
Contents

4 Interpolation and Approximation 1
4.1 The Interpolation Problem . 1

4.1.1 Introduction . 1
4.1.2 Various Bases for Pn 4
4.1.3 Discrete Least Squares Approximation 6
4.1.4 The Runge Phenomenon 7

Review Questions . 9
Problems and Computer Exercises . 10
4.2 Interpolation Formulas and Algorithms 11

4.2.1 Newton’s Interpolation Formula 11
4.2.2 Lagrange’s Interpolation Formula 19
4.2.3 Iterative Linear Interpolation 24
4.2.4 Conditioning of the Interpolation Problem 25
4.2.5 Interpolation by Rational Functions 27

Review Questions . 31
Problems and Computer Exercises . 31
4.3 Generalizations and Applications 33

4.3.1 Interpolation using Values of Derivatives 33
4.3.2 Inverse interpolation 38
4.3.3 Numerical differentiation 39
4.3.4 Fast Algorithms for Vandermonde Systems 41
4.3.5 Multidimensional Interpolation 45

Review Questions . 46
Problems and Computer Exercises . 47
4.4 Piecewise Polynomial Interpolation 48

4.4.1 Bernstein Polynomials 48
4.4.2 Parametric Bézier Curves 50
4.4.3 Splines . 54
4.4.4 Cubic Spline Interpolation 58
4.4.5 Computing with B-Splines 65

Review Questions . 75
Problems and Computer Exercises . 76
4.5 Approximation and Function Spaces 78

4.5.1 Distance and Norm 79

i

ii Contents

4.5.2 Operator Norms and the Distance Formula 83
4.5.3 Inner Product Spaces and Orthogonal Systems . . . 89
4.5.4 Solution of the Approximation Problem 92
4.5.5 Orthogonal Polynomials and Least Squares Approx-

imation . 95
4.5.6 Statistical Aspects of the Method of Least Squares . 103

Review Questions . 106
Problems and Computer Exercises . 106
4.6 Trigonometric Interpolation and Fourier Transforms 108

4.6.1 Basic Formulas and Theorems 110
4.6.2 Periodic Continuation of a Function 116
4.6.3 The Fourier Integral Theorem 117
4.6.4 Sampled Data and Aliasing 120

Review Questions . 122
Problems and Computer Exercises . 122
4.7 The Fast Fourier Transform . 124

4.7.1 The Fast Fourier Algorithm 124
4.7.2 FFTs and Discrete Convolutions 130
4.7.3 Real Data and Fast Trigonometric Transforms . . . 131
4.7.4 The General Case FFT 134

Review Questions . 135
Problems and Computer Exercises . 136
4.8 Complex Analysis in Interpolation 138

4.8.1 Interpolation of Analytic Functions 138
4.8.2 Analysis of a Generalized Runge Phenomenon . . . 140
4.8.3 The Sampling Theorem 145

Problems and Computer Exercises . 146

Bibliography 151

Index 155

Chapter 4

Interpolation and

Approximation

4.1 The Interpolation Problem

4.1.1 Introduction

Polynomials are used as the basic means of approximation in nearly all areas of
numerical analysis. We have previously encountered two types of interpolation

• Piecewise linear interpolation that is commonly used in tables, when the re-
quirements of accuracy are modest. A more modern application is in Com-
puter Graphics.

• Interpolation of the values of a function in n equidistant points by a function
in Pn. Recall that in Sec. 3.2.2, Pn was defined as the space of polynomials in
one variable of degree less than n; n is the number of data required to specify
a polynomial in Pn; the dimension of the linear space Pn is n.1

The formulas with equidistant points, in particular Stirling’s interpolation
formula, given in Sec. 3.2, is mainly used piecewise for small values of n; see
Problem 2.

The first type of interpolation will be generalized in Sec. 4.4, where we shall
study interpolation by piecewise polynomials. Of particular importance are
splines, which are piecewise polynomials, where a few derivatives are required to
be continuous at the joints of the pieces.

In the first two sections we shall go deeper into the following polynomial
interpolation problem for non-equidistant, distinct points:

Find a polynomial p ∈ Pn such that

p(xi) = f(xi), i = 1 : n, xi 6= xj for i 6= j. (4.1.1)

Recall that, by Theorem 3.2.1, the interpolation polynomial p(x) is uniquely deter-
mined for a given grid, (x1, x2, . . . , xn). This theorem is general, although the rest

1Some authors use similar notations, e.g., Pn or Πn, to denote the n + 1-dimensional space of
polynomials of degree less than or equal to n.

1

2 Chapter 4. Interpolation and Approximation

of Sec. 3.2 dealt with interpolation polynomials in the equidistant case only, and
their application to numerical differentiation and integration.2 Also note that the
formulation and the solution of this problem are independent of the ordering of the
points xi.

