Then if |φ′(z)| ≤ C < 1, for all z ∈ K, the fixed point
iteration

z0 ∈ K, zn = φ(zn−1), n = 1, 2, . . .

converges to α, which is the only fixed point in K.
In Theorem 6.1.5 we assumed the existence of a fixed point α of φ(x). It is

remarkable that the theorem can be modified so that it can be used to prove the
existence of a fixed point, and hence of a root of the equation x = φ(x).

Theorem 6.1.6.

Let x0 be a starting point, and consider the fixed point iteration xn+1 = φ(xn),
n = 1, 2, . . .. Assume that J is a closed interval such that x0 ∈ J and

|φ(s) − φ(t)| ≤ C|s− t|, 0 ≤ C < 1, (6.1.18)

for all s, t ∈ J . Then if

x1 +
C

1 − C
(x1 − x0) ∈ J, (6.1.19)

(a), (b) and (c) of Theorem 6.1.5 are true.

Proof. The theorem will be proved in a more general setting in Vol. II, Chapter 11
(see Theorem 11.2.1).

We remark that (6.1.18) is satisfied if |φ(x)| ≤ C < 1 in J . Further, there
is an analogue of this theorem also for complex functions φ(z) analytic in a circle
K = {z | |z − α| ≤ ρ} containing the initial approximation z0.

An estimate of the error in xn, which depends only on x0, x1 and the Lipschitz
constant m, may be derived as follows. For arbitrary positive integers m and n we
have

xm+n − xn = (xm+n − xm+n−1) + · · · (xn+2 − xn+1) + (xn+1 − xn).

From the Lipschitz condition we conclude that |xi+1 − xi| ≤ Ci|x1 − x0|, and hence

|xm+n − xn| ≤ (Cm−1 + · · · + C + 1)|xn+1 − xn|.



6.1. Some Basic Concepts and Methods 13

Summing the geometric series and letting m→ ∞ we obtain

|α− xn| ≤
1

1 − C
|xn+1 − xn| ≤

Cn

1 − C
|x1 − x0|. (6.1.20)

Note that if C is close to unity, then the error in xn can be much larger than
|xn+1−xn|. Clearly it is not always safe to terminate the iterations when |xn+1−xn|
is less than the required tolerance!

Example 6.1.7.

For a linearly convergent fixed point iteration the sequence {xj − α} approx-
imately forms a geometric series. Then, as seen in Sec. 3.3.2, a more rapidly con-
vergent sequence {x′j} can be obtained by Aitken extrapolation,

x′j = xj − (∇xj)
2/∇2xj . (6.1.21)

Note that if the convergence is not linear, then the sequence {x′n} will usually
converge slower than {xn}!

The equation x = e−x has one root α ≈ 0.567. Using the fixed point iteration
xn+1 = e−xn combined with Aitken extrapolation we obtain the result shown in the
table below.

j xj ∇xj ∇
2xj x′

j

0 0.56700 00000

1 0.56722 45624 2245624

2 0.56709 71994 -1273630 -3519254 0.56714 32925

3 0.56716 94312 722318 1995948 0.56714 32911

It is seen that in this example the extrapolated sequence {x′j} converges much more
rapidly, and nine correct decimals are obtained.

In the above example Aitken extrapolation was used in a passive way to trans-
form the sequence {xn} into {x′j}. It is also possible to use Aitken extrapolation
in an active way (cf. Example 3.3.6). We start as before by computing x1 = φ(x0),
x2 = φ(x1) and apply the formula (6.3.22) to compute x′2. Next we continue the
iterations from x′2, i.e., compute x3 = φ(x′2), x4 = φ(x3). We can now extrapolate
from x′2, x3 and x4 to get x′4, etc. It is easily verified that the sequence zn = x′2n is
generated by the fixed-point iteration

zn+1 = ψ(zn), ψ(z) = z − (φ(z) − z)2

(φ(φ(z)) − φ(z)) − (φ(z) − z)
.

This iteration may converge even when the basic iteration xn+1 = φ(xn) diverges!

6.1.5 Convergence Order and Efficiency

In general we will be given an equation f(x) = 0 to solve and want to construct a
fixed point iteration such converges rapidly. Basic concepts to quantify the rate of
convergence will now be introduced.
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Definition 6.1.7.

Consider a sequence {xn}∞0 with limn→∞ xn = α, and xn 6= α for n <∞. The
sequence is said to have convergence order equal to q ≥ 1 if for some constant
0 < C <∞ it holds that

lim
n→∞

|xn+1 − α|
|xn − α|q = C. (6.1.22)

Here C is called the asymptotic error constant.
If q = 1 then we require that C < 1 and then {xn} is said to converge linearly

and C is the rate of linear convergence. For q = 2, 3 the convergence is called
quadratic, and cubic, but q need not be an integer.

More precisely, the order q in Theorem 6.1.7 is called the Q-order of con-
vergence, where Q stands for quotient. The same definitions can be used also for
vector-valued sequences. Then absolute values in (6.1.22) are replaced by a vector
norm.

There are types of convergence that are not covered by the above definition
of order. A sequence may converge more slowly than linear so that (6.1.22) holds
with q = 1 and C = 1. Then convergence is called sublinear. If (6.1.22) holds
with q = 1 and C = 0, but not for any value of q > 1 then convergence is called
superlinear.

Example 6.1.8.

Examples of sublinear, linear and superlinear convergence are

xn = 1/n, xn = 2−n, and xn = n−n,

respectively.

Alternative definitions of convergence order are considered by Ortega and
Rheinboldt [18, Chap. 9] and Brent [2, Sec. 3.2]. For example, if

lim
n→∞

inf(− log |xn − α|)1/n = q, (6.1.23)

then q is called weak order of convergence for xn, since (6.1.22) implies (6.1.23), but
not vice versa. For example, the sequence xn = exp(−pn)(2 + (−1)n) converges to
0 with weak order p. However, the limit in (6.1.22) does not exist if q = p, is zero
if q < p and infinite if q > p.

Consider a fixed point iteration xn+1 = φ(xn). Assume that φ′(x) exists and
is continuous in a neighborhood α. It then follows from the proof of Theorem 6.1.5,
that if 0 < |φ′(α)| < 1 and x0 is chosen sufficiently close to α, then the sequence xn

generated by xn+1 = φ(xn) satisfies (6.1.22) with q = 1 and C = |φ′(α)|.
The number of accurate decimal places in the approximation xn equals δn =

− log10 |xn − α|. Equation (6.1.22) implies that

δn+1 ≈ qδn − log10 |C|.
Hence for linear convergence (q = 1) as n → ∞ each iteration gives a fixed (frac-
tional) number of additional decimal places. For a method with convergence of
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order q > 1 each iteration increases the number of correct decimal places q-fold as
n→ ∞. This shows that eventually a method with larger order of convergence will
converge faster.

Example 6.1.9.

Consider a sequence xn with quadratic convergence with C = 1. Set ǫn =
|xn − α| and assume that ǫ0 = 0.9. From ǫn+1 ≤ Cǫ2n, it follows that ǫn, for
n = 2, 3, . . . , is bounded by

0.81, 0.66, 0.43, 0.19, 0.034, 0.0012, 1.4 · 10−6, 1.9 · 10−12, . . . ,

respectively. For n ≥ 6 the number of significant digits is approximately doubled
at each iteration!

Consider an iteration method with convergence order q ≥ 1. If each iteration
requires m units of work (usually the work involved in computing a function value
or a value of one of its derivatives) then the efficiency index of the iteration is
defined as

E = q1/m. (6.1.24)

The efficiency index gives a basis for comparing the efficiency of iterative methods
of different order of superlinear convergence. Assuming that the cost of evaluating
f(xn) and f ′(xn) is two units the efficiency index for Newton’s method is E =
21/2 =

√
2. (Methods that converge linearly all have E = 1.)

The order of the fixed-point iteration xn+1 = φ(xn) can be determined if φ(x)
is sufficiently many times continuously differentiable in a neighborhood of α.

Theorem 6.1.8. Assume that φ(x) is p times continuously differentiable. Then
the iteration method xn+1 = φ(xn) is of order p for the root α if and only if

φ(j)(α) = 0, j = 1 : p− 1, φ(p)(α) 6= 0. (6.1.25)

Proof. If equation (6.1.25) holds, then according to Taylor’s theorem we have

xn+1 = φ(xn) = α+
1

p!
φ(p)(ζn)(xn − α)p, ζn ∈ int(xn, α).

Hence for a convergent sequence xn the error ǫn = xn − α satisfies

lim
n→∞

|ǫn+1|/|ǫn|p = |φ(p)(α)|/p! 6= 0,

and the order of convergence equals p. It also follows that if φ(j)(α) 6= 0 for some
j, 1 ≤ j < p, or if φ(p)(α) = 0, then the iteration cannot be of order p.
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Example 6.1.10.

We remarked before that to compute a root α of f(x) = 0, we can use a fixed
point iteration with φ(x) = x− f(x)g(x), where g(x) is an arbitrary function such
that g(α) 6= 0. we evaluate the derivative

φ′(x) = 1 − f ′(x)g(x) − f(x)g′(x).

To achieve quadratic convergence we take g(x) = 1/f ′(x). Assuming that f ′(α = 6= 0
we find, using f(α) = 0, that φ′(α) = 1 − f ′(α)g(α) = 0, Hence the iteration

xn+1 = xn − f(xn)/f ′(xn), (6.1.26)

achieves quadratic convergence. This is Newton’s method, which will be treated at
length in Sec. 6.3

Review Questions

1. What does limit the final accuracy of a root computed by the bisection algo-
rithm? Discuss suitable termination criteria.

2. (a) Given a nonlinear scalar equation f(x) = 0 with a simple root α. How can
a fixed point iteration xn+1 = φ(xn) be constructed, which converges to α?

(b) Assuming that a fixed point α exists for the mapping x = φ(x). Give
sufficient conditions for convergence of the sequence generated by xn+1 =
φ(xn).

(c) How can the conditions in (b) be modified so that the existence of a fixed
point can be proved?

3. (a) Define the concepts order of convergence and asymptotic error constant
for a convergent sequence {xn} with limn→∞ xn = α.

(b) What is meant by sublinear and superlinear convergence? Give examples
of sequences with sublinear and superlinear convergence.

4. (a) Define the efficiency index of a given iterative method of order p and
asymptotic error constant C 6= 0.

(b) Determine the order of a new iterative method consisting of m consecutive
steps of the method in (a). What is the order and error constant of this new
method? Show that it has the same efficiency index as the first method.

5. (a) When can (passive) Aitken extrapolation be applied to speed up the con-
vergence of sequence.

(b) Describe the difference between active and passive Aitken extrapolation?

6. What two quantities determines the attainable accuracy of a simple root α to
the equation f(x) = 0. Give an example of an ill-conditioned root.

7. Discuss the choice of termination criteria for iterative methods.
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Problems and Computer Exercises

1. Use graphic representation to determine the zeros of the following functions
to one correct decimal:

(a) 4 sinx+ 1 − x; (b) 1 − x− e−2x; (c) (x+ 1)ex−1 − 1;

(d) x4 − 4x3 + 2x2 − 8; (e) ex + x2 + x; (f) ex − x2 − 2x− 2;

(g) 3x2 + tanx.

2. Show analytically that the equation xe−x = γ has exactly two real roots when
γ < e−1.

3. Plot the functions f(x) = coshx and g(x) = 1/ cosx and deduce that the equa-
tion coshx cosx = 1 has its smallest positive root in the interval (3π/2, 2π).
Determine this root using the bisection method.

4. The following equations all have a root in the interval (0, 1.6) Determine these
with an error less than 10−8 using the bisection method.

(a) x cosx = lnx; (b) 2x = e−x; (c) e−2x = 1 − x.

5. Locate the real root of the equation

ex(x− 1) = e−x(x+ 1),

by graphing both sides. Then compute the root with an error less than 10−8

using bisection. How many bisection steps are needed?

6. Let k be a given non-negative number and consider the equation sinx =
−k cosx. This equation has infinitely many roots. Separate the roots, i.e.,
partition the real axis into intervals which contain exactly one root.

7. The choice of mk as the arithmetic mean of ak−1 and bk−1 in the bisection
method minimizes the worst case maximum absolute error. If in the case that
ab > 0 we take instead

mk =
√

akbk

i.e., the geometric mean, then the worst case relative error is minimized. Do
Example 6.1.2 using this variation of the bisection method.

8. In Example 6.1.6 three different fixed point iterations were suggested for solv-
ing the equation x+ lnx = 0. (a) Which of the formulas can be used?

(b) Which of the formulas should be used?

(c) Give an even better formula!

9. Investigate if and to what limit the iteration xn+1 = 2xn−1 sequence converges
for various choices of x0.

10. (L. Wittmeyer-Koch) (a) A fixed point iteration xn+1 = φ(xn) can converge
also when |φ′(α)| = 1. Verify this by graphing the iteration for φ(x) = x +
(x− 1)2, x0 = 0.6. which has the fixed point α = 1.

(b) Show that for the iteration in (a) if xn = 1 − ǫ, then

|xn+1 − 1|
|xn − 1| = 1 − ǫ,
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i.e. the asymptotic rate of convergence is sublinear.

11. (a) Consider the fixed point iteration xn+1 = φ(xn), where φ(x) = x+(x−1)2.
Show that this has a fixed point for α = 1 and that φ′(α) = 1.

(b) Show that the iteration in (a) is convergent for x0 < 1.

12. Consider the iteration xn+1 = 1−λx2
n. Illustrate graphically how the iteration

for λ = 0.7, 0.9, 2. (For λ = 2 the iteration is chaotic.)

13. Use active Aitken extrapolation on the (divergent) iterative method xn+1 =
5 lnxn to compute the smallest root of the equation x = 5 lnx. Start with
x0 = 1.3.

6.2 Methods Based on Interpolation

6.2.1 The Method of False Position

Assume that we have two initial approximations a0 = a and b0 = b such that
f(a)f(b) < 0. As in the bisection method we generate a nested sequence of intervals
(a0, b0) ⊃ (a1, b1) ⊃ (a2, b2) ⊂ · · · such that f(an)f(bn) < 0, n = 0, 1, 2, . . . .
Given (an, bn), we take xn+1 to be the intersection of the secant through the point
(an, f(an)) and (bn, f(bn)). Then by Newton’s interpolation formula xn+1 satisfies

0 = f(an) + (xn+1 − an)
f(an) − f(bn)

an − bn

giving

xn+1 = an − f(an)
an − bn

f(an) − f(bn)
. (6.2.1)

If f(xn+1)f(an) > 0, set an+1 = xn+1 and bn+1 = bn; otherwise set bn+1 = xn+1

and an+1 = an. This is the false-position method or in Latin regula falsi.2

Note that if f(x) is linear we obtain the root in just one step, but sometimes the
rate of convergence can be much slower than for bisection.

Suppose now that f(x) is convex on [a, b], f(a) < 0, and f(b) > 0, as in
Figure 6.2.1. Then the secant through x = a and x = b will lie above the curve and
hence intersect the x-axis to the left of α. The same is true for all subsequent secants
and therefore the right endpoint b will be kept. The approximations x1, x2, x3, . . .
will all lie on the convex side of the curve and cannot go beyond the root α. A
similar behavior, with monotone convergence and one of the points a or b fixed, will
occur whenever f ′′(x) exists and has constant sign on [a, b].

Example 6.2.1.

We apply the method of false position to the f(x) = (x/2)2 − sinx = 0 from
Example 6.1.2 with initial approximations a0 = 1.5, b1 = 2. We have f(1.5) =
−0.434995 < 0 and f(2.0) = +0.090703 > 0 and successive iterates are

2The method of regula falsi is very old, originating in 5th century Indian texts, and was used
in medieval Arabic mathematics. It got its name from the Italian mathematician Leonardi Pisano
in the 13th century.
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Figure 6.2.1. The false-position method.

n xn f(xn) hn

1 1.913731 221035 −0.026180060742 −0.019322989205

2 1.933054 210240 −0.000924399645 −0.000675397892

3 1.933729 608132 −0.000031930094 −0.000023321005

4 1.933752 929137 −0.000001102069 −0.000000804916

5 1.933753 734053

Note that f(xn) < 0 for all n ≥ 0 and consequently bn = 2 is fixed. In the limit
convergence is linear with rate approximately equal to C ≈ 0.034.

If f is twice continuously differentiable and f ′′(α) 6= 0, then eventually an
interval will be reached on which f ′′(x) does not change sign. Then, as in the
example above, one of the endpoints (say b) will be retained and an = xn in all
future steps. By (6.2.1) the successive iterations are

xn+1 = xn − f(xn)
xn − b

f(xn) − f(b)
.

