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Chapter 5

Numerical Integration

5.1 Interpolatory Quadrature Rules

5.1.1 Introduction

As is well known, even many relatively simple integrals cannot be expressed in finite
terms of elementary functions, and must be evaluated by numerical methods. The
problem to calculate the definite integral of a given function over a finite interval
is often called numerical quadrature, since it relates to the ancient problem of
the quadrature of the circle, i.e., constructing a square with equal area to that of a
circle.

In this chapter we study the problem of how to find the parameters in a formula
for the approximate calculation integrals

I(f) =

∫ b

a

f(x) dx.

Note that I(f) is a linear functional and hence the problem is a special case of
approximating a linear functional considered in Sec. 3.3.4. The quadrature rules
considered will be of the form

∫ b

a

f(x) dx ≈
n

∑

i=1

wif(xi), (5.1.1)

where the nodes x1 < x2 < · · · < xn are distinct and weights w1, w2, . . . , wn.
Often (but not always) all nodes lie in [a, b].

The weights wi are usually determined so that the formula (5.1.1) is exact for
polynomials of as high degree as possible.

Definition 5.1.1. A quadrature rule (5.1.1) has order of accuracy (or degree
of exactness) equal to d if it is exact for all polynomials of degree ≤ d, i.e. for all
p ∈ Pd+1.
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2 Chapter 5. Numerical Integration

The coefficients wi depend only on the distribution of the points {xi}n
i=1. Note

that the relation
∫ b

a

dx =

n
∑

i=1

wi = (b − a) (5.1.2)

follows from the requirement that the formula is exact for f(x) ≡ 1. Suppose that
the function values f(xi) is evaluated with an error ei, such that |ei| ≤ ǫ, for all
i = 1 : n. Then, if wi ≥ 0, the related error in the quadrature formula satisfies

∣

∣

∣

n
∑

i=1

wiei

∣

∣

∣ ≤ ǫ

n
∑

i=1

|wi| ≤ ǫ(b − a). (5.1.3)

However, this upper bound does not hold if some weights in the quadrature rules
are negative.

In an interpolatory quadrature formula the integral is approximated by
∫ b

a w(x)p(x) dx, where p(x) is the unique polynomial of degree n − 1 interpolat-
ing f(x) at the distinct points x1, x2, . . . , xn. By Lagrange’s interpolation formula
(Theorem 4.2.6)

p(x) =

n
∑

i=1

f(xi)ℓi(x), ℓi(x) =

n
∏

j=1

j 6=i

(x − xj)

(xi − xj)
,

where ℓi(x) are the elementary Lagrange polynomials associated with the nodes
x1, x2, . . . , xn. It follows that the weights are given by

wi =

∫ b

a

ℓi(x) dx. (5.1.4)

In practice, the coefficients are often more easily computed using the method of
undetermined coefficients rather than by integrating ℓi(x).

An expression for the truncation error is obtained by integrating the remainder
(see Theorems 4.2.3 and 4.2.4)

Rn(f) =

∫ b

a

[x1, . . . , xn, x]f

n
∏

i=1

(x − xi) dx

=
1

n!

∫ b

a

f (n)(ξx)

n
∏

i=1

(x − xi) dx, ξx ∈ [a, b]. (5.1.5)

where the second expression holds if f (n) is continuous in [a, b].

Theorem 5.1.2. For any given set of nodes x1, x2, . . . , xn an interpolatory quadra-
ture formula with weights (5.1.4) has order of exactness equal to at least d = n− 1.
Conversely, if the formula has degree of exactness n− 1, then the formula is inter-
polatory.
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Proof. For any f ∈ Pn we have p(x) = f , and hence (5.1.4) has degree of exactness
at least equal to n − 1. On the other hand, if the degree of exactness of (5.1.4) is
n − 1, then putting f = ℓi(x) shows that the weights wi satisfy (5.1.4), i.e. the
formula is interpolatory.

5.1.2 Some Classical Formulas

Interpolatory quadrature formulas, where the nodes are constrained to be equally
spaced, are called Newton–Cotes’1 formulas. These are especially suited for in-
tegrating a tabulated function, a task that was more common before the computer
age. The midpoint, trapezoidal and Simpson’s formula, to be described here, are
all special cases of Newton–Cotes’ formulas.

The trapezoidal rule (cf. Figure 1.2.5) is based on linear interpolation of
f(x) at x1 = a and x2 = b, that is f(x) is approximated by

p(x) = f(a) + (x − a)[a, b]f = f(a) + (x − a)
f(b) − f(a)

b − a
.

The integral of p(x) equals the area of a trapezoid with base (b − a) times the
average height 1

2 (f(a) + f(b)). Hence

∫ b

a

f(x) dx ≈ (b − a)

2
(f(a) + f(b)).

To increase the accuracy we subdivide the interval [a, b] and assume that
fi = f(xi) is known on a grid of equidistant points

x0 = a, xi = x0 + ih, xn = b. (5.1.6)

where h = (b−a)/n is the step length. The trapezoidal approximation for the ith
subinterval is

∫ xi+1

xi

f(x) dx = T (h) + Ri, T (h) =
h

2
(fi + fi+1), (5.1.7)

which is the composite trapezoidal rule
Assume now that f ′′(x) is continuous in [a, b]. Using the exact remainder in

Newton’s interpolation formula (see Theorem 4.2.3) we have

Ri =

∫ xi+1

xi

(f(x) − p2(x)) dx =

∫ xi+1

xi

(x − xi)(x − xi+1) [xi, xi+1, x]f dx. (5.1.8)

Since [xi, xi+1, x]f is a continuous function of x and (x−xi)(x−xi+1) has constant
(negative) sign for x ∈ [xi, xi+1], the mean-value theorem of integral calculus gives

Ri = [xi, xi+1, ξi]f

∫ xi+1

xi

(x − xi)(x − xi+1) dx, ξi ∈ [xi, xi+1].

1Roger Cotes (1682–1716) was a highly appreciated young colleague of Isaac Newton. He was
entrusted with the preparation of of the second edition of Newton’s Principia. He worked and
published the coefficients for Newton’s formulas for numerical integration for n ≤ 11.
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Setting x = xi + ht, and using the Theorem 4.2.4, we get

Ri = −1

2
f ′′(ζi)

∫ 1

0

h2t(t − 1)h dt = − 1

12
h3f ′′(ζi), ζi ∈ [xi, xi+1]. (5.1.9)

For another proof of this result using the Peano kernel, see Example 3.2.7.
Summing the contributions for each subinterval [xi, xi+1], i = 0 : n. gives

∫ b

a

f(x) dx = T (h) + ET , T (h) =
h

2
(f0 + fn) + h

n−1
∑

i=2

fi, (5.1.10)

where the global truncation error is

ET = −h3

12

n−1
∑

i=0

f ′′(ζi) = − 1

12
(b − a)h2f ′′(ξ), ξ ∈ [a, b]. (5.1.11)

(The last equality follows since f ′′ was assumed to be continuous on the interval
[a, b].) This shows that by choosing h small enough we can make the truncation
error arbitrary small. In other words we have asymptotic convergence when
h → 0.

In the midpoint rule f(x) is approximated on [xi, xi+1] by its value fi+1/2 =
f((xi + xi+1)/2 at the midpoint of the interval. This leads to the approximation

∫ xi+1

xi

f(x) dx = M(h) + Ri, M(h) = hfi+1/2 (5.1.12)

The midpoint rule approximation can be interpreted as the area of the trapezium
defined by the tangent of f at the midpoint xi− 1

2
.

The remainder term in Taylor’s formula gives

f(x) − fi− 1
2

= (x − xi− 1
2
)f ′

i− 1
2

+ 1
2 (x − xi− 1

2
)2f ′′(ζx), ζx ∈ [xi−1, xi].

By symmetry the integral over [xi−1, xi] of the linear term vanishes. We can use
the mean value theorem, to show that

Ri =

∫ xi+1

xi

1
2f ′′(ζx)(x − xi− 1

2
)2 dx = 1

2f ′′(ζi)

∫ 1
2

− 1
2

h3t2 dt =
h3

24
f ′′(ζi).

Although it uses just one function value the midpoint rule, like the trapezoidal
rule, is exact when f(x) is a linear function. Summing the contributions for each
subinterval we obtain the composite midpoint rule

∫ b

a

f(x) dx = R(h) + EM , R(h) = h

n−1
∑

i=0

fi+1/2, (5.1.13)

(Compare the above approximation with the Riemann sum in the definition of a
definite integral.) For the global error we have

EM =
(b − a)h2

24
f ′′(ζ), ζ ∈ [a, b]. (5.1.14)
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The trapezoidal rule is called a closed rule because values of f at both
endpoints are used. It is not uncommon that f has an integrable singularity at an
endpoint. In that case an open rule, like the midpoint rule, can still be applied.

If f ′′(x) has constant sign in each subinterval then the error in the midpoint
rule is approximately half as large as that for the trapezoidal rule and has the
opposite sign. However, the trapezoidal rule is more economical to use when a
sequence of approximations for h, h/2, h/4, . . . is to be computed, since about half
of the values needed for h/2 were already computed and used for h, etc. indeed, it
is easy to verify the following useful relation between the trapezoidal and midpoint
rules:

T (h/2) =
1

2
(T (h) + M(h)). (5.1.15)

If the magnitude of the error in the function values does not exceed 1
2U , then

for the trapezoidal and midpoint rules the magnitude of the propagated error in the
approximation is bounded by (b− a)1

2U , independent of h. Note that this holds for
any quadrature formula (5.1.1), provided that all weights wi are positive.

If the rounding error is negligible and h sufficiently small, then it follows
from (5.1.11) that the error in T (h/2) is about 1/4-th of that in T (h). Hence
the magnitude of the error in T (h/2) can be estimated by 1

3 |T (h/2) − T (h)|, or
more conservatively by |T (h/2) − T (h)|. (A more systematic use of Richardson
extrapolation is made in Romberg’s method; see Sec. 5.3.2.)

Example 5.1.1.

Compute approximately

∫ 0.8

0

sinx

x
dx. As an exercise the reader should check

some of the midpoint and trapezoidal sums given below, which are correct to ten
decimals. (Use (5.1.15).)

h M(h) T (h)

0.8 0.77883 66846 0.75867 80454
0.4 0.77376 69772 0.76875 73650
0.2 0.77251 27162 0.77126 21711
0.1 0.77188 74437

The correct value, to six decimals, is 0.772096. Verify that in this example the
error is approximately proportional to h2 for both M(h) and T (h). We estimate
the error in T (0.1) to be 1

36.26 · 10−4 ≤ 2.1 · 10−4.

From the error analysis above we note that the error in the midpoint rule is
roughly half the size of the error in the trapezoidal rule and of opposite sign. Hence
it seems that the linear combination

S(h) =
1

3
(T (h) + 2M(h)). (5.1.16)

should be a better approximation. This is indeed the case and (5.1.16) is equiva-
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lent to Simpson’s rule2, one of the most famous classical formulas for numerical
integration.

Another way to derive Simpson’s rule is to approximate f(x) by a piecewise
polynomial of third degree. It is convenient to shift the origin to the midpoint of
the interval and consider the integral over the interval [xi−h, xi +h]. From Taylor’s
formula we have

f(x) = fi + (x − xi)f
′
i +

(x − xi)
2

2
f ′′

i +
(x − xi)

3

3!
f ′′′

i + O(h4),

where the remainder is zero for all polynomials of degree 3 or less. Integrating term
by term, the integrals of the second and fourth term vanishes giving

∫ xi+h

xi−h

f(x) dx = 2hfi + 0 +
1

3
h3f ′′

i + 0 + O(h5).

Using h2f ′′
i = (fi−1 − 2fi + fi+1) + O(h4) (see (4.7.5)) we have that

∫ xi+h

xi−h

f(x) dx = 2hfi +
1

3
h(fi−1 − 2fi + fi+1) + O(h5) (5.1.17)

=
1

3
h(fi−1 + 4fi + fi+1) + O(h5),

where the remainder term is zero for all third-degree polynomials. We now deter-
mine the error term for f(x) = (x − xi)

4, which is

RT =
1

3
h(h4 + 0 + h4) −

∫ xi+h

xi−h

x4 dx = (2/3 − 2/5)h5 =
4

15
h5.

It follows that an asymptotic error estimate is

RT = h5 4

15

f (4)(xi)

4!
+ O(h6) =

h5

90
f (4)(xi) + O(h6).

A strict error estimate for Simpson’s rule is more difficult to obtain. As
for the midpoint formula the midpoint xi can be considered as a double point of
interpolation; see Problem 3. The general error formula (5.1.5) then gives

R(f) =
1

4!

∫ xi+1

xi−1

f (4)(ξx)(x − xi−1)(x − xi)
2(x + xi+1) dx.

where (x − xi−1)(x − xi)
2(x + xi+1) has constant sign on [xi−1, xi+1]. If 2h is the

length of the interval of integration Using the mean value theorem gives the error

− 1

90
f (4)(ξ)h5, |ξ| < h. (5.1.18)

2The English mathematician Thomas Simpson (1710–1761) is best known for his work on
interpolation and quadrature. He also worked on probability theory.
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The remainder can also be obtained from Peano’s error representation It can
be shown (see Stoer [32, p. 152ff]) that for Simpson’s rule

Rf =

∫

R

f (4)(u)K(u) du,

where the kernel equals

K(u) = − 1

72
(h − u)3(3u + h)2, 0 ≤ u ≤ h,

and K(u) = K(|u|) for u < 0, K(u) = 0 for |u| > h. This again gives (5.1.18).
In the composite Simpson’s formula one divides the interval [a, b] into an

even number n = 2m steps of length h, and use the formula (5.1.17) on each of m
double steps, giving

∫ b

a

f(x) dx =
h

3
(f0 + 4U + 2E + fn) + RT , (5.1.19)

where
U = f1 + f3 + · · · + fn−1, E = f2 + f4 + · · · + fn−2.

The remainder is

RT =

m−1
∑

i=0

h5

90
f (4)(ξi) =

(b − a)

180
h4f (4)(ξ), ξ ∈ [a, b]. (5.1.20)

This shows that wee have gained two orders of accuracy compared to the trapezoidal
rule, without using more function evaluations. This is why Simpson’s rule is such a
popular general-purpose quadrature rule.

5.1.3 Higher Order Newton–Cotes’ Formulas

The classical Newton–Cotes’ quadrature rules, are interpolatory rules obtained for
w(x) = 1 and equidistant points in [0, 1]. There are two classes: closed formulas,
where the end points of the interval belong to the nodes; open formulas, where all
nodes lie strictly in the interior of the interval. The closed Newton–Cotes’ formulas
are usually written

∫ nh

0

f(x) dx = h

n
∑

j=0

wjf(jh) + Rn(f) wj = wn−j , (5.1.21)

where, in principle, the weights wi can be determined from (5.1.4). By (5.1.2) they
satisfy

n
∑

j=0

hwj = nh. (5.1.22)

(Note that we here sum over n+1 points in contrast to our previous notation.) The
closed Newton–Cotes’ rule for n = 1 and n = 2 are equivalent to the trapezoidal
rule and Simpson’s rule, respectively.
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In general it can be shown that the closed Newton–Cotes’ formula integrate
all polynomials of degree d exactly, where d = n for n odd and d = n + 1 for n
even. The extra accuracy for n even is, as in Simpson’s rule, due to symmetry. For
n ≤ 7 the coefficients wi are positive, but for n = 8 and n ≥ 10 negative coefficients
appear. Such formulas may still be useful, but since

∑n
j=0 h|wj | > nh, they are less

robust with respect to errors in the function values fi.
Similarly the open Newton–Cotes’ formulas are usually written as

∫ nh

0

f(x) dx = h

n−1
∑

i=1

wif(ih) + Rn−1,n(h), w−j = wn−j .

The simplest open Newton–Cotes’ formula for n = 2 is the midpoint rule with step
size 2h. The open formulas have order d = n − 1 for n even and n − 2 for n odd.
For the open formulas negative coefficients occur already for n = 4 and n = 6.

The Peano kernels for both the open and the closed formulas can be shown
to have constant sign (see Steffensen [31]). Thus the local truncation error can be
written as

Rn(h) = cn,dh
d+1f (d)(ζ), ζ ∈ [0, nh], (5.1.23)

It is easily shown that the Peano kernels for the corresponding composite formulas
also have constant sign.

The Newton–Cotes’ closed formulas for n ≤ 6 and open formulas for n ≤ 5,
with error terms, are given in Tables 5.1.1 and 5.1.2, respectively. Note that the
sign of the error coefficients in the open rules are opposite the sign in the closed
rules. Higher order Newton–Cotes’ formulas are given in Abramowitz and Stegun [1,
pp. 886–887],

Table 5.1.1. The coefficients wi = Aci in the n-points closed Newton–
Cotes’ formulas.

n d A c0 c1 c2 c3 c4 c5 c6 cn

1 1 1/2 1 1 −1/12

2 3 1/3 1 4 1 −1/90

3 3 3/8 1 3 3 1 −3/80

4 5 2/45 7 32 12 32 7 −8/945

5 5 5/288 19 75 50 50 75 19 −275/12 096

6 7 1/140 41 236 27 272 27 236 41 −9/1400

We now show how the classical Newton–Cotes formulas for w(x) = 1 can be
derived using the operator methods developed in Sec. 3.3. Let m, n be given integers
and let h be a positive step size. In order to utilize the symmetry of the problem
easier, we move the origin to the midpoint of the interval of integration. If we set

xj = jh, fj = f(jh), j = −n/2 : 1 : n/2,
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Table 5.1.2. The coefficients wi = Aci in the n-points open Newton–Cotes’
formulas.

n d A c1 c2 c3 c4 c5 cn.

2 1 2 1 1/24

3 1 3/2 1 1 1/4

4 3 4/3 2 −1 2 14/45

5 3 5/24 11 1 1 11 95/144

6 5 3/10 11 −14 26 −14 11 41/140

7 5 7/1440 611 −453 562 562 −453 611 5257/8640

the Newton–Cotes formula now reads

∫ mh/2

−mh/2

f(x) dx = h

n/2
∑

j=−n/2

wjfj + Rm,n(h), w−j = wj . (5.1.24)

Note that j, n/2 and m/2 are not necessarily integers. For a Newton–Cotes formula
n/2 − j and m/2 − j are evidently integers. Hence (m − n)/2 is an integer too,
but there may be other formulas, perhaps almost as good, where this is not the
case. The coefficients wj = wj;m,n are to be determined so that the remainder
Rm,n vanishes if f ∈ Pq, with q as large as possible for given m, n. The left hand
side of (5.1.24), divided by h, reads in operator form,

(ehDm/2 − e−hDm/2)(hD)−1f(x0),

which is an even function of hD. By (3.3.38), hD is an odd function of δ. It follows
that the left hand side is an even function of δ, hence we can, for every m, write

(ehDm/2 − e−hDm/2)(hD)−1 7→ Am(δ2) = a1m + a2mδ2 + . . . + ak+1,mδ2k . . .
(5.1.25)

We truncate after (say) δ2k; the first neglected term is then ak+2,mδ2k+2. We saw
in Sec. 3.3.4 how to bring a truncated δ2-expansion to B(E)-form

b1 + b2(E + E−1) + b3(E
2 + E−2) + . . . + bk(Ek + E−k).

by matrix multiplication with a matrix M of the form given in (3.3.45). By com-
parison with (5.1.24), we conclude that n/2 = k, that the indices j are integers, and
that wj = bj+1 (if j ≥ 0). If m is even, this becomes a Newton–Cotes formula. If m
is odd, it may still be a useful formula, but it does not belong to the Newton–Cotes
family, because (m − n)/2 = m/2 − k is no integer.