A set of polynomials p = {p1(x), p2(x), . . . , pn(x)}, such that any polynomial
p ∈ Pn can be expressed as a linear combination

p(x) = c1p1(x) + . . .+ cmpn(x),

is called a basis in Pn. The column vector c = (c1, c2, . . . cn)T can be viewed as a
coordinate vector of p in the space Pn, with respect to this basis. The power basis,
where pj(x) = xj−1, i.e.

p(x) =
n∑

j=1

cjx
j−1,

is the simplest basis, though not always the best.
The interpolation problem (4.1.1) leads to a linear system of equations

c1p1(xi) + c2p2(xi) + . . .+ cmpn(xi) = f(xi), i = 1 : n. (4.1.2)

If we introduce the matrix
Mp = [pj(xi)]

n
i,j=1, (4.1.3)

and the column vector f̃ =
(
f(x1), f(x2), . . . , f(xn)

)T
,3 then the linear system

becomes
Mpc = f̃ . (4.1.4)

The proof of Theorem 3.2.1 was based on the fact that this matrix is non-singular in
the case of the power basis; in this case Mp = V T , where V is the Vandermonde
matrix4

V = [xi−1
j]ni,j=1 =







1 1 · · · 1
x1 x2 · · · xn
...

... · · ·
...

xn−1
1 xn−1

2 · · · xn−1
n






. (4.1.5)

In any basis q = {q1(x), q2(x), . . . , qn(x)} for Pn, the qj must be linear com-
binations of the pk, k = 1 : n. This can be expressed in vector-matrix form:

(
q1(x), q2(x), . . . , qn(x)

)
=

(
p1(x), p2(x), . . . , pn(x)

)
A, (4.1.6)

where A is a constant matrix. A must be non-singular; for, if A were singular then
there would exist a non-trivial vector v such that Av = 0, hence

(q1(x), q2(x), . . . , qn(x))v = (p1(x), p2(x), . . . , pn(x))Av = 0 ∀x,
2It is de facto so, although the polynomials are invisible in the derivations of formulas by

operator methods.
3We try to make a distinction between f that is an element in some function space and f̃ ∈ Rn.
4Alexandre Théophile Vandermonde (1735–1796), member of the French Academy of Sciences,

is regarded as the founder of the theory of determinants. What is now referred to as the “Vander-
monde matrix” does not seem to appear in his writings!

4.1. The Interpolation Problem 3

and (q1(x), q2(x), . . . , qn(x)) would thus not be a basis.
Similarly set Mq = [qj(xi)]

n
i,j=1. By putting x = xi, i = 1 : m into (4.1.6),

we see that Mq = MpA, and Mq is non-singular for every basis. If we set p(x) =
∑
djqj(x), the system (4.1.2) becomes for this basis Mqd = f̃ . Then

Mpc = f̃ = Mqd = MpAd, c = M−1
p f̃ = Ad. (4.1.7)

the matrix A is thus like a coordinate transformation in Geometry; Gander [25]
gives the matrix A for the transformation between various several common repre-
sentations.

Example 4.1.1 (An application to numerical integration).
We shall find a formula for integrals of the form

I =

∫ 1

0

x−1/2f(x) dx

that is exact for f ∈ Pm and uses the values f(xi), i = 1 : m. Such integrals need
a special treatment, due to the integrable singularity at x = 0.

Set µj =
∫ 1

0
x−1/2pj(x) dx, and introduce the row vector µA = (µ1, µ2, . . . , µn).

Then

I ≈
∫ 1

0

x−1/2p(x) dx =

n∑

j=1

cjµj = µAc = µA(p)M−1
p f̃ , (4.1.8)

where it is emphasized in the last expression that µA depends on the basis. In
fact µA(q) = µA(p)A, and M−1

q = A−1M−1
p ; we see that the approximation to I is

independent of the basis, as it should, in view of Theorem 3.2.1.
Another approach is the method of undetermined coefficients, i.e. to

seek a formula

I ≈
n∑

i=1

bif(xi) ≡ bT f̃ ,

that is exact when f(x) = pj(x), j = 1 : m; then it is exact for all p ∈ Pm These
conditions lead to the linear system

MT
p b = µ. (4.1.9)

This may be called the adjoint or dual to the system Mpc = f̃ . Using the standard
basis it reads

V b = µ.

From (4.1.9) we get bT = µTM−1
p , and the final result of this approach becomes

I ≈ bT f̃ = µ(p)TM−1
p f̃ ,

which is the same as (4.1.8), although interpolation was not mentioned in this
approach. In view of Theorem (3.2.1) this is no surprise, since the same values of
f are used, and both formulas are exact for all f ∈ Pm.

For numerical applications (for the power basis) see Problem 2. Evidently
these two approaches can be used for any linear functional of f .

4 Chapter 4. Interpolation and Approximation

4.1.2 Various Bases for Pn

There are many ways of specifying polynomials. If the purpose is to compute
derivatives or integrals of the interpolation polynomial, the power basis or the the
shifted power basis, where

qj(x) = (x− a)j−1,

are usually also convenient. If a shifted power basis is to be used for polynomial
approximation on a certain interval, it is often best to choose a near the midpoint
of the interval.