To determine the speed of convergence subtract α and divide by ǫn = xn −α to get

ǫn+1

ǫn
= 1 − f(xn)

xn − α

xn − b

f(xn) − f(b)
.

Since limn→∞ xn = α and f(α) = 0, it follows that

lim
n→∞

ǫn+1

ǫn
= C = 1 − (b − α)

f ′(α)

f(b)
, (6.2.2)

which shows that convergence is linear. Convergence will be very slow if f(x) is
very flat near the root α, f(b) is large, and α near b since then (b−α)f ′(α) ≪ f(b)
and C ≈ 1.



20 Chapter 6. Solving Scalar Nonlinear Equations

6.2.2 The Secant Method

A serious drawback with the method of false position is that ultimately one endpoint
of the sequence of bracketing intervals will become fixed and therefore the length
(bn − an) will not tend to zero. This can be avoided and convergence substantially
improved by always using the secant through the last two points (xn−1, f(xn−1))
and (xn, f(xn)). The next approximation xn+1 is determined as the abscissa of the
point of intersection between this secant and the x-axis; see Figure 6.2.2.

Given initial approximations x−1 = a and x0 = b, approximations x1, x2, , x3, . . .
are computed by

xn+1 = xn + hn, hn = −f(xn)
xn − xn−1

f(xn) − f(xn−1)
, n ≥ 1, (6.2.3)

assuming that f(xn) 6= f(xn−1). This is the secant method, which historically
predates Newton’s method.
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Figure 6.2.2. The secant method.

Notice that although regula falsi and the secant method require two initial
approximations to the root, only one function evaluation per step is needed. The
iteration, which is of the form xn+1 = φ(xn;xn−1), is not a fixed point iteration as
defined in Section 6.1.4. Sometimes methods of this form, which use old information
at xn1 , are called fixed point iterations with memory.

When the secant method converges |xn − xn−1| will eventually become small.
The quotient (xn−xn−1)/(f(xn)−f(xn−1)) will then be determined with poor rela-
tive accuracy. If xn and xn−1 both are very close to the root α and not bracketing α,
then the resulting rounding error in xn+1 can then become very large. Fortunately,
from the error analysis below it follows that the approximations in general are such
that |xn − xn−1| ≫ |xn − α| and the dominant contribution to the round-off error
in xn+1 comes from the error in f(xn). Note that (6.2.3) should not be rewritten
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in the form

xn+1 =
xn−1f(xn) − xnf(xn−1)

f(xn) − f(xn−1)
,

since this formula can give rise to severe difficulties with cancellation when xn ≈
xn−1 and f(xn)f(xn−1) > 0. Even (6.2.3) is not always safe to use. We must take
care to avoid overflow or division by zero. Without restriction we can assume that
|f(xn−1)| ≥ |f(xn)| > 0 (otherwise renumber the two points). Then, sn can be
computed without risk of overflow from

xn+1 = xn +
sn

1 − sn
(xn − xn−1), sn =

f(xn)

f(xn−1)
. (6.2.4)

where the division with 1 − sn is only carried out if 1 − sn is large enough.

Example 6.2.2.

To illustrate the improved convergence of the secant method we consider once
again the equation f(x) = (x/2)2 − sinx = 0 with initial approximations x0 = 1.5,
x1 = 2. The result is:

n xn f(xn) hn

-1 1.5 −0.434994 986604

0 2.0 +0.090702 573174 −0.086268 778965

1 1.913731 221035 −0.026180 060742 +0.019322 989205

2 1.933054 210240 −0.000924 399645 +0.000707 253882

3 1.933761 464122 +0.000010 180519 −0.000007 704220

4 1.933753 759902 −0.000000 003867 +0.000000 002925

5 1.933753 762827

Note that the approximations x1 and x2 are the same as for the false position.
method, but here x4 is correct to eight decimals and x5 to twelve decimals. The
rapid convergence is partly because x1 = 2 is quite a good initial approximation.
However, note that although the root is bracketed by the initial intervals [x0, x1]
and [x1, x2] it lies outside the interval [x2, x3].

Assume that f is twice continuously differentiable. Then according to New-
ton’s interpolation formula with error term (Theorem 4.3.1) we have

f(x) = f(xn) + (x− xn)[xn−1, xn]f + (x− xn−1)(x− xn)
f ′′(ζn)

2
, (6.2.5)

where ζn ∈ int(x, xn−1, xn)

f [xn−1, xn] =
f(xn) − f(xn−1)

xn − xn−1
.

To derive an asymptotic formula for the secant method we put x = α in (6.2.5) and
subtract the secant equation 0 = f(xn) + (xn+1 − xn)[xn−1, xn]f . Since f(α) = 0
we get

(α− xn+1)[xn−1, xn]f + (α − xn−1)(α − xn)f ′′(ζn)/2 = 0,



22 Chapter 6. Solving Scalar Nonlinear Equations

where ζn ∈ int(α, xn−1, xn). According to the mean-value theorem, we have

[xn−1, xn]f = f ′(ζ′n), ζ′n ∈ int(xn−1, xn),

and it follows that

ǫn+1 =
1

2

f ′′(ζn)

f ′(ζ′n)
ǫnǫn−1. (6.2.6)

Example 6.2.3.

The ratios ǫn+1/(ǫnǫn−1) in Example 6.2.2 are equal to 0.697, 0.527, 0.550,
n = 1 : 3, which compares well with the limiting value 0.543 of 1

2f
′′(α)/f ′(α).

From (6.2.6) it can be deduced that the secant method always converges from
starting values x0, x1 sufficiently close to α. For this to be true it suffices that the
first derivative f ′(x) is continuous, since then

ǫn+1 =

(

1 − f ′(ξn)

f ′(ζn)

)

ǫn, ξn ∈ int(xn−1, α), ζn ∈ int(xn, xn−1).

However, in the secant method there is no guarantee that the computed sequence of
approximations stay in the initial interval [x0, x1]. Unlike the steady convergence
of the bisection method things can go seriously wrong using the secant method! A
remedy will be discussed in Sec. 6.2.4.

The following theorem gives the order of convergence for the secant method.

Theorem 6.2.1. Suppose that f(x) is twice continuously differentiable and that
in a neighborhood I of the root α, containing x0, x1, x2, . . . , xn, we have

1

2

∣

∣

∣

∣

f ′′(y)

f ′(x)

∣

∣

∣

∣

≤M, x, y ∈ I.

Let q = (1+
√

5)/2 = 1.618 . . . be the unique positive root of the equation µ2−µ−1 =
0 and set

K = max
(

M |ǫ0|, (M |ǫ1|)1/q
)

, n = 0, 1, 2, . . . . (6.2.7)

Then it holds that

|ǫn| ≤
1

M
Kqn

, (6.2.8)

i.e., the iteration has convergence order q.

Proof. The proof is by induction. From the choice of K it follows that (6.2.8) is
trivially true for n = 0, 1. Suppose that (6.2.8) holds for n and n − 1. Then since
q2 = q + 1 it follows using the assumption and (6.2.6) that

|ǫn+1| ≤M |ǫn||ǫn−1| ≤
1

M
Kqn

Kqn−1

=
1

M
Kqn+qn−1

=
1

M
Kqn+1

. (6.2.9)
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To compare the efficiency of the secant method and Newton’s method, which
is quadratically convergent, we use the efficiency index introduced in Section 6.1.5.
Assume that the work to compute f ′(x) is θ times the amount of work required
to compute f(x). Then, with the same amount of work we can perform k(1 + θ)
iterations with the secant method and k iterations with Newton’s method. Equating

the errors we get (mǫ0)
2k

= (mǫ0)
pk(1+θ)

, where q = 1.618 . . .. Hence the errors are
the same for both methods when pk(1+θ) = 2k or

(1 + θ) log
(

1
2 (1 +

√
5)
)

= log 2,

which gives θ = 0.4404 . . .. Thus, from this analysis we conclude that if θ > 0.44,
then the secant method is asymptotically more efficient than Newton’s method.

In Example 6.2.2 we can observe that the error ǫn = xn − αn changes sign at
every third step. Hence, in this example,

α ∈ int(xn+1 − xn), n = 0, 1, 3, 4, . . . .

That is, the root α is bracketed by xn and xn+1 except for every third step. We shall
show that this is no coincidence. Assume that xn ∈ (a, b), n = 0, 1, 2, . . ., and that
f ′(x) 6= 0 and f ′′(x) does not change sign in (a, b). Then from (6.2.6) it follows
that the ration

ǫn+1

ǫnǫn−1

will have constant sign for all n. Then if α ∈ int(x0, x1) and ǫ0ǫ1 < 0, and it follows
that the sign of ǫn must change every third step according to one of the following
two schemes (verify this!):

· · · + − + + − + + − + + · · ·
· · · + −− + −− + −− + · · ·

Hence convergence for the secant method, if it occurs, will take place in a waltz
rhythm! This means that at every third step the last two iterates xn−1 and xn will
not always bracket the root.

6.2.3 Higher Order Interpolating Methods

In the secant method linear interpolation through (xn−1,fn−1) and (xn, fn) is used
to determine the next approximation to the root. A natural generalization is to use
an interpolating method of higher order. Let xn−r , . . . , xn−1, xn be r + 1 distinct
approximations and determine the (unique) polynomial p(x) of degree r interpolat-
ing (xn−j , f(xn−j)), j = 0 : r. By Newton’s interpolation formula (Sec. 4.2.1) the
interpolating polynomial is

p(x) = fn + [xn, xn−1]f · (x− xn) +

r
∑

j=2

[xn, xn−1, . . . , xn−j ]f Φj(x),

where
Φj(x) = (x− xn)(x− xn−1) · · · (x− xn−j).
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The next approximation xn+1 is taken as the real root to the equation p(x) = 0
closest to xn and xn−r is deleted. Suppose the interpolation points lie in an interval
J , which contains the root α and in which f ′(x) 6= 0. It can be shown that if there
is at least one interpolation point on each side of α then p(x) = 0 has a real root
in J . Further the following formula for the error holds (Traub [25, pp. 67–75])

ǫn+1 = − f (r+1)(ζn)

(r + 1)!p′(ηn)

r
∏

i=0

ǫn−i, (6.2.10)

where ζn ∈ int (α, xn−1, xn) and ηn ∈ int (α, xn+1).
In the special case r = 2 we get the quadratic equation

p(x) = fn + (x − xn)[xn, xn−1]f + (x− xn)(x− xn−1)[xn, xn−1, xn−2]f. (6.2.11)

We assume that [xn, xn−1, xn−2]f 6= 0 since otherwise the method degenerates into
the secant method. Setting hn = (x−xn) and writing (x−xn−1) = hn+(xn−xn−1),
this equation becomes

h2
n[xn, xn−1, xn−2]f + ωhn + fn = 0, (6.2.12)

where

ω = [xn, xn−1]f + (xn − xn−1)[xn, xn−1, xn−2]f. (6.2.13)

The root closest to xn corresponds to the root hn of smallest absolute value to the
equation (6.2.12). To express this root in a numerically stable way the standard
formula for the roots of a quadratic equation should be multiplied by its conjugate
quantity (see Example 2.3.3). Using this formula we get

xn+1 = xn + hn, hn = − 2fn

ω ±
√

ω2 − 4fn [xn, xn−1, xn−2]f
, (6.2.14)

where the sign in the denominator should be chosen so as to minimize |hn|. This is
the Muller–Traub method.

A drawback is that the equation (6.2.12) may not have a real root even if a
real zero is being sought. On the other hand, this means that the Muller–Traub
method has the useful property that complex roots may be found from real starting
approximations.

By (6.2.10) it follows that

ǫn+1 = − f ′′′(ζn)

3! p′(ηn)
ǫnǫn−1ǫn. (6.2.15)

It can be shown that the convergence order for the Muller–Traub method is at
least q = 1.839 . . ., which equals the largest root of the equation µ3 − µ2 − µ −
1 = 0 (cf.Theorem 6.2.1). Hence this method does not quite achieve quadratic
convergence. In fact, it can be shown under very weak restrictions that no iterative
method using only one function evaluation can have q ≥ 2.
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For r > 2 there are no useful explicit formulas for determining the zeros of
the interpolating polynomial p(x). Then we can proceed as follows. We write the
equation p(x) = 0 in the form x = xn + F (x), where

F (x) ≡
−fn −∑r

j=2[xn, xn−1, . . . xn−j ]f Φj(x)

[xn, xn−1]f

(cf. Sec. 4.2.4). Then a fixed point iteration can be used to solve for x. To get the
first guess x0 we ignore the sum (this means using the secant method) and then
iterate, xi = xn + F (xi−1), i = 1, 2, . . . until xi and xi−1 are close enough.

Suppose that xn−j −xn = O(h), j = 1 : r, where h is some small parameter in
the context (usually some step size). Then Φj(x) = O(hj), Φ′

j(x) = O(hj−1). The
divided differences are O(1), and we assume that [xn, xn−1]f is bounded away from
zero. Then the terms of the sum decrease like hj. The convergence ratio F ′(x) is
here approximately

Φ′
2(x)[xn, xn−1, xn−2]f

[xn, xn−1]f
= O(h).

So, if h is small enough, the iterations converge rapidly.
A different way to extend the secant method is to use inverse interpolation.

Assume that yn, yn−1, . . . , yn−r are distinct and let q(y) be the unique polynomial
in y interpolating the values xn, xn−1, . . . , xn−r. Reversing the rule of x and y and
using Newton’s interpolation formula this interpolating polynomial is

q(y) = xn + [yn, yn−1]g · (y − yn) +

r
∑

j=2

[yn, yn−1, . . . , yn−j]f Ψj(y),

where g(yn−j) = xn−j , j = 0 : r.

Ψj(y) = (y − yn)(y − yn−1) · · · (y − yn−j).

The next approximation is then taken to be xn+1 = q(0), that is

xn+1 = xn − yn [yn, yn−1]g +

r
∑

j=2

[yn, yn−1, . . . , yn−j]gΨj(0),

For r = 1 there is no difference between direct and inverse interpolation and we
recover the secant method. For r > 1 inverse interpolation as a rule gives different
results. Inverse interpolation has the advantage of not requiring the solution of a
polynomial equation. (For other ways of avoiding this see Problems 3 and 4.) The
case r = 2 corresponds to inverse quadratic interpolation

xn+1 = xn − yn [yn, yn−1]g + ynyn−1 [yn, yn−1, yn−2]g, (6.2.16)

This method has the same order of convergence as the Muller–Traub method.
Note that this method requires that yn, yn−1, and yn−2 are distinct. Even if

this is the case it is not always safe to compute xn+1 from (6.2.16). Care has to be
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taken in order to avoid overflow and possibly division by zero. If we assume that
0 6= |yn| ≤ |yn−1| ≤ |yn−2| then it is safe to compute

sn = yn/yn−1, sn−1 = yn−1/yn−2, rn = yn/yn−2 = snsn−1.

We can rewrite (6.2.16) in the form xn+1 = xn + pn/qn, where

pn = sn[(1 − rn)(xn − xn−1) − sn−1(sn−1 − rn)(xn − xn−2)],

qn = (1 − sn)(1 − sn−1)(1 − rn).

The final division pn/qn is only carried out if the correction is sufficiently small.

6.2.4 A Robust Hybrid Method

Efficient and robust root finders can be constructed by combining the secant method
(or some higher order interpolation method) with bisection, A simple combination
of Newton method with bisection will be discussed in Section 6.3.2.

A particularly elegant combination of bisection and the secant method was
developed in the 1960s by van Wijngaarden, Dekker and others at the Mathematical
Center in Amsterdam. A related algorithm, called zeroin, which combines bisection,
the secant method and inverse quadratic interpolation, was developed by Brent [2].
The Matlab function “fzero”, which finds a zero near a given approximation x0, is
based on Zeroin. A discussion of a slightly simplified version of fzero is given in
Moler [16, Ch. 4.7].

We now outline the basic ideas used in zeroin. Start with a and b such that
f(a)f(b) < 0 and use a secant step to get c in (a, b). We the repeat the following
steps until |b− a| < tol or f(b) = 0:

• Arrange a, b, and c so that f(a) and f(b) have opposite sign, |f(b)| ≤ |f(a)|,
and c is the value of b in the previous step.

• If c 6= a compute the step using inverse quadratic interpolation; otherwise
compute a secant step.

• If the computed step gives an approximation in [a, b] take it; otherwise take a
bisection step.