If n = m a formula is of the closed type. Its remainder term is the first
neglected term of the operator series, truncated after δ2k, 2k = n = m (and multi-
plied by h). Hence the remainder of (5.1.24) can be estimated by a2+m/2δ

m+2f0.
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or (better)
Rm,m ∼ (am/2+2/m)H(hD)m+2f0.

where we call H = mh the “bigstep”.
If the integral is computed over [a, b] by means of a sequence of “bigsteps”,

each of length H , an estimate of the global error has the same form, except that H
is replaced by b− a, and f0 is replaced by maxx∈[a,b] |f(x)|. The exponent of hD in
an error estimate that contains H or b− a, is known as the global order of accuracy
of the method.

If n < m, a formula of the open type is obtained. Among the open formulas
we shall only consider the case that n = m − 2, which are the open Newton–Cotes
formula. The operator expansion is truncated after δm−2, and we obtain

Rm−2,m ∼ (am/2+1/m)H(hD)mf0.

Formulas with n > m are rarely mentioned in the literature (except for m = 1).
We do not understand why; it is rather common that an integrand has a smooth
continuation outside the interval of integration.

Example 5.1.2.
The coefficients aim in the expansion (5.1.25) can be computed by means of the

Cauchy+FFT method. In this way extensive algebraic calculations are avoided3. It
can be shown that the exact coefficients are rational numbers, though it is sometimes
hard to estimate in advance the order of magnitude of the denominators. The
algorithm must be used with judgment.

The coefficients are first obtained in floating point representation. The trans-
formation to rational form is obtained by a continued fraction algorithm, described
in Example 3.4.1.

For the case m = 8 the result reads,

A8(δ
2) = 8 +

64

3
δ2 +

688

45
δ4 +

736

189
δ6 +

3956

14175
δ8 − 2368

467775
δ10 + . . . (5.1.26)

The closed integration formula becomes

∫ x4

−x4

f(x)dx =
4h

14175

(

−4540f0 + 10496(f1 + f−1) − 928(f2 + f−2)

+ 5888(f3 + f−3)) + 989(f4 + f−4)
)

+ R, (5.1.27)

R ∼ 296

467775
Hh10f (10)(x0). (5.1.28)

It goes without saying that this is not how Newton and Cotes found their
methods. Our method may seem complicated, but the Matlab programs for this
are rather short, and to a large extent useful for other purposes. The computation
of about 150 Cotes-coefficients and 25 remainders (m = 2 : 14), took less than two
seconds on a PC. This includes the calculation of several alternatives for rational

3These could, however, be carried out using a system like Maple.
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approximations to the floating-point results. For a small number of the 150 coeffi-
cients the judicious choice among the alternatives took, however, much more than
2 (human) seconds; this detail is both science and art.

It was mentioned that, if m is odd, (5.1.25) does not provide formulas of the
Newton–Cotes family, since (m−n)/2 is no integer, nor are the indices j in (5.1.24)
integers. So, the operator associated with the right hand side of (5.1.24) is of the
form

c1(E
1/2 + E−1/2) + c2(E

3/2 + E−3/2) + c3(E
5/2 + E−5/2) + . . . .

If it is divided algebraically by µ = 1
2 (E1/2 + E−1/2), however, it becomes of the

B(E)-form (say)

b′1 + b′2(E + E−1) + b′3(E
2 + E−2) + . . . + bk(Ek + E−k).

If m is odd we therefore expand

(ehDm/2 − e−hDm/2)(hD)−1/µ, µ =
√

1 + δ2/4,

into a δ2-series, with coefficients a′
j . Again this can be done numerically by the

Cauchy+FFT method. For each m two truncated δ2-series, one for the closed an
one for the open case, are then transformed into B(E)-expressions numerically by
means of the matrix M , as described above. The expressions are then multiplied
algebraically by µ = 1

2 (E1/2 + E−1/2). We then have the coefficients of a Newton–
Cotes formula with m odd.

The asymptotic error is

a′
m/2+1H(hD)m+1 and a′

m/2−1H(hD)m−1

for the closed type, and open type, respectively (2k = m − 1). The global orders
of accuracy for Newton–Cotes methods with odd m are thus the same as for the
methods, where m is one less.

5.1.4 Weighted Quadrature Rules

Newton–Cotes’ quadrature rules consist of approximating the integrand by a poly-
nomial and then integrate the polynomial exactly. Thus the accuracy depends on
how well the function f(x) can (locally) be approximated by a polynomial. A
sufficient condition that the method converges as h → 0 is that the integrand be
continuous, but to get rapid convergence more is required.

If the integrand becomes infinite at a point, some modification is necessary.
Even if some low-order derivative of the function is infinite at some point in or near
the interval of integration, one should make such a modification. It is not uncommon
that, when using a constant step-size, a single step taken close to a point where,
for example, the derivative of the integrand is infinite, gives a larger error than all
other steps combined.
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It is often advantageous to consider quadrature rules of the form

∫ b

a

f(x)w(x) dx ≈
n

∑

i=1

wif(xi). (5.1.29)

Here w(x) ≥ 0 is a given weight function (or density function) chosen so that f(x)
can be well approximated by a polynomial. To assure that the integral (5.1.29) is
well defined when f(x) is a polynomial, we assume in the following that the integrals

µk =

∫ b

a

xkw(x) dx, k = 1, 2, . . . , , (5.1.30)

are defined for all k ≥ 0, and µ0 > 0. The limits (a, b) of integration are here
allowed to be infinite. Since the formula should be exact for f(x) = 1 it holds that

µ0 =

∫ b

a

1 · w(x) dx =

n
∑

i=1

wi. (5.1.31)

The quantity µk is called the kth (ordinary) moment with respect to the weight
function w(x). For an interpolatory quadrature formula the weights are given by

wi =

∫ b

a

ℓi(x)w(x) dx. (5.1.32)

Example 5.1.3.
Newton–Cotes formulas with weight functions other than w(x) = 1 are useful,

e.g., when the integrand has a singularity. Such formulas can be derived by the
method of undetermined coefficients. Consider the formula

1√
2h

∫ 2h

0

x−1/2f(x) dx ≈ C0f(0) + C1f(h) + C2f(2h),

which is to be exact for any second-degree polynomial f(x). Equating the left and
right hand sides for f(x) = 1, x, x2 we obtain

C0 + C1 + C2 = 2,
1

2
C1 + C2 =

2

3
,

1

4
C1 + C2

2

5
.

This linear system is easily solved, giving C0 = 12/15, C1 = 16/15, C2 = 2/15.

There are also other possibilities to treat integrals, where the integrand has a
singularity or is “almost singular”.

Example 5.1.4.
In the integral

I =

∫ 1

0

1√
x

ex dx
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the integrand is infinite at the origin. By the substitution x = t2 we get I =

2
∫ 1

0 et2 dt, which can be treated without difficulty.
Another possibility is to use integration by parts.

I =

∫ 1

0

x−1/2ex dx = 2x1/2ex
∣

∣

1

0
− 2

∫ 1

0

x1/2ex dx

= 2e − 2
2

3
x3/2ex

∣

∣

1

0
+

4

3

∫ 1

0

x3/2ex dx =
2

3
e +

4

3

∫ 1

0

x3/2ex dx.

The last integral has a mild singularity at the origin. If one wants high accuracy,
then it is advisable to integrate by parts a few more times before the numerical
treatment.

It is often profitable to investigate whether or not one can transform or modify
the given problem in some way to make it more suitable for numerical integration.
Below we give give some selected examples.

Example 5.1.5. (Simple Comparison Problem)

In I =
∫ 1

0.1
x−3ex dx the integrand is infinite near the left end point. If we

write

I =

∫ 1

0.1

x−3
(

1 + x +
x2

2

)

dx +

∫ 1

0.1

x−3
(

ex − 1 − x − x2

2

)

dx

the first integral can be computed analytically. The second integrand can be treated
numerically. The integer and its derivatives are of moderate size. Note, however,
the cancellation in the evaluation of the integrand.

For integrals over an infinite interval one can try some substitution which
maps the interval (0,∞) to (0, 1), e.g., t = e−x of t = 1/(1 + x). However, in
such cases one must be careful not to introduce an unpleasant singularity into the
integrand instead.

Example 5.1.6.
Consider the integral I =

∫ ∞
0

(1 + x2)−4/3 dx. If one wants five decimal digits

in the result then
∫ ∞

R is not negligible until R ≈ 103. But one can expand the
integrand in powers of x−1 and integrate term-wise,

∫ ∞

R

(1 + x2)−4/3 dx =

∫ ∞

R

x−8/3(1 + x−2)−4/3 dx

=

∫ ∞

R

(

x−8/3 − 4

3
x−14/3 +

14

9
x−20/3 − · · ·

)

= R−5/3
(3

5
− 4

11
R−2 +

14

51
R−4 − · · ·

)

.

If this expansion is used, then one needs only apply numerical integration to the
interval [0, 8].
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Example 5.1.7.
With the substitution t = 1/(1 + x) the integral in the previous example

becomes

I =

∫ 1

0

(t2 + (1 − t)2)−4/3t2/3 dt.

The integrand now has an infinite derivative at the origin. This can be eliminated
by making the substitution t = u3, to get

I =

∫ 1

0

(u6 + (1 − u3)2)−4/33u4 du,

which can be computed with, for example, a Newton–Cotes’ method.

If the integrand is oscillating, then with ordinary integration methods one
must choose a step size which is small with respect to the wave length; this is often
an irritating limitation in many applications. The techniques previously mentioned
(simple comparison problem, special integration formula, etc.) are sometimes effec-
tive in such situations. In addition, the following method can be used on integrals
of the form

I =

∫ ∞

0

f(x) sin(g(x)) dx,

where g(x) is an increasing function, and both f(x) and g(x) can be approximated
by a polynomial. Set

I =

∞
∑

n=0

(−1)nun, un =

∫ xn+1

xn

f(x)| sin(g(x))| dx,

where x0, x1, x2, . . . are the successive zeros of sin(g(x)). The convergence of this
alternating series can then be improved with the help of repeated averaging, see
Sec. 3.2.1.

Review Questions

1. Why is a weight function w(x) > 0 included in many quadrature rules?

2. What is meant by the order of accuracy of a quadrature formula? Name three
classical quadrature methods and give their order of accuracy.

3. What is meant by a composite quadrature rule? What is the difference be-
tween local and global error?

4. Give an account of the theoretical background of the classical Newton–Cotes
rules.

5. Describe some possibilities for treating integrals, where the integrand has a
singularity or is “almost singular”.
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Problems and Computer Exercises

1. (a) Derive the closed Newton–Cotes rule for m = 3,

I =
3h

8
(f0 + 3f1 + 3f2 + f3) + RT , h = (b − a)/3,

also known as Simpson’s (3/8)-rule.

(b) Derive the open Newton–Cotes rule for m = 4,

I =
4h

3
(2f1 − f2 + 2f3) + RT , h = (b − a)/4.

(c) Find asymptotic error estimates for the formulas in (a) and (b) by applying
them to suitable polynomials.

2. (a) Show that Simpson’s formula is the unique quadrature formula of the form

∫ h

−h

f(x) dx ≈ h(a−1f(−h) + a0f(0) + a1f(h))

that is exact whenever f ∈ P4. Try to find several derivations of Simpson’s
formula, with or without the use of difference operators.

(b) Find the Peano kernel K2(u), such that Rf =
∫

R
f ′′(u)K2(u) du, and find

the best constants c, p, such that

|Rf | ≤ chp max |f ′′(u)|, ∀f ∈ C2[−h, h].

If you are going to deal with functions that are not in C3, would you still
prefer Simpson’s formula to the trapezoidal rule?

3. The quadrature formula

∫ xi+1

xi−1

f(x) dx ≈ h
(

af(xi−1) + bf(xi) + cf(xi+1)
)

+ h2df ′(xi),

can be interpreted as a Hermite interpolatory formula with a double point at
xi. Show that d = 0 and that this formula is identical to Simpson’s rule. Then
show that the error can be written as

R(f) =
1

4!

∫ xi+1

xi−1

f (4)(ξx)(x − xi−1)(x − xi)
2(x − xi+1) dx,

where f (4)(ξx) is a continuous function of x. Deduce the error formula for
Simpson’s rule. Setting x = xi + ht, we get

R(f) =
h4

24
f (4)(ξi)

∫ 1

−1

(t + 1)t2(t − 1)h dt =
h5

90
f (4)(ξi).
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4. A second kind of Newton–Cotes” open quadrature rule uses the midpoints of
the equidistant grid xi = ih, i = 1 : n, i.e.

∫ xn

x0

f(x) dx =

n
∑

i=1

wifi−1/2, xi−1/2 = 1
2 (xi−1 + xi).

(a) For n = 1 we get the midpoint rule. Determine the weights in this formula
for n = 3 and n = 5. (Use symmetry!)

(b) What is the order of accuracy of these two rules?

5. Derive Simpson’s formula with end corrections, i.e. a formula of the form

∫ h

−h

f(x) dx ≈ h
(

af(−h) + bf(0) + af(h)
)

+ h2c(f ′(−h) − f ′(h)),

that is exact for polynomials of degree five. What is the corresponding com-
posite formula for the interval [a, b] with b − a = 2nh?

6. Compute the integral

1

2π

∫ 2π

0

e
1√
2

sin x
dx

by the trapezoidal rule, using h = π/2 and h = π/4.

7. Compute the integral

∫ ∞

0

(1 + x2)−4/3 dx with five correct decimals. Expand

the integrand in powers of x−1 and integrate term-wise over the interval [R,∞],
for a suitable value of R. Then use a Newton–Cotes’ rule on the remaining
interval [0, R].

8. Write a program for the derivation of a formula for integrals of the form

I =
∫ 1

0 x−1/2f(x) dx that is exact for f ∈ Pn and uses the values f(xi),
i = 1 : n, by means of the power basis.

(a) Compute the coefficients bi for n = 6 : 8 with equidistant points, xi =
(i − 1)/(n − 1), i = 1 : n. Apply the formulas to the integrals

∫ 1

0

x−1/2e−x dx;

∫ 1

0

dx

sin
√

x
;

∫ 1

0

(1 − t3)−1/2 dt.

In the first of the integrals compare with the result obtained by series expan-
sion in Problem 3.1.1. In the last integral a substitution is needed for bringing
it to the right form.
(b) Do the same for the case, where the step size xi+1−xi grows proportionally
to i; x1 = 0; xn = 1. Is the accuracy significantly different compared to (a),
for the same number of points?

(c) Make some very small random perturbations of the xi, i = 1 : n in (a),
(say) of the order of 10−13. Of which order of magnitude are the changes in
the coefficients bi , and the changes in the results for the first of the integrals?
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9. Propose a suitable plan (using a computer) for computing the following inte-
grals, for s = 0.5, 0.6, 0.7, . . . , 3.0:

(a)

∫ ∞

0

(x3 + sx)−1/2 dx; (b)

∫ ∞

0

(x2 + 1)−1/2e−sx dx, error < 10−6;

(c)

∫ ∞

π

(s + x)−1/3 sin xdx.

10. It is not true that any degree of accuracy can be obtained by using a Newton–
Cotes’ formula of sufficiently high order. To show this, Compute approxima-
tions to the integral

∫ 4

−4

dx

1 + x2
= 2 tan−1 4 ≈ 2.6516353 . . . .

using the closed Newton–Cotes’ formula with n = 2, 4, 6, 8. Which formula
gives the smallest error?

11. For expressing integrals appearing in the solution of certain integral equations
the following modification of the midpoint rule is often used:

∫ xn

x0

K(xj , x)y(x) dx =

n−1
∑

i=0

mijyi+1/2,

where yi+1/2 = y(1
2 (xi + xi+1)) and mij is the moment integral

mij =

∫ xi+1

xi

K(xj , x) dx.

Derive an error estimate for this formula.

12. (a) Suppose that you have found a truncated δ2-expansion, (say) A(δ2) ≡
a1 + a2δ

2 + . . . + ak+1δ
2k. Then an equivalent symmetric expression of the

form B(E) ≡ b1 + b2(E + E−1) + . . . + bk+1(E
k + E−k) can be obtained as

b = Mk+1a, where a, b are column vectors for the coefficients, and Mk+1 is
the (k + 1) × (k + 1) submatrix of the matrix M given in (3.2.45).
Use this for deriving (5.1.27) from (5.1.26). How do you obtain the remainder
term? If you obtain the coefficients as decimal fractions, multiply them by
14175/4 in order to check that they agree with (5.1.27).

(b) Use Cauchy+FFT for deriving (5.1.26), and the open formula and the
remainder for the same interval.

(c) Set zn = ∇−1yn−∆−1y0. We have, in the literature, seen the interpretation
that zn =

∑n
j=0 yj if n ≥ 0. It seems to require some extra conditions to be

true. Investigate if the conditions z−1 = y−1 = 0 are necessary and sufficient.
Can you suggest better conditions? (The equations ∆∆−1 = ∇∇−1 = 1
mentioned earlier are assumed to be true.)

13. (a) Write a program for the derivation of quadrature formulas and error esti-
mates according to Example 5.1.2 for m = n − 1, n, n + 1. Test the formulas
and the error estimates for some m, n on some simple (though not too simple)
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examples. Some of these formulas are listed in Handbook of Mathematical
Functions [1, Sec. 25.4]. In particular, check the closed Newton–Cotes’ 9-point
formula (n = 8). .

(b) Sketch a program for the case that h = 1/(2n + 1), with the computation
of f at 2m symmetrical points.

(c) Abramowitz–Stegun [1, Sec. 25.4] gives several Newton–Cotes formulas of
closed and open types, with remainders. Try to reproduce and extend their
tables with techniques related to Example 5.2.2.