The power basis has a bad reputation, which is related the ill-conditioning of
the corresponding Vandermonde matrices. Many bounds and asymptotic estimates
for the condition number of the Vandermonde matrix

V = V (x1, x2, . . . , xn)

are known; see [26, Sec. 1.3], [31, Sec. 22.1]. For example, for equidistant points on
[−1.1], i.e. xi = −1 + 2(i− 1)/(n− 1), it holds that

κ∞(V) = ‖V −1‖∞‖V ‖∞ ∼ π−1eπ/4(3.1)n.

Hence, for n = 20, κ∞(V) ≈ 1.05 · 109. Other point distributions are even worse,
e.g., for the harmonic points xi = 1/i, i = 1 : n,

κ∞(V) > nn+1,

which is faster than exponential growth! For the Chebyshev points on [−1, 1]

xi = cos
(2i− 1

n

π

2

)

, i = 1 : n, (4.1.10)

i.e. the zeros of Tn−1(x), the Vandermonde matrix is better conditioned

κ∞(V) ∼ 0.2533/4(1 +
√

2)n.

It should be stressed that the condition number of the Vandermonde matrix
measures the sensitivity of the coefficients ci in the polynomial p(x) =

∑n
j=1 cjx

j−1

to perturbations in the given data fi. It is possible, that even when these coefficients
are inaccurately determined, the interpolation polynomial p(x) does still reproduce
the true interpolation polynomial well. For further discussion of these points, see
Sec. 4.2.4 and Sec. 4.3.4.

Mathematically, the choice of basis (for a finite-dimensional space) makes no
difference. Computationally, working with rounded values of the coefficients, the
choice of basis can make a great difference. Consider a sequence of polynomials
q1, q2, q3, . . .

q1(x) = a11

q2(x) = a12 + a22x

q3(x) = a13 + a23x+ a33x
2

. . .

qn(x) = a1m + a2mx+ a3mx
2 + . . .+ ammx

n−1

. . .

4.1. The Interpolation Problem 5

where ajj 6= 0 for all j, is defined to be a triangle family of polynomials, i.e. qj(x)
is of (j − 1)’th degree with a non-zero leading coefficient.5.

Conversely, for any j, pj(x) = xj−1 can be expressed recursively and uniquely
as linear combinations of q1(x), q2(x), . . . , qj(x), so that we obtain a triangular
scheme also for the inverse transformation. So every triangle family {q1(x), q2(x), . . .
, qm(x)} is a basis for Pm.

What we has just seen, is indeed a proof of the well known fact that the inverse
of a triangular matrix, (with no zeros in the main diagonal) is also triangular.
Among interesting triangle families we can mention the families where qj+1(x) is
defined by (x− c)j , Tj(x), and many other families of orthogonal polynomials.

Let x1, x2, . . . , xn be n distinct points and consider the Newton polynomials

p1(x) = 1, pj(x) = (x− x1)(x− x2) . . . (x− xj−1), j = 2 : n,

They define a triangle family with unit leading coefficients, and hence form a basis.
The representation

p(x) = c1p1 + c2p2(x) + c3p3(x) + · · · + cnpn(x) (4.1.11)

is often very convenient. Since pj(xk) = 0, if k < j, the coefficients c1, c2, . . . , cn
satisfy the lower triangular system of equations Lc = f , where

L =









1
1 (x2 − x1)
1 (x3 − x1) (x3 − x1)(x3 − x2)
...

...
...

. . .

1 (xn − x1) (xn − x1)(xn − x2) · · · ∏n−1
j=1 (xn − xj)









(4.1.12)

Hence the coefficients can be computed recursively, by forward substitution, with
much less work than the linear system (4.1.4) would require for the power basis,
by standard methods for linear algebra. In the next section we shall see how this
basis leads to Newton’s interpolation formula, which is one of the best interpolation
formulas, with respect to flexibility, computational economy and numerical stability.

If a polynomial p(x) is given in the form (4.1.11) then it can be evaluated
using only n multiplications and 2n additions, for a given numerical value x, from
the nested form

p(x) = (· · · (cm(x− xn−1) + cn−1)(x − xn−2) +

· · · + c3)(x− x2) + c2)(x − x1) + c1.

(Notice that the case, where all the xi = 0, gives Horner’s rule, see Sec. 1.4.2. We
have p(x) = b1, where b1 is computed using the recursion formula:

bn := cn, bi−1 := bi(x− xi−1) + ci−1, i = n : −1 : 2. (4.1.13)

We leave the proof to Problem 4.