Review Questions

1. Sketch a function f(x) with a root in (a, b), such that regula falsi converges
very slowly.

2. Outline how the secant method can be safeguarded by combining it with the
bisection method.

3. What property should the function f(x) have to be unimodal on the interval
[a, b]?
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4. Discuss root finding methods based on quadratic interpolation (Muller–Traub’s
method) and inverse quadratic interpolation. What are the merits of these two
approaches?

Problems and Computer Exercises

1. Use the secant method to determine the roots of the following equations to
six correct decimals

(a) 2x = e−x; (b) tanx+ coshx = 0.

2. Assume that we have fnfn−1 < 0, and have computed xn+1. If fn+1fn < 0
then in the next step we compute xn+2 by a secant step otherwise we use
a line through (xn+1, fn+1) and (xn−1, θfn−1), where 0 < θ < 1. Clearly,
θ = 1 corresponds to a step with the method of false position and will usually
give fn+2fn+1 > 0. On the other hand, θ = 0 gives xn+1 = xn, and thus
fn+1fn < 0. Hence a suitable choice of θ will always give fn+2fn+1 < 0.
Show that with θ = 0.5 in a modified step it holds asymptotically ǫn+1 ≈
−ǫn. Deduce that the resulting algorithm gives cubic convergence with three
function evaluations and hence has efficiency index E = 31/3 = 1.4422 . . .. 3

3. Another modification of the secant method can be derived by estimating
f ′(xn) in Newton’s method by quadratic interpolation through the points
xn, xn−1, xn−2. Show that the resulting method can be written xn+1 =
xn − f(xn)/ω, where

ω = f [xn, xn−1] + (xn − xn−1)f [xn, xn−1, xn−2].

4. The Muller–Traubś method uses three points to determine the coefficient of
an interpolating parabola. The same points can also be interpolated by a
rational function of the form

g(x) =
x− a

bx+ c
.

An iterative method is devised by taking xn+1 equal to the root a of g(x) = 0.

(a) Show that this is equivalent to calculating xn+1 from the ”modified secant
formula”

xn+1 = xn − fn
xn − xn−2

fn − f̃n−2

, f̃n−2 = fn−2
f [xn, xn−1]

f [xn−1, xn−2]
.

Hint: Use a theorem in projective geometry, according to which the cross ratio
of any four values of x is equal to the cross ratio of the corresponding values
of g(x) (see Householder [10, p. 159]). Hence

(0 − fn)/(0 − fn−2)

(yn−1 − fn)/(yn−1 − fn−2)
=

(xn+1 − xn)/(xn+1 − xn−2)

(xn−1 − xn)/(xn−1 − xn−2)
.

3The resulting modified rule of false position is often called after its origin the Illinois method.
It is due originally to the staff of the computer center at the University of Illinois in the early 1950’s.
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(b) Use the result in (a) to show that xn−1 ∈ int(xn−2, xn) if

sign(yn) = −sign(yn−2), sign(y[xn, xn−1]) = sign(y[xn−1, xn−2]).

5. The result in Problem 4 suggests that the Illinois method in Problem 2 is
modified by taking

β = f [xn+1, xn]/f [xn, xn−1], θ =

{

β, if β > 0;
1
2 , if β ≤ 0.

.

Implement this modified method. Compare it with the unmodified Illinois
method and with the safeguarded secant algorithm. As test equations use the
following:

(a) A curve with one inflection point on [0, 1]:

f(x) = x2 − (1 − x)n, a = 25, b = 1, n = 2, 5, 10.

(b) A family of curves which lie increasingly close to the x-axis for large n:

f(x) = e−nx(x− 1) + xn, a = 0.25, b = 1, n = 5, 10, 15.

(c) A family of curves with the y-axis asymptotic:

f(x) = (nx− 1)/((n− 1)x), a = 0.01, b = 1, n = 2, 5, 10.

6.3 Methods Using Derivatives

6.3.1 Newton’s method

When f ′(x) is available then Newton’s method4 (6.1.26) is usually the method
of choice for solving an equation f(x) = 0. As shown already in Section 1.2.1,
Newton’s method is based on approximating the curve y = f(x) by its tangent at
the point (xn, f(xn)), where xn is the current approximation to the root. Assuming
that f ′(xn) 6= 0, the next approximation xn+1 is determined as the abscissa of
the point of intersection of the tangent with the x-axis (see Figure 1.2.3). This is
equivalent to replacing the equation f(x) = 0 by

Tn(x) = f(xn) + (x− xn)f ′(xn) = 0, (6.3.1)

where Tn(x) is obtained by truncating the Taylor expansion of f(x) at xn after the
first two terms. Hence xn+1 is determined from

xn+1 = xn + hn, hn = −f(xn)/f ′(xn). (6.3.2)

Clearly Newton’s method can be viewed as the limit of the secant method when the
interpolation points coalesce,

4Newton’s original method was more complicated and not very similar to what is now known
as his method.
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Figure 6.3.1. Newton’s method for the equation f(x) = (x/2)2 − sinx = 0.

Example 6.3.1.

We want to compute the unique positive root of the equation f(x) = (x/2)2−
sinx = 0 (cf. Example 6.2.2) for which f ′(x) = x/2− cosx. Starting from x0 = 1.8
the first step of Newton’s method is illustrated in Figure 6.3.1. The following
Newton iterates are given in the table below (correct digits in xn shown in bold):

n xn f(xn) f ′(xn) hn

0 1.8 −0.163847 630878 1.127202 094693 −0.145357 812631

1 1.945357 812631 0.015436 106659 1.338543 359427 0.011532 018406

2 1.933825 794225 0.000095 223283 1.322020 778469 0.000072 028582

3 1.933753 765643 0.000000 003722 1.3219174 29113 0.000000 002816

4 1.933753 762827

The number of correct digits approximately double in each iteration until the
limiting precision is reached. Although the initial approximation is not very good,
already x4 is correct to twelve decimals!

If the iterations are broken off when |hn| < δ it can be shown (see the error
analysis below) that the truncation error is less than δ, provided that |Khn| ≤ 1/2,
where K is an upper bound for |f ′′/f ′| in the neighborhood of the root. This
restriction is seldom of practical importance. However, rounding errors made in
computing hn must also be taken into account.

Note that when we approach the root, the relative precision in the computed
values of f(xn) usually becomes less and less. Since f ′(xn) is only used for com-
puting hn it need not be computed to much greater relative precision than f(xn),
In the above example we could have used f ′(x2) instead of f ′(xn) instead for n > 2
without much affecting the convergence. Such a simplification is of great impor-
tance when Newton’s method is used on systems of nonlinear equations; see Volume
II, Section 11.2.4.
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We first consider the local convergence of Newton’s method, that is the con-
vergence in a neighborhood of a root α. Assume that f ′(x) is continuous in a
neighborhood of α and that f ′(α) 6= 0. Expanding f in a Taylor series about x0 we
get

0 = f(α) = f(xn) + (α− xn)f ′(ξn), ξn ∈ int(xn, α).

We let ǫn = xn − α denote the error in the approximation xn. Subtracting (6.3.1)
with x = xn+1 and using xn+1 − xn = ǫn+1 − ǫn, we have

−ǫnf ′(ξn) = (ǫn+1 − ǫn)f ′(xn),

or after dividing by f ′(xn)

ǫn+1 =

(

1 − f ′(ξn)

f ′(xn)

)

ǫn, n = 0, 1, 2, . . . .

Hence, if x0 is sufficiently close to α, then limn→∞ xn = α. In other words α is a
point of attraction of the Newton iteration and Newton’s method always converges
(to a simple root) from a sufficiently good starting approximation.

For convergence f need only have one continuous derivative. To get a more
precise relation between ǫn+1 and ǫn we assume in what follows that f has two
continuous derivatives.

Theorem 6.3.1. Assume that α is a simple root of the equation f(x) = 0, i.e.,
f ′(α) 6= 0. If f ′ exists and is continuous in a neighborhood of α, then the conver-
gence order of Newton’s method is at least equal to two.

Proof. A Taylor expansion of f yields

0 = f(α) = f(xn) + (α − xn)f ′(xn) +
1

2
(α − xn)2f ′′(ζn), ζn ∈ int(xn, α).

Subtracting f(xn) + (xn+1 − xn)f ′(xn) = 0 and solving for ǫn+1 = xn+1 −α we get

ǫn+1 =
1

2
ǫ2n
f ′′(ζn)

f ′(xn)
, ζn ∈ int(xn, α). (6.3.3)

Provided that f ′(α) 6= 0, it follows that (6.1.22) is satisfied with p = 2 and the
asymptotic error constant is

C =
1

2

∣

∣

∣

∣

f ′′(α)

f ′(α)

∣

∣

∣

∣

. (6.3.4)

If f ′′(α) 6= 0, then C > 0 and the rate of convergence is quadratic.

Note that the relation (6.3.3) between the errors only holds as long as the
round-off errors in the calculations can be ignored. As pointed out in Section 6.1.3,
the limiting factor for the accuracy, which can be achieved in calculating the root,
is always limited by the accuracy of the computed values of f(x).
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So far we have assumed that α is a simple root. Suppose now that α is a root
of multiplicity q > 1. Then by Taylor’s formula we have (cf. (6.1.9))

f ′(x) =
1

(q − 1)!
(x− α)q−1f (q)(ξ′), ξ′ ∈ int(x, α).

It follows that if xn is close to α, then the Newton correction will satisfy

hn =
f(xn)

f ′(xn)
≈ 1

q
(xn − α) = ǫn/q.

For the corresponding errors we have

ǫn+1 = ǫn − ǫn/q = (1 − 1/q)ǫn,

which shows that for a root of multiplicity q > 1 Newton’s method only converges
linearly with rate C = 1 − 1/q. (The same is true of other methods which have
quadratic or higher rate of convergence for simple roots.) For q > 2 this is much
slower even than for the bisection method! Note also that when xn → α both
f(xn) → 0 and f ′(xn) → 0. Therefore rounding errors may seriously affect the
Newton correction when evaluated close to α, and some safeguarding is essential;
see Section 6.3.2.

When the multiplicity p of a root is known a priori the modified Newton’s
method

xn+1 = xn − p
f(xn)

f ′(xn)
, (6.3.5)

is easily shown to have quadratic convergence. For a root of unknown multiplicity
we can use the following observation. From (6.1.9) it follows that the equation
u(x) = 0, where

u(x) = f(x)/f ′(x), (6.3.6)

always has a simple root at x = α. Hence if Newton’s method is applied to this equa-
tion it will retain its quadratic rate of convergence independent of the multiplicity
of α as a root to f(x) = 0. The iteration becomes

xn+1 = xn − f(xn)f ′(xn)

(f ′(xn))2 − f(xn)f ′′(xn)
, (6.3.7)

and thus requires the evaluation also of f ′′(xn).
Newton’s method applied to the equation f(x) = xp − c = 0 can be used

to compute c1/p, p = ±1,±2, . . .. The sequence x1, x2, x3, . . ., is then computed
recursively from

xn+1 = xn − xp
n − c

pxp−1
n

,

which can be written as

xn+1 =
1

p

(

(p− 1)xn +
c

xp−1
n

)

=
xn

(−p) [(1 − p) − cx−p
n ]. (6.3.8)
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It is convenient to use the first expression in (6.3.8) when p > 0 and the second
when p < 0. This iteration formula is often used for calculating, e.g.,

√
c, 3
√
c, and

1/
√
c, corresponding to p = 2, 3, and −2 respectively. Note also that 1/c, (p = −1)

can be computed by the iteration

xn+1 = xn + xn(1 − cxn) = xn(2 − cxn),

using only multiplications and addition. In some early computers, which lacked
built-in division, this iteration was used to implement division, i.e. b/c was com-
puted as b× (1/c).

Example 6.3.2.

We want to construct an algorithm based on Newton’s method for efficiently
computing the square root of any given floating point number a. If we first shift
the mantissa so that the exponent becomes even, a = c · 22e, and 1/2 ≤ c < 2, then

√
a =

√
c· 2e.

We need only consider the reduced range 1/2 ≤ c ≤ 1 since for 1 < c ≤ 2 we can
compute

√

1/c and invert.
To find an initial approximation x0 to start the Newton iterations when 1/2 ≤

c < 1, we can use linear interpolation of x =
√
c between the endpoints 1/2, 1, giving

x0(c) =
√

2(1 − c) + 2(c− 1/2)

(
√

2 is precomputed). The iteration then proceeds with

xn+1 =
1

2

(

xn +
c

xn

)

, n = 0, 1, 2, . . . . (6.3.9)

For c = 3/4 (
√
c = 0.86602540378444) the result is x0 = (

√
2 + 2)/4 and (correct

digits in boldface)

x0 = 0.85355339059327, x1 = 0.86611652351682,

x2 = 0.86602540857756, x3 = 0.86602540378444,

Three iterations suffice to give full IEEE double precision accuracy and the quadratic
rate of convergence is apparent.

6.3.2 Global Convergence of Newton’s Method

It is easy to construct examples where Newton’s method converges very slowly or
not at all. Recall, e.g., that for a root of multiplicity q > 1 convergence is linear
with rate 1 − 1/q. For q = 20 it will take 45 iterations to gain one more decimal
digit.
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Example 6.3.3.

The equation f(x) = sinx = 0, has exactly one root α = 0 in the interval
|x| < π/2. Newton’s method becomes

xn+1 = xn − tanxn, n = 0, 1, 2, . . . .

If we choose the initial value x0 = x∗ such that tanx∗ = 2x∗, then x1 = −x0,
x2 = −x1 = x0. Hence the successive approximations show a cyclic behavior!

Newton’s method will converge for any starting value such that |x0| < x∗.
The critical value can be shown to be x∗ = 1.16556 . . ..

In some simple cases the global convergence of Newton’s method may be easy
to verify. Two examples are given in the following theorems.

Theorem 6.3.2. Suppose that f ′(x)f ′′(x) 6= 0 in an interval [a, b], where f ′′(x) is
continuous and f(a)f(b) < 0. Then if

∣

∣

∣

∣

f(a)

f ′(a)

∣

∣

∣

∣

< b− a,

∣

∣

∣

∣

f(b)

f ′(b)

∣

∣

∣

∣

< b− a,

Newton’s method converges from an arbitrary x0 ∈ [a, b].

Proof. The theorem follows easily by inspecting Figure 6.4.2.

1.4 1.6 1.8 2 2.2 2.4
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b

f(a)/f′(a)

f(b)/f′(b)

Figure 6.3.2. A situation where Newton’s method converges from any x0 ∈ [a, b].

Lemma 6.3.3. Let [a, b] be an interval such that f(a)f(b) < 0. Assume that the
so-called Fourier conditions are satisfied, i.e., f ′(x)f ′′(x) 6= 0 in [a, b], with f ′′(x)
continuous and f(x0)f

′′(x0) > 0, for x0 ∈ [a, b]. Then the sequence {x0, x1, x2, . . .}
generated by Newton’s method converges monotonically to a root α ∈ [a, b].
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Proof. We can assume that f ′′(x) > 0; otherwise consider the equation −f(x) = 0.
Assume first that f ′(x) < 0 in the interval. Since by assumption f(x0) ≥ 0, this
corresponds to the situation in Figure 6.4.2, with b = x0 > α. Clearly it holds that
x1 > x0 and since the curve lies to the left of the tangent in x0 we also have x1 > α.
The case when f ′(x) < 0 can be treated similarly. The theorem now follows by
induction.

Newton’s method can be safeguarded by taking a bisection step whenever a
Newton step “fails” in some sense. Assume that initially a < b and f(a)f(b) < 0
and x is either equal to a or b. At each step a new approximation x′ is computed
and a, b are updated to a′, b′ as follows:

• If the Newton iterate x′ = x−f(x)/f ′(x) lies in (a, b), then accept x′; otherwise
take a bisection step, i.e. set x′ = (a+ b)/2.

• Set either a′ = x, b′ = b or a′ = a, b′ = x, where the choice is made so that
f(a′)f(b′) ≤ 0.

This ensures that at each step the interval [a′, b′] contains a root.
When checking if z ∈ (a, b), it is important to avoid division by f ′(x), since

this may cause overflow or division by zero. Hence, we note z ∈ (a, b) if and only if

b− z = b− x+ f(x)/f ′(x) > 0 and z − a = x− a− f(x)/f ′(x) ≥ 0.

If f ′(x) > 0 these two inequalities are equivalent to

(b − x)f ′(x) > −f(x) and (x− a)f ′(x) > f(x).

The case when f ′(x) < 0 is analyzed similarly, giving

(b − x)f ′(x) < −f(x) and (x− a)f ′(x) < f(x).