5.2 Quadrature Rules with Free Nodes

Previously we have assumed that all nodes xi of the quadrature formula are given.
A natural questions is whether we can do better by a judicious choice of the free
nodes. This question is answered in the following theorem, which shows that by
a careful choice of grid points the order of accuracy of the quadrature rule can
substantially improved.

Theorem 5.2.1 (Gautschi [16] Theorem 3.2.1).
Let k be an integer such that 0 ≤ k ≤ n. Consider the quadrature rule (5.1.1)

and let
s(x) = (x − x1)(x − x2) · · · (x − xn) (5.2.1)

be the corresponding node polynomial. Then the quadrature rule has degree of
exactness equal to d = n + k − 1, if and only if the following two conditions are
satisfied:

(a) The quadrature rule (5.1.1) is interpolatory, i.e. the coefficients Ci are given
by (5.1.4).

(b) The node polynomial satisfies

∫ b

a

p(x)s(x)w(x) dx = 0, (5.2.2)

for all polynomials p ∈ Pk.

Proof. We first prove the necessity of the conditions (a) and (b). Since the degree
of exactness is d = n+k−1 ≥ n−1, the condition (a) follows immediately. Further,
for any p ∈ Pk the product p(x)s(x) is in Pn+k. Hence

∫ b

a

p(x)s(x)w(x) dx =

n
∑

j=1

wkf(xk)s(xk) = 0.

since s(xk) = 0, k = 1 : n, so that (b) holds.
To prove the sufficiency, let p(x) be any polynomial of degree n + k − 1. Let

q(x) and r(x) be the quotient and remainder, respectively, in the division

f(x) = q(x)sn(x) + r(x).
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Then q(x) and r are polynomials of degree k − 1 and n − 1, respectively, and it
holds that

∫ b

a

p(x)w(x) dx =

∫ b

a

q(x)sn(x)w(x) dx +

∫ b

a

r(x)w(x) dx.

Here the first integral is zero because of the orthogonality property of s(x). For the
second we have

n
∑

i=1

wip(xi) =
n

∑

i=1

wiq(xi)sn(xi) +
n

∑

i=1

wir(xi) =
n

∑

i=1

wir(xi),

since sn(xi) = 0, i = 1 : n. But

∫ b

a

r(x)w(x) dx =

n
∑

i=1

wir(xi),

since the weights were chosen such that the formula was interpolatory and therefore
exact for all polynomials of degree n − 1.

In the previous section we derived Newton–Cotes’ quadrature rules using La-
grange interpolation or operator series. We now outline another general technique,
the method of undetermined coefficients, for determining approximate quadrature
formulas of maximum order.

Let L be a linear functional and consider approximation formulas of the form

Lf ≈ L̃f =

p
∑

i=1

aif(xi) +

q
∑

j=1

bjf(zj), (5.2.3)

where the xi are p given nodes, while the zj are q free nodes. The latter are to be
determined together with the weight factors ai, bj . The altogether p+2q parameters
in the formula are to be determined, if possible, so that the formula becomes exact
for all polynomials of degree less than p + 2q.

We introduce the two node polynomials

r(x) = (x − x1) · · · (x − xp), s(x) = (x − z1) · · · (x − zq), (5.2.4)

of degree p and q, respectively.
Let φ1, φ2, . . . , φN be a basis of the space of polynomials of degree less than

N . We assume that the quantities Lφk, k = 1 : p + 2q are known. Then we obtain
the non-linear system,

p
∑

i=1

φk(xi)ai +

q
∑

j=1

φk(zj)bj = Lφk(x), k = 1, 2, . . . , p + 2q, (5.2.5)

This is a non-linear system in zj , but of a very special type. Note that the free
nodes zj appear in a symmetric fashion; the system (5.2.5) is invariant with respect
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to permutations of the free nodes together with their weights. We therefore first
ask for their elementary symmetric functions, i.e. for the coefficients gj of the
node polynomial

s(x) = φq+1(x) −
q

∑

j=1

sjφj(x) (5.2.6)

that has the free nodes z1, z2, . . . zq as zeros. We change the basis to the set

φ1(x), . . . φq(x), s(x)φ1(x), . . . , s(x)φp+q(x).

In the system (5.2.5), the equations for k = 1 : q will not be changed, but the
equations for k = 1 + q : p + 2q become,

p
∑

i=1

φk′ (xi)s(xi)ai +

q
∑

j=1

φk′(zj)s(zj)bj = L(sφk′), 1 ≤ k′ ≤ p + q. (5.2.7)

Here the second sum disappears since s(zj) = 0, for all j. (This is the nice feature
of this treatment!) Further by (5.2.6)

L(sφk′ ) = L(φk′φq+1) −
q

∑

j=1

L(φk′φj)sj , 1 ≤ k′ ≤ p + q. (5.2.8)

We thus obtain the following linear system for the computation of the q + p quan-
tities, sj , and Ai = s(xi)ai:

q
∑

j=1

L(φk′φj)sj +

p
∑

i=1

φk′(xi)Ai = L(φk′φq+1), k′ = 1 : p + q. (5.2.9)

The weights of the fixed nodes are ai = Ai/s(xi). The free nodes zj are then
determined by finding the q roots of the polynomial

s(x) = φq+1(x) −
q

∑

j=1

sjφj(x) = 0.

(Methods for computing roots of a polynomial are given in Sec. 6.5.) Finally, with
ai and zj known, the weights bj are obtained by the solution of the first q equations
of the system (5.2.5). which are linear in bj.

Let p = 0, [a, b] = [0, b], (b may be infinite) and consider the monomial
basis. The reader is advised to verify that, when p > 0 the matrix becomes a
kind of combination of a Hankel matrix and a Vandermonde matrix. In this case
the condition number of of the linear system (5.2.5) increases exponentially with
p+2q and the free nodes and corresponding weights may become rather inaccurate.
It is usually found, however, that unless the condition number is so big that the
solution breaks down completely, the computed solution will satisfy equation (5.2.5)
with a small residual. That is what really matters for the application of formula
(5.2.3).
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Example 5.2.1.

Consider the linear functional L(f) =
∫ 1

0 f(x) dx. Set p = 0, q = 3 and choose
the monomial basis φi(x) = xi−1. Introducing the node polynomial

s(x) = (x − z1)(x − z2)(x − z3) = x3 − s3x
2 − s2x − s1,

the linear system (5.2.8) becomes




1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5









s1

s2

s3



 =





1/4
1/5
1/6



 .

The exact solution is s1 = 1/20, s2 = −3/5, and s3 = 3/2. The free nodes thus
are the zeros of s(x) = x3 − 3x2/2 + 3x/5 − 1/20, which are z2 = 1/2 and z1,3 =

1/2 ±
√

3/20. The weights b1, b2, b3 are then found by solving (5.2.5) for k = 1 : 3.

For the purpose of error estimation, we can add the two equations

p
∑

i=1

φk(xi) ai +

q
∑

j=1

φk(zj) bj + (k − 1)!ck−1 = Lφk, (5.2.10)

k = p + 2q + 1, p + 2q + 2,

The remainder term of the method is of the form cN (LfN − L̃fN), where fN is any
monic polynomial of degree N . Normally N = p + 2q, but this is inadequate if
cp+2q = 0. This exceptional case actually happens, if a certain kind of symmetry
is present. The formula is then more accurate than expected, and we take N =
p + 2q + 1 instead. This is why ck is to be computed for two values of k.

For the determination of the error constant we compute, according to the
comments to (5.2.10), the difference between the right hand side and the left hand
side of (5.2.9), and divide by (k′)!, for k′ = p + q + 1, p + q + 2.

From a pure mathematical point of view all bases are equivalent, but equation
(5.2.5) may be better conditioned with some bases than with others, and this turns
out to be an important issue when p + 2q is large. The simplest choice of basis is

φk(x) = xk−1, x ∈ (0, b),

(b may be infinite). For this choice the condition number of (5.2.5), will increase
exponentially with p + 2q.

In the case [a, b] = [−b, b], where the weight function w(x) and the given nodes
xi are symmetrical with respect to the origin it holds that L(φk(x)) = 0, when k is
even. Then the weights ai and bi, and the free nodes zj will also be symmetrically
located. If p = 2p′ is even, the number of parameters will be reduced to p′ + q by
the transformation

x =
√

ξ, ξ ∈ [0, b2].

Note that w(x) will be replaced by w(
√

ξ)/
√

ξ. If p is odd, one node is at the
origin, and one can proceed in an analogous way. This should also reduce the
condition number approximately to its square root, and it is possible to derive in a
numerically stable way formulas with about twice as high order of accuracy as in
the unsymmetric case.
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5.2.1 Gauss–Christoffel Quadrature

By Theorem 5.2.1 if the n nodes in a quadrature formula are chosen so that the
node polynomial s(x) = (x − x1)(x − x2) · · · (x − xn) satisfies

∫ b

a

p(x)s(x)w(x) dx = 0, ∀ p(x) ∈ Pn, (5.2.11)

then the corresponding interpolatory quadrature rule has the maximum possible
order of accuracy 2n− 1. These formulas are called Gauss’ quadrature formulas
associated with the weight function w. The construction of such quadrature rules
is closely related to the theory of orthogonal polynomials. For the weight function
w(x) ≡ 1 they were derived in 1814 by Gauss [11]. Formulas for more general weight
functions were given by Christoffel4 [5] in 1858, which is why these are referred to
as Gauss–Christoffel quadrature formulas.

We denote by

(f, g) =

∫ b

a

f(x)g(x)w(x) dx, (5.2.12)

the inner product with respect to the weight function w(x) ≥ 0 and the interval [a, b].
The corresponding norm is (f, f) = ‖f‖2

2. This inner product has the important
property that

(xf, g) = (f, xg). (5.2.13)

We recall the assumption that w(x) ≥ 0 is a weight function on [a, b] such that
moments

µk = (xk, 1) =

∫ b

a

xkw(x) dx.

are defined for all k ≥ 0, and µ0 > 0.
The zeros of these polynomials then determine the nodes in the corresponding

Gaussian formula. The weights are then determined by integrating the elementary
Lagrange polynomials (5.1.4)

wi =

∫ b

a

ℓi(x)w(x) dx, ℓi(x) =

n
∏

j=1

j 6=i

(x − xj)

(xi − xj)
.

In Sec. 5.2.3 we will discuss a more stable algorithm that determines the nodes and
weights directly from the coefficients in the recurrence relation (??).

The condition (5.2.11) for the node polynomial can now be interpreted to
mean that s(x) is orthogonal to all polynomials in Pn. We shall now prove some
important results from the general theory of orthogonal polynomials.

4Elvin Bruno Christoffel (1829–1900) worked mostly in Strasbourg. He is best known for his
work in geometry and tensor analysis, which Einsten later used in his theory of relativity.
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Theorem 5.2.2.
The roots xi, i = 1 : n, of the orthogonal polynomial polynomial ϕn+1 of

degree n, associated with the weight function w(x) ≥ 0 on [a, b], are real, distinct
and contained in the open interval (a, b).

Proof. Let a < x1 < x2 · · · < xm, be the roots of ϕn+1 of odd multiplicity, which
lie in (a, b). At these roots ϕn changes sign and therefore the polynomial q(x)ϕn+1,
where

q(x) = (x − x1)(x − x2) · · · (x − xm),

has constant sign in [a, b]. Hence,

∫ b

a

ϕn+1q(x)w(x) dx > 0.

But this is possible only if the degree of q(x) is equal to n. Thus m = n and the
theorem follows.

Corollary 5.2.3.
If x1, x2, . . . , xn are chosen as the n distinct zeros of the orthogonal polynomial

ϕn+1 of degree n in the family of orthogonal polynomials associated with w(x), then
the formula

∫ b

a

f(x)w(x) dx ≈ w1f1 + w2f2 + . . . + wnfn, (5.2.14)

wi =

∫ b

a

ℓi(x)w(x) dx, (5.2.15)

is exact for polynomials of degree 2n − 1.

Apart from having optimal degree of exactness equal to 2n − 1, Gaussian
quadrature rules have several important properties, which we now outline.

Theorem 5.2.4.
All weights in a Gaussian quadrature rule are real, distinct and positive.

Proof. Let

ℓi(x) =

n
∏

j=1

j 6=i

(x − xj)

(xi − xj)
, i = 1 : n,

be the Lagrange polynomials. Then the quadrature formula (5.2.14) is exact for
p(x) = (ℓi(x))2, which is of degree 2(n−1). Further ℓi(xj) = 0, j 6= i, and therefore

∫ b

a

(ℓi(x))2w(x) dx = wi(ℓi(xi))
2 = wi.



24 Chapter 5. Numerical Integration

Since w(x) > 0 it follows that wi > 0.

Gaussian quadrature formulas can also be derived by Hermite interpolation on
the nodes xk, each counted as a double node, and requiring that coefficients of the
derivative terms should be zero. This interpretation gives a convenient expression
for the error term in Gaussian quadrature.

Theorem 5.2.5.
The remainder term in Gauss’ quadrature is given by the formula

f (2n)(ξ)

(2n)!

∫ b

a

[

n
∏

i=1

(x − xi)
]2

w(x) dx = cnf (2n)(ξ), a < ξ < b. (5.2.16)

The constant cn can be determined by applying the formula to some polynomial of
degree 2n.

Proof. Denote by q(x) the polynomial of degree 2n − 1 which solves the Hermite
interpolation problem (see Sec. 4.3.1)

q(xi) = f(xi), q′(xi) = f ′(xi), i = 1 : n.

The Gauss quadrature formula is exact for q(x), and hence

∫ b

a

q(x)w(x) dx =

n
∑

i=1

wiq(xi) =

n
∑

i=1

wif(xi).

Thus
n

∑

i=1

wif(xi) −
∫ b

a

f(x)w(x) dx =

∫ b

a

(q(x) − f(x))w(x) dx.

Using the remainder term (4.3.4) in Hermite interpolation gives

f(x) − q(x) =
f (2n)(ξ)

(2n)!
(ϕn(x))2, ϕn(x) =

n
∏

i=1

(x − xi).

and the theorem now follows.

5.2.2 Applications of Gauss Quadrature

For the uniform weight distribution w(x) = 1 on [−1, 1] the relevant orthogonal
polynomials are the Legendre polynomials Pn(x). As a historical aside, Gauss
derived his quadrature formula by considering the continued fraction

1
2 ln

(

z + 1

z − 1

)

= 1
2

∫ 1

−1

dx

z − x
=

1

z−
1/3

z− · · · (5.2.17)

=
1

z
+

1

3z3
+

1

5z5
+ · · · (5.2.18)



5.2. Quadrature Rules with Free Nodes 25

The nth convergent of this continued fraction is a rational function with a numer-
ator of degree n− 1 in z and denominator of degree n, which is the (n− 1, n) Padé
approximation to the function. Decomposing this fraction in partial fractions the
residues and the poles can be taken as nodes of a quadrature formula. The denomi-
nators are precisely the Legendre polynomials. Using the accuracy properties of
the Padé approximants Gauss showed that the formula will have order 2n− 1. For
more on this interesting connections between Padé approximants and orthogonal
polynomials see Brezinski [3].

Since the weight distribution is symmetric about the origin the Legendre poly-
nomials have the symmetry property

Pn(−x) = (−1)nPn(x).

They satisfy the three-term recurrence formula P0(x) = 1, P1(x) = x,

Pn+1(x) =
2n + 1

n + 1
xPn(x) − n

n + 1
Pn−1(x), n ≥ 1. (5.2.19)

giving
P2(x) = 1

2 (3x2 − 1), P3(x) = 1
2 (5x3 − 3x), . . . (5.2.20)

The Legendre polynomials have leading coefficient

An =
1

2nn!
2n(2n− 1)(2n − 2) . . . (n + 1).

and ‖Pn‖ = 2/(2n + 1).
The Legendre polynomials can also be defined by

P0(x) = 1, Pn(x) =
1

2nn!

dn

dxn

(

(x2 − 1)n
)

, n = 1, 2, . . . (9.3.21)

Since (x2 − 1)n is a polynomial of degree 2n, Pn(x) is a polynomial of degree n.
The extreme values are

|Pn(x)| ≤ 1, x ∈ [−1, 1].

There seems to be no easy proof for this result; see Henrici [1964, p. 219].

Example 5.2.2.

Derive a two-point Gauss quadrature rule for
∫ 1

−1
f(x) dx. Here w(x) = 1, and

the relevant orthogonal polynomials are the Legendre polynomials Pm+1(x). For
m = 1 we have P2(x) = 1

2 (3x2 − 1), and hence x0 = −3−1/2, x1 = 3−1/2. The
weights can be determined by application of the formula to f(x) = 1 and f(x) = x,
respectively, i.e.,

w0 + w1 = 2, −3−1/2w0 + 3−1/2w1 = 0,

with solution w0 = w1 = 1. Hence the formula

∫ 1

−1

f(x) dx ≈ f(−3−1/2) + f(3−1/2)
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Table 5.2.1. Abscissas and weight factors for Gauss–Legendre quadrature
from Abramowitz–Stegun [1, Table 25.4].

xi wi

n = 4
±0.33998 10435 84856 0.65214 51548 62546
±0.86113 63115 94053 0.34785 48451 37454

n = 5
0.00000 00000 00000 0.56888 88888 88889
±0.53846 93101 05683 0.47862 86704 99366
±0.90617 98459 38664 0.23692 68850 56189

n = 6
±0.23861 91860 83197 0.46791 39345 72691
±0.66120 93864 66265 0.36076 15730 48139
±0.93246 95142 03152 0.17132 44923 79170

Table 5.2.2. Summary of Gaussian quadrature rules

interval weight function abscissas polynomials
[a, b] w(x) zeros of

[−1, 1] 1 Pn(x) Legendre

[−1, 1] (1 − x2)−1/2 Tn(x) Chebyshev 1st kind

[−1, 1] (1 − x)α(1 + x)β Jn(x; α, β) Jacobi

[−1, 1] (1 − x2)1/2 Un(x) Chebyshev, 2nd kind

[0,∞] e−x Ln(x) Laguerre

[−∞,∞] e−x2

Hn(x) Hermite

is exact for polynomials of third degree.

In order to use the Gaussian quadrature rule the abscissas and weight factors
must be known numerically. Note that for w(x) = 1 and the interval [−1, 1] the
abscissas are symmetric with respect to the origin. The two-point formulas was
given above; for the three-point formula see Problem 1 below. In Table 5.2.1 we
give abscissas and weights for some higher order Gauss–Legendre formulas using
n = m + 1 points.

The Jacobi polynomials Jn(x; α, β) arise from the weight function

w(x) = (1 − x)α(1 + x)β , x ∈ [−1, 1], α, β > −1,
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They are special cases of Gauss hypergeometric function F (a, b, c : x)

F (−n, α + 1 + β + n, α + 1; x).