5In the terminology used in the previous subsection, this triangular matrix equals AT ; this
explains the notation for the elements

6 Chapter 4. Interpolation and Approximation

Other bases are sometimes more advantageous. A cardinal basis of Pn is
generated by the polynomial

Φn(x) = (x − x1)(x − x2) · · · (x − xn), (4.1.14)

where xi, i = 1 : n, are distinct. The basis used in Lagrange interpolation formula
reads

ℓj(x) =
Φn(x)

(x− xj)Φ′
n(xj)

, j = 1 : n. (4.1.15)

Here ℓj is a polynomial of degree n− 1. By L’Hospital’s rule

ℓj(xi) = δij =

{
1 if i = j;
0 if i 6= j.

(4.1.16)

(This is the property that in a more general context characterizes a cardinal ba-
sis.) This basis directly displays the solution of the interpolation problem for n
distinct points. Lagrange’s interpolation formula6 has been widely regarded as
being of mainly theoretical interest. In Sec. 4.2.2 two modified forms of Lagrange
interpolation formula will be given, which are more computationally attractive.

The matrix approach described in the previous subsections may sometimes be
convenient; a Vandermonde matrix is easily generated, when you work in a matrix-
oriented command language. If you deal with a modest number of polynomials of
low degree, convenience can be given a larger weight than the optimal number of
arithmetical operations and a minimized effect of rounding errors. In the latter
respects, the matrix approach is inferior to Newton’s interpolation formula and the
other formulas and algorithms to be discussed later.

The main reason why we started with such non-optimal procedures, is that
they are easily generalizable to other interpolation problems, e.g., interpolation in
other function spaces than Pn (see Problem 5), or interpolation with other con-
ditions on the function f in addition to function values (see later sections). For
such non-standard interpolation problems—that do occur in practice—the matrix
approach is helpful also for finding out under what conditions the problem has a
unique solution.

4.1.3 Discrete Least Squares Approximation

Let p1(x), p2(x), . . . , pn(x) be a basis for Pn. A natural extension of the interpola-
tion problem is to determine a polynomial

p(x) =

n∑

j=1

cjpj(x) ∈ Pn,

that, in some sense, best fits to the data (xi, f(xi)), i = 1 : m, where m > n. Since
the number of equations is larger than the number of parameters, the corresponding
linear system Mc = f is overdetermined. and can typically be satisfied only

6Lagrange published his interpolation formula in 1794.

4.1. The Interpolation Problem 7

approximately; see Example 1.2.5, where a straight line could not be made to pass
through the five points.

In discrete least squares approximation on determines the coefficient
vector c that minimizes the sum of squared residuals

S(c) =

m∑

i=1

(p(xi) − f(xi))
2. (4.1.17)

This can in many applications be motivated by statistical arguments; see Theo-
rem 4.5.19. It also leads to rather simple computations. The conditions for the
minimization are

∂S(c)

∂ck
= 2

m∑

i=1

pk(xi)
(
p(xi) − f(xi)

)
= 0, k = 1 : n.

These conditions can be written in the form MT (Mc− f) = 0, or

MTMc = MT f, (4.1.18)

Here MTM is a symmetric n× n matrix and (4.1.18) is called the normal equa-
tions; see Sec. 1.6.5. It can be shown that the matrix MTM is non-singular, and
that the system yields the minimum of S(c), unless the columns of M are linearly
dependent.

Overdetermination can be used to attain two different types of smoothing:

(a) to reduce the effect of random or other irregular errors in the values of the
function;

(b) to give the polynomial a smoother behaviour between the grid points.

Note that interpolation is a special case (n = m) of this problem. In this
case the normal equations are mathematically equivalent to the system Mc = f .
Since the condition number of MTM is the square of the condition number of
M , the matrix MTM often is very ill-conditioned even for moderate n. Therefore
forming the normal equations cannot be recommended in general. A stable method
for discrete least squares polynomial approximation is obtained by using a basis
of orthogonal polynomials; see Sec. 4.5.5. Stable methods for more general least
squares problems are treated in Volume II, Chapter 8.

4.1.4 The Runge Phenomenon

Equidistant interpolation can give rise to convergence difficulties when the number
of interpolation points becomes large. This difficulty is often referred to as Runge’s
phenomenon7, and we illustrate it in the following example. A more advanced
discussion is given in Sec. 4.4.3, by means of complex analysis.

7Carl Runge (1856–1927) German mathematician, who held a chair in Applied Mathematics
in Göttingen 1904–1925. Runge’s example is from 1901.

8 Chapter 4. Interpolation and Approximation

Example 4.1.2. The graph of the function

f =
1

1 + 25x2
=
i

2

(1

i+ 5x
+

1

i− 5x

)

,

where i =
√
−1, is the continuous curve shown in Figure 4.2.1, is approximated in

two different ways by a polynomial of degree 10 in [−1, 1].
The dashed curve has been determined by interpolation on the equidistant

grid with m = 11 points

xi = −1 + 2(i− 1)/(m− 1), i = 1 : m. (4.1.19)

The graph of the polynomial so obtained has—unlike the graph of f—a disturbing
course between the grid points. The agreement with f near the ends of the interval
is especially bad, while near the center of the interval [− 1

5 ,
1
5] the agreement is fairly

good. Such behavior is typical of equidistant interpolation of fairly high degree, and
can be explained theoretically.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

Figure 4.1.1. Polynomial interpolation of 1/(1+25x2) in two ways by the
use of 11 points: equidistant points (dashed curve), Chebyshev abscissae (dash-dot
curve).