In either case only one of the inequalities will be nontrivial depending on whether
f(x) > 0 or not.

6.3.3 Newton Method for Complex Roots

Newton’s method is based on approximating f with the linear part of its Taylor
expansion. Taylor’s theorem is valid for a complex function f(z) around a point of
analyticity a (see Sec. 3.1.3). Hence Newton’s method applies also to an equation
f(z) = 0, where f(z) is a complex function, analytic in a neighborhood of a root α.
An important example is when f is a polynomial; see Sec. 6.5.

Let z = x + iy, f(z) = u(x, y) + iv(x, y), and consider the absolute value of
f(z)

φ(x, y) = |f(x+ iy)| =
√

u(x, y)2 + v(x, y)2.

This is a differentiable function as a function of (x, y), except where f(z) = 0. The
gradient of φ(x, y) is

gradφ = (φx, φy) =
1

φ
(uux + vvx, uuy + vvy) (6.3.10)
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where ux = ∂u/∂x, uy = ∂u/∂y, etc. Using the Cauchy–Riemann equations ux =
vy, uy = −vx we calculate (see Henrici [9, §6.1.4]).

f(z)

f ′(z)
=

u+ iv

ux + ivx
=

(uux + vvx) + i(uuy + vvy)

u2
x + v2

x

,

A comparison with (6.3.10) shows that the Newton step

zk+1 − zk = −f(zk)/f ′(zk), (6.3.11)

is in the direction of the negative gradient of |f(zk)|, i.e., in the direction of strongest
decrease of |f(z)|.

The geometry of the complex Newton iteration is considered in [29].

Theorem 6.3.4.

Let the function f(z) = f(x + iy) be analytic and zk = xk + iyk be a point
such that f(zk)f ′(zk) 6= 0. Let zk+1 be the next iterate of Newton’s method (6.3.11).
Then zk+1 − zk is in the direction of the negative gradient of φ(x, y) = |f(x + iy)|
and therefore orthogonal to the level set of |f | at (xk, yk). If Tk is the tangent plane
of φ(x, y) at (xk, yk) and Lk is the line of intersection of Tk with the xy-plane then
(xk+1, yk+1) is the point on Lk closest to (xk, yk).

Proof. See [29].

Newton’s method is very efficient if started from an initial approximation
sufficiently close to a simple zero. If this is not the case Newton’s method may
converge slowly or even diverge. In general, there is no guarantee that zn+1 is
closer to the root than zn, and if f ′(zn) = 0 the next iterate is not even defined.

The following important theorem gives rigorous sufficient conditions for the
global convergence of Newton’s method. For generality we formulate it for complex
zeros of a complex valued function f(z).

Theorem 6.3.5.

Let f(z) be a complex function of a complex variable. Let f(z0)f
′(z0) 6= 0

and set h0 = −f(z0)/f
′(z0), x1 = x0 + h0. Assume that f(z) is twice continuously

differentiable in the disk K0 : |z − z1| ≤ |h0|, and that

2 |h0|M2 ≤ |f ′(z0)|, M2 = max
z∈K0

|f ′′(x)|. (6.3.12)

Let zk be generated by Newton’s method

zk+1 = zk − f(zk)

f ′(zk)
, k = 1, 2, . . . .

Then zk ∈ K0 and we have limk→∞ zk = ζ, where ζ is the only zero of f(z) in
K0. Unless ζ lies on the boundary of K0, ζ is a simple zero. Further we have the
relations

|ζ − zk+1| ≤
M2

2|f ′(zk)| |zk − zk−1|2, k = 1, 2, . . . . (6.3.13)
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In case of a real function f(x) of a real variable the disk K0 can be replaced by the
closed interval K0 = int [x0, x0 + 2h0].

Proof. See Ostrowski [19, Theorem 7.2]

A generalization of this result, Theorem 11.1.7 (the Newton–Kantorovich The-
orem), for the multivariate Newton method, will be proved in Volume II.

Since the Newton step is in the direction of the negative gradient of |f(z)|
at z = zk, it will necessarily give a decrease in |f(zk)| if a short enough step in
this direction is taken. A modified Newton method based on the descent property
and switching to standard Newton when the condition (6.3.12) is satisfied, will be
described in Sec. 6.5.6.

6.3.4 An Interval Newton Method

.
Sometimes it is desired to compute a tiny interval that is guaranteed to enclose

a real simple root x∗ of f(x), even when rounding errors are taken into account.
This can be done using an adaptation of Newton’s method to interval arithmetic
method due to Moore [17].

Suppose that the function f(x) is continuously differentiable. Using the nota-
tion in Sec. 2.3.7, let f ′([x0]) denote an interval containing f ′(x) for all x in a finite
interval [x] := [a, b]. Define the Newton operator on N [x] by

N([x]) := m− f(m)

f ′([x])
. (6.3.14)

where m = mid ([x]) = 1
2 (a+ b).

Theorem 6.3.6.

If α ∈ [x] is a zero of f(x), then α ∈ N([x]). If N([x]) ⊆ [x], then f(x) has
one and only one zero in N([x]).

Proof. Suppose α is a zero of f(x) in [x]. If 0 ∈ f ′([x]) then N([x]) = [−∞,∞].
Otherwise, by the mean value theorem

0 = f(α) = f(m) + f ′(ξ)(α −m), ξ ∈ int [α,m] ⊆ [x].

This implies that α = m− f(m)/f ′(ξ) ⊆ N([x]), which proves the first statement.
If N([x]) ⊆ [x] then f ′([x]) 6= 0 on [x]. Then by the mean value theory there

are ξ1 and ξ2 in [x] such that

(m− f(m)/f ′(ξ1)) − a = −f(a)/f ′(ξ1),

b− (m− f(m)/f ′(ξ2)) = f(b)/f ′(ξ2).

Because N([x]) ⊆ [a, b], the product of the left sides is positive. But since f ′(ξ1)
and f ′(ξ2) have the same sign this means that f(a)f(b) < 0 and f has therefore a
zero in [x].
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Finally, there cannot be two or more zeros in [x], because then we would have
f ′(c) = 0 for some c ∈ [x].

In the interval Newton method, a starting interval [x0] is chosen, and we
compute for k = 0, 1, 2, . . . a sequence of intervals [xk+1] given by

N([xk]) = mid ([xk]) − f(mid [xk])

f ′([xk])
.

If N([xk]) ⊂ [xk] we set [xk+1] = N([xk]) ∩ [xk]. Otherwise, if N([xk]) ∩ [xk] is
empty, we know that [xk] does not contain a root and stop. In neither condition
holds we stop, subdivide the initial interval and start again. It can be shown that
if [x0] does not contain a root then after a finite number of steps the iteration will
stop with an empty interval.

If we are close enough to a zero, then the length of the intervals [xk] will
converge quadratically to zero, just as the standard Newton method.

Example 6.3.4.

Take f(x) = x2 − 2 and [x0] = [1, 2]. Using interval Newton method

N([xk]) = mid ([xk]) − (mid [xk])2 − 2

2 [xk]
, [xk+1] = N([xk]) ∩ [xk].

we obtain the sequence of intervals

[x1] = N([x0]) = 1.5 − 2.25 − 2

2[1, 2]
= [22/16, 23/16] = [1.375, 1.4375] ,

[x2] = N([x1]) =
45

32
− (45/32)2 − 2

2[22/16, 23/16]
=

45

32
− (45)2 − 2(32)2

128 [22, 23]
⊂ [1.41406, 1.41442].

The quadratic convergence of the radius of the intervals is evident:

0.5, 0.03125, 0.00036, . . . .

The interval Newton method, is well suited to determine all zeros in a given
interval. Divide the given interval into subintervals and for each subinterval [x]
check whether the condition N([x]) ⊆ [x] in Theorem 6.3.6 holds. If this is the case,
we continue the interval Newton iterations, and if we are close enough the iterations
converge towards a root. If the condition is not satisfied but N([x]) ∩ [x] is empty
then there is no zero in the subinterval and this can be discarded. If the condition
fails but N([x]) ∩ [x] is not empty, then subdivide the interval and try again. The
calculations can be organized so that we have a queue of intervals waiting to be
precessed. Intervals may be added or removed form the queue. When the queue is
empty we are done.

The above procedure may not always work. Its performance will depend
among other things on the sharpness of the inclusion of the derivative f ′([x]). Things
will go wrong, e.g., in case of multiple roots where N([x]) = [−∞,∞].
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6.3.5 Higher Order Methods

Newton’s method has quadratic convergence, which means that the number of sig-
nificant digits approximately doubles in each iteration. Although there is rarely
any practical need for methods of higher order of convergence such methods may
be useful in special applications.

For the following discussion we assume that α is a simple zero of f and that
f has a sufficient number of continuous derivatives in a neighborhood of α. We
first briefly review some famous methods with cubic convergence for simple roots
of f(x) = 0.

Newton’s method was derived by approximating the function f(x) with its
linear Taylor approximation. Higher order iteration methods can be constructed by
including more terms from the Taylor expansion. The quadratic Taylor approxima-
tion of the equation f(xn + h) = 0 is

f(xn) + hf ′(xn) +
h2

2
f ′′(xn) = 0, h = x− xn. (6.3.15)

Assuming that f ′(xn)2 ≥ 2f(xn)f ′′(xn), the solutions of this quadratic equation
are real and equal to

hn = − f ′(xn)

f ′′(xn)

(

1 ±
√

1 − 2
f(xn)f ′′(xn)

(f ′(xn))2

)

.

Rearranging and taking the solution of smallest absolute value we get

xn+1 = xn − u(xn) · 2

1 +
√

1 − 2t(xn)
, (6.3.16)

where we have introduced the notation

u(x) =
f(x)

f ′(x)
, t(x) = u(x)

f ′′(x)

f ′(x)
. (6.3.17)

The iteration (6.3.16) is Euler’s iteration method.
Assuming that |t(xn)| ≪ 1 and using the approximation

2

1 +
√

1 − 2t(xn)
≈ 1 + 1

2 t(xn), (6.3.18)

valid for |t| ≪ 1, we obtain another third order iteration method usually also at-
tributed to Euler

xn+1 = xn − u(xn)
(

1 + 1
2 t(xn)

)

. (6.3.19)

A different method of cubic convergence is obtained by using a rational approxima-
tion of (6.3.18)

xn+1 = xn − u(xn) · 1

1 − 1
2 t(xn)

= xn − f(xk)

f ′(xk) − f ′′(xk)

2f ′(xk)
f(xk)

. (6.3.20)
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This is Halley’s5 iteration method [8], which has the distinction of being the most
frequently rediscovered iteration method. Halley’s method has a simple geometric
interpretation. Consider a hyperbola

h(x) = b+
a

x− c
,

where a, b, c are determined so that h(x) is osculatory to f at x = xn, i.e., is
tangent to the curve at this point and has the same curvature there. Then xn+1 is
the intersection of this hyperbola with the x-axis.

The methods (6.3.19) and (6.3.20) correspond to the (1,0) and (0,1) Padé
approximations of Euler’s method. We now show that both are of third order for
simple zeros. Following Gander [6] we consider an iteration function of the general
form

φ(x) = x− u(x)H(t(x)), (6.3.21)

where u(x) and t(x) are defined by (6.3.17). Differentiating (6.3.21) and using
u′(x) = 1 − t(x) we get

φ′(x) = 1 − (1 − t(x))H(t) − u(x)H ′(t)t′(x).

Since u(α) = t(α) = 0 it follows that φ′(α) = 1 − H(0). Hence if H(0) = 1 then
φ′(α) = 0 and the iteration function (6.3.21) is at least of second order. Differenti-
ating once more and putting x = α we get

φ′′(α) = t′(α)H(0) − 2u′(α)H ′(0)t′(α) = t′(α)(H(0) − 2H ′(0)).

Hence φ′(α) = φ′′(α) = 0 and the method (6.3.21) at least of third order if the
conditions

H(0) = 1, H ′(0) = 1/2 (6.3.22)

are satisfied. For Euler’s and Halley’s method we have

H(t) = 2
(

1 +
√

1 − 2t
)−1

, H(t) = (1 − 1
2 t)

−1,

respectively, and both these methods satisfy the conditions in (6.3.22). (Verify this!)

Example 6.3.5.

Using (6.3.20) a short calculation shows that Halley’s method for solving the
equation f(x) = x2 − c = 0 can be written

xn+1 = xn − 2xn
xn − c/xn

3xn + c/xn
, n = 0, 1, 2, . . . . (6.3.23)

(see Problem 10). For c = 3/4 we and using the initial approximation x0 = (
√

2 +
2)/4 obtained by linear interpolation in Example 6.3.2 we obtain the following result
(correct digits in boldface)

x0 = 0.85355339059327, x1 = 0.86602474293290, x2 = 0.86602540378444.
5Edmund Halley (1656–1742), an English astronomer, who predicted the periodic reappearance

(c:a 75 years) of a comet named after him.
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Already two iterations give a result correct to 14 digits. Compared to Newton’s
method we have gained one iteration, but each iteration is more costly.

It is not difficult to construct iteration methods of arbitrarily high order for
solving f(x) = 0. It can be shown ([25, Theorem5.3]) that any iteration function
of order p must depend explicitly on the first p − 1 derivatives of f . Consider the
Taylor expansion at xn

0 = f(xn + h) = f(xn) + hf ′(xn) +

p−1
∑

k=2

hk

k!
f (k)(xn) +O(hp). (6.3.24)

Neglecting the O(hp)-term this is a polynomial equation of degree p−1 in h. Assum-
ing that f ′(xn) 6= 0 we could solve this by the fixed point iteration hi = F (hi−1),
where

F (h) = −f(xn) +
∑p−1

k=2 h
kf (k)(xn)/k!

f ′(xn)
,

taking h0 to be the Newton correction.
To get an explicit method of order p we write

f(xn)

f ′(xn)
≡ u = −h−

p−1
∑

k=2

akh
k, (6.3.25)

where

ak =
f (k)(xn)

k!f ′(xn)
, k ≥ 2. (6.3.26)

This can be interpreted as a formal power series in h (cf. Sec. 3.1.5). Reversing this
series we can express h as a formal power series in u

h = −u−
p−1
∑

k=2

cku
k + · · · , (6.3.27)

c2 = a2, c3 = 2a2
2 − a3, c4 = 5a3

2 − 5a2a3 + a4, (6.3.28)

c5 = 14a4
2 − 21a2

2a3 + 6a2a4 + 3a2
3 − a5, . . . .

More coefficients can easily be determined; see Problem 3.1.12. This leads to the
Schröder family of iteration methods

xn+1 = xn − u(xn) −
p−1
∑

k=2

ck(xn)uk(xn), (6.3.29)

(E. Schröder [22]). If f is analytic these can be shown to have convergence order p
for simple roots. For a proof see Henrici [9, p. 529].

Setting p = 2 gives Newton’s method and for p = 3 we get the third order
method of Euler (6.3.19). The family (6.3.29) of high order methods makes use of
polynomials in u. As for the case p = 3, variants of these using rational expressions
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in u can be derived from Padé approximants of these polynomials; see Traub [25,
Sec. 5.2]. There are indications that methods which use rational approximations
with about equal degree of nominator and denominator are best. For example, for
p = 4, the rational approximation

1 + c2u+ c3u
2 =

c2 + (c22 − c3)u

c2 − c3u
+ O(u3)

can be used to derive an alternative method of order 4.
We now introduce a rational family of iteration methods of arbitrary order,

which is very convenient to use. First note that Halley’s method can also be derived
as follows. Starting from (6.3.15) we get

hn = −f(xn)
/(

f ′(xn) +
hn

2
f ′′(xn)

)

.

Replacing hn in the denominator by the Newton correction −f(xn)/f ′(xn), does
not change the order of the method and leads to (6.3.20). We note that this can be
written xn+1 = xn +B2(xn), where

B2(x) = −f(x)
f ′(x)

det

(

f ′(x) f ′′(x)
2!

f(x) f ′(x)

) .

This method belongs to a rational family of iteration function of arbitrary order,
which we now give. Set Dp(x) = det(Fp), where

Fp(x) =





















f ′(x) f ′′(x)
2! . . . f(p−1)(x)

(p−1)!
f(p)(x)

(p)!

f(x) f ′(x)
. . .

. . . f(p−1)(x)
(p−1)!

0 f(x)
. . .

. . .
...

...
...