(see (3.1.12)). The Jacobi polynomials are usually defined so that the coefficient
An of xn in Jn(x; α, β) is given by

An =
1

2nn!

Γ(2n + α + β + 1

Γ(n + α + β + 1
.

We obtain the Gauss–Legendre quadrature formula as the special case when
α = β = 0. Further the case α = β = −1/2, which corresponds to w(x) =
1/

√
1 − x2, give the Gauss–Chebyshev quadrature formula. These and some other

important Gaussian quadrature rules are summarized in Table 5.2.2.
The above rules are given for the standard interval [−1, 1]. The corresponding

formula for an integral over the interval [a, b] is obtained by the change of variable
t = 1

2 ((b − a)x + (a + b)), which maps the interval [a, b] onto [−1, 1], so that

∫ b

a

f(t)dt =
b − a

2

∫ 1

−1

g(x) dx, g(x) = f

(

1

2

(

(b − a)x + (a + b)
)

)

.

If f(t) is a polynomial then g(x) will be a polynomial of the same degree, since the
transformation is linear. Hence the order of accuracy of the formula is not affected.

Two other important cases of Gauss quadrature rules are the following: For
the weight function

w(x) = e−x, 0 ≤ x < ∞,

the corresponding orthogonal polynomials are the Laguerre polynomials, which
satisfy

Ln(x) = ex dn

dxn
(xne−x).

The Hermite polynomials are orthogonal with respect to the weight function

w(x) = e−x2

, −∞ < x < ∞.

They satisfy the recurrence relation H0(x) = 1, H1(x) = 2x,

Hn+1(x) = 2xHn(x) − 2nHn−1(x).

The Hermite polynomials can also be defined by the formula.

Hn(x) = (−1)nex2 dn

dxn
e−x2

It can be verified that these polynomials are identical to those defined by the re-
currence relation.

In some situations we want some of the abscissas xi in the quadrature formula
to be fixed; the rest are to be chosen freely to maximize the order of accuracy. In the
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most common cases the preassigned abscissas are at the endpoints of the interval.
We consider here quadrature rules of the form

Lf =

n
∑

i=1

wif(xi) +

m
∑

j=1

bjf(zj) + E(f) (5.2.21)

where zj , j = 1 : m are fixed nodes and the xi, ai and bj are to be determined. By
a generalization of Theorem 5.2.5 the remainder term is given by the formula

E(f) =
f (2n+m)(ξ)

(2n)!

∫ b

a

m
∏

i=1

(x − zi)
[

n
∏

i=1

(x − xi)
]2

w(x) dx, a < ξ < b. (5.2.22)

In Gauss–Lobatto quadrature m = 2, and both endpoints are used as ab-
scissas, z1 = a, z2 = b. Taking [a, b] = [−1, 1] and and the weight function w(x) = 1,
the quadrature formula has the form

∫ 1

−1

f(x) dx = b1f(−1) + b2f(1) +

n
∑

i=1

wif(xi) + EL. (5.2.23)

where
b1 = b2 = 2/((n + 2)(n + 1)).

The remaining n abscissas are the zeros P ′
n+1(x), where Pn(x) denotes the Legendre

polynomial. They lie symmetric with respect to the origin. The corresponding
weights are given by

wi = b1/(Pn+1(xi))
2,

and satisfy wi = wn+1−i. Because two points are fixed we lose two degrees of
accuracy and the Lobatto rule (5.2.23) is exact only for polynomials of order 2m−1.
If f(x) ∈ C2m[−1, 1] then the error term is given by

EL(f) = − (n + 2)(n + 1)322n+3(n!)4

(2n + 3)[(2n + 2)!]3
f (2n+2)(ξ), ξ ∈ (−1, 1). (5.2.24)

Nodes and weights for Lobatto quadrature are found in Abramowitz–Stegun [1,
Table 25.6].

Example 5.2.3.
The simplest Gauss–Lobatto rule is Simpson’s rule with one interior node.

Taking n = 2 the interior nodes are the zeros of φ2(x), where

∫ 1

−1

(1 − x2)φ2(x)p(x) dx = 0, ∀p ∈ P2.

Thus, φ2 is, up to a constant factor, the Jacobi polynomial J2(x, 1, 1) = (x2 − 1/5).
Hence the interior nodes are ±1/

√
5 and the quadrature formula becomes

∫ 1

−1

f(x) dx =
1

6
(f(−1) + f(1)) +

5

6
(f(−1/

√
5) + f(1/

√
5)) + R(f), (5.2.25)
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where R(f) = 0 for f ∈ P6.

In Gauss–Radau quadrature rules one of the endpoints ±1 is taken as ab-
scissa, z0 = −1, say. The quadrature formula has the form

∫ 1

−1

f(x) dx =
2

(n + 1)2
f(−1) +

n
∑

i=1

wif(xi) + ER1. (5.2.26)

The n free abscissas are the zeros of

Pn(x) + Pn+1(x)

x − 1
,

where Pm(x) are the Legendre polynomials. The corresponding weights are given
by

wi =
1

(n + 1)2
1 − xi

(Pn(xi))2
.

The Gauss–Radau quadrature rule is exact for polynomials of order 2n + 1. If
f(x) ∈ C2m−1[−1, 1] then the error term is given by

ER1(f) =
(n + 1)22n+1

[(2n + 1)!]3
(n!)4f (2n+1)(ξ1), ξ1 ∈ (−1, 1). (5.2.27)

A similar formula can be obtained with the fixed point +1 by making the substitu-
tion t = −x. From the error term (5.2.22) it follows that if the derivative f (n+1)(x)
has constant sign in [a, b], then the error will have opposite sign. This can be used
to obtain lower and upper bounds for the true integral.

A drawback with Gaussian rules is that as we increase the order of the formula
all interior abscissas change, except that at the origin. Hence we cannot use the
function values computed for the lower order formula. For this reason Kronrod [21]
considered the following problem: Given an n-point Gaussian quadrature rule

Gn ≈
n−1
∑

i=0

wif(xi),

find a new formula using the n old abscissas xi and n + 1 new abscissas yi

K2n+1 ≈
n−1
∑

i=0

Aif(xi) +
n

∑

i=0

Bif(yi).

The new abscissas and the weights Ai and Bi are to be chosen so that the rule
K2n+1 is exact for polynomials of degree 3n + 1.

The two rules (Gn, K2n+1) are called a Gauss–Kronrod pair. Note that the
number of new function evaluations are the same as for the Gauss rule Gn+1. The
error can be estimated by the difference |Gn − K2n+1|, but this usually severely
overestimates the error.
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Gauss–Kronrod rules is one of most effective methods for calculating integrals.
Often one takes n = 7 and uses the Gauss–Kronrod pair (G7, K15), together with
the realistic but still conservative error estimate (200|Gn−K2n+1|)1.5, see Kahaner,
Moler, and Nash [20].

A Kronrod extension of the Gauss–Lobatto rule (5.2.25) has been given by
Gander and Gautschi [9]:

∫ 1

−1

f(x) dx =
11

210
(f(−1) + f(1)) +

72

245
(f(−

√

2/3) + f(
√

2/3))

+
125

294
(f(−1/

√
5) + f(1/

√
5)) +

16

35
f(0)) + R(f). (5.2.28)

This rule is exact for all f ∈ P10. Note that the Kronrod points ±
√

2/3 and 0
interlace the previous nodes.

5.2.3 Matrix Formulas Related to Gauss Quadrature

We collect here some classical results of Gauss, Christoffel, Chebyshev, Stieltjes and
others, with a few modern aspects and a notations appropriate for our purpose.

Let {p1, p2, . . . , pn} be a basis for the space Pn, of polynomials of degree n−1,
where pj be a polynomial of exact degree j − 1. We introduce the row vector

π(x) = [p1(x), p1(x), . . . , pn(x)], (5.2.29)

containing these basis functions. The modified moments with respect to the basis
π(x) are

νk = (pk, 1) =

∫ b

a

pk(x)w(x) dx, k = 1 : n, (5.2.30)

We define the two symmetric matrices

G =

∫

π(x)T π(x)w(x) dx, Ĝ =

∫

xπ(x)T π(x)w(x) dx. (5.2.31)

associated with the basis defined by π. Here G is the Gram matrix5 with elements
gij = (pi, pj) = (pj , pi),

G =









(p1, p1) (p1, p2) . . . (p1, pn)
(p2, p1) (p2, p2) . . . (p2, pn)

...
...

. . .
...

(pn, p1) (pn, p2) . . . (pn, pn)









. (5.2.32)

Two particularly interesting bases are the power basis and the orthonormal
basis defined, respectively, by

θ(x) = (1, x, x2, . . . , xn−1), (5.2.33)

ϕ(x) = (φ1(x), φ2(x), . . . , φn(x)), (5.2.34)

5Jørgen Pedersen Gram (1850–1916) graduated from Copenhagen University and then worked
as company director for a life insurance company. He introduced the Gram determinant in con-
nection with his study of linear independence and his name is also associated with Gram–Schmidt
orthogonalization.
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where the components of ϕ are orthonormal polynomials with respect to the weight
function w.

Example 5.2.4.
For the power basis θ(x) we have gij = (xi−1, xj−1) = µi+j−2. So the matrices

G and Ĝ become Hankel matrices,

G =









µ0 µ1 · · · µn−1

µ1 µ2 · · · µn
...

... · · ·
...

µn−1 µn · · · µ2n−2









, Ĝ =









µ1 µ2 · · · µn

µ2 µ3 · · · µn+1

...
... · · ·

...
µn µn+1 · · · µ2n−1









.

In particular, for w(x) ≡ 1, and [a, b] = [0, 1] we have µk =
∫ 1

0
xk−1 dx = 1/k and

G is the notoriously ill-conditioned Hilbert matrix, for which the spectral condition
number grows like 0.014 · 101.5n.

Let u, v, be two polynomials in Pn and set

u(x) = π(x)uπ , v(x) = π(x)vπ ,

where uπ, vπ, are column vectors with the coefficients in the representation of u, v
with respect to the basis defined by π. Note that (u, v) = uT

π Gvπ . For u = v 6= 0
we find that

uT
π Guπ = (u, u) > 0,

hence the Gram matrix G is positive definite. (The matrix Ĝ is, however, usually
indefinite.)

A polynomial of degree n that is orthogonal to all polynomials of degree less
than n can be written in the form

φn+1(x) = xpn(x) − π(x)cn, cn ∈ Rn, (5.2.35)

Here cn is determined by the linear equations

−
∫

π(x)T π(x)cnw(x) dx +

∫

xπ(x)T pn(x)w(x) dx = 0,

or in matrix form
Gcn = ĝn, (5.2.36)

where ĝn is the last column of the matrix Ĝ. Further, there are coefficients ckj

depending on the basis only, such that

xpj(x) =

j+1
∑

k=1

ck,jpk(x), j = 1 : n − 1.

Together with (5.2.35) this can be summarized in the vector equation

xπ(x) = π(x)(C, cn) + (0, 0, . . . , φn+1(x)). (5.2.37)
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Here C ∈ Rn×(n−1] is an upper Hessenberg matrix, which depends on the basis
only, while cn also depends on the weight function. If the basis π(x) is some family
of orthogonal polynomials (with respect to another weight function than w) C is a
tridiagonal matrix, obtained by means of the three-term recurrence relation for this
family.

After multiplication of (5.2.37) by π(x)T w(x) and integration we obtain by
(5.2.31)

GC = Ĝ, C = (C, cn). (5.2.38)

where the last column of this equation is the same as equation (5.2.36). Let G∗,
C∗ be defined like G, C, with n increased by one. Note that G and C are principal
submatrices of G∗ and C ‘. Then Ĝ equals the n first rows of the product G∗C∗. So
no integrations are needed for gn, except for the matrix G.

Theorem 5.2.6.
Denote by R the matrix of coefficients of the expansions of the general basis

functions π(x) = [p1(x), p1(x), . . . , pn(x)] into the orthonormal basis polynomials,
i.e.

π(x) = ϕ(x)R. (5.2.39)

Then G = RT R, i.e. R is the upper triangular Cholesky factor of the Gram matrix
G. Note that this factorization up to the mth row is the same for all n ≥ m. Further
Ĝ = RT JR, where J is a symmetric tridiagonal matrix.

Proof. R is evidently an upper triangular matrix. Further, we have

G =

∫

π(x)T π(x)w(x) dx =

∫

RT ϕ(x)T ϕ(x)Rw(x) dx

= RT IR = RT R,

since the elements of ϕ(x) is an orthonormal system. This shows that R is the
Cholesky factor of G. We similarly find that

Ĝ = RT JR, J =

∫

xϕ(x)T ϕ(x)w(x) dx,

so J clearly is a symmetrical matrix. J is a particular case of Ĝ and from (5.2.38)
and G = I it follows that J = C, a Hessenberg matrix. Hence J is a symmetric
tridiagonal matrix.

From (5.2.38) and Theorem 5.2.6 it follows that

Ĝ = GC = RT RC = RT JR,

Since R is nonsingular we have RC = JR, or

J = RCR−1. (5.2.40)

It follows that, for every choice of basis, the spectrum of C equals the spectrum of
J . We shall see that it is equal to the set of zeros of the orthogonal polynomial φn.
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In particular, for the power basis pj(x) = xj−1, the Hessenberg matrix C is a
shift matrix; the only non-zero elements are ones in the first main subdiagonal.
Further, with cT

n = (a1, a2, . . . , an), (5.2.35) reads

φn+1(x) = xn −
n

∑

k=1

akxk−1,

and

C =















0 a1

1 0 a2

1
. . .

...
. . . 0 an−1

1 an















∈ Rn×n,

which (after a permutation of rows and columns) is the companion matrix of the
polynomial φn+1(x) (see Sec. 6.5.1). Thus the eigenvalues λj, j = 1 : n, of C are
the zeros of φn+1(x), and hence the nodes for the Gauss–Christoffel quadrature
formula. The row eigenvector corresponding to λj is

θ(λj) = (1, λj , λ
2
j , . . . , λ

n−1
j ), (5.2.41)

i.e. it holds that
θ(λj)C = λjθ(λj), j = 1 : n. (5.2.42)

This yields a diagonalization of C, since, by the general theory of orthogonal poly-
nomials (see Theorem 5.2.4) the roots are simple roots, located in the interior of
the smallest interval that contains the weight distribution.

To summarize, we have shown that if C and the Gram matrix G are known,
then cn can be computed by performing the Cholesky decomposition G = RT R
and then solving RT Rcn = ĝn for cn. The zeros of φn+1(x) are then equal to
the eigenvalues of C = (C, cn), or equivalently the eigenvalues of the symmetric
tridiagonal matrix J = RCR−1. This is true for any basis π(x). Note that J can
be computed by solving the matrix equation JR = RC or

RT J = (RC)T . (5.2.43)

Here RT is a lower triangular matrix and the right hand side a lower Hessenberg ma-
trix. This and the tridiagonal structure of J considerably simplifies the calculation
of J .

For the power basis θ(x) we saw in Example 5.2.4 that G is a Hankel matrix.
Hankel matrices play an important role in the classical theory of orthogonal poly-
nomials, Gauss–Christoffel quadrature, the moment problem, continued fractions,
etc. They are less interesting for practical computations since the condition number
of H increases rapidly with n. This is due to the by now familiar fact that, when n
is large, xn can be accurately approximated by a polynomial of lower degree. The
power basis is thus not a good basis for spaces of polynomials. Similarly the mo-
ments for the power basis are not in general a good starting point for the numerical
computation of the matrix J .
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In particular, for the orthonormal basis, for which G = I, and Ĝ = G−1Ĝ = J ,
we obtain

ϕ(λj)J = λjϕ(λj), j = 1 : n. (5.2.44)

where

J =















β1 γ1 0
γ1 β2 γ2

γ2
. . .

. . .
. . . γn−1

0 γn−1 βn















, (5.2.45)

is a symmetric tridiagonal Jacobi matrix with nonzero off-diagonal elements. It
is well known from linear algebra that such a matrix has n real distinct eigenvalues.
Further, the eigenvectors can always be chosen mutually orthogonal.

Setting

Φ = (ϕ(λ1)
T , . . . , ϕ(λn)T ), Φij = (φi−1(λj), Λ = diag (λ1, . . . , λn),

we obtain by (5.2.44) and the symmetry of J the important formula

JΦ = ΦΛ. (5.2.46)

It also follows from (5.2.44) that the equation

xϕ(x)T = Jϕ(x)T + γnφn+1(x)en, en = (0, . . . , 0, 1)T , (5.2.47)

where γn is to be chosen so that ‖φn+1‖ = 1, holds when x = λj , and φn+1(λj) =
0, j = 1 : n. Since the degree of ϕ is less than n, it is easily shown that the
equation (5.2.47) holds for all x. As a by-product we obtain the important three
term recurrence (??)

Let V be an orthogonal matrix that diagonalizes J , i.e.

JV = V Λ, V T V = V V T = I,

where Λ is the diagonal in (5.2.46). It follows that V = ΦD for some diagonal
matrix D = diag (di), and

V = ΦD2ΦT = V V T = I,

that is
n

∑

k=1

φi(λk)d2
kφj(λk) = δij = (φi, φj), i, j = 1 : n.

This equality holds also for i = n + 1, because φn + 1(λk) = 0, for all k, and
(φn+1, φj) = 0, j = 1 : n.

Since every polynomial p of degree less than 2n can be expressed as a linear
combination of polynomials of the form φiφj (in infinitely many ways) it follows
that

n
∑

k=1

d2
kp(λk) =

∫

p(x)w(x) dx, (5.2.48)
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for any polynomial p of degree less than 2n. This yields the Gauss–Christoffel
quadrature rule:

∫

f(x)w(x) dx =

n
∑

k=1

d2
kf(λk) + R, (5.2.49)

where R =
∫

(f(x)−p(x))w(x) dx, for any polynomial p of degree less than 2n, such
that p(λk) = f(λk), k = 1 : n.

The familiar form for the remainder term

R = knf (2n)(ξ)/(2n)!, (5.2.50)

is obtained by choosing a Hermite interpolation polynomial for p and then applying
the mean value theorem. The constant kn is independent of f . The choice f(x) =
A2

nx2n + · · · gives kn = A−2
n . A recurrence relation for the leading coefficient Aj is

obtained by (??). We obtain

A0 = µ
−1/2
0 , Ak+1 = Ak/γk. (5.2.51)

The mean value form for R may be inappropriate, when the interval is infinite.
Some other estimate of the above integral for R may then be more adequate.