The dotted curve in Figure 4.1.1 has been determined by interpolation at the
Chebyshev points

xi = cos
(2i− 1

m

π

2

)

, i = 1 : m, (4.1.20)

(m = 11). This procedure is studied more closely in a later section. The agreement
with f is now much better than with equidistant interpolation, but still not good.
The function is not at all suited for approximation by one polynomial over the

Review Questions 9

entire interval. Here one would get a much better result using approximation with
piecewise polynomials; see Sec. 4.4.

Notice that the difference between the values of the two polynomials is much
smaller at the grid points of the equidistant grid than in certain points between
the grid points, especially in the outer parts of the interval. This intimates that
the values which one gets by equidistant interpolation with a polynomial of high
degree can be very sensitive to disturbances in the given values of the function.
Put another way, equidistant interpolation using polynomials of high degree is in
some cases an ill-conditioned problem, especially in the outer parts of the interval
[x1, xm]. The effect is even worse if one extrapolates—i.e. if one computes values
of the polynomial outside the grid. However, equidistant interpolation works well
near the center of the interval.

Even with equidistant data one can often get a more well-behaved curve by—
instead of interpolating—fitting a polynomial of lower degree using the method of
least squares. Generally, if one chooses n < 2

√
m, then the polynomial fit is quite

well conditioned, but higher values of n should be avoided. In the above example,
however, the agreement would still be quite bad, even at the grid points, when the
degree is chosen to be so low.

If one intends to approximate a function in the entire interval [−1, 1] by a poly-
nomial and can choose the points at which the function is computed or measured,
then one should choose the Chebyshev points. Using these points, interpolation
is a fairly well-conditioned problem in the entire interval. The risk of disturbing
surprises between the grid points is insignificant. One can also conveniently fit a
polynomial of lower degree than n − 1, if one wishes to smooth errors in measure-
ment; see Sec. 4.5.5.

Example 4.1.2 shows how important it is to study the course of the approxi-
mating curve p∗(x) between the points which are used in the calculation before one
accepts the approximation. When one uses procedures for approximation for which
one does not have a complete theoretical analysis, one should make an experimental
perturbational calculation. In the above case such a calculation would very probably
reveal that the interpolation polynomial reacts quite strongly if the values of the
function are disturbed by small amounts, say ±10−3. This would give a basis for
rejecting the unpleasant dashed curve in the example, even if one knew nothing
more about the function than its values at the equidistant grid points.

Review Questions

1. The interpolation problem in Pn leads to a linear system V T c = f̃ , where V
is a Vandermonde matrix. Write down the expression for the element vij .

2. What is meant by the method of undetermined coefficients? Give an example!

3. What is meant by a triangle family q1(x), q2(x), . . . , qn(x) of polynomials? Are
all such families a basis for Pn?

4. What property characterizes a cardinal basis for Pn?

10 Chapter 4. Interpolation and Approximation

Problems and Computer Exercises

1. (a) Study experimentally interpolation in Pn, n = 2 : 2 : 16 for f(x) =
(3 + x)−1, x ∈ [−1, 1]. Use the linear system V T c = f̃ and the power basis.
Study both equidistant points and Chebyshev points

xi = −1 + 2
i− 1

n− 1
, xi = cos

(2i− 1

n

π

2

)

, i = 1 : n

respectively. Plot the error curve, y = |f(x)− p(x)| in semi-logarithmic scale.
For the larger values of m, make also experiments to illuminate the effects
from random perturbations of the function values to the values of p(x).

(b) Make also a few experiments with a random vector f̃ , for n = 16 and
n = 8, in order to compare the grid data and the order of magnitude of p(x)
between the grid points.

2. Prove the validity of (4.1.13).

3. A warning for polynomial extrapolation of empirical functions, or . . . ?

(a) Write a program c = polyapp(x, y, n) that finds the coefficient vector c
for a polynomial in p ∈ Pn, in a shifted power basis, such that yi ≈ p(xi),
i = 1 : m, m ≥ n, in the least squares sense, or study a program that does
almost this.8

(b) The following data shows the development of the Swedish GDP, quoted
(with permission) from a table made by a group associated with the Swedish
Employer’s Confederation. (The data are expressed in prices of 1985 and
scaled so that the value for 1950 is 100.)