. . .
. . . f ′′(x)

2!
0 0 . . . f(x) f ′(x)





















∈ Rp×p, (6.3.30)

is a Toeplitz upper Hessenberg matrix defined with respect to the normalized deriva-
tives of f(x). (Recall that a square matrix is called Toeplitz if its elements are
identical along each diagonal.) The iteration

xn+1 = xn +Bp(xn), Bp(x) = −f(x)
det(Fp−2(x))

det(Fp−1(x))
(6.3.31)

can be shown to be of order p for simple roots.
The determinant formula (6.3.31) is attractive since it leads to a simple imple-

mentation. To evaluate det(Fp(x)) we use Gaussian elimination (without pivoting)
to compute the LU factorization

Fp(xn) = LpUp, diag (Up) = (u11, u22, . . . , upp).
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where Lp is unit lower triangular and Up upper triangular; see Sec. 1.3.4. Then
det(Fp) = u11u22 . . . upp. Hence the ratio det(Fp(x))/ det(Fp−1(x)) equals the last
diagonal element upp in Up. It follows that

xn+1 = xn − f(xn)/ukk(xn), k = 1 : p, (6.3.32)

gives the result of a sequence of iteration formulas of order 2 : p+ 1.
Note that the Gaussian elimination is simplified by the fact that Fp(xn) is

Hessenberg. Only the p − 1 subdiagonal elements need to be eliminated, which
requires 1

2p
2 flops. Further, it is possible to implement the computation of diag (Up)

using only two row vectors; see Problem 14.
The main drawback to the use of higher order iteration methods is the com-

putational cost of evaluating higher derivatives of f . However, if f satisfies a dif-
ferential equation higher order derivatives can be calculated by differentiating the
differential equation.

Example 6.3.6.

Methods using high order derivatives are useful in particular when seeking
zeros of a function satisfying a (usually second order) differential equation. The
Bessel functions of the first kind Jν(x) satisfies the differential equation

x2y′′ + xy′ + (x2 − ν2)y = 0.

The smallest zero ξ of J0(x) is close to x0 = 2.40, and

J0(x0) = 0.00250 76832 9724, J ′
0(x0) = −J1(x) = −0.52018 52681 8193.

Differentiating the differential equation for J0(x) we get

xy(k+1) + ky(k) + xy(k−1) + (k − 1)y = 0, k ≥ 1,

which gives a recursion for computing higher derivatives. Taking p = 5

y′′(x0)/2! = 0.10711 80892 2261, y′′′(x0)/3! = 0.05676 83752 3951,

yiv(x0)/4! = −0.00860 46362 1903.

Forming the Toeplitz matrix F4 and computing the diagonal elements of U in the
LU factorization, we obtain using (6.3.32) the following sequence of approximations
to ξ:

2.4048207503 2.4048255406 2.40482555767553, 2.40482555769573

(correct digits shown in boldface).

Review Questions
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1. (a) Under what assumptions is convergence of Newton’s method quadratic?

(b) Device an example where Newton’s method diverges, even though the
equation has real roots.

2. Describe an iteration for the division-free computation of the reciprocal of a
positive number c. Determine the largest set of starting values x0 such that
the iterates converge to 1/c.

3. The equation f(x) = sinx = 0 has one trivial root x = 0 in the interval
(−π/2, π/2). Show that for an initial approximation x0 chosen so that tanx0 =
2x0 Newton’s method cycles, and x2k = x0 for all k ≥ 0!

4. (a) Assume that f is continuously differentiable in a neighborhood of a double
root α of the equation f(x) = 0. Describe how the equation can be converted
to one with a simple root α.

(b) Discuss the case when f(x) = 0 has two distinct roots which nearly coin-
cide.

Problems and Computer Exercises

1. (a) Compute ǫn+1/ǫ
2
n for n = 0, 1, 2, and the limit, as n → ∞, in Exam-

ple 6.3.1.

(b) Treat the equation in Example 6.3.1 using f ′(x2) as a fixed approximation
to f ′(xn) for n > 2. Compare the convergence of this simplified method with
the true Newton method..

2. The equation x3−2x−5 = 0 is of historical interest because it was the one used
by Wallis6 to present Newton’s method to the French Academy. Determine
the roots of this equation.

Hint: It has one real and two complex roots.

3. Use Newton’s method to determine the positive root of the equation to six
correct decimals: (a) x = 1 − e−2x; (b) x lnx− 1 = 0

4. Determine the unique positive real root of the equation xq − x − 1 = 0 for
q = 2 : 8.

5. (a) Consider the Newton iteration used in Example 6.3.2 for computing square
root. Show that the iterations satisfy

xn+1 −
√
c =

1

2xn
(xn −

√
c)2.

Use this relation to show that, for all x0 > 0, convergence is monotone x1 ≥
x2 ≥ x3 ≥ · · · ≥ √

c and that limn→∞ =
√
c (compare Figure 1.2.5).

(b) In Example 6.3.2 Newton’s method was used to compute
√
c for 1/2 ≤

c ≤ 1. Determine the maximum error of the linear initial approximation used
there. Then use the expression for the error in (a) to determine the number
of iterations that suffices to give

√
c with an error less than 10−14 for all c in

6John Wallis (1616–1703) the most influential English mathematician before Newton.
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[1/2, 1] using this initial approximation. Show that the influence of rounding
errors is negligible.

6. Determine p, q and r so that the order of the iterative method

xn+1 = pxn + qc/x2
n + rc2/x5

n

for computing 3
√
c becomes as high as possible. For this choice of p, q and r,

give a relation between the error in xn+1 and the error in xn.

7. (A. Ben Israel) The function f(x) = xe−x has a unique zero α = 0. Show that
for any x0 > 1 the Newton iterates move away from the zero.

8. The Cartesian coordinates of a planet in elliptic orbit at time t are equal to
ea(sin(x), cos(x)), where a is the semi-major axis, and e the eccentricity of
the ellipse. Using Kepler’s laws of planetary motion it can be shown that the
angle x, called the eccentric anomaly, satisfies Kepler’s equation

x− e sinx = M, 0 < |e| < 1,

where M = 2πt/T is the mean anomaly and T the orbital period.

(a) Newton used his method to solve Kepler’s equation. Show that for each e,
M there is one unique real solution x = α, such that M − |e| ≤ α < M + |e|.
(b) Show that the simple fixed-point iteration method

xn+1 = e sinxn +M, x0 = 0,

is convergent.

(c) Study the convergence of Newton’s method

xn+1 = xn +
e sinxn − xn +M

1 − e sinxn
.

8. Determine the multiple root α = 1 of the equation p(x) = (1− x)5 = 0, when
the function is evaluated using Horner’s scheme, i.e.,

p(x) = (((((x − 5)x+ 10)x− 10)x+ 5)x− 1 = 0.

(a) Use bisection (cf. Algorithm 6.1.1) with initial interval (0.9, 1.1) and tol-
erance τ = 10−8. What final accuracy is achieved?

(b) Use Newton’s method, starting from x0 = 1.1 and evaluating p′(x) using
Horner’s scheme. Terminate the iterations when for the first time |xn+1−1| >
|xn−1|. How many iterations are performed before termination? Repeat with
a couple of other starting values!

(c) Same as (b), but perform one step of the modified Newton’s method (6.3.5)
with x0 = 1.1 and q = 5. How do you explain that the achieved accuracy is
much better than predicted by (6.1.10)?
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9. Show that if Newton’s method applied to the equation u(x) = 0, where u(x) =
f(x)/f ′(x), then

xn+1 = xn − u(xn)

1 − t(xn)
, t(xn) =

f(xn)f ′′(xn)

(f ′(xn))2
. (6.3.33)

This transformation is most useful if an analytical simplification can be done
such that u(x) can be evaluated accurately also in a neighborhood of α.

10. (a) Show that Halley’s method can also be derived by applying Newton’s
method to the equation f(x)(f ′(x))−1/2 = 0.

(b) What is the efficiency index of Newton’s and Halley’s method, respectively,
if it is assumed that evaluating each of f , f ′ and f ′′ takes one unit of work.

(c) Show that Halley’s method applied to f(x) = x2 − c = 0, c > 0, gives rise
to the iteration

xn+1 = xn
x2

n + 3c

3x2
n + c

= xn − 2xn(x2
n − c)

3x2
n + c

.

Apply Halley’s method to f(x) = xk − c = 0, c > 0.

11. (A. Ben Israel) Consider the quasi-Halley method

xn+1 = xn − f(xk)

f ′(xk) − f ′(xk) − f ′(xk−1)

2(xk − xk−1)f ′(xk)
f(xk)

where the second derivative f ′′(xk) has been approximated by a divided dif-
ference. Show that if f ′′ is Lipschitz continuous near a root α then

|α− xk+1| = O(|α − xk|γ ,

where γ satisfies the quadratic equation γ2 − 2γ − 1 = 0. Conclude that
the order of this method is approximately 2.41 as compared to 3 for Halley’s
method.

12. (Bailey et al. [1]) In 1976 Brent and Salamin independently discovered the
following iteration, which generates a sequence {pk} converging quadratically
to π:
Set a0 = 1, b0 = 1/

√
2, and s0 = 1/2. For k = 1, 2, 3, . . . compute

ak = (ak−1 + bk−1)/2, bk =
√

ak−1bk−1,

ck = a2
k − b2k, sk = sk−1 − 2kck, pk = 2a2

k/sk.

Perform this iteration in IEEE 754 double precision. Verify the quadratic
convergence by listing the errors in |pk − π| in successive iterations. How
many iterations can you do before the error starts to grow? What is the best
accuracy achieved?

13. In Example 6.3.4 the first two steps in the interval Newton method for solving
the equation x2 − 2 = 0 are shown. Implement this method and carry out the
iterations until convergence.
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14. (a) Compute det(Fp(x)) in (6.3.30) for p = 3 and write down the corresponding
rational fourth order iteration method in terms of u, a2, a3 in (6.3.28).

(b) Implement in Matlab the iteration method (6.3.31) for arbitrary order p.
Input should be an approximation xn to the root, f(xn) and the row vector
of scaled derivatives

(

f ′(x),
f ′′(x)

2!
, . . . ,

f (p−1)(x)

(p− 1)!
,
f (p)(x)

p!

)

evaluated at x = xn. Output should be the diagonal elements of Up in the
LU factorization of Fp(xn) and the sequence of approximations xn+1,k = xn +
f(xn)/ukk(xn), k = 1 : p. Try to economize on memory requirement.

15. Write a program that computes the inverse of the error function erf(x) by
solving the equation erf(x) − y = 0, 0 ≤ y < 1. Use Newton’s method and
the series expansion given in Example 1.3.4 to compute values of erf(x) and
its derivative. Note that for large values of x erf(x) ≈ 1 − 1/(

√
πx).

16. (a) Given σ1 ≥ σ1 ≥ . . . ≥ σn > 0, c1, c2, . . . cn, and α > 0, consider the
secular equation φ(λ) = α, where

φ2(λ) =

n
∑

i=1

(

σici
σ2

i + λ

)2

.

Show that φ(λ) is a convex and strictly decreasing function of λ. Conclude
that if φ(0) > α, this equation has a unique root λ > 0 of smallest magnitude.

(b) Newton’s method for solving φ(λ) − α = 0 is

λk+1 = λk − hk, hk =
φ(λk) − α

φ′(λk)
.

Show that with λ0 = 0 this method produces a strictly increasing sequence λk

converging to the solution. Derive an explicit expression for hk.

(c) The Newton iteration in (b) often converges very slowly. A more efficient
method is obtained by instead applying Newton’s method to the equation
h(λ) = 1/φ(λ) = 1/α. Show that this iteration can be written

λk+1 = λk − hk
φ(λk)

α
,

where hk is the Newton step in (b).

(d) Let σi = 1/i2, ci = 1/i2+0.001, i = 1, 2, . . . , 20. Plot the function f(λ) for
λ ∈ (0, 0.0005). Solve the equation φ(λ) = α = 2.5, using λ0 = 0, comparing
the two methods in (b) and (c).

6.4 Local Minimum of a Scalar Function

In this section we consider the problem of finding the minimum (maximum) of a
real-valued function

min g(x), x ∈ [a, b], (6.4.1)
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which is closely related to that of solving a scalar equation. Problem (6.4.1) occurs as
an important subproblem in methods for minimizing a function φ(z) of n variables,
z ∈ Rn, and for solving systems of nonlinear equation. For example, if zk is the
current approximation to the optimal point, the next approximation is often found
by minimizing a function

g(λ) = φ(xk + λdk),

where dk is a search direction, and the steplength λ is to be determined.
If g is differentiable in [a, b], a necessary condition for an interior point of

τ ∈ I to be a local minimum is that g′(τ) = 0. If g′ does not change sign on I it is
also possible that the minimum is at a or b. If this is checked for separately, then
it is possible to reduce the problem to a zero-finding problem for g′. Since g′ also
vanishes at a point of maximum and inflection, it is however necessary to check if
the point found really is a minimum.

Most algorithms for minimizing a nonlinear function of one (or more) variables
find at best a local minimum. For a function with several local minima, there is
no guarantee that the global (lowest local) minimum in [a, b] will be found. One
obvious remedy is to try several different starting points and hope that the lowest
of the local minima found is also the global minimum. This approach is neither
efficient or safe. In practice we have to be content with algorithms which nearly
always give correct results in most practical applications.

6.4.1 Unimodal Functions

A condition which ensures that a function g has a unique global minimum τ in [a, b]
is that g(x) is strictly decreasing for a ≤ x < τ and strictly increasing for τ < x ≤ b.
Such a function is called unimodal.

Definition 6.4.1.

The function g(x) is unimodal on [a, b] if there exists a unique τ ∈ [a, b] such
that, given any c, d ∈ [a, b] for which c < d

d < τ ⇒ g(c) > g(d); c > τ ⇒ g(c) < g(d). (6.4.2)

This condition does not assume that g is differentiable or even continuous on
[a, b]. For example, |x| is unimodal on [−1, 1].

6.4.2 Golden Section Search

We now describe an interval reduction method for finding the local minimum
of a unimodal function, which only uses function values of g. It is based on the
following lemma.

Lemma 6.4.2. Suppose that g is unimodal on [a, b], and τ is the point in Defini-
tion 6.4.1. Let c and d be points such that a ≤ c < d ≤ b. If g(c) ≤ g(d) then τ ≤ d,
and if g(c) ≥ g(d) then τ ≥ c.
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Proof. If d < τ then g(c) > g(d). Thus, if g(c) ≤ g(d) then τ ≤ d. The other part
follows similarly.

Assume that g is unimodal in [a, b]. Then using Lemma 6.4.2 it is possible to
find a reduced interval on which g is unimodal by evaluating g(x) at two interior
points c and d such that c < d. Setting

[a′, b′] =

{

[c, b], if g(c) > g(d);
[a, d], if g(c) < g(d).

we can enclose x∗ in an interval of length at most equal to max(b − c, d − a). (If
g(c) = g(d) then τ ∈ [c, d], but we ignore this possibility.) To minimize this length
one should take c and d so that b− c = d−a. Hence c+d = a+ b, and we can write

c = a+ t(b− a), d = b− t(b − a), 0 < t < 1/2.

Then d− a = b− c = (1 − t)(b− a), and by choosing t ≈ 1/2 we can almost reduce
the length of the interval by a factor 1/2. However, d − c = (1 − 2t)(b − a) must
not be too small for the available precision in evaluating g(x).

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

a
k

a
k+1

=c
k

c
k+1

=d
k
 b

k+1
=b

k

Figure 6.4.1. One step of interval reduction, g(ck) ≥ g(dk).

If we only consider one step the above choice would be optimal. Note that this
step requires two function evaluations. A clever way to save function evaluations
is to arrange it so that if [c, b] is the new interval then d can be used as one of the
points in the next step; similarly if [a, d] is the new interval then c can be used at the
next step. Suppose this can be achieved with a fixed value of t. Since c+ d = a+ b
the points lie symmetric with respect to the midpoint 1

2 (a + b) and we need only
consider the the first case. Then t must satisfy the following relation (cf. above and
Figure 6.7.1)

d− c = (1 − 2t)(b− a) = (1 − t)t(b − a).
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Hence t should equal the root in the interval (0, 1/2) of the quadratic equation
1− 3t+ t2 = 0, which is t = (3−

√
5)/2. With this choice the length of the interval

will be reduced by the factor

1 − t = 2/(
√

5 + 1) = 0.618034 . . .

at each step, which is the golden section ratio. For example, 20 steps gives a
reduction of the interval with a factor (0.618034 . . .)20 ≈ 0.661 · 10−5.

Algorithm 6.4.1 Golden Section Search.