A simple formula for the weights d2
k, due to Golub and Welsch [18], is obtained

by matching the first rows of the equality V = ΦD. Since the elements in the first

row are all equal to the constant φ1 = µ
−1/2
0 , we obtain

eT
1 V = µ

−1/2
0 dT , d2

k = µ0v
2
1,k, k = 1 : n. (5.2.52)

The well known fact that the weights are positive and their sum equals µ0, follows
immediately from this simple formula for the weights. We summarize these results
in the following theorem:

Theorem 5.2.7.
Let J be the symmetric tridiagonal n× n matrix that contains the coefficients

in the three term recurrence relation for the orthonormal system of polynomials
associated with the weight function w(x) > 0. Let f be an analytic function in a
domain that contains the spectrum of J .

Then the following concise formula, is exact when f is a polynomial of degree
less than 2n,

1

µ0

∫

f(x)w(x) dx ≈ eT
1 V T f(Λ)V e1, (5.2.53)

where f(Λ) = diag (f(λ1, . . . , f(λn).

Proof. The result follows from the Gauss–Christoffel rule (5.2.49) and (5.2.52).

When the three-term recurrence relation for the orthonormal polynomials as-
sociated with the weight function w(x) is known, the Gauss–Christoffel rule can
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elegantly be obtained as follows. The eigenvalues of J are the nodes of the Gauss–
Christoffel rule and the weights are obtained from (5.2.52) as the first components
of the corresponding eigenvectors.. These quantities can be computed in a stable
and efficient way by the QR-algorithm; see Volume II, Sec. 9.7.4. We remark that
Golub [17] has shown how to extend this scheme to the computation of nodes and
weights for Gauss–Radau and Gauss–Lobatto quadrature rules.

When the coefficients in the three-term relation cannot be obtained by the-
oretical analysis or numerical computation, we consider the matrices C and G as
given data about the basis and weight function. As described above R, cn, and J can
then be computed by means of (5.2.40). The nodes and weights are then computed
according to the previous case. Note that R and J are determined simultaneously
for all k ≤ n; just take the submatrices of the largest ones.

The computations are most straightforward for the power basis, i.e. with the
moments of the weight function as the initial data. Unfortunately, the condition
number of this problem increases rapidly with n, which results in inaccurate nodes
and weights. Nevertheless, as long as the Choleski factorization of the Gram matrix
G does not break down because of a negative pivot, the values of the integral give
by the Gauss–Christoffel formula may be much more accurate than the nodes and
weights obtained.

5.2.4 Symmetric Weight Functions

In many important cases the weight function w(x) is symmetric about the origin.
Then the moments of odd order are zero, and the orthogonal polynomials of odd
(even) degree are odd (even) functions. The eigenvalues will appear in pairs, ±λk.
If n is odd, there is also a simple zero eigenvalue. The weights are symmetric so
that the weights corresponding to the two eigenvalues ±λi are the same.

We shall see that in the symmetric case the eigenvalue problem for the tridi-
agonal matrix J ∈ Rn×n can be reduced to a singular value problem for smaller
bidiagonal matrix B, where

B ∈
{

Rn/2×n/2, if n even;
R(n+1)/2×(n−1)/2, if n odd.

We permute rows and columns in J , by an odd-even permutation, e.g., if n = 7
then (1, 2, 3, 4, 5, 6, 7) 7→ (1, 3, 5, 7, 2, 4, 6), and

J̃ = T−1JT =

(

0 B
BT 0

)

, B =







β1 0 0
β2 β3 0
0 β4 β5

0 0 β6






,

where T be the permutation matrix effecting the odd-even permutation. Then, if the
orthogonal matrix V diagonalizes J , i.e. J = V ΛV T , then Ṽ = T−1V , diagonalizes
J̃ = T T JT , i.e. J̃ = T−1JT = T−1V λV T T . Note that the first row of V is just a
permutation of Ṽ . We can therefore substitute Ṽ for V in equation (5.2.52) that
gives the weights in the Gauss–Christoffel formula.
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The following relationship between the SVD and a Hermitian eigenvalue prob-
lem, exploited by Lanczos [22, Chap. 3] can easily be verified.

Theorem 5.2.8.
Let the singular value decomposition of B ∈ Rm×n (m ≥ n) be B = PΣQT ,

where
Σ = diag (Σ1, 0), Σ1 = diag (σ1, σ2, . . . , σn),

and
P = (P1, P2) ∈ Cm×m, P1 ∈ Cm×n, Q ∈ Cn×n.

Then the symmetric matrix C ∈ R(m+n)×(m+n) has the eigendecomposition

C =

(

0 B
BT 0

)

= V





Σ1 0 0
0 0 0
0 0 −Σ1



 V T , (5.2.54)

where V ∈ is orthogonal

V =
1√
2

(

P1

√
2P2 P1

Q 0 −Q

)T

. (5.2.55)

Hence the eigenvalues of C are ±σ1,±σ2, . . . ,±σr, and zero repeated (m−n) times.

The QR-algorithm for symmetric tridiagonal matrices can be adopted to com-
pute the singular values σi and the first components of the matrix P of singular
vectors of the bidiagonal matrix B; see Vol. II, Sec. 9.7.6.

Review Questions

1. What are orthogonal polynomials? Give a few examples of families of orthog-
onal polynomials together with the three-term recursion formula, which its
members satisfy.

2. Formulate and prove a theorem concerning the location of zeros of orthogonal
polynomials.

3. Give an account of Gauss quadrature formulas: accuracy, how the nodes
and weights are determined. What important properties are satisfied by the
weights?

4. What is the orthogonality property of the Legendre polynomials?

Problems and Computer Exercises

1. Prove that the three-point quadrature formula
∫ 1

−1

f(x) dx ≈ 1

9

(

5f(−
√

3/5) + 8f(0) + 5f(
√

3/5)
)

,
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is exact for polynomials of degree 5. Apply it to the computation of

∫ 1

0

sin x

1 + x
dx,

and estimate the error in the result.

2. (a) Calculate the Hermite polynomials Hn for n ≤ 4 using the recurrence
relation.

(b) Express, conversely, 1, x, x2, x3, x4 in terms of the Hermite polynomials.

3. Determine the orthogonal polynomials φn(x), n = 1, 2, 3, with leading coeffi-
cient 1, for the weight function w(x) = 1 + x2, x ∈ [−1, 1].

(b) Give a two-point Gaussian quadrature formula for integrals of the form

∫ 1

−1

f(x)(1 + x2) dx,

which is exact when f(x) is a polynomial of degree three.

Hint: Either use the method of undetermined coefficients taking advantage of
symmetry, or the three term recurrence relation in Theorem ??.

4. (W. Gautschi) (a) Construct the quadratic polynomial φ2 orthogonal on [0,∞]
with respect to the weight function w(x) = e−x. Hint: Use

∫ ∞
0 tme−t dt = m!.

(b) Obtain the two-point Gauss–Laguerre quadrature formula

∫ ∞

0

f(x)e−x dx = w1f(x1) + w2f(x2) + E2(f),

including a representation for the remainder E2(f).

(c) Apply the formula in (b) to approximate

I =

∫ ∞

0

(x + 1)−1e−x dx.

Use the remainder term to estimate the error, and compare your estimate with
the true error (I = 0.596347361 . . .).

5. Show that the formula

∫ 1

−1

f(x)(1 − x2)−1/2 dx =
π

n

n
∑

k=1

f
(

cos
2k − 1

2n
π
)

is exact for all polynomials of degree 2n− 1.

6. Derive the Gauss–Lobatto quadrature rule in Example 5.2.3, with two interior
points by using the Ansatz

∫ 1

−1

f(x) dx = w1(f(−1) + f(1)) + w2(f(−x1) + f(x1),

and requiring that it be exact for f(x) = 1, x2, x4.
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7. Compute an approximate value of

∫ 1

−1

x4 sin2 πxdx = 2

∫ 1

0

x4 sin2 πxdx,

using the 5 point Gauss–Legendre quadrature rule on [0, 1] for the weight
function w(x) = 1. For nodes and weights see Table 5.2.1. (The true value of
the integral is 0.11407 77897 39689.)

8. Let µj =
∫ b

a xjw(x) dx be the jth moment of the weight distribution w. Show
that the system of equations









µ0 µ1 · · · µn−1

µ1 µ2 · · · µn
...

... · · ·
...

µn−1 µn · · · µ2n−2

















c0

c1
...

cn−1









= −









µn

µn+1

...
µ2n−1









has as solution the coefficient of a polynomial xn +
∑n

j=1 ajx
j−1, which is a

member of the family of orthogonal polynomials associated with the weight
function w.

9. (a) Determine exactly the Lobatto formulas with given nodes at −1 and 1,

(and the remaining nodes free), for the weight functions w(x) = (1 − x2)−
1
2 ,

x ∈ [−1, 1]. Determine for this weight function also the nodes and weights for
the Gauss quadrature formula (i.e. when all nodes are free).

Hint: Set x = cosφ, and formulate equivalent problems on the unit circle.
Note that you obtain (at least) two different discrete orthogonality properties
of the Chebyshev polynomials this way.

(b) Lobatto–Kronrod pairs are useful when a long interval has been divided
into several shorter intervals (cf. Example 5.2.28). Determine Lobatto–

Kronrod pairs (exactly) for w(x) = (1 − x2)−
1
2 .

10. Apply the formulas in Problem 9 to the case w(x) = 1, x ∈ [−1, 1] and some
of the following functions:

(a) f(x) = ekx, k = 1, 2, 4, 8, . . .; (b) f(x) = 1/(k + x), k = 1, 2, 1.1, 1.01;

(c) f(x) = k/(1 + k2x2), k = 1, 4, 16, 64.

Compare the actual errors with the error estimates.

11. Write a Matlab function for the evaluation of the Sievert6 integral,

S(x, θ) =

∫ θ

0

e−x/ cos φ dφ,

for any x ≥ 0, x ≤ θ ≤ 90◦, with at least six decimals relative accuracy. There
may be useful hints in Abramowitz–Stegun [1, § 27.4].

6Sievert was a Swedish radio-physicist, who was so great that doses of radiation are measured
in millisievert, or even microsievert, all over the world.
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5.3 Extrapolation Methods

5.3.1 Euler–Maclaurin Formula

Although Newton–Cotes’ rules of high orders of accuracy are known, they have the
drawback that they do not provide a convenient way of estimating the error. Also,
for high order rules negative weights appear. In this section we will derive formulas
of high order, based on Euler–Maclaurin’s formula (see Sec. 3.5), which do not share
these drawbacks.

According to Theorem 3.5.2, if f ∈ C2r+2[a, b], then

T (a : h : b)f −
∫ b

a

f(x) dx =
h2

12

(

f ′(b) − f ′(a)
)

− h4

720

(

f ′′′(b) − f ′′′(a)
)

+ . . . +
B2rh

2r

(2r)!

(

f (2r−1)(b) − f (2r−1)(a)
)

+ R2r+2(a, h, b)f.

Here xi = a + ih, xn = b, and T (a : h : b)f denotes the trapezoidal sum

T (a : h : b)f =
n

∑

i=1

h

2

(

f(xi−1) + f(xi)
)

.

The remainder R2r+2(a, h, b)f is O(h2r+2) is represented by an integral with a kernel
of constant sign in (3.5.8). The estimation of the remainder is very simple in certain
important particular cases. Note that although the expansion contains derivatives
at the boundary points only, the remainder requires tha |f (2r+2)| is integrable on
the interval [a, b].

One easily shows the following simple and useful relation of the trapezoidal
sum to the midpoint sum

R(a, h, b)f =

n
∑

i=1

hf(xi−1/2) = 2T (a : 1
2h : b)f − T (a : h : b)f. (5.3.1)

From this one easily derives the expansion

R(a, h, b)f =

∫ b

a

f(x) dx − h2

24

(

f ′(b) − f ′(a)
)

+
7h4

5760

(

f ′′′(b) − f ′′′(a)
)

+ . . . +
( 1

22r−1
− 1

)B2rh
2r

(2r)!

(

f (2r−1)(b) − f (2r−1)(a)
)

+ . . . ,

which has the same relation to the midpoint sum as the Euler–Maclaurin Formula
has to the trapezoidal sum.

The Euler–Maclaurin formulas can be used for highly accurate numerical in-
tegration when the values of derivatives of f are known at x = a and x = b. It
also possible to use difference approximations to estimate the derivatives needed.
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A variant with uncentered differences, is Gregory’s7 quadrature formula

∫ b

a

f(x) dx = h
En − 1

hD
f0 = h

(

fn

− ln(1 −∇)
− f0

ln(1 + ∆)

)

= T (a; h; b) + h

∞
∑

j=1

aj+1(∇jfn + (−∆)jf0),

where T (a : h : b) is the trapezoidal sum, as defined in the Euler–Maclaurin Formula.
The operator expansion must be truncated at ∇kfn and ∆lf0, where k ≤ n, l ≤ n.
Concerning the interpretation of ∇−1 and ∆−1, see Problem 3.2.13(d).

5.3.2 Romberg’s Method

The Euler–Maclaurin formula is the theoretical basis for the application of repeated
Richardson extrapolation (see Sec. 3.5.2) to the results of the trapezoidal rule. This
method, introduced in [29], is known as Romberg’s method. It is one of the
most widely used methods, because it allows a simple strategy for the automatic
determination of a suitable step size and order. A thorough analysis of Romberg’s
method was carried out by Bauer, Rutishauser and Stiefel [2, 1963] that we shall
refer to for proof details.

Let f ∈ C2m+2[a, b] be a real function to be integrated over [a, b]. Set xi =
a + ih, xn = b, and denote by

T (h)f =
n

∑

i=1

h

2

(

f(xi−1) + f(xi)
)

.

the trapezoidal. Then by the Euler–Maclaurin’s formula it follows that

T (h) −
∫ b

a

f(x) dx = c2h
2 + c4h

4 + · · · + cmh2m + τm+1(h)h2m+2,

where ck = 0 if f ∈ Pk. This suggests the use of Repeated Richardson extrapolation
applied to the trapezoidal sums computed with step lengths

h0 =
b − a

n0
, h1 =

h0

n0
, . . . , hm =

hm−1

nm
, (5.3.2)

where n1, n2, . . . , nm are strictly increasing positive integers. Romberg used the
special sequence

hi = (b − a)/2i.

In this case Richardson extrapolation can be used with headings ∆/3, ∆/15, ∆/63, . . ..

7James Gregory (1638–1675), Scotch mathematician. This formula was discovered long before
the Euler–Maclaurin formula, and seems to have been primarily used for numerical quadrature.
It can be used also for summation, but the variants with central differences are typically more
efficient.
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By (5.3.1) we have the relation

T (h/2) =
1

2
(T (h) + R(h)), R(h)f =

n
∑

i=1

hf(xi−1/2) (5.3.3)

where R(h) is he midpoint sum. This makes it possible to reuse the function values
that have been computed earlier.

For practical numerical calculations the values of the coefficients ck are not
needed, but they are used, e.g., in the derivation of an error bound, see Theo-
rem 5.3.1. It is also important to remember that the coefficients depend on deriva-
tives of increasing order; the success of repeated Richardson extrapolations is thus
related to the behavior in [a, b] of the higher derivatives of the integrand.

According to the discussion of repeated Richardson extrapolation in Sec. 3.5.2,
one continues the process, until two values in the same row agree to the desired
accuracy. If no other error estimate is available, mink |Tm,k − Tm,k−1| is usually
chosen as an estimate of the truncation error, even though it is usually a strong
overestimate. A feature of the Romberg algorithm is that it also contains exits with
lower accuracy at a lower cost.

If the use of the basic asymptotic expansion is doubtful, then the uppermost
diagonal of the extrapolation scheme should be ignored, except for its element in
the first column. Such a case is detected by inspection of the difference quotients in
a column. If for some k, where Tk+2,k has been computed and the modulus of the
relative irregular error of Tk+2,k−Tk+1,k is less than (say) 20%, and, most important,
the difference quotient (Tk+1,k −Tk,k)/(Tk+2,k −Tk+1,k) is is very different from its
theoretical value qpk , then the uppermost diagonal is to be ignored (except for its
first element).

Example 5.3.1. A numerical illustration to Romberg’s method.

Use Romberg’s method to compute the integral (cf. Example 5.1.1)

∫ 0.8

0

sinx

x
dx.

The correct value, to ten decimals, is 0.7720957855.
The midpoint and trapezoidal sums computed using IEEE double precision

are given below

h R(h)f T (h)f

0.8 0.77883 66846 1730 0.75867 80454 4976
0.4 0.77376 69771 8681 0.76875 73650 3353
0.2 0.77251 27161 1197 0.77126 21711 1017
0.1 0.77188 74436 5335

It can be verified that in this example the error is approximately proportional to
h2 for both R(h) and T (h). We estimate the error in T (0.1) to be 1

36.26 · 10−4 ≤
2.1 · 10−4.
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The trapezoidal sums are then copied to the first column of the Romberg
scheme, and repeated extrapolation is applied using the following Matlab program
with tol = 0.5 · 10−10 and q = 5.

function [I, T, md] = romberg(f,a,b,tol,q)

%

% Romberg’s method for computing the integral of f over [a,b].

% Stop when two adjacent values in the same column differ by

% less than tol.

%

T = zeros(q+2,q+1);

h = b - a; m = 1; P = 1;

T(1,1) = h*(feval(f,a) + feval(f,b))/2;

for i = 2:q+1

h = h/2; m = 2*m;

% Compute midpoint sum

s = 0;

for j = 1:2:m

s = s + feval(f, a+j*h)

end

R(i-1,1) = 2*h*s;

T(i,1) = (T(i-1,1) + R(i-1,1))/2;

% Richardson extrapolation

jmax = min(i-1,q);

for j = 1:jmax

T(i,j+1) = T(i,j) + (T(i,j) - T(i-1,j))/(2^(2*j) - 1)

end

% Check accuracy

[md, jb] = min(abs(T(i,1:jmax) - T(i-1,1:jmax)));

I = T(i,jb);

if md <= tol

T = T(1:i,1:jmax+1); % return active part of T

return

end

end

\vspace{-4mm}

The result is given in the table below:

m Tm1 ∆/3 Tm2 ∆/15 Tm3 T44

1 0.7586780454
33597732

2 0.7687573650 0.7721171382
8349354 13355

3 0.7712621711 0.7720971065 0.7720957710
2084242 826

4 0.7718874437 0.7720958678 0.7720957853 0.7720957855
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Ti1 Ti2 Ti3 Ti4 Ti5

0.758678045450
0.768757365034 0.772117138228
0.771262171110 0.772097106469 0.772095771018
0.771887443653 0.772095867834 0.772095785259 0.772095785485
0.772043703883 0.772095790626 0.772095785479 0.772095785482 0.772095785482

Since none of the differences |T44 − T43| = 2 · 10−10, the termination criterion
mentioned above requires that the row with m = 5 must be computed. Then, the
termination criterion is satisfied with a wide margin, since |T55 −T54| = 2.8 · 10−12,
and the irregular errors are less than 10−12. T55 is even better than this error
bound indicates; the correct result agrees with T55 = 0.772095785482 to all twelve
displayed decimal places.