1950 1955 1960 1965 1970 1975 1980 1985 1990
100.0 117.7 139.3 179.3 219.3 249.1 267.5 291.5 326.4

1952 1957 1962 1967 1972 1977 1982 1987 1992
104.5 124.6 153.5 189.2 226.4 247.7 270.2 307.6 316.6

(a) For the upper pairs of data, compute and plot p(x), x ∈ [1950, 2000] (say).
Mark the given data points. Do this for m = 9, and for (say) n = 9, and
then for n = 8 : −2 : 2. Store the results, so that comparisons can be made
afterwards.

Hint: If you use polyfit first subtract 1970 from the years.

(b) Do the same for the lower pairs of data. Organize the plots, so that
interesting comparisons become convenient, e.g. how well were the data points
of one of the sets interpolated by the results from the other set?

(c) Make forecasts for 1995 and 2000 with both data sets. Then, use a reduced
data set, e.g., for the years 1982 and earlier (so that m = 7), and and compare
the forecasts for 1987 and 1992 with the given data. (Isn’t it a reasonable test
for every suggested forecast model to study its ability to predict the present

8The Matlab command polyfit does almost this.

4.2. Interpolation Formulas and Algorithms 11

from the past?)

(d) See if you obtain better results with the logarithms of the GDP values.

4.2 Interpolation Formulas and Algorithms

4.2.1 Newton’s Interpolation Formula

Let x1, x2, . . . , xn be n distinct points and let p∗ in Pn be the unique solution of
the interpolation problem for f(x) with the basis of (4.1.11). Suppose that

f(x) = c1 + c2(x − x1) + . . .+ cn(x− x1)(x− x2) · · · (x− xn−1) (4.2.1)

+An(x)(x − x1)(x− x2) · · · (x− xn),

If f ∈ Pn, we know from Sec. 4.1.2 that such a formula holds with An(x) ≡ 0. We
shall see that it is correct in general.

For x = x1 we get c1 = f(x1). Set

[x]f = f(x), [x1, x]f =
f(x) − f(x1)

x− x1
.

Then

[x1, x]f = c2 + c3(x− x2) + . . .+ cn(x− x2) · · · (x− xn−1)
+An(x)(x − x2) · · · (x− xn),

and c2 = [x1, x2]f . We now define recursively, for k ≥ 1, divided differences9

[x1, x2, . . . , xk−1, xk, x]f =
[x1, x2, . . . , xk−1, x]f − [x1, x2, . . . , xk−1, xk]f

x− xk
. (4.2.2)

We obtain, for k = 2,

[x1, x2, x]f = c3 + c4(x− x3) + . . .+ cn(x− x3) · · · (x− xn−1)
+An(x)(x − x3) · · · (x− xn),

and c3 = [x1, x2, x3]f . By induction it follows that

ck = [x1, x2, . . . , xk−1, xk]f, k = 1 : m. (4.2.3)

For k = n we obtain, An(x) = [x1, x2, . . . xn, x]f .
We now introduce a notation that is convenient in the following. Set Φ0(x) =

1, and for k = 1 : n,

Φk(x) = Φk−1(x)(x − xk) = (x − x1)(x − x2) · · · (x − xk). (4.2.4)

9We prefer the modern notation [. . .]f to the older notations f [. . .] or f(. . .), since it emphasizes
that [. . .] is an operator. Note that the interpretation [x]f = f(x) is consistent with this.

12 Chapter 4. Interpolation and Approximation

For f ∈ Pn we know that (4.2.1) is correct, hence we can trust the coefficients
ck. Moreover, since p∗(xj) = f(xj), j = 1 : n, it follows that [x1, x2, . . . xj]p

∗ =
[x1, x2, . . . xj]f . Hence

p(x) =

n∑

j=1

[x1, . . . , xj]pΦj−1(x), ∀p ∈ Pn,

p∗(x) =

n∑

j=1

[x1, . . . , xj]f Φj−1(x).

For a general function f we do not yet know that (4.2.1) is correct, but after
inserting the only possible values of ck and An(x) in (4.2.1), we can conjecture that
the following is an identity:

f(x) =

n∑

j=1

[x1, . . . , xj]f Φj−1(x) + [x1, x2, . . . xn, x]f Φn(x).

We prove this by induction. For n = 1, it is true, because the right hand side
becomes f(x1) + [x1, x]f · (x− x1) = f(x) = the left hand side. Next suppose that
it is true for n = m. The difference between the right hand side for n = m+ 1 and
n = m reads

([x1, . . . , xm+1]f − [x1, x2, . . . xm, x]f)Φm(x) + [x1, x2, . . . xm+1, x]f Φm+1(x)

=
(
[x1, . . . , xm+1]f − [x1, x2, . . . xm, x]f + [x1, x2, . . . xm+1, x]f (x − xm+1)

)
Φm(x)

=
(
[x1, . . . , xm+1, x]f (xm+1 − x) + [x1, x2, . . . xm+1, x]f (x− xm+1)

)
Φm(x)

= 0.

Hence the conjecture is true for n = m+1. We summarize the results in a theorem.

Theorem 4.2.1. Newton’s Interpolation Formula with exact remainder.