Let g be a given continuous function and I = [a, b] an interval. The following
algorithm computes an approximation m ∈ I to a local minimum of g(x), with an
error less than a specified tolerance τ .

xmin = goldsec(g, a, b, τ);

t = 2/(3 +
√

5);

c = a+ t · (b− a);

d = b− t · (b− a);

gc = g(c); gd = g(d);

while (d− c) > τ · max(|c|, |d|)
if gc ≥ gd %Keep right endpoint b

a = c; c = d;

d = b− t · (b− a);

gc = gd; gd = g(d);

else %Keep left endpoint a

b = d; d = c;

c = a+ t · (b− a);

gd = gc; gc = g(c);

end;

end;

xmin = (c+ d)/2;

Rounding errors will interfere when determining the minimum of a scalar
function g(x). Because of rounding errors the computed approximation fl(g(x)) of
a unimodal function g(x) is not in general unimodal; cf. Figure 6.4.2. However, if
we assume that in Definition 6.4.1 the points c and d satisfy |c − d| > τ for some
small τ , the condition (6.4.2) will hold also for the computed function. For any
method using only computed values of g there is a fundamental limitation in the
accuracy of the computed location of the minimum point τ in [a, b]. The best we
can hope for is to find xk ∈ [a, b] such that

g(xk) ≤ g(x∗) + δ,
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Figure 6.4.2. The effect of rounding errors on minimizing a function.

where δ is an upper bound of rounding and other errors in the computed function
values ḡ(x) = fl (g(x)); If g is twice differentiable in a neighborhood of a minimum
point τ then by Taylor’s theorem

g(τ + h) ≈ g(τ) + 1
2h

2g′′(τ).

This means that there is no difference in the floating point representation of g(τ+h)
unless h is of the order of

√
u. Hence we can not expect τ to be determined with

an error less than
ǫα =

√

2 δ/|g′′(x∗)|, (6.4.3)

unless we can also use values of g′ or the function has some special form.

6.4.3 Minimization by Interpolation

For finding the minimum of a unimodal function g golden section search method has
the advantage that linear convergence is guaranteed. In that respect it corresponds
to the bisection method for finding a zero of a function. If the function is sufficiently
smooth and we have a good initial approximation, then a process with superlinear
convergence will be much faster. Such methods can be devised using interpolation by
a polynomial or rational function, chosen so that its minimum is easy to determine.
Since these methods do not always converge they should be combined with golden
section search. There is a close analogy with robust methods for solving a nonlinear
equation, where a combination of inverse interpolation and bisection can be used;
see Section 6.2.4.

Since a linear function in general has no minimum the simplest choice is to
use a second degree polynomial, i.e. a parabola. Suppose that at step n we have
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three distinct points in u, v and w. The quadratic polynomial interpolating g(x) at
these points is (cf. (6.2.11))

p(x) = g(v) + (x− v)[u, v]g + (x− v)(x− u)[u, v, w]g.

Setting the derivative of p(x) equal to zero gives

0 = [u, v]g + (v − u)[u, v, w]g + 2(x− v)[u, v, w]g.

and solving for x

x = v + d, d = − [u, v]g + (v − u)[u, v, w]g

2[u, v, w]g
. (6.4.4)

This is a minimum point of p(x) if [u, v, w]g > 0. We assume that of all the points
where g has been evaluated v is the one with least function value. Therefore d should
be small, so the effect of rounding errors in computing d is minimized. Initially we
can take u = a, w = b, and if g(c) < g(d) then v = c otherwise v = d, where c and
d are the two golden section points.

Multiplying the nominator and denominator of d by (v − u)(w − v)(w − u), a
short calculation shows that d = −s1/s2, where

r1 = (w − v)(g(v) − g(u)), r2 = (v − u)(g(w) − g(v)),

s1 = (w − v)r1 + (v − u)r2, s2 = 2(r2 − r1). (6.4.5)

Consider parabolic interpolation at the points xi−2, xi−1, xi, i = 2, 3, . . . and
let ǫi = xi − τ . Assuming that g(x) is sufficiently smooth in a neighborhood of τ it
can be shown that asymptotically the relation

ǫi+1 ∼ c3
2c2

ǫi−1ǫi−2, cr =
1

k!
g(k)(ζr), (6.4.6)

holds between successive errors. Hence the convergence order equals the real root
p = 1.3247 . . . of the equation x3 − x− 1 = 0.

If two or more of the points u, v, w coincide, or if the parabola degenerates
into a straight line, then s2 = 0. The parabolic interpolation step is only taken if
the following inequalities are true:

|d| < 1
2 |e|, s2 6= 0, v + d ∈ [a, b],

where e is the value of the second last cycle and, as before, tol is a combination of
absolute and relative tolerance is used

tol = ǫ|x| + τ.

Otherwise a golden section step is taken, i.e.,

x =

{

(1 − t)v + ta, if v ≥ 1
2 (a+ b);

(1 − t)v + tb, if v < 1
2 (a+ b),
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where 1 − t = 2/(
√

5 + 1).
The combination of inverse quadratic interpolation and golden section search

has been suggested by Brent [2, ,Ch. 5],where the many delicate points to con-
sider in an implementation are discussed. At a typical step there are six significant
points a, b, u, v, w and x, not all distinct. The position of these points are updated
at each step. Initially [a, b] is an interval known to contain a local minimum point.
At a later point in the algorithm they have the following significance: A local min-
imum lies in [a, b]; of all the points at which g has been evaluated v is the one with
the least value of g; w is the point with the next lowest value of g; u is the previous
value of w, and x is the last point at which g has been evaluated.

The Matlab function fminbnd is based on the Fortran implementation FMIN
of Brent’s algorithm given in Forsythe, Malcolm, and Moler [5, pp.184–187].

Review Questions

1. How many steps in needed in golden section search to reduce an initial interval
[a, b] by a factor of 10−6?

2. Suppose the twice differentiable function f(x) has a local minimum at a point
x∗. What approximate limiting accuracy can you expect in a method for
computing x∗ which uses only function values?

3. The algorithm FMIN is a standard method for finding the minimum of a
function. It uses a combination of two methods. Which?

Problems and Computer Exercises

1. Use the algorithm goldsec to find the minimum of the quadratic function
f(x) = (x− 1/2)2 starting from a = 0.25, b = 1. Plot the successive inclusion
intervals.

2. Modify the algorithm goldsec to use parabolic interpolation instead of golden
section if this gives a point within the interval.

3. (a) Plot the function

g(x) =
1

(x− 0.3)2 + 0.01
+

1

(x− 0.9)2 + 0.04
,

and show that it has a local minimum in each of the intervals [0.2, 0.4] and
[0.8, 1.0].

(b) Use your algorithm from Problem 2 to determine the location of the two
minima of g(x) in (a).

(c) Matlab includes a function fminbnd, that also uses a combination of
golden section search and parabolic interpolation to find a local minimum.
Compare the result using this function with the result from (b).
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4. (Brent [2, Sec. 5.6]) The function

g(x) =

20
∑

i=1

(

2i− 5

x− i2

)2

,

has poles at x = 12, 22, . . . , 202. Restricted to the open interval (i2, (i+ 1)2),
i = 1 : 19, it is unimodal. Determine the minimum points in these intervals
and the corresponding values of g(x).

6.5 Zeros of Polynomials

6.5.1 Introduction

The problem of solving a polynomial equation

p(z) = a0z
n + a1z

n−1 + · · · + an = 0, (a0 6= 0), (6.5.1)

has played a major role in the development of mathematical concepts for many
centuries. Even the “high school formula” for solving a quadratic equations requires
the introduction of irrational and complex numbers. There is a long history of
investigations into algebraic expressions for the zeros of equations of higher degree.
In the 16th century Cardano published formulas for the roots of a cubic equation
(see Problem 2.3.8). Formulas for the roots when n = 4 are also known. In 1826
Abel proved that it is not possible to find algebraic expressions for the roots for the
class of polynomial equations of degree n > 4. However, even the existing formulas
for n ≤ 4 are not in general suitable for numerical evaluation of the roots. In
Section 2.3.2, it was shown that care must be taken to ensure numerical stability
also for the simple formulas in the quadratic case (see also Problem 2)!

Despite the absence of closed solution formulas the fundamental theorem

of algebra states for any algebraic equation p(z) = 0 of degree n > 0, there
exists at least one complex number z1 such that p(z1) = 0. Hence we can write
p(z) = p0(z) = (z−z1)p1(z), where p1(z) is a polynomial of degree n−1. Now p1(z)
must have at least one root z2, and we write p1(z) = (z− z2)p2(z), where p2(z) has
degree n− 2. Continuing this reasoning pn−1(z) = (z − zn)pn, where pn = an is a
constant. It follows that, counting multiplicities, the equation (6.5.1) has exactly n
(real or complex) roots z1, z2, . . . , zn, and

p(z) = a0(z − z1)(z − z2) · · · (z − zn). (6.5.2)

By this representation it also follows that if the coefficients a0, a1, . . . , an are real,
then eventual complex roots must occur in conjugate pairs.

Solving polynomial equations of high degree does not play a central role in
scientific computing. Usually the applications involve only equations of moderate
degree, say 10–20, for which acceptable subroutines exist. Polynomial equations of
high degree play a major role also as a computational task in the area of computer
algebra, where one need to solve (6.5.1) for n > 100. This in general requires high
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multiple precision computations and algorithm for such problems are still a subject
of research.

It should be emphasized that although a problem may be given in the form
(6.5.1), it could be that the coefficients of p(z) are not the original data. Then it
may be better to avoid computing them. An important example of this is when the
polynomial is the characteristic polynomial

p(z) = det(zI −A)

of a matrix A ∈ An×n. Then it is an eigenvalue problem in disguise, and the n
roots of pA(z) = 0 are the eigenvalues of A. Here the original data are the elements
of the matrix A and numerical values of p(z) can then in general be evaluated much
more accurately directly from the matrix elements, see Chapter 9. Even when the
eigenvalues are well determined by the elements of A and appear to be well sepa-
rated, they can be extraordinary sensitive to to small relative perturbations in the
coefficients coefficients of pA(z). In the following we discuss a famous example, due
to Wilkinson [28, 1984]. This paper7 contains an extensive discussion of numerical
problems in determining roots of polynomial equations.

Example 6.5.1.

Consider the Wilkinson polynomial

p(z) = (z − 1)(z − 2) · · · (z − 20) = z20 − 210z19 + . . .+ 20!,

with zeros 1, 2, . . . , 20. Let p̄(z) be the polynomial which is obtained when the
coefficient a1 = 210 in p(z) is replaced by

−(210 + 2−23) = −210.000000119 . . . ,

while the rest of the coefficients remain unchanged. Even though the relative per-
turbation in a1 is of order 10−10, many of the zeros of the perturbed polynomial
p̄(z) deviate greatly from those of p(z). In fact, correct to nine decimal places, the
perturbed zeroes are

1.000000000 10.095266145± 0.643500904i
2.000000000
3.000000000 11.793633881± 1.652329728i
4.000000000
4.999999928 13.992358137± 2.518830070i
6.000006944
6.999697234 16.730737466± 2.812624894i
8.007267603
8.917250249 19.502439400± 1.940330347i

20.846908101

For example, the two zeros 16, 17 have not only changed substantially, but have
become a complex pair. It should be emphasized that this behavior is quite typical

7Wilkinson received the Chauvenet Prize of the Mathematical Association of America for this
exposition of the ill-conditioning of polynomial zeros.
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of polynomials with real coefficients and real roots. Indeed, many polynomials which
arise in practice behave much worse than this.

If we assume that the coefficients ai of a polynomial are given with full machine
accuracy, then the error δ in computed values of p(x) (for real x) is bounded by

δ < 1.06u

n
∑

i=0

|(2i+ 1)an−ix
i| < γ2n+1

n
∑

i=0

|an−i||x|i,

see Section 2.4. Hence by (6.1.7) the attainable accuracy of a zero α is equal to

ǫα =
δ

|p′(α)| =

∑n
i=0 |(2i+ 1)an−iα

i|
|p′(α)| .

In particular for the root α = 14 in the above example we get ǫα = 1.89 · 1016.
However, the changes in this example are so large that this linearized perturbation
theory does not apply!

As the above example emphasizes, computing the characteristic polynomial is
not, as is sometimes thought, a simplification of the eigenvalue problem. Eigenvalue
problems should be solved with one of the highly developed modern eigenvalue
algorithms; consult Chapter 9, Volume II, and references therein! Note also that if
the coefficients of the characteristic polynomial det(A− zI) are required, these are
best computed by first computing the eigenvalues λi of A are computed and then
forming

p(z) =

n
∏

i=1

(z − λi). (6.5.3)

The companion matrix of the polynomial p(z) in (6.5.1), normalized so that
a0 = 1, is defined as

C =













−a1 −a2 · · · −an−1 −an

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0













. (6.5.4)

(Sometimes the companion matrix is defined slightly differently, e.g., with the coef-
ficients of the polynomial in the last row or in the last column.) Using the definition
(1.6.4) it can be verified that the characteristic polynomial of C equals

pC(z) = det(zI − C) = zn + a1z
n−1 + · · · + an−1z + an.

Hence the the eigenvalues of C are the roots of p(z) = 0 and turning the tables,
algorithms for solving eigenvalue problems can be used for solving polynomial equa-
tions. In Matlab the function roots(p) computes the roots of a polynomial p(z)
using the QR algorithm to solve the eigenvalue problem for the companion matrix.
Although the operation count for this QR algorithm is O(n3) and the storage re-
quirement 1.5n2 experiments suggest that for small and moderate values of n it is as
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as fast as competing algorithms and can be more accurate. Further problems with
overflow or underflow are avoided. However, it seems less suitable for applications
where n is large and the roots are wanted to multiple precision accuracy.

If the coefficients are known (and stored) exactly, then by using multiple-
precision arithmetic the accuracy in the zeros can be increased. It is generally true
that the solution of polynomial equations of high degree requires the use of multiple
precision floating-point arithmetic in order to achieve high accuracy.

Example 6.5.2.

The largest positive root of the equation

p(x) = (x+ 2)(x2 − 1)6 − 3 · 10−6 · x11 = 0

is to be computed. Here p(z) is a polynomial of degree 13. If the coefficients
are computed using decimal floating point arithmetic with seven digits, then the
coefficient of x11 which is (12 − 3 · 10−6) will be rounded to 12.00000. Thus the
machine will treat the equation (x+2)(x2 − 1)6 = 0, whose exact positive root is 1.

This is a poor result. One can get the root α = 1.053416973823 to full accuracy
for example by writing the equation in the form

x = φ(x), φ(x) = 1 +
0.1

x+ 1

(

3x11

x+ 2

)1/6

,

and solving this by the iteration x0 = 1, xk+1 = φ(xk). Hence the relative error in
the previous result is greater then 5%.

6.5.2 Some Basic Formulas

Comparing the coefficients of zn−k in the representations (6.5.1) and (6.5.2) of p(z)
we find that (−1)kak/a0 is the sum of the

(

n
k

)

products of the roots taken k at a
time. Thus we obtain the following relations between the coefficients and zeros of
a polynomial

∑

i

zi = −a1/a0,
∑

i<j

zizj = a2/a0,
∑

i<j<k

zizjzk = a3/a0, · · ·

· · · z1z2 · · · zn = (−1)nan/a0. (6.5.5)

The functions on the left side are called elementary symmetric functions of the
variables z1, z2, . . . , zn, since interchanging any of the variable will not change the
functions.

If an 6= 0 then the reciprocal polynomial is

q(y) = ynp(1/y) = any
n + · · · + a1y + a0. (6.5.6)

The zeros of the reciprocal polynomial are 1/z1, 1/z2, . . . , 1/zn and from (6.5.5) we
have the relations,

∑

i

1/zi = −an−1/an, etc..
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Function values of the polynomial p(z) in (6.5.1) at a (real or complex) point w
can conveniently be computed by repeated synthetic division of p(z) with z−w;
cf. Section 1.3.1. Let

p(z) = (z − w)q(z) + bn, (6.5.7)

q(z) = b0z
n−1 + b1z

n−2 + . . .+ bn−1.

Then the sequence {bi}n
i=0 is defined by the recursion

b0 = a0, bi = bi−1w + ai, i = 1 : n. (6.5.8)

Setting z = w we we see that p(w) = bn is the remainder and q(z) is the quotient
polynomial when dividing p(z) with (z − w). Differentiating (6.5.7) we get

p′(z) = (z − w)q′(z) + q(z), (6.5.9)

and setting z = w we find that p′(w) = q(w). We can evaluate q(w) by synthetic
division of q(z) with (z − w),

q(z) = (z − w)r(z) + cn−1,

r(z) = c0z
n−2 + c1z

n−3 + . . .+ cn−2.