In cases where the cost of evaluating F (h) is proportional to 1/h, the standard
sequence

hi = (b − a)/ni, with ni = {1, 2, 4, 8, 16. . . .}
has the drawback that step sizes decrease rapidly. Bulirsch [4] has proposed the
alternative sequence

ni = {1, 2, 3, 4, 6, 8, 12, 16, 24, . . .},

for which similar savings can be realized.
In the general case, with Ti0 = T (hi) and step lengths given by (5.3.2), re-

peated Richardson extrapolation using the Neville interpolation scheme takes the
form

Tik = Ti,k−1 +
Ti,k−1 − Ti−1,k−1

(hi−k/hi)2 − 1
, 1 ≤ k ≤ i ≤ m.

Sometimes rational extrapolation is preferred. This gives rise to a recursion of
similar form (see Stoer and Bulirsch [32, Sec. 3.4])

Tik = Ti,k−1 +
Ti,k−1 − Ti−1,k−1

(hi−k/hi)2
[

1 − Ti,k−1 − Ti−1,k−1

Ti,k−1 − Ti−1,k−2

]

− 1

, 1 ≤ k ≤ i ≤ m.

Theorem 5.3.1. Error bound for Romberg’s method.

The items Tmk in Romberg’s method are estimates of the integral
∫ a+h

a
f(x) dx,

that can be expressed as a linear functional,

Tmk = (b − a)
n

∑

j=1

α
(k)
m,jf(a + jh), (5.3.4)

where n = 2m−1, h = (b − a)/n, and

n
∑

j=1

α
(k)
m,j = 1, α

(k)
m,j > 0. (5.3.5)
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The remainder functional for Tmk is zero for f ∈ P2k, and its Peano kernel is
positive in the interval (a, b). The truncation error of Tmk reads

Tmk −
∫ b

a

f(x)dx = rkh2k(b − a)f (2k)(1
2 (a + b)) + O(h2k+2(b − a)f (2k+2))

= rkh2k(b − a)f (2k)(ξ), ξ ∈ (a, b), (5.3.6)

rk = 2k(k−1)|B2k|/(2k)!, h = 21−m(b − a).

Proof. Sketch: Equation (5.3.4) follows directly from the construction of the
Romberg scheme. (It is for theoretical use only; the recursion formulas are bet-
ter for practical use.) The first formula in (5.3.5) holds, because Tmk is exact if
f = 1. The second formula is easily proved for low values of k. The general proof
is more complicated; see [2, Theorem 4].

The Peano kernel for m = k = 1 (trapezoidal rule) was constructed in Sec. 3.2.
For m = k = 2 (Simpson’s rule), see Sec. 5.1.2. The general case is more compli-
cated. Recall that, by Corollary 3.3.9 of Peano’s Remainder Theorem, a remainder
formula with a mean value ξ ∈ (a, a+H), exists iff the Peano kernel does not change
sign.

Bauer, Rutishauser and Stiefel [2, pp. 207–210], constructed a recursion for-
mula for the kernels, and succeeded in proving that they are all positive, by an
ingenious use of the recursion. The expression for rk is also derived there, although
with a different notation; see also Problem 3.

From (5.3.5) it follows that if the magnitude of the irregular error in f(a+ jh)
is at most ǫ, then the magnitude of the inherited irregular error in Tmk is at most
ǫ(b − a).

There is another way of finding rk. Note that for each value of k, the error of
Tkk for f(x) = x2k can be determined numerically. Then rk can be obtained from
(5.3.6). Tmk is the same formula as Tkk, although with a different h.

Sometimes several of the uppermost diagonals are to be ignored. It was men-
tioned that for the integration of a class of periodic functions the trapezoidal rule
is superconvergent. In this case all the difference quotients in the first column are
much larger than qp1 = q2. According to the rule just formulated, every element of
the Romberg scheme, outside the first column should be ignored. It is all right; in
superconvergent cases Romberg’s method is of no use; it deteriorates the excellent
results that the trapezoidal rule has produced. The value Tm,k is usually accepted
as an estimate of a0 when |Tm,k − Tm−1,k| < δ, where δ is the permissible error.
Thus one extrapolates until two values in the same column agree to the desired
accuracy. In most situations, the magnitude of the difference between two values
in the same column gives, if h is sufficiently small, with a large margin a bound
for the truncation error in the lower of the two values. One cannot, however, get
a guaranteed error bound in all situations. Often instead the subdiagonal error
criterion |Tm,m−1 − Tm,m| < δ is used, and Tmm taken as the numerical result.

The remainder for the closed Newton–Cotes formulas (with an odd number of
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points, i.e., for k > 0 in our case), reads

dkh2k+2(b − a)f (2k+2)(ξ);

for k = 0 we have the trapezoidal rule with remainder d0h
2Hf (2)(ξ). It follows

that for k = {0, 1, 2} both methods give, with k′ = {2, 3, 5}, function values, exact
results for f ∈ Pk′ .8

By working algebraically in the Romberg scheme, we obtain the following
relations between Romberg’s and Newton–Cotes’ methods:

T11 = 1
2 (b − a) (f(a) + f(b)) ,

T21 =
1

4
(b − a)

(

f(a) + f(1
2 (a + b)) + f(1

2 (a + b)) + f(b)
)

= 1
2 (b − a)

(

1
2f(a) + f(1

2 (a + b)) + 1
2f(b)

)

,

T22 =
1

3
(4T21 − T11) =

1

6
(b − a)

(

f(a) + 4f(1
2 (a + b)) + f(b)

)

. (5.3.7)

We see that T22 is the same as Simpson’s formula. It can also be shown in this way
that T33 is the same as the five point closed Newton–Cotes formula.

Table 5.3.1. Data concerning some Romberg and Newton–Cotes formulas.

order order error const. error const.

m = k n Tkk Cn rk cn

1 1 2 2 1/12 1/12

2 2 4 4 1/180 1/180

3 4 6 6 2/945 2/945

4 8 8 10 16/4725 296/467775

This equivalence can also be proved by the following argument. By Corol-
lary 3.3.8, there is only one linear combination of the values of the function f at

n + 1 given points that can yield
∫ b

a f(x) dx exactly for all polynomials f ∈ Pn+1.
It follows that the methods of Cotes and Romberg Tkk are identical for k = 0, 1, 2,
but for k > 2, 2k + 2 > 2k + 2, and the methods are not identical. For k = 3 (9
function values), Cotes is exact in P10, while T33 is exact in P8. For k = 4 (17
function values), Cotes is exact in P18, while T44 is exact in P10; see Table 5.3.1.
This sounds like an advantage for Cotes, but one has to be sceptical about formulas
that use equidistant points in polynomial approximation of very high degree; see
Problem 5 and the discussion of Runge’s phenomena in Chapter 4.

Note that the remainder of T44 is

r4h
8(b − a)f (8)(ξ) ≈ r4(b − a)∆8f(a),

where ∆8f(a) uses the same function values as T44 and C8. So we can use
r4(b − a)∆8f(a) as an asymptotically correct error estimate for T44.

8For k = 2, 3, the results are exact even in Pk′+1, due to the symmetry discussed in Example
3.2.7.
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When the values in a row of a Richardson scheme converge fast, it is worth to
try, e.g., Aitken extrapolation to this row, in order to improve the error estimate of
the diagonal element Tm,m. It is important that the irregular errors of the values
are small compared to the last Richardson correction. The theoretical support to
this is usually rather poor, and the row should therefore contain at least four items,
so that one can obtain two Aitken accelerated values. These should not be accepted
as results, but they provide two error estimates for Tm,m. The largest absolute value
of these error estimates indicates the order of magnitude of the error of Tm,m, but
it is not a guaranteed error bound. If you want to calculate the indefinite integral
of f(x), it may be irritating that the improvements are made only at the endpoints;
H may be too big for the application of interpolation of the results afterwards or
for graphical output. An idea how to get denser output is developed in [23].

If the function to be integrated has a singularity in the interval. then the
expansion no longer is a series in h2 and Romberg’s metod has to be modified.

For example, if the integrand f(x) has an algebraic end-point singularity,

f(x) = xβh(x), −1 < β ≤ 0,

where h(x) ∈ Cp+1[a, b], then an asymptotic expansion of the form

R =

p
∑

q=1

aqk
−β−q +

p
∑

q=1

bqk
−q + O(k−p−1) (5.3.8)

can be shown to hold for a trapezoidal sum. Similar, but more complicated, expan-
sions can be obtained for other classes of singularities.

The case when the error expansion for the trapezoidal sum has the form

T (h) = I +

n
∑

m=1

amem(h) + Rn(h), (5.3.9)

where ej(h), j = 1, 2, . . . are known functions satisfying limh→0 em+1(h)/em(h) = 0
and the error term satisfies Rn(h) = O(en+1(h)) has been treated by H̊avie [19].

Suppose we have computed the trapezoidal sums T
(k)
0 = T (hk), for a sequence

of steplengths h0 > h1 > h2 · · · > hn > 0. We want to compute the “best” possible

approximation T
(0)
n to I = limh→0 T (h), defined by the equations

T (h) = T (0)
n +

n
∑

m=1

a′
mem(hk), k = 0 : n. (5.3.10)

H̊avie showed how the approximations can be computed by a special recurrence
relation. Set

E
(n)
1 =

e1(hn+1)Tn − e1(hn)Tn+1

e1(hn+1) − e1(hn)
.

Replacing Tn and Tn+1 by their expansion, we obtain

e
(n)
1,i =

e1(hn+1)ei(hn) − e1(hn)ei(hn+1)

e1(hn+1) − e1(hn)
.



48 Chapter 5. Numerical Integration

The same process can be repeated for eliminating e
(n)
1,2 in the expansion of E

(n)
1 , and

so on. This gives the E-algorithm

E
(n)
k =

e
(n+1)
k−1.kE

(n)
k−1 − e

(n)
k−1.kE

(n+1)
k−1

e
(n+1)
k−1.k − e

(n)
k−1.k

. (5.3.11)

The auxiliary quantities e
(n)
k.i are recursively computed by a similar rule

e
(n)
k,i =

e
(n+1)
k−1.ke

(n)
k−1,i − e

(n)
k−1.ke

(n+1)
k−1,i

e
(n+1)
k−1.k − e

(n)
k−1.k

, (5.3.12)

with e
(n)
0.i = ei(hn). The algorithm can be interpreted in terms of Gaussian elimi-

nation for solving the system

E
(n)
k + b1g(hn+i) + · · · + bkg(hn+i) = Tn+i, i = 0 : k,

for the unknown E
(n)
k .

5.3.3 The Epsilon Algorithm

Richardson extrapolation as used in Romberg’s method can only be used to ac-
celerate the rate of convergence if the exponents in the asymptotic expansions are
known explicitly. In cases when the exponents are unknown a nonlinear extrap-
olation scheme, like the ǫ-algorithm (see Sec. 3.3.5) has to be used. This is the
most important convergence acceleration scheme besides Richardson extrapolation
in numerical quadrature.

In the ǫ algorithm a two-dimensional array of numbers ǫ
(p)
k is computed by

the recurrence relation,

ǫ
(p)
k+1 = ǫ

(p+1)
k−1 +

1

ǫ
(p+1)
k − ǫ

(p)
k

. (5.3.13)

using the following boundary conditions

ǫ
(p)
−1 = 0, p = 1, 2, 3, . . . ,

ǫ
(p)
0 = sp, p = 0, 1, 2, . . .

Example 5.3.2.
Consider the integral

∫ √
xdx = 2/3.

If Romberg’s method is applied to this integral the convergence is very slow. In
contrast the ǫ-algorithm is well adapted to accelerating convergence when an asymp-
totic error expansion of the form (5.3.8) holds.



5.3. Extrapolation Methods 49

In the figure below the results from Romberg’s method applied to the trape-
zoidal rule for. This is compared with the results from applying the ǫ-algorithm to

the same trapezoidal sums used in Romberg’s method. Already for ǫ
(0)
5 the order of

magnitude of the error is the same as the accumulated rounding error using IEEE
double precision.

5.3.4 Infinite Intervals

In general the trapezoidal rule is second order accurate, unless f ′(a) = f ′(b), but
there exist interesting exceptions. Suppose that the function f is infinitely differen-
tiable for x ∈ R, and that f has [a, b] as an interval of periodicity, i.e.,

f(x + (b − a)) = f(x), ∀ x ∈ R.

Then f (k)(b) = f (k)(a), for k = 0, 1, 2, . . ., hence every term in the Euler–Maclaurin
expansion is zero for the integral over the whole period [a, b]. One could be led
to believe that the trapezoidal rule gives the exact value of the integral, but this
is usually not the case; for most periodic functions f , limr→∞ R2r+2f 6= 0; the
expansion converges, of course, though not necessarily to the correct result.

On the other hand, the convergence as h → 0 for a fixed (though arbitrary) r
is a different story; the error bound (5.3.6) shows that

|R2r+2(a, h, b)f | = O(h2r+2).

Since r is arbitrary, this means that for this class of functions, the trapezoidal
error tends to zero faster than any power of h, as h → 0 . We may call this
superconvergence. The application of the trapezoidal rule to an integral over
[0,∞) of a function f ∈ C∞(0,∞) often yields similar features, sometimes even
more striking.

Suppose that the periodic function f(z), z = x + iy, is analytic in a strip,
|y| < c, around the real axis. It can then be shown that the error of the trapezoidal
rule is O(e−η/h) as h ↓ 0; η is related to the width of the strip. A similar result will
be obtained in Example 5.3.3, for an annulus instead of a strip.

As a rule, this discussion does not apply to periodic functions which are defined
by periodic continuation of a function originally defined on [a, b] (like the Bernoulli
functions). They usually become non-analytic at a and b, and at all points a + (b−
a)n, n = 0,±1,±2, . . ..

The Poisson summation formula is, even better than the Euler–Maclaurin
formula for the quantitative study of the trapezoidal truncation error on an infinite
interval. For convenient reference we now formulate the following surprising result:

Theorem 5.3.2. Suppose that the trapezoidal rule (or, equivalently, the rectangle
rule) is applied with constant step size h to

∫ ∞
−∞ f(x) dx. The Fourier transform of

f reads

f̂(ω) =

∫ ∞

−∞
f(x)e−iωt dt.
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Then the integration error decreases like 2f̂(2π/h) as h ↓ 0.

Example 5.3.3.
For the normal probability density, we have

f(x) =
1

σ
√

2π
e−

1
2 (t/σ)2 , f̂(ω) = e−

1
2 (ωσ)2 .

The integration error is thus approximately 2 exp(−2(πσ/h)2). Roughly speaking,
the number of correct digits is doubled if h is divided by

√
2, e.g., the error is

approximately 5.4 10−9 for h = σ, and 1.4 10−17 for h = σ/
√

2.

The application of the trapezoidal rule to an integral over [0,∞) of a function
f ∈ C∞(0,∞) often yields similar features, sometimes even more striking. Suppose
that, for k = 1, 2, 3, . . .,

f (2k−1)(0) = 0 and f (2k−1)(x) → 0, x → ∞,

and
∫ ∞
0 |f (2k)(x)| dx < ∞. (Note that for any function g ∈ C∞(−∞,∞) the

function f(x) = g(x) + g(−x) satisfies such conditions at the origin.) Then all
terms of the Euler–Maclaurin expansion are zero, and one can be misled to believe
that the trapezoidal sum gives

∫ ∞
0

f(x) dx exactly for any step size h! We have
already seen an example of this in Example 3.5.3. See also Theorem 5.3.2 and
Problem 3. The explanation is that the remainder R2r+2(a, h,∞) will typically not
tend to zero, as r → ∞ for fixed h. On the other hand: if we consider the behavior
of the truncation error as h → 0 for given r, we find that it is o(h2r) for any r, just
like the case of a periodic unction.

For a finite subinterval of [0,∞), however, the remainder is still typically
O(h2), and for each step the remainder is typically O(h3). So, there is an enormous
cancellation of the local truncation errors, when a C∞-function, with vanishing
odd-order derivatives at the origin, is integrated by the trapezoidal rule over [0,∞).

Example 5.3.4.
Infinite intervals of integration occur often in practical problems. For integrals

of the form
∫ ∞
−∞ f(x) dx, the trapezoidal rule (or the midpoint rule) often gives good

accuracy if one integrates over the interval [−R1, R2], assuming that f(x) and its
lower derivatives are small for x ≤ −R1 and x ≥ R2.

The correct value to six decimal digits of the integral
∫ ∞
−∞ e−x2

dx is π1/2 =

1.772454. For x± 4, the integrand is less than 0.5 10−6. Using the trapezoidal rule
for the integral over [−4, 4] we get the estimate 1.772453 with h = 1/2, an amazingly
good result. (The values of the function have been taken from a six-place table.)
The truncation error in the value of the integral is here less than 1/10,000 of the
truncation error in the largest term of the trapezoidal sum—a superb example of
“cancellation of truncation error”. The error that is which is committed when we
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replace ∞ by 4 can be estimated in the following way:

|R| = 2

∫ ∞

4

e−x2

dx = 2

∫ ∞

16

e−t0.5t−1/2 dt

= 2 · 0.516−1/2

∫ ∞

16

e−t0.5 dt =
1

4
e−16 < 10−7.

5.3.5 Adaptive Quadrature

It is often the case that the integrand f(x) (or its derivatives) has strongly varying
orders of magnitude in different parts of the interval of integration [a, b]. One should
then choose different step sizes in different parts of the integration interval. Since

∫ b

a

=

∫ c1

a

+

∫ c2

c1

+ · · ·+
∫ b

c1

,

the integrals on the right hand side can be treated as independent subproblems.
Indeed, it is possible to perform the subdivision recursively in several levels. In
adaptive quadrature methods step sizes are automatically adapts so that the
approximation satisfies a prescribed error tolerance

∣

∣

∣I −
∫ b

a

f(x) dx
∣

∣

∣ ≤ ǫ. (5.3.14)

We first remark that evaluation of the integral (??) is equivalent to solving

dy

dx
= f(x), y(a) = 0, (5.3.15)

and taking I = y(b). This is a special case of an initial value problem for an or-
dinary differential equation, and the methods described in Chapter 13 can be used
to solve the problem (5.3.15). These algorithms have been developed to include so-
phisticated techniques for adaptively choosing step size and order in the integration
(see Sec. 13.2), and may therefore be a good choice for handling difficult cases.

We consider first a fixed order adaptive method based on Simpson’s rule. For
a subinterval [a, b], set h=(b − a) and compute the trapezoidal approximations

T00 = T (h), T10 = T (h/2), T20 = T (h/4).