The interpolation problem of determining the polynomial p ∈ Pn such that
p(xi) = f(xi), i = 1 : n, where the xi are distinct points, has the solution

p(x) =

n∑

j=1

[x1, . . . , xj]f Φj−1(x). (4.2.5)

where Φk(x) is defined by (4.2.4). The formula

f(x) =

n∑

j=1

[x1, . . . , xj]f Φj−1(x) + [x1, x2, . . . xn, x]f Φn(x) (4.2.6)

is an identity, i.e. the exact remainder equals

f(x) − p(x) = [x1, x2, . . . xn, x]f Φn(x). (4.2.7)

These formulas are valid also for complex xi and x.

4.2. Interpolation Formulas and Algorithms 13

Note that to obtain the interpolation polynomial of the next higher degree
with Newton’s formula, we need only add a term similar to the last term, but
involving a new divided difference of one higher order.

In particular, if f ∈ Pn then it follows from (4.2.7) that

[x1, x2, . . . , xn, x]f = 0, ∀x.

For x = xn+1, this equation is, by Theorem 3.2.1, the only non-trivial relation of
the form

∑n+1
j=1 ajf(xj) = 0 that holds for all f ∈ Pn,.

Theorem 4.2.2.
For every n, the divided difference [x1, x2, . . . , xn]f is the coefficient of xn−1 in

the interpolation polynomial p∗ ∈ Pn. A divided difference is a symmetric function
of its arguments.

Proof. The first statement follows from (4.2.3). The second statement then holds,
because the interpolation polynomial is uniquely determined and independent of
how the points are ordered.

Assume k > i. By the definition of divided differences,

[xi+1, . . . , xk−1, xk, x]f =
[xi+1, . . . , xk−1, x]f − [xi+1, . . . , xk−1, xk]f

x− xk
.

Now set x = xi and use the symmetry property (Theorem 4.2.2). We obtain the
formula

[xi, xi+1, . . . , xk−1, xk]f =
[xi, xi+1, . . . , xk−1]f − [xi+1, . . . , xk−1, xk]f

xi − xk
. (4.2.8)

This formula can be used recursively to compute the divided differences. The com-
putation is conveniently arranged in a table shown below for n = 5 (recall that
[xi]f = f(xi)).

x1 [x1]f
[x1, x2]f

x2 [x2]f [x1, x2, x3]f
[x2, x3]f [x1, x2, x3, x4]f

x3 [x3]f [x2, x3, x4]f [x1, x2, x3, x4, x5]f
[x3, x4]f [x2, x3, x4, x5]f

x4 [x4]f [x3, x4, x5]f
[x4, x5]f

x5 [x5]f

This table is called a divided-difference table. Note that the points x1, x2, x3 . . .
need not be arranged in increasing order of magnitude. Each entry in the table is
computed from the two entries above and below in the previous column. Hence the
complete table can be constructed, e.g., column by column or diagonal by diagonal.

14 Chapter 4. Interpolation and Approximation

The divided differences which occur in Newton’s interpolation formula (4.2.5)
are those in the downward diagonal of the table. However, since the points x1, . . . , xn

can be arbitrarily ordered, we can, for example, also introduce the points in New-
ton’s interpolation formula in backward order xn, . . . , x1. This gives the backward
form for the interpolating polynomial

p∗(x) = f(xn) +

n−1∑

j=1

[xn, xn−1 . . . , xn−j]f (x− xn−j+1) · · · (x − xn). (4.2.9)

The divided differences in this formula lie on the upward diagonal starting at fn in
the table.

Theorem 4.2.3. The Remainder Term for Interpolation

Let f be a given real function, with f (n)(x) continuous in int(x, x1, x2, . . . , xn).
Denote by p∗ the polynomial of degree n − 1 for which p(xi) = f(xi), i = 1 : n.
Then

f(x) − p∗(x) = [x1, x2, . . . xn, x]f Φn(x) =
f (n)(ξx)

n!
Φn(x), (4.2.10)

Φn(x) =
∏n

i=1(x− xi), for some point ξx ∈ int(x, x1, x2, . . . , xn), and

[x1, x2, . . . xn, xn+1]f =
f (n)(ξ)

n!
, ξ ∈ int(x1, . . . , xn+1). (4.2.11)

Proof. Following a proof due to Cauchy, we introduce a new variable z, and set

G(z) = f(z) − p∗(z) − [x1, x2, . . . xn, x]f Φn(z).

We know by Theorem 4.2.1 that

f(x) − p∗(x) = [x1, x2, . . . xn, x]f Φn(x). (4.2.12)

hence G(x) = 0. Then G(z) = 0 for z = x, x1, x2 . . . , xn. From repeated use
of Rolle’s theorem it follows that there exists a point ξx ∈ int(x, x1, x2, . . . , xn),

such that G(n)(ξx) = 0. Since p∗(n)(z) = 0 and Φ
(n)
n (z) = n! for all z, G(n)(z) =

f (n)(z) − [x1, x2, . . . xn, x]f n!. If we now put z = ξx, we obtain

[x1, x2, . . . xn, x]f =
f (n)(ξx)

n!
. (4.2.13)

Put this into the definition of G(z), and set z = x. Since G(x) = 0, the first
statement follows. The second statement follows from (4.2.13) for x = xn+1.