Now p′(w) = q(w) = cn−1, where

c0 = b0, ci = ci−1w + bi, i = 1 : n− 1.

Higher derivatives can be computed in the same fashion. Differentiating once
more gives

p′′(z) = (z − w)q′′(z) + 2q′(z),

and so 1
2p

′′(w) = q′(w) = dn−2, where

d0 = c0, di = di−1w + ci, i = 1 : n− 2.

To compute p(i)(w) using these formulas requires n−i additions and multiplications.
In the important special case where all the coefficients a0, a1, . . . , an are real,

the above formulas are somewhat inefficient, and one can save operations by per-
forming synthetic division with the quadratic factor

(z − w)(z − w̄) = z2 − 2zRe(w) + |w|2,

which has real coefficients (see Problem 1).
Synthetic division can also be used to shift the origin of a polynomial p(z).

Given a0, a1, . . . , an and s, we then want to find coefficients c0, c1, . . . , cn so that

p(w + s) = q(s) = c0s
n + c1s

n−1 + · · · + cn. (6.5.10)

Clearly this is the Taylor expansion of p(z) at z = w. It follows that

cn = p(w), cn−1 = p′(w), cn−1 =
1

2
p′′(w), . . . , c0 =

1

n!
p(n)(w),
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and the coefficients ci can be computed by repeated synthetic division of p(z) by
(z − w) as described above in about n2/2 multiplications.

It is often desirable to obtain some preliminary information as to where the
zeros of a polynomial p(z) are located. Some information about the location of real
roots can be obtained from a simple examination of the sign of the coefficients of
the polynomial. A simple observation is that if ai > 0, i = 1 : n, then p(x) can have
no real positive zero. A generalization of this result, known as Descartes’ rule

of sign, 8 states that the number of positive roots is either given by the number
of variations in sign in the sequence a0, a1, . . . , an, or is less than that by an even
number. (Multiple roots are counted with their multiplicity.) By considering the
sign variations for the polynomial p(−z) we similarly get an upper bound on the
number of negative roots. By shifting the origin, we can get bounds on the number
of roots larger and smaller than a given number. In Sec. 6.5.3 we give a method to
obtain precise information about the number of real roots in any given interval.

Many classical results are known about the number of real or complex roots
in a disk or half plane. It is outside the scope of this presentation and we refer to
surveys in the literature.

6.5.3 Sturm Sequences

Precise information about the number of real roots in an interval can be obtained
from a Sturm sequence9 for p(x).

Definition 6.5.1.

A sequence of real polynomials p0(x), p1(x), . . . , pm(x) is a strict Sturm se-
quence for p(x) = p0(x) on the interval [a, b] if the following conditions hold:

(i) No two consecutive polynomials in the sequence vanish simultaneously on the
interval [a, b].

(ii) If pj(r) = 0 for j < m, then pj−1(r)pj+1(r) < 0.

(iii) Throughout the interval [a, b], pm(x) 6= 0.

(iv) If p0(r) = 0, then p′0(r)p1(r) > 0.

Given a polynomial p1(x) of degree not greater than that of p0(x) a Sturm
sequence can be constructed by the Euclidean algorithm as follows. Let q1(x) be
the quotient polynomial and −p2(x) the remainder in the quotient p0(x)/p1(x), i.e.
p0(x) = q1(x)p1(x) − p2(x), where the degree of p2(x) is strictly less than that of
p1(x). Continuing in this way, we compute p2(x),. . . , pm(x) by

pk+1(x) = qk(x)pk(x) − pk−1(x), k = 1 : m− 1, (6.5.11)

8René Descartes (1596–1650) French philosopher and mathematician.
9J. C. F. Sturm (1803–1855) a Swiss mathematician best known for his theorem on Sturm se-

quences, discovered in 1829 and his theory of Sturm–Liouville differential equations. He succeeded
Poisson in the chair of mechanics at the École Polytechnique in Paris 1839.
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where qk(x) is the quotient and −pk+1 the remainder in the quotient pk−1(x)/pk(x).
We stop when pm(x) nowhere vanishes on the interval [a, b]. Clearly, if pi(r) = 0,
then pj+1(r) = −pj−1(r) < 0, so condition (ii) is satisfied.

Let V (x) denote the number of variations in sign in the Sturm sequence at x.
If p0(x) and p1(x) have only simple zeros that separate each other, then it can be
shown that the number of zeros of p0(x) on [a, b] is equal to |V (a) − V (b)|.

Theorem 6.5.2.

Take p1(x) = p′0(x) and define p2(x), . . . , pm(x) by (6.5.11), where pm(x) has
a fixed sign on the interval [a, b] (p0(a) 6= 0 and p0(b) 6= 0). Let V(r) denote
the number of variations of sign in the sequence of values p0(r), p1(r), . . . , pm(r),
vanishing terms not being counted. Then the number of roots of p0(x) in [a, b], each
multiple root being counted once, is exactly equal to |V (a) − V (b)|.

Note that if all real zeros of p0(x) are simple and p1(x) = p′0(x), then (6.5.11)
generates a Sturm sequence. If p0(x) has multiple zeros, then p0(x) and p′0(x) have
a common divisor, which divides every pi(x) in the sequence, and this will not affect
V (r).

Example 6.5.3.

The equation p(x) = p0 = x5 − 3x− 1 = 0 has three real roots z1 = −1.21465,
z2 = −0.33473, and z3 = 1.38879 and two complex roots. The derivative equals
p′(x) = p1 = 5x4 − 3, and the rest of the Sturm chain is given by

p2 =
12

5
x+ 1, p3 =

59083

20736
.

Here p2 is a polynomial of degree one and the Sturm chain ends with s = 3 < n.
We denote by [lk, uk] an interval containing the zero xk. Evaluating the sign

changes of the Sturm sequence at x = −2 and x = 2 shows that there are 3− 0 = 3
roots xk, k = 1, 2, 3, in the interval [−2, 2] Counting the number of sign changes
at the midpoint x = 0 allows us to deduce that uk = 0, k = 1, 2 and l3 = 0;
see Table 6.5.1. The interval [−2, 0] contains two roots so we determine next the
number of sign changes at the midpoint x = −1.

At this point we have determined three disjoint intervals [−2,−1], [−1, 0], and
[0, 2], which each contain one root. We continue bisecting each of these intervals,
which can be performed in parallel.

Methods based on Sturm sequences can can be competitive, when only a
relatively small number of real roots in an given interval are of interest. Consider a
real symmetric tridiagonal matrix,

A =













α1 β2

β2 α2 β3

. . .
. . .

. . .

βn−1 αn−1 βn

βn αn













,
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Table 6.5.1. Left: Sign variations in the Sturm sequence. Right: Intervals
[lk, uk] containing the zero xk.

x p0 p1 p2 p3 δ
−2 − + − + 3
+2 + + + + 0

0 − − + + 1
−1 + + − + 2

1 − + + + 1

l1 u1 l2 u2 l3 u3

−2 2 −2 2 −2 2
0 0 0

−1 −1
1

such that βk 6= 0, k = 2 : n has only simple eigenvalues. Let pk(λ) be the character-
istic polynomial of the kth leading principal minor of (A − λI). Define p0(λ) = 1,
and pk(λ) by the three-term recursion

p1(λ) = α1 − λ, pk(λ) = (αk − λ)pk−1(λ) − β2
kpk−2(λ), k = 2 : n. (6.5.12)

Then the sequence
1, p0(λ), . . . , pn(λ) = det(A− λI)

is known to form a Sturm sequence. Combined with the bisection method, this
recursion can be used to develop an efficient numerical method for determining the
eigenvalues of a symmetric tridiagonal matrix A in a given interval [a, b] without
reference to any of the others; see Vol. II, Sec. 9.6.6. It can also be used for
determining the singular values of a bidiagonal matrix in a given interval; see Vol.
II, Sec. 9.7.7.

The Sturm sequence algorithm only works when f(x) is a real function of a
real variable. To determine complex zeros an algorithm that performs a search and
exclusion of the complex plane can be used. The quadtree exclusion algorithm, due
to H. Weyl [27], and illustrated in Figure 6.5.1, is such a “two-dimensional bisection
algorithm”.10 It was one of the first algorithms with guaranteed convergence to
all n zeros of a polynomial of degree n. The algorithm is based on a exclusion
test applied to squares in the complex plane. For example, assuming that f(z) is
analytic in K then if |f ′(z)| ≤M for all z ∈ K and |f(z0)| > ηM there is no zero of
f(z) in K. Any square that does not pass the test and thus may contain a root is
called suspect. (Note that it is not required that a suspect square actually contains
a root.)

The computations begin with an initial suspect square S containing all the
zeros of p(x). This square can be found from an upper bound on the absolute
value of the zeros of p(x). In the algorithm, as soon as we have a suspect square,
this is partitioned into four congruent subsquares. At the center of each of them
a test estimating the distance to the closest zero of p(x) is performed. (A relative
error within, say, 40% will suffice.) If the test guarantees that this distance exceeds
half of the length of the diagonal of the square then the square cannot contain any

10In general a quadtree is a tree where each node is split along d dimensions giving 2d children.
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Figure 6.5.1. Suspect squares computed by Weyl’s quadtree method. Their
centers (marked by ×) approximate the five zeros marked by ∗.

zero and is discarded. Each remaining suspect square undergoes the same recursive
partitioning into four subsquares and the test. The zeros lying in a suspect square
are approximated by its center with errors bounded by half the length of its diagonal.
Each iteration step decreases the diagonal of the remaining squares by a factor of
two so the errors will decrease by a factor of 1/2.

6.5.4 Deflation and Zero Suppression

Suppose we have found a root α to the equation p(z) = 0. Then taking zk = α in
(6.5.8)–(6.5.7) we have bn = p(α) = 0 and the remaining roots of p(z) are also roots
of the polynomial equation

q(z) =
p(z)

z − α
= 0

Hence we can continue the iterations with the quotient polynomial q(z) of degree
n − 1. This process is called deflation and can be repeated; as soon as a root
has been found it is factored out. Proceeding like this, all roots are eventually
found. Since we work with polynomials of lower and lower degree, deflation saves
arithmetic operations. More important is that it prevents the iterations to converge
to the same simple root more than once.

So far we have ignored that roots which are factored out are only known with
finite accuracy. Also rounding errors occur in the computation of the coefficients of
the quotient polynomial q(x). Clearly there is a risk that both these types of errors
can have the effect that the zeros of the successive quotient polynomials deviate
more and more from those of p(z). Indeed, deflation is not unconditionally a stable
numerical process. A closer analysis performed by Wilkinson [28, ]11 shows

11James Hardy Wilkinson, English mathematician 1919–1986. From 1946 Wilkinson he worked
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that if the coefficients of the quotient polynomials are computed by the recursion
(6.5.8), then errors resulting from deflation are negligible provided that:

1. the roots are determined in order of increasing magnitude;

2. each root is determined to its limiting accuracy.

Note that if the above procedure is applied to the reciprocal polynomial
znp(1/z) we obtain the zeros of p(z) in order of decreasing magnitude.

With Laguerre’s method it is quite probable that we get convergence to the
root of smallest magnitude from the initial value z0 = 0. However, this cannot be
guaranteed and therefore one often proceeds in two steps. First, all n roots are
determined using deflation in the process. Next, each root found in the first step
is refined by doing one or several Newton iterations using the original polynomial
p(z).

Deflation can be avoided by using a zero suppression technique suggested
by Maehly [1954]. He notes that the derivative of the reduced polynomial q(z) =
p(z)/(z − ξ1) can be expressed as

q′(z) =
p′(z)

z − ξ1
− p(z)

(z − ξ1)2
.

More generally, assume that we have determined approximations ξ1, . . . , ξj to j
roots of p(z) = 0. Then the the first derivative of the reduced polynomial qj(z) =
p(z)/[(z − ξ1) · · · (z − ξj)] can be expressed as

q′j(z) =
p′(z)

(z − ξ1) · · · (z − ξj)
− p(z)

(z − ξ1) · · · (z − ξj)

j
∑

i=1

1

z − ξi
.

Hence Newton’s method applied to qj(z) can be written

zk+1 = zk − p(zk)

p′(zk) −∑j
i=1 p(zk)/(zk − ξi)

, (6.5.13)

which is the Newton–Maehly method. This iteration has the advantage that it
is not sensitive to the accuracy in the approximations to the previous roots ξ1, . . . , ξj .
Indeed, the iteration (6.5.13) is locally quadratically convergent to simple zeros of
p(z) for arbitrary values of ξ1, . . . , ξj .

6.5.5 Simultaneous Determination of Roots

For the removal of a linear factor by deflation it is necessary that the zero has been
computed to full working accuracy, since otherwise the remaining approximative
zeros can be meaningless. This is a disadvantage if only low accuracy is required.

on the group that built the Pilot ACE computer at National Physical Laboratory, first as Turing’s
assistant and later as manager of the group. He later contributed greatly to the development of
reliable software for matrix computations.
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An alternative to deflation is to use an iterative methods that, under appropriate
separation assumptions, allows for the simultaneous determination of all the roots

of a polynomial equation. Suppose that the numbers ξ
(k)
i , i = 1 : n are a set of

n distinct approximations to the of p(z). A new set of approximations are then
computed from

ξ
(k+1)
i = ξ

(k)
i − p(ξ

(k)
i )
/[

a0

n
∏

j=1
j 6=i

(ξ
(k)
i − ξ

(k)
j )
]

, i = 1 : n. (6.5.14)

This is Weierstrass’ method,12 introduced in 1891 in connection with a new con-
structive proof of the fundamental theorem of algebra. The method was rediscovered
and analyzed in the 1960s by Durand and is also known as the Durand–Kerner

method.
With q(z) = (z − ξ

(k)
1 )(z − ξ

(k)
2 ) · · · (z − ξ

(k)
n ) the formula may also be written

ξ
(k+1)
i = ξ

(k)
i − p(ξ

(k)
i )/q′(ξ

(k)
i ),

which shows that to first approximation the method is identical to Newton’s method.
This relation can be used to prove that for simple (real or complex) zeros the
asymptotic order of convergence of the Weierstrass method equals 2. (For multiple
zeros the method will only converge linearly.) The relation

n
∑

i=1

ξ
(k)
i =

n
∑

i=1

αi = −a1, k ≥ 1,

which holds independent of the initial approximations, can be used as a control; see
Kjellberg [12].

It is possible to accelerate Weierstrass method by using the new approxima-
tions of the roots in (6.5.14) as they become available. This leads to the iteration

ξ
(k+1)
i = ξ

(k)
i − p(ξ

(k)
i )
/[

a0

∏

j<i

(ξ
(k)
i − ξ

(k+1)
j )

∏

j>i

(ξ
(k)
i − ξ

(k)
j )
]

, i = 1 : n.

This serial version of the Weierstrass method can be shown to have an order of
convergence at least 1 + σn, where 1 < σn < 2 is the unique positive root to
σn − σ − 1 = 0.

If no a priori information about the roots is available then the initial approx-

imations ξ
(0)
i can be chosen equidistantly on a circle |z| = ρ, centered at the origin,

which encloses all the zeros of p(z). Such a circle can be found, e.g., by using the
result that all the roots of the polynomial p(z) lie in the disk |z| ≤ ρ, where

ρ = max
1≤k≤n

2

( |ak|
|a0|

)1/k

.

Note that this is (6.5.15) applied to the reciprocal polynomial.
12Karl Theodor Wilhelm Weierstrass (1815–1897) influential German mathematician, often said

to be the father of modern analysis.
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6.5.6 A Modified Newton Method

Most of the iteration methods described in earlier sections can be applied to polyno-
mial root finding. Note that if p(z) has real coefficients, then p(z) and p′(z) are real
for real values of z. This means that Newton’s method cannot converge to a com-
plex root from a real initial approximation. The same holds for the secant method
and its variants. The Muller–Traub method (see Section 6.2.3) can also converge
to complex roots from real approximations. It requires only one evaluation of p(z)
per step, and has therefore become popular.

If we have sufficiently good initial approximations to a (real or complex) zero
of p(z), this can be computed by Newton’s method. It is desirable to find the zeros
in roughly increasing order of magnitude, since this leads to stable deflation; see
Sec. 6.5.4. We now describe a modified Newton method due to Madsen [14], which
has been shown to be very competitive. By including a one-dimensional search along
the Newton direction this method achieves good global convergence properties and
is effective also for multiple roots.