The extrapolated values

T11 = (4T10 − T00)/3, T21 = (4T20 − T10)/3,

are equivalent to (the composite) Simpson’s rule with step length h/2 and h/4,
respectively. We can also calculate

T22 = (16T21 − T11)/15,
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which is Milne’s method with step length h/4 with remainder equal to
(2/945)(h/4)6(b − a)f (6)(ξ).

For T22 we use the error estimate Rj = |T22 − T21|, which often is a crude
overestimate.

We accept the approximation Ij if

|T21 − T11| <
hjǫ

b − a
, (5.3.16)

that is we require the error to be less than ǫ/(b − a) per unit step. Otherwise we
reject the approximation, and subdivide the interval in two intervals [aj,

1
2 (aj +bj)],

[ 12 (aj + bj), bj ]. The same rule is now applied to these two subintervals.
Note that if the function values computed previously are we have saved, these

can be reused for the new intervals. Only We start with one interval [a, b] and
carry on subdivisions until the error criterion in (5.3.16) is satisfied for all intervals.
Since the total error is the sum of errors for all subintervals we then have the error
estimate

RT <
∑

j

hjǫ

b − a
= ǫ

as required.
Many adaptive quadrature schemes exits. Here we shall only illustrate one

simple scheme based on a five point closed Newton–Cotes rule, which applies bisec-
tion in a locally adaptive strategy. All function evaluations contribute to the final
estimate.

Algorithm 5.3.1 Adaptive Simpson.

Let f be a given function to be integrated over [a, b] The algorithm adaptsimp uses a
recursive to compute an approximation with an error less than a specified tolerance
τ > 0. The parameter is is a crude a priori estimation of I, used in the stopping
criterion.

function [I,nf] = adaptsimp(f,a,b,tol);

% ADAPTSIMP computes the integral of the

% function vector valued function f over [a,b];

% tol is the desired absolute accuracy

% nf is the number of function evaluations

%

% Initial Simpson approximation

ff = feval(f,[a, (a+b)/2, b]); nf = 3;

I1 = (b - a)*[1, 4, 1]*ff’/6;

% Recursive computation

[I,nf] = adaptrec(f,a,b,ff,I1,tol,nf);

function [I,nf] = adaptrec(f,a,b,ff,I1,tol,nf);

h = (b - a)/2;

fm = feval(f, [a + h/2, b - h/2]); nf = nf + 2;
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% Simpson approximations from left and right subinterval

fL = [ff(1); fm(1); ff(2)];

fR = [ff(2); fm(2); ff(3)];

IL = h*[1, 4, 1]*fL/6;

IR = h*[1, 4, 1]*fR/6;;

% Compute Extrapolated approximation

I2 = IL + IR;

I = I2 + (I2 - I1)/15;

if abs(I - I2) > tol

% Refine both subintervals

[IL,nf] = adaptrec(f,a,a+h,fL,IL,tol/2,nf);

[IR,nf] = adaptrec(f,b-h,b,fR,IR,tol/2,nf);

I = IL + IR;!

end

In many situations it might be preferable to specify a relative error tolerance

tol = η
∣

∣

∣

∫ b

a

f(x) dx
∣

∣

∣.

Note that in a locally adaptive algorithm using a recursive partitioning scheme,
the subintervals are processed from left to right until the integral over each subin-
terval satisfies some error requirement. This means that an a priori initial estimate
of the whole integral, needed for use in a relative local error estimate cannot be up-
dated until all subintervals are processed and the computation is finished. Hence,
if a relative tolerance is specified then a estimate of the integral is needed before
the recursion starts. This is complicated by the fact that the initial estimate might
be zero, e.g. if a periodic integrand is sampled at equidistant intervals. Hence a
combination of relative and absolute criterion might be preferable.

Example 5.3.5.
This algorithm was used to compute the integral

∫ 4

−4

dx

1 + x2
= 2.65163532733607.

with an absolute tolerance 10−p, p = 4, 5, 6. The following approximations were
obtained.

I tol n error
2.65162 50211 10−4 41 1.0 10−5

2.65163 52064 10−5 81 1.2 10−7

2.65163 5327353 10−6 153 −1.7 10−11

Note that the actual error is much smaller than the required tolerance.

The possibility that a user might try to integrate a non-integrable function
(e.g., f(x) = x−1 on [0, 1]) cannot be neglected. In principle it is not possible to
decide whether or not a function f(x) is integrable on the basis of a finite sample
f(x1), . . . , f(xN ) of function values. Therefore it is necessary to impose
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1. an upper limit on the computational effort, i.e. the number of function eval-
uation.

2. a lower limit on the size of the subregions

This means that premature termination may occur even when the function is close
to being non-integrable, e.g., f(x) = x−0.99.

So far we have considered adaptive routines, which use fixed quadrature rules
on each subinterval but where the partition of the interval depends on the integrand.
Such an algorithm is said to be partition adaptive. We can also consider doubly
adaptive integration algorithms. These can choose from a sequence of increasingly
higher order rules to be applied to the current subinterval. Such algorithms uses a
selection criterion to decide to decide at each stage whether to subdivide the current
subinterval or to apply a higher order rule. Doubly adaptive routines copes more
efficiently with smooth integrands.

Many variations on the simple scheme outlined above are possible. For exam-
ple, we could base the method on a higher order Romberg scheme, or even try to
choose an optimal order for each subinterval. Adaptive methods work even when
the integrand f(x) is badly behaved. However, if f has singularities or unbounded
derivatives, the error criterion may never be satisfied. For guard against such cases
it is necessary to include some bound of the number of recursion levels that are
allowed. It should be kept in mind that although adaptive quadrature algorithms
are convenient to use they are in general less efficient than methods which have
been specially adapted for a particular problem.

A collection of computer subroutines for adaptive quadrature is given by
Piessens et al. [28]. We finally warn the reader that no automatic quadrature

routine can be guaranteed always to work. Indeed any estimate of
∫ b

a
f(x) dx based

solely on the value of f(x) on finitely many points can fail. The integrand f(x)
may, for example, be nonzero only on a small subset of [a, b]. An adaptive quadra-
ture rule based only on samples f(x) in a finite number of points theoretically may
return the value zero in such a case!

Review Questions

1. Give an account of the theoretical background of Romberg’s method and its
use.

2. Romberg’s method uses extrapolation of a sequence of trapezoidal approxi-
mations computed for a sequence of step sizes h0, h1, h2, . . . . What sequences
have been suggested and what are their relative merits?

Problems and Computer Exercises

1. Is it true that (the short version of) Simpson’s formula is a particular case of
Gregory’s formula? (Simpson lived 1710-1761.)
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2. Use Romberg’s method to compute the integral
∫ 4

0
f(x) dx, using the following

(correctly rounded) values of f(x). Need all the values be used?

x 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

f(x) −4271 −2522 −499 1795 4358 7187 10279 13633 17247

3. (a) Suppose that the form of the error of Romberg’s method is known, but
the error constant rk is not known. Determine rk numerically for K = 3 and
k = 4, by computing the Romberg scheme for f(x) = x2k.

(b) Prove the formula for the error constant of Romberg’s method.

4. Compute by the Euler–Maclaurin formula, or rather the trapezoidal rule,

(a)

∫ ∞

0

e−x2/2dx, (b)

∫ ∞

0

dx

cosh(πx)
,

as accurately as you can with the normal precision of your computer (or soft-
ware). Then find out empirically how the error depends on h. Make semi-
logarithmic plots on the same screen. How long range of integration do you
need?
goodbreak

5. (a) Compute
∫ ∞
1

(1 + x2)−1 dx. In the notation of Example 5.3.5, compute
∫ 2

1 ,
∫ 4

2 ,
∫ 8

4 , . . .; choose yourself where to stop. Use, e.g., Aitken acceleration

to find
∫ ∞
1

. Compare with the exact result; and think of an error estimate
that can be used if the exact result is not known.

(b)Romberg+Aitken Treat in the same way
∫ ∞
1

1√
x+x3

. Compare the compu-

tational effort for the computation of the tail
∫ ∞

R by acceleration and by series
expansion with the same accuracy.

6. Compute the integral
1

2π

∫ 2π

0

e
1√
2

sin x
dx

by the trapezoidal rule, using h = π/2 and h = π/4 (for hand-held calculator).
Continue on a computer with smaller values of h, until the error is on the level
of the rounding errors. Observe how the number of correct digits vary with
h? Notice that Romberg is of no use in this problem.

7. (a) Show that the trapezoidal rule, with h = 2π/(n + 1), is exact for all
trigonometric polynomials of period 2π—i.e., for functions of the type

n
∑

k=−n

ckeikt, i2 = −1.

—when it is used for integration over a whole period.

(b) Show that if f(x) can be approximated by a trigonometric polynomial
of degree n so that the magnitude of the error is less than ǫ, in the interval
(0, 2π), then the error with the use of the trapezoidal rule with h = 2π/(n+1)
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on the integral (2π)−1
∫ 2π

0
f(x) dx is less than 2ǫ.

(c) Use the above to explain the sensationally good result in Problem 2 above,
when h = π/4.

Hint: First estimate how well the function g(x) = ex/
√

2 can be approxi-
mated by a polynomial in P8 for x ∈ [−1, 1]. The estimate found by the
truncated Maclaurin expansion is not quite good enough. Theorem 3.1.5 pro-
vides a sharper estimate with an appropriate choice of R; remember Scylla
and Charybdis.

8. (J. N. Lyness) The integral

I(f, g) =

∫ nh

0

f(x)g′(x) dx (5.3.17)

is called a Stieltjes integral. An approximation related to the trapezoidal
rule is

Sm = 1
2

n−1
∑

j=0

(

f(jh) + f((j + 1)h))(g((j + 1)h) − (g(jh)
)

,

which requires 2(m + 1) function evaluations. Similarly an analogue to the
“mid-point rule” is

Rm = 1
2

n−1
∑

j=0

′′f(jh)
(

g((j + 1)h) − (g((j − 1)h)
)

,

where the double prime on the summation indicates that the extreme values
j = 0 and j = m are assigned a weighting factor 1

2 . This rule requires 2(m+2)
function evaluations, two of which lie outside the interval of integration.
(a) Show that the difference S − m − Rm is of order O(h2).

9. Apply the programs handed out for Romberg’s method (also longromb) and
repeated averages on the integral

∫ 1000

0

x cos(x3) dx.

Try to obtain the results with 10 decimal places.

5.4 Multiple Integrals

5.4.1 Product Rules

The ideas of numerical quadrature can be generalized to multiple integrals. Consider
the two-dimensional integral

I =

∫

D

f(x, y) dxdy (5.4.1)
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For regions D, such as a square, cube, cylinder, etc., which are the Cartesian product
of lower dimensional regions, integration rules can be developed by multiplying
together the lower dimensional rules. For example, if

∫ 1

0

f(x) dx =
n

∑

i=1

wif(xi)

is a one dimensional rule, then

∫ 1

0

∫ 1

0

f(x, y) dxdy =

n
∑

i,j=1

wiwjf(xi, yj)

is a two-dimensional rule for a square. Such rules are not necessarily the most
economical rules.

Example 5.4.1.
Consider a quadrature rule of the form

∫ h

−h

∫ h

−h

f(x, y) dxdy = 4h2
n

∑

i,j=1

wif(xi, yi).

The product Simpson’s rule uses 9 function values, with abscissas and weights given
by

(xi, yi) (0,0) (±h,±h) (±h, 0) (0,±h)
wi 4/9 1/36 1/9 1/9

A more efficient rule is the product 2-point Legendre rule, using the four points

(xi, yi) =
(

± h√
3
,± h√

3

)

wi = 1/4.

For both rules the error is O(h4). Some quadrature rules for circles, triangles,
hexagons, spheres, cubes, etc., are given in Abramowitz–Stegun [1, § 25].

Since the amount of work will increase rapidly with the number of dimensions.
It is therefore advisable to try to reduce the number of dimensions by applying
analytic techniques to parts of the task.

Example 5.4.2.
The following triple integral can be reduced to a single integral:

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−(x+y+z) sin(xz) sin(yz) dxdydz

∫ ∞

0

e−x dx

∫ ∞

0

e−y sin(yx)dy

∫ ∞

0

e−z sin(zx) =

∫ ∞

0

( x

1 + x2

)2

e−x dx,

because
∫ ∞

0

e−z sin(zx)dz =

∫ ∞

0

e−y sin(yx)dz =
x

1 + x2
.
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The remaining single integral is simply evaluated by the techniques previously stud-
ied.

Often a transformation of variable is needed for such a reduction (see Problem
1 at the end of this section), but sometimes that does not help either. Several
approaches are then possible:

(a) numerical integration in one direction at a time—see Sec. 5.4.2;

(b) the use of a rectangular grid, mainly if the boundary of the region is composed
of straight lines–see Sec. 5.4.3.

(c) the use of an irregular triangular grid—possible for more general boundaries—
see Sec. 5.4.4.

(d) Monte Carlo methods, mainly for problems with complicated boundaries and
a large number of dimensions—see Sec. 5.4.5.

5.4.2 Successive One-Dimensional Quadrature

For simplicity we restrict ourselves below to the two-dimensional case, although the
ideas are more general. Consider the integral (5.4.1) where D is a domain in the
x-y plane. The simplest way to compute an approximation to I is by repeated use
of one dimensional quadrature rules. If lines parallel with the x-axis have at most
one segment in common with D, then I can be written in the form

I =

∫ b

a

(

∫ d(x)

c(x)

f(x, y)dy
)

dx,

or

I =

∫ b

a

ϕ(x) dx, ϕ(x) =

∫ d(x)

c(x)

f(x, y)dy. (5.4.2)

For a sequence of values xi, i = 1, . . . , n we can evaluate the function ϕ(x) by the
one-dimensional quadrature methods described previously. These function values
are then used in another one-dimensional quadrature rule to evaluate I. Note that
if D is a more general domain, it might be possible to decompose D into the union
of simpler domains on which these methods can be used.

Figure 5.4.1. Region D of integration.
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Example 5.4.3.
Compute

I =

∫ ∫

D

sin2 y sin2 x(1 + x2 + y2)−1/2 dxdy,

where

D = {(x, y) | x2 + y2 ≤ 1} ∪ {(x, y) | 1 ≤ x ≤ 3, |y| ≤ 0.5}.

is the composite region shown in Fig. 8.4.1. Then

I =

∫ 3

−1

ϕ(x) sin2 xdx, (5.4.3)

ϕ(x) =

∫ c(x)

−c(x)

sin2 y(1 + x2 + y2)−1/2dy, (5.4.4)

where

c(x) =

{

(1 − x2)1/2, x ≤ 1
2

√
3;

1
2 , x ≥ 1

2

√
3.

Values of ϕ(x) were obtained by the application of Romberg’s method to (5.4.4)
and numerical integration applied to the integral (5.4.3) yielded the value of I =
0.13202± 10−5. Ninety-six values of x were needed, and for each value of x, twenty
function evaluations used, on the average. The grid is chosen so that x = 1

2

√
3,

where ϕ′(x) is discontinuous, is a grid point.

5.4.3 Product Rules

Consider a double integral over a rectangular region D = {(x, y) | a ≤ x ≤ b, c ≤ y ≤
d}. Decomposing the integral as in (5.4.2) and using one-dimensional quadrature
rules we can write

I ≈
n

∑

i=1

uiϕ(xi), ϕ(xi) ≈
n

∑

j=1

vjf(xi, yj),

or, combining the rules

I ≈
n

∑

i=1

n
∑

j=1

wijf(xi, yj), wij = uivj . (5.4.5)

This is called a product rule for the double integral I, and it uses mn function
values fij = f(xi, yj).

In particular we can use values of f and an equidistant rectangular grid in
the (x, y)-plane with grid spacings h and k in the x and y directions, respectively.
Let x0 = a, h = (b−a)/n, y0 = c, k = (d− c)/m, and use the notation xi = x0 + ih,
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yj = y0 + jk. Then the following formulas can be used, generalizing the compound
rectangle rule and trapezoidal rule, respectively:

I ≈ hk
M
∑

i=1

N
∑

j=1

fi− 1
2
,j− 1

2
, (5.4.6)

I ≈ hk

M
∑

i=1

N
∑

j=1

wijfij (5.4.7)

Here, for the trapezoidal rule wij = 1 for the interior grid points—i.e., when 0 < i <
M and 0 < j < N , wij = 1

4 for the four corner points, while wij = 1
2 for the other

boundary points. Both formulas are exact for bilinear functions, and the error can
be expanded in even powers of h, k so that repeated Richardson extrapolation can
be used.

Formulas of higher accuracy can also be obtained by using Gaussian quadra-
ture rules in the x and y direction. Note that if the one-dimensional formulas are
exact for polynomials of degree d1 and d2, respectively, then the product rule will
be exact for bivariate polynomials xpyq where p ≤ d1 and q ≤ d2.

Higher accuracy formulas can also be derived by operator techniques, based
on an operator formulation of Taylor’s expansion, see equation (4.8.2),

u(x0 + h, y0 + k) = e(hDx+kDy)u(x0, y0). (5.4.8)

It is possible to use product rules on non-rectangular regions, if these can be
mapped into a rectangle. This can be done, e.g., for a triangle. For nonrectangular
regions, the rectangular lattice may also be bordered by triangles or “triangles”
with one curved side, which may be treated with the techniques outlined in the
next section.

5.4.4 Irregular Triangular Grids

A grid of triangles of arbitrary form is a convenient means for approximating a
complicated plane region. It is fairly easy to program a computer to refine a coarse
triangular grid automatically; see Fig. 8.4.2. It is also easy to adapt the density of
points to the behavior of the function.

Triangular grids are thus more flexible than rectangular ones. On the other
hand, the administration of a rectangular grid requires less storage and a simpler
program. Sometimes the approximation formulas are also a little simpler. Trian-
gular grids have an important application in the finite element method (FEM)
for problems in continuum mechanics and other applications of partial differential
equations; see Chapter 14.

Let Pi = (xi, yi), i = 1, 2, 3, be the vertices of a triangle T . Then any point
P = (x, y) in the plane can be uniquely expressed by the vector equation

P = θ1P1 + θ2P2 + θ3P3, θ1 + θ1 + θ1 = 1. (5.4.9)
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Figure 5.4.2. Refinement of a triangular grid.

In fact, the θi, which are called barycentric coordinates of P , are determined
from the following nonsingular set of equations:

θ1x1 + θ2x2 + θ3x3 = x, (5.4.10)

θ1y1 + θ2y2 + θ3y3 = y,

θ1 + θ2 + θ3 = 1,

The interior of the triangle is characterized by the inequalities θi > 0, i = 1, 2, 3.
In this case P is the center of mass (centroid) of the three masses θ1, θ2, θ3 located
at the vertices of the triangle (see Fig. 8.4.3). This explains the term “barycentric
coordinates”. θ1 = 0 is the equation for the side P2P3, and similarly for the other
sides.