To initialize let z0 = 0,

δz0 =

{

−p(0)/p′(0) = −an/an−1, if an−1 6= 0
1 otherwise,

and take

z1 =
1

2ρ

δz0
|δz0|

, ρ = max
1≤k≤n

( |an−k|
|an|

)1/k

. (6.5.15)

This assures that |z1| is less than the modulus of any zero of p(z) (see [10, Exercise
2.2.11]). Further, if p′(0) 6= 0, it is in the direction of steepest descent of |p(z)| from
the origin (see Sec. 6.3.2). This choice makes it likely that convergence will take
place to a root of near minimal modulus.

The general idea of the algorithm is that given zk, a tentative step hk is
computed by Newton’s method. The next iterate is found by taking the best point
(in terms of minimizing |f(z)|) found by a short search along the line through zk

and zk + hk. When the search yields no better value than at zk we take zk+1 = zk

and make sure that the next search is shorter and in a different direction. Since
the line searches will be wasteful if we are near a simple root, we then switch to the
standard Newton’s method.

In the first stage of the algorithm, when searches are being performed, new
iterates zk+1 are computed as follows:

1. If the last iteration was successful (zk 6= zk−1) then the Newton correction

hk = −p(zk)/p′(zk), (6.5.16)

is computed and the next tentative step is taken as

δzk =

{

hk, if |hk| ≤ 3|zk − zk−1|;
3|zk − zk−1|eiθhk/|hk| otherwise.

Here θ is chosen rather arbitrarily as arctan(3/4). This change of direction is
included because if a saddle point is being approached, the direction hk may
be a bad choice.
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2. If the last step was unsuccessful (zk = zk−1) we change the search direction
and reduce the step size. In this case the tentative step is chosen to be

δzk = − 1
2e

iθδzk−1.

Repeated use of this is sure to yield a good search direction.

3. Once the tentative step δzk has been found we test the inequality
|p(zk + δzk)| < |p(zk)|. If this is satisfied we calculate the numbers

|p(zk + p δzk)|, p = 1, 2, . . . , n,

as long as these are strictly decreasing. Note that, if we are close to a multiple
root of multiplicity m, then we will find the estimate zk +mhk, which gives
quadratic convergence to this root. A similar situation will hold if we are at
a fair distance from a cluster of m zeros and other zeros are further away.

If |p(zk + δzk)| ≥ |p(zk)|, we calculate the numbers

|p(zk + 2−pδzk)|, p = 0, 1, 2,

again continuing until the sequence ceases to decrease.

A switch to standard Newton is made if in the previous iteration a standard
Newton step zk+1 = zk + hk was taken and Theorem 6.3.2 ensures the convergence
of Newton’s method with initial value zk+1, i.e., when f(zk)f ′(zk) 6= 0 and

2 |f(zk)| max
z∈Kk

|f ′′(z)| ≤ |f ′(zk)|2, Kk : |z − zk| ≤ |hk|,

is satisfied, cf. (6.3.12). This inequality can be approximated using already com-
puted quantities by

2 |f(zk)||f ′(zk) − f ′(zk−1)| ≤ |f ′(zk)|2|zk−1 − zk|. (6.5.17)

The iterations are terminated and zk+1 accepted as a root whenever zk+1 6= zk

and

|zk+1 − zk| < u|zk|,

holds, where u is the unit roundoff. The iterations are also terminated if

|p(zk+1)| = |p(zk)| < 16nu|an|,

where the right hand side is a generous overestimate of the final roundoff made
in computing p(z) at the root of the smallest magnitude. The polynomial is then
deflated as described in the previous section.

More details about this algorithm and methods for computing error bounds
can be found in [14] and [15].
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6.5.7 Laguerre’s Method

In Laguerre’s method13 the polynomial p(z) of degree n is approximated in the
neighborhood of the point zk by a special polynomial of the form

r(z) = a(z − w1)(z − w2)
n−1,

where the parameters a,w1 and w2 are determined so that

p(zk) = r(zk), p′(zk) = r′(zk), p′′(zk) = r′′(zk). (6.5.18)

If zk is an approximation to a simple zero, α then the simple zero w1 of r(z) is
taken as the new approximation zk+1 of α. Laguerre’s method has very good global
convergence properties for polynomial equations, and with cubic convergence for
simple roots (real or complex). For multiple roots convergence is only linear.

In order to derive Laguerre’s method we note that the logarithmic derivative
of p(z) = (z − α1) · · · (z − αn) is

S1(z) =
p′(z)

p(z)
=

n
∑

i=1

1

z − αi
.

Taking the derivative of this expression we obtain

−dS1(z)

dz
= S2(z) =

(

p′(z)

p(z)

)2

− p′′(z)

p(z)
=

n
∑

i=1

1

(z − αi)2
.

Using (6.5.18) to determine the parameters of the approximating polynomial r(z)
we obtain the equations

S1(zk) =
1

zk − w1
+

(n− 1)

zk − w2
, S2(zk) =

1

(zk − w1)2
+

(n− 1)

(zk − w2)2
.

Eliminating zk−w2 gives a quadratic equation for the correction zk−w1 = zk−zk+1.
After some algebra we obtain (check this!)

zk+1 = zk − np(zk)

p′(zk) ±
√

H(zk)
, (6.5.19)

where
H(zk) = (n− 1)2[p′(zk)]2 − n(n− 1)p(zk)p′′(zk).

The sign in the denominator in (6.5.19) should be chosen so that the magnitude of
the correction |zk+1 − zk| becomes as small as possible.

For polynomial equations with only real roots, Laguerre’s method is globally
convergent, i.e., it converges for every choice of real initial estimate z0. Suppose the
roots are ordered such that α1 ≤ α2 ≤ · · · ≤ αn. If z0 ∈ (αj−1, αj), j = 2 : n, then

13Edmund Nicolas Laguerre, 1834–1886, French mathematician at École Polytechnique, Paris
and best known for his work on orthogonal polynomials.
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Laguerre’s method converges to one of the roots αj−1, αj ; if z0 < α1 or z0 > αn

then convergence is to α1 or αn respectively.
For polynomial equations with complex roots, Laguerre’s method no longer

converges for every choice of initial estimate. However, experience has shown that
the global convergence properties are good also in this case. In particular, if we take
z0 = 0, then Laguerre’s method will usually converge to the root of smallest mod-
ulus. We finally remark that, as might be expected, for multiple roots convergence
of Laguerre’s method is only linear.

Consider the polynomial equation p(z) = 0 and assume that an 6= 0 so that
α = 0 is not a root. Now suppose that an−2an−1 6= 0, and take z0 = 0 in Laguerre’s
method. A simple calculation gives

z1 =
−nan

an−1 ±
√

H(z0)
, H(z0) = (n− 1)2a2

n−1 − 2n(n− 1)anan−2, (6.5.20)

where the sign is to be chosen so the the |z1| is minimized. In particular, for n = 2,
H(z0) is the discriminant of p(z) and z1 is the root of smallest modulus.

Example 6.5.4.

If there are complex roots, then there may be several distinct roots of smallest
modulus. For example, the equation

p(z) = z3 − 2z2 + z − 2,

has roots ±i and 2. Using the above formula (6.5.20) for z1 with n = 3, we get

z1 =
6

1 ± 2i
√

11
=

2

15
± i

4
√

11

15
= 0.06666666667± 0.88443327743i.

Continuing the iterations with Newton’s method we get convergence to one of the
two roots ±i,

z2 = −0.00849761051+ 1.01435422762i, z3 = −0.00011503062+ 1.00018804502i

z4 = −0.00000002143+ 1.00000003279i, z5 = −0.00000000000+ 1.00000000000i

Review Questions

1. Describe the method of iterated successive synthetic division for computing
function values and derivatives of a polynomial.

2. Consider the polynomial p(z) = z4 − 2z3 − 4z2 + z + 1. Using Descartes’ rule
of sign what can you deduce about the number of real positive roots?

3. Suppose that all roots of a polynomial equation are to be determined. Describe
two methods to avoid the problem of repeatedly converging to roots already
found.
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4. Discuss the ill-conditioning of roots of polynomial equations. What famous
polynomial did J. H. Wilkinson use as an example?

5. (a) What is the companion matrix of a polynomial p(x) = xn +a1x
n−1 + · · ·+

an−1x+ an?

(b) One approach to computing the eigenvalues of a matrix A is to find the
coefficients of the characteristic polynomial pA(λ) = det(λI − A), and then
solve the algebraic equation pA(λ) = 0. Why should such a method usually
be avoided?

6. What properties are satisfied by a Sturm sequence of real polynomials p0(x),
p1(x), . . . , pm(x)? Describe one way of generating a Sturm sequence using the
Euclidian algorithm.

Problems and Computer Exercises

1. Apply Newton’s method to determine one of the complex roots of the equation
z2 + 1 = 0. Start with z0 = 1 + i.

2. Consider a polynomial with real coefficients

p(z) = a0z
n + a1z

n−1 + · · · + an, ai 6= 0, i = 0 : n.

(a) Count the number of (real) additions and multiplications needed to com-
pute a value p(z0) by synthetic division of p(z) by (z − z0), when z0 is a real
and complex number, respectively.

(b) For a complex number z0 = x0 + iy0, p(z0) can also be computed by
performing the synthetic division of p(z) with the real quadratic factor

d(z) = (z − z0)(z − z̄0) = z2 − 2x0z + (x2
0 + y2

0).

Derive a recursion for computing the quotient polynomial q(z) and p(z0) =
bn−1z0 + bn, where

q(z) = b0z
n−2 + b1z

n−3 + . . .+ bn−2,

p(z) = q(z)d(z) + bn−1z + bn.

Count the number of real additions and multiplications needed to compute
p(z0) and also show how to compute p′(z0).

3. (a) Using the Cardano–Tartaglia formula the real root α to the equation x3 =
x+ 4 can be written in the form

α =
3

√

2 +
1

9

√
321 +

3

√

2 − 1

9

√
321.

Use this expression to compute α. Discuss the loss of accuracy due to cancel-
lation.

(b) Compute α to the same accuracy by Newton’s method using the initial
approximation x0 = 2.
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4. A method due to D. Bernouilli for obtaining roots of the algebraic equation

p(x) = xn + a1x
n−1 + · · · + an−1x+ an = 0

is based on the related linear difference equation

µk + a1µk−1 + · · · + an−1µk−n+1 + anµk−n = 0,

having the same coefficients as the algebraic equation.

(a) Show that the general solution to the difference equation is

µk = c1α
k
1 + c2α

k
2 + · · · + cnα

k
n,

where αk, k = 1 : n, are the roots of the algebraic equation.

(b) Assume that the roots are ordered after decreasing magnitude and that
|α1| > |α2|. Show that if α1 is real, then for almost all choices of initial values
µ0, . . . , µn−1, it holds that

lim
k→∞

µk

µk−1
= α1.

(c) Let C be the companion matrix of p(x). Show that the sequence µk can
be generated by forming successive matrix-vector products

mk = Cmk−1, mk = (µk+n−1 . . . µk+1 µk )
T
.

Show that mk = Ckm0.

Comment: When applied to a general matrix C this is known as the power
method for computing eigenvalues.

5. In Graeffe’s root-squaring method one separates even and odd powers of the
polynomial p(z) and squares the equation as follows

(a0z
n + a2z

n−2 + a4z
n−4 + · · ·)2 = (a1z

n−1 + a3z
n−3 + a5z

n−5 + · · ·)2.

Putting u = z2 the resulting equation becomes

q(u) = p(−z)p(z) = b0u
n + b1u

n−1 + · · · + bn = 0.

This has roots equal to the squares of the roots of the original equation.

(a) Show that the coefficients bk of q(u) can be computed from

b0 = a2
0, (−1)kbk = a2

k +

k
∑

j=1

(−1)j2ak−jak+j , k = 1, 2, . . . , n.

(b) After squaring m times we obtain (after normalizing A0 = 1) an equation
in u = z2m

un + A1u
n−1 +A2u

n−2 + · · · +An = 0,
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with roots βk = α2m
k . Assume that the roots αk of the original equation

p(z) = 0 are real and distinct. Use the relations between coefficients and roots
of an algebraic equation to show that for m large enough we have

β1 ≈ −A1, β2 ≈ −A2/A1, β3 ≈ −A3/A2, . . . .

(c) Square the polynomial z3 − 8z2 + 17z − 10 three times, and then use the
relations in (b) to compute approximations to its three real roots.

6. Consider the iteration zn+1 = z2
n + c, where c = p + iq is a fixed complex

number. For a given z0 the sequence of iterates zn = xn + iyn, n = 0, 1, 2, . . .
may either converge to one of the two roots of the quadratic equation z2 −
z + c = 0 or diverge to infinity. Consider z0 chosen, e.g., in the unit square of
the complex plane. The boundary separating the region of convergence from
other points in the plane is a very complex fractal curve know as the Julia

set. The Mandelbrot set is obtained by fixing z0 = 0 and sweeping over
values of c in a region of the complex plane.

(a) Picture the Julia set as follows. Set c = 0.27334 + 0.000742i. Sweep over
points of z0 in the region −1 ≤ ℜz0 ≤ 1, −1.3 ≤ ℑz0 ≤ 1.3. If |zN | < R, for
N = 100 and R = 10 color the point z0 black. otherwise color the point from
hot (red) to cool (blue) according to how fast the iteration is diverging, i.e.
according to how fast the inequality |zn| > R becomes satisfied.

(b) Picture the Mandelbrot set in a similar way. Sweep over values of c in the
region −2.25 ≤ ℜc ≤ 0.75, −1.5 ≤ ℑc ≤ 1.5.

Notes and References

An interesting historical account of Newton’s method is given in Ypma [30]. New-
ton’s method is contained in his book “Method of Fluxions” written 1671, but not
published until 1736. Joseph Raphson was allowed to see Newton’s work and New-
ton’s method first was first published in a book by Raphson 1690. This is why the
method in English literature is often called the Newton–Raphson method. The first
to give a modern description of Newton’s method using derivatives seems to have
been Thomas Simpson 1740. Edmund Halley was contemporary with Isaac Newton
and his third order method was published more than 300 years ago [8].

Halley’s method has been rediscovered by J. H. Lambert [13] and numerous
other people; see Traub [25, Sec. 5.22]. A nice exposition of this and other third
order methods is given by Gander [6]. Families of iteration methods of arbitrary
order ar studied in a remarkable paper by Schröder [22]. An English translation
of this paper is given by G. W. Stewart [23]. The determinant family of iteration
functions Bp(x) is a special case of a parametrized family of iteration functions for
polynomials given by Traub [26]; see also [10, Sec. 4.4]. This family was derived
independently by Kalantari et al. [11].

One of the best algorithms to combine bisection and interpolation was devel-
oped by van Wijngaarden and Dekker at Mathematical Center in Amsterdam in the
1960s; see [3]. It was taken up and improved by Brent [2]; see also [5], Section 7.2.
Brent’s new algorithm, in contrast to Dekker’s, never converges much more slowly
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than bisection. Fortran and C versions of some of the zero-finding and minimization
routines given in the book are available from Netlib.

Several comprehensive monographs dealing with methods for solving scalar
nonlinear equations are available. Traub [25, ] gives an exhaustive enumeration
of iteration methods with and without memory, with their order of convergence and
efficiency index. Much classical material is also found in Ostrowski [19, 1973]. The
elegant treatment by Householder [10, ] also deserves special mention.

The recently reprinted book by Brent [2] deals exclusively with methods which
only uses function values for finding zeros and minima of functions of a single
variable. It is unique in the careful treatment of algorithmic details that are crucial
when developing reliable computer codes.

There is is a vast literature on methods for solving algebraic equations. An
excellent introduction is given by Householder [10] and detailed surveys found, e.g.,
in Durand [4] and Sendov et al. [24]. The modified Newton method is due to
Madsen [14] Another much used method for computing polynomial roots is the
Jenkins–Traub method, which is included in the IMSL library. A good discussion
of this rather complex method is found in Ralston and Rabinowitz [21, Sec. 8.11].
An evaluation of the speed and accuracy of the QR algorithm, used in Matlab has
been given by [7].

The theory of Sturm sequences are treated in [10, Sec. 2.5]. The quadtree
method was used by Weyl [27] to give a constructive proof of the fundamental
theorem of algebra. An interesting analysis of the efficient implementation of this
method is given by Pan [20], who also gives a brief account of the history of algo-
rithms for solving polynomial equations.
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du type F (x) = 0, racines d’un polynôme. Masson, Paris, 1960.
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[12] Göran Kjellberg. Two observations on Durand–Kerner’s root finding method.
BIT, 24:556–559, 1973.
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