Figure 5.4.3. Center of mass of a triangle.

If f is a nonhomogeneous linear function of P , i.e., if f(P ) = aT P + b, then
the reader can verify that

f(P ) = θ1f(P1) + θ2f(P2) + θ3f(P3). (5.4.11)

this is a form of linear interpolation on triangular grids. In order to obtain quadratic
interpolation, we define

∆′′ = f(Pi) + f(Pj) − 2f
(1

2
(Pi + Pj)

)

, i 6= j. (5.4.12)

Theorem 5.4.1.
The interpolation formula

f(P ) = θ1f1 + θ2f2 + θ3f3 − 2(θ2θ3∆
′′
23 + θ3θ1∆

′′
31 + θ1θ2∆

′′
12)
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where fi = f(Pi), is exact for all quadratic functions.

Proof. The right-hand is a quadratic function of P , since it follows from (5.4.10)
that the θi are (nonhomogeneous) linear functions of x, y. (See also Problem 8.)
It remains to show that the right hand side is equal to f(P ) for P = Pi, and
P = (Pi + Pj)/2, i, j = 1, 2, 3.

For P = Pi, θi = 1, θj = 0, i 6= j, hence the right hand side equals fi. For
P = (Pi + Pj)/2,

θi = θj =
1

2
, θk = 0, k 6= i, k 6= j,

and hence the right hand side becomes

1

2
fi +

1

2
fj + −2 · 1

2

(

fi + fj − 2u
(1

2
(Pi + Pj)

)

)

= f
(1

2
(Pi + Pj)

)

.

The following theorem is equivalent to a rule which has been used in mechanics
for the computation of moments of inertia since the nineteenth century:

Theorem 5.4.2.
Let A be the area of a triangle T , with vertices P1, P2, P3. Then the quadrature

formula
∫ ∫

T

f(x, y) dxdy (5.4.13)

=
1

3
A

(

f
(1

2
(P1 + P2)

)

+ f
(1

2
(P2 + P3)

)

+ f
(1

2
(P3 + P1)

)

is exact for all quadratic functions.

Proof: By symmetry,
∫

T

∫

θi dxdy is the same for i = 1, 2, 3. Similarly
∫

T

∫

θiθj dxdy is the same for all three (i, j)-combinations. Hence for the quadratic
function

∫

T

∫

f(x, y) dxdy = a(f1 + f2 + f3) − 2b(∆′′
23 + ∆′′

31 + ∆′′
12)

= (a − 4b)(f1 + f2 + f3)

+ 4b
(

f
(1

2
(P1 + P2)

)

+ f
(1

2
(P2 + P3)

)

+ f
(1

2
(P3 + P1)

)

)

,

where

a =

∫

T

∫

θ1 dxdy, b =

∫

T

∫

θ1θ2 dxdy.

Using θ1, θ2 as new variables of integration, we get by (5.4.10) and the relation
θ3 = 1 − θ1 − θ2,

x = θ1(x1 − x3) + θ1(x1 − x3) + x3,

y = θ1(y1 − y3) + θ1(y1 − y3) + y3.
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Figure 5.4.4. Correction for curved boundary segment.

Hence the functional determinant is equal to

∣

∣

∣

∣

x1 − x3 x2 − x3

y1 − y3 y2 − y3

∣

∣

∣

∣

= 2A,

and (check the limits of integration!)

a =

∫ 1

θ1=0

∫ 1−θ1

θ2=0

2θ1dθ1dθ2 = 2A

∫ 1

0

θ1(1 − θ1)dθ1 =
A

3
,

b =

∫ 1

θ1=0

∫ 1−θ1

θ2=0

2θ1θ2dθ1dθ2 = 2A

∫ 1

0

θ1
(1 − θ1)

2

2
dθ1 =

A

3
.

The results now follows by insertion of this into (5.4.13).

A numerical method can be based on Theorem 5.4.1, by covering the domain
D by triangles. For each curved boundary segment (Fig. 8.4.4) the correction

4

3
f(S)A(PRQ) (5.4.14)

is to be added, where A(PRQ) is the area of the triangle with vertices P, R, Q. The
error of the correction can be shown to be O(‖Q − P‖5) for each segment, if R is
close to the midpoint of the arc PQ. If the boundary is given in parametric form,
x = x(x), y = y(x), where x and y are twice differentiable on the arc PQ, then one
should choose tR = 1

2 (tP + tQ). Richardson extrapolation can be used to increase
the accuracy, see the examples.

Figure 5.4.5. The grids for I4 and I16.
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Example 5.4.4.
Consider the integral

I =

∫ ∫

D

(x2 + y2)k dxdy

where D is the region shown in Fig. 8.4.5. Let In be the result obtained with n
triangles. The grids for I4 and I16 are shown in Fig. 8.4.5. Put

R′
n = I4n +

1

15
(I4n − In), R′′

n = R′
4n +

1

63
(R′

4n − R′
n).

The following results were obtained. In this case the work could be reduced by a
factor of 4, because of symmetry.

k I4 I16 I64 R′
4 R′

16 R′′
4

2 0.250000 0.307291 0.310872 0.311111 0.311111 0.311111

3 0.104167 0.161784 0.170741 0.165625 0.171338 0.171429

4 0.046875 0.090678 0.104094 0.093598 0.104988 0.105169

The exact values are 0.311111, 0.171429, and 0.105397. It is seen that R′-
values have full accuracy for k = 2 and the R′′-values have high accuracy even for
k = 4. In fact, it can be shown that R′-values are exact for any fourth-degree
polynomial and R′′-values are exact for any sixth-degree polynomial, when the
region is covered exactly by the triangles.

Example 5.4.5.
The integral

a

∫ ∫

(a2 − y2)−1/2 dxdy

over a quarter of the unit circle is computed with the grids shown in Fig. 8.4.2,
and with boundary corrections according to (5.4.9). The following results, using
the notation of the previous example, were obtained and compared with the exact
values:

a I8 I32 R′
8 Exact

2 0.351995 0.352077 0.352082 0.352082
4 0.337492 0.337608 0.337615 0.337616
6 0.335084 0.335200 0.335207 0.335208
8 0.334259 0.334374 0.334382 0.334382

Note, however, that Richardson extrapolation may not always give improve-
ment, e.g., when the rate of convergence of the basic method is more rapid than
usual.
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We mention also that some progress has been made in developing quadra-
ture rules of optimal order for rectangles and triangles. In one dimension this led
to Gaussian quadrature rules. In two dimensions the problem is much more diffi-
cult. Non-product rules for simple regions like a circle, equilateral triangle, regular
hexagon, etc., can be found in Abramowitz and Stegun [1, pp. 891–895]. For a thor-
ough treatment of multiple integrals the reader is referred to the book by Stroud
[33].

5.4.5 Monte Carlo Methods

Quasi-Monte Carlo methods for numerical integration; see Niederreiter [27] Low
discrepancy sequences

Lattice rules are equal weight rules for integration of periodic functions over
the d-dimensional unit cube [0, 1]d. Thus the problem is to approximate the integral

If =

∫ 1

0

· · ·
∫ 1

0

f(x1, . . . , xd) dx1 . . . dxd, (5.4.15)

by a rule

QNf =
1

N

N−1
∑

j=0

f

({

j

N
g

})

, (5.4.16)

where g is an d-dimensional integer vector that does not have N as a factor and by
{x} = {x1, . . . , xd we denote the vector whose jth component is the fractional part
of xj .

For numerical integration in high dimensions the number of function values
needed to obtain an acceptable approximation tends to increase exponentially in the
number of dimensions d. This is often referred to as the curse of dimensionality, a
phrase coined by Richard Bellman. The exponential increase is clearly inevitable
with any form of product integration rule. Recently it has been shown that the curse
can be lifted by using a class of randomly shifted lattice rules by Ian H. Sloane.

One of the most important application of the Monte Carlo method described
in Section 1.4.2 is in the numerical calculation of multiple integrals. If we use
product rules to evaluate a multiple integral in d dimensions the work will depend
exponentially on d. This means that the problem may quickly becomes intractable
when d increases. On the other hand, for the Monte Carlo method the complexity
always is proportional to 1/ǫ, where ǫ is the required tolerance independent of the
dimension d. Hence the Monte Carlo method can be said to break “the curse of
dimension” inherent in other approaches!

We shall briefly describe some ideas used in integration by the Monte Carlo
method. For simplicity, we first consider integrals in one dimension, even though
the Monte Carlo method cannot really compete with traditional numerical methods
for this problem.

Let R1, R2, . . . , Rn be a sequence of random numbers rectangularly distributed
on [0, 1], and set

I =

∫ 1

0

f(x) dx ≈ I1 =
1

n

n
∑

i=1

f(Ri).
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This generalizes to multiple integrals. For example, to approximate a two dimen-
sional integral over the domain 0 ≤ x, y ≤ 1, we sample the integrand f(x, y) in
points (R2i−1, R2i), for i = 1, 2, . . . , n. The technique can be applied to an integral
over a general region D, provided that we can sample the integrand f randomly
over D.

One can show that the expectation of the variable I1 is I and that the standard
deviation of this estimate decreases in proportion to n−1/2. This is very slow even
compared to the trapezoidal rule—where the error decreases as n−2. To get one
extra decimal place of accuracy we must increase the number of points by a factor
of 100. To get three digit accuracy the order of one million points may be required!
However, if we consider, e.g., a six-dimensional integral this is not exorbitant. Using
a product rule with 10 subdivisions in each dimension would also require 106 points.

The above estimate is a special case of a more general one. Suppose Xi

i = 1, 2, . . . , n, has density function g(x). Then

I2 =
1

n

n
∑

i=1

f(Xi)

g(Xi)

has expected value I, since

E

(

f(Xi)

g(Xi)

)

=

∫ 1

0

f(x)

g(x)
f(x) dx =

∫ 1

0

f(x) dx = I.

If one can find a frequency function g(x) such that f(x)/g(x) fluctuates less than
f(x), then I2 will have smaller variance than I1. This procedure is called im-
portance sampling; it has proved very useful in particle-physics problems, where
important phenomena (e.g., dangerous radiation which penetrates a shield) are as-
sociated with certain events of low probability.

We have previously mentioned the method of using a simple comparison
problem. The Monte Carlo variant of this method is called the control vari-
ate method. Suppose that ϕ(x) is a function whose integral has a known value
K, and suppose that f(x) − ϕ(x) fluctuates much less than f(x). Then

I = K +

∫ 1

0

(f(x) − ϕ(x)) dx ≈ K + I3, I3 =
1

n

n
∑

i=1

(f(Ri) − ϕ(Ri)),

where I3 has less variance than I1.

Review Questions

1. How is bilinear interpolation performed? What is the order of accuracy?

2. Define barycentric coordinates, and give the formula for linear interpolation
on a triangular grid.
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3. Describe the methods for numerical integration with rectangular or triangular
grids.

Problems

1. Let D be the unit circle. Introduce polar coordinates in the integral

I =

∫ ∫

D

y sin(ky)

x2 + y2
dxdy

and reduce it analytically to a single integral.

2. Let E be the ellipse {(x, y) | (x/a)2 + (y/b)2 ≤ 1}. Transform

I =

∫ ∫

E

f(x, y) dxdy

into an integral over a rectangle in the (r, t)-plane with the transformation
x = ar cos t, y = br sin t.

3. Compute by bilinear interpolation u(0.5, 0.25) when

u(0, 0) = 1, u(1, 0) = 2, u(0, 1) = 3, u(1, 1) = 5.

4. Show that, using the notation for equidistant rectangular grids, the formula
∫ x0+h

x0−h

∫ y0+k

y0−k

f(x, y) dxdy =
4hk

6
(f1,0 + f0,1 + f−1,0 + f0,−1 + 2f0,0)

is exact for all cubic polynomials.

5. Is a quadratic polynomial uniquely determined, given six functions values at
the vertices and midpoints of the sides of a triangle?

6. Show that the boundary correction of (5.4.9) is exact if f ≡ 1, and if the arc
is a parabola where the tangent at R is parallel to PQ.

7. Formulate generalizations to several dimensions of the integral formula of The-
orem 5.4.1, and convince yourself of their validity.

Hint: The formula is most simply expressed in terms of the values in the
vertices and in the centroid of a simplex.

8. (a) Write a program which uses the Monte Carlo method to compute
∫ 1

0
ex dx.

Take 25, 100, 225, 400 and 635 points. Plot the error on a loglog-scale. How
does the error depend (approximately) on the number of points?

(b) Compute the integral in (a) using the control variate method. Take ϕ(x) =
1 + x + x2/2. Use the same number of points as in (a).

Notes and References

A comprehensive treatment of the numerical evaluation of integrals is given in Davis
and Rabinowitz [6]. Alternatively the Newton–Cotes and other quadrature rules can
be derived using computer algebra systems, see [10].
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For a history of Gauss-type quadrature rules, see Gautschi [13]. Gaussian
quadrature rules were derived by Gauss in 1814 using a continued fraction expansion
related to the hypergeometric series. In 1826 Jacobi showed that the nodes were the
zeros of the Legendre polynomials and that they were real, simple and in [−1, 1].
The convergence of Gaussian quadrature methods was first studied by Stieltjes in
1884. A software package in the public domain by Gautschi [14] includes routines for
generating Gauss-type formulas and orthogonal polynomials not only for classical
but also for essentially arbitrary weight functions. The presentation in Sec. 5.2.3
is inspired by the work of Gautschi [12], [15], Golub and co-authors. Related ideas
can be traced to Mysovskih [26].

The classical reference on orthogonal polynomials is Szegö [35]. Tables of ab-
scissas and weights for Gaussian quadrature rules with various weight functions are
given in Abramowitz and Stegun [1, Sec. 25] and in Gautschi [13]. A computer pack-
age for computing the tridiagonal Jacobi matrix and generating the corresponding
Gauss quadrature rule has been developed by Gautschi [14]. Maple programs for
Gauss quadrature rules ar given by von Matt [25].

The idea of adaptive Simpson quadrature is old and treated fully by Ly-
ness [24]. Further schemes, computer programs and examples are given in Davis
and Rabinowitz [6]. For a recent discussion of error estimates and reliability of
different codes see Espelid [8].

Multivariate integration formulas and lattice rules are discussed in [36].
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MA, 1997.

[17] Gene H. Golub. Some modified matrix eigenvalue problems. SIAM Review,
15:318–334, 1973.

[18] Gene H. Golub and J. H. Welsch. Calculation of Gauss quadrature rules. Math.
Comp., 23:221–230, 1969.

[19] Tore H̊avie. Generalized Neville type extrapolation schemes. BIT, 19:204–213,
1979.

[20] David Kahaner, Cleve B. Moler, and Stephen Nash. Numerical Methods and
Software. Prentice-Hall, Englewood Cliffs, NJ, 1989.

[21] A. S. Kronrod. Nodes and Weights of Quadrature Formulas. Consultants
Bureau, New York, 1965. Translation from Russian.

[22] Cornelius Lanczos. Linear Differential Operators. D. Van Nostrand, London,
UK, 1961.

[23] Bengt Lindberg. A simple interpolation algorithm for improvement of the
numerical solution of a differential equation. SIAM J. Numer. Anal., 9:662–
668, 1972.

[24] J. N. Lyness. Notes on the adaptive Simpson quadrature routine. J. Assoc.
Comput. Mach., 16:483–495, 1969.

[25] Urs von Matt. Gauss quadrature. In W. Gander and J. Hřebiček, editors,
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For the derivation of error estimates for numerical integration we shall require
the following result on the continuity of divided differences. For this purpose the
following representation of divided differences is useful. If x, x1, . . . , xn be n+1 are
distinct points, then

[x1, . . . , xn, x]f =

n
∑

j=1

[x, xj ]f
n

∏

k=1

k 6=j

(xj − xk)

. (5.4.17)

This formula follows by substituting the Lagrange form of the interpolation poly-
nomial into the exact remainder (4.2.19) in Newton’s interpolation formula.

Lemma 5.4.3.
Let f(x) be continuous on [a, b] and let f ′(x) be continuous in arbitrary small

intervals about some distinct fixed points xi ∈ [a, b], i = 1 : n. Then

[x1, . . . , xn, x]f

is a continuous function of x in [a, b].
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algorithm
adaptive Simpson, 53

barycentric coordinates, 62

companion matrix, 34
coordinates

barycentric, 62

epsilon algorithm, 49
Euler-Maclaurin’s formula, 42, 43

FEM, see finite element method
finite element method, 61
Fourier transform, 42

Gauss’ quadrature, 22–38
remainder, 26

Gauss–Christoffel quadrature, 22–38
Gauss–Hermite quadrature, 29
Gauss–Jacobi quadrature, 28
Gauss–Kronrod quadrature, 30
Gauss–Laguerre quadrature, 29
Gauss–Legendre quadrature, 27
Gauss–Lobatto quadrature, 30
Gauss–Radau quadrature, 30
Gram matrix, 32
Gregory’s quadrature formula, 42
grid

irregular triangular, 61–66
rectangular, 61

Hankel matrix, 32
Hermite interpolation, 26
Hermite polynomials, 29, 39
Hilbert matrix, 32

importance sampling, 67

integral
over infinite interval, 51
with singularity, 13–15

integration
by parts, 13

interpolatory quadrature formula, 2

Jacobi polynomials, 28

Laguerre polynomials, 29
Legendre polynomials, 27
linear interpolation

on triangular grid, 62
Low discrepancy sequences, 66

midpoint rule
composite, 5

modified moments, 31
moment, 13
multiple integrals, 57–67

Newton–Cotes’
9-point formula, 18
quadrature rule, 8–22, 47

node polynomial, 18, 20, 21
node polynomials, 19
numerical quadrature

Newton–Cotes, 47

order of accuracy, 1
orthogonal polynomials, 22–24
oscillating integrand, 15

Poisson summation formula, 42, 50

quadratic interpolation
on triangular grid, 62

quadrature
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Monte Carlo methods, 66–67
quadrature rule

adaptive, 52
closed, 5
midpoint, 5
Newton–Cotes’, 8–22
open, 5
product, 60–61
Simpson’s, 6–8
successive one-dimensional, 59–60
trapezoidal, 3

Quasi-Monte Carlo methods, 66

Richardson extrapolation, 42
Romberg’s method, 41–49

error bound, 45

shift matrix, 34
Simpson’s formula, 16
singular integrand, 13
Stieltjes integral, 57

transform
Fourier, 42

trapezoidal rule
composite, 4
superconvergence, 50

triangular grid
linear interpolation on, 62
quadratic interpolation on, 62
refinement of, 61

truncation error
global, 4
local, 4

weight function, 12
weighted quadrature rules, 12