In this theorem xi, x, f(x), etc. must be real, while (4.2.12), i.e. Newton’s
interpolation formula with the exact remainder term, is valid also in the complex
plane. Notice the similarity to the remainder term in Taylor’s formula. We shall see
that this can be considered as a limiting case when all the points xi coincide. Notice
also that the right hand side of (4.2.10) is zero at the grid points—as it should be.

We are now in a position to give a short proof of the important formula (3.3.6)
that we now formulate as a theorem.

4.2. Interpolation Formulas and Algorithms 15

Theorem 4.2.4. Assume that f ∈ Ck. Then

∆kf(x) = hkf (k)(ζ), ζ ∈ [x, x + kh]. (4.2.14)

If f ∈ Pk then ∆kf(x) = 0. Analogous results hold, mutatis mutandis, for backward
and central differences.

Proof. Combine the result in Theorem 4.2.5 with (4.2.11), after appropriate sub-
stitutions.

To form the Newton interpolation polynomial we only need one diagonal of
the divided-difference table, and it is not necessary to store the entire table.

Algorithm 4.2.1 Computing the Newton Coefficients

The following program replaces (overwrites) the function values f1, f2, . . . , fn, where
fi = f(xi), i = 1 : n. by the downward diagonal of divided differences

fi = [x1, x2, . . . , xi]f, i = 1 : n

of the divided difference table. At step j the jth column of the table is computed.
Note that it is necessary to proceed from the bottom of each column to avoid
overwriting data needed later! The algorithm uses n(n−1)/2 divisions and n(n−1)
subtractions.

for j = 1 : n− 1

for i = n : −1 : j + 1

fi := (fi − fi−1)/(xi − xi−j);

end

end

The Newton interpolation polynomial is then given by (4.2.9).

If it is not known in advance how many interpolation points that are needed
to achieve the required accuracy one interpolation point can be added at a time:

Algorithm 4.2.2 Divided Difference Table

The following algorithm computes the difference table one diagonal at a time. In
the ith step the entries fi, [xi−1, xi]f, . . . , [x1, x2, . . . , xi]f on the upward diagonal
of the divided-difference table overwrites the function values fi, fi−1, . . . , f1.

for i = 2 : n

for j = i : −1 : 2

fj := (fj − fj−1)/(xi − xj−1);

end

end

16 Chapter 4. Interpolation and Approximation

For the evaluation of the Newton polynomial at a point x = z, we use the
simple Horner-like scheme (4.1.13)

p(x) = c1 +
n∑

j=2

cjΦj−1(x), φj−1(x) =

j−1
∏

i=1

(x− xi).

We have p(x) = b1, where b1 is computed using the recursion formula:

bn := cn, bi := bi+1(z − xi) + ci, i = n− 1 : −1 : 1. (4.2.15)

It is straightforward to show that the computed result is the exact value correspond-
ing to slightly perturbed divided differences; cf. Problem 2.3.6.

The auxiliary quantities bn, . . . , b2 are of independent interest, since we have

p(x) = b1 + (x − z)

(

b2 +

n−1∑

j=2

bj+1φj−1(x)

)

. (4.2.16)

Repeated applications of the Horner scheme are useful in the evaluation of deriva-
tives of a Newton polynomial.

Example 4.2.1.
Compute the interpolation polynomial for the following table:

x1 = 1 0
2

x2 = 2 2 1
5 0

x3 = 4 12 1
8

x4 = 5 20

(The entries appearing in the Newton forward interpolation formula are boldface.)
We get two alternative representations

p(x) = 0 + 2(x− 1) + 1(x− 1)(x− 2) + 0(x− 1)(x− 2)(x− 4)

= 20 + 8(x− 5) + 1(x− 5)(x− 4) + 0(x− 5)(x− 4)(x− 2)

= x2 − x,

where the second is obtained from (4.2.9). (Note that for these particular data the
unique interpolation polynomial in P4 actually belongs to the subspace P3.)

The remainder term in interpolation is according to Theorem 4.2.3 equal to

n∏

i=1

(x− xi)f
(n)(ξx)/n!.

4.2. Interpolation Formulas and Algorithms 17

Here ξx depends on x, but one can say that the error curve behaves for the most part
like a polynomial curve y = c

∏n
i=1(x− xi). A similar curve is also typical for error

curves arising from least squares approximation. This contrasts sharply with the
error curve for Taylor approximation, whose behavior is described approximatively
by y = c(x − x0)

n. It is natural to ask what the optimal placing of the interpo-
lation points x1, . . . , xn should be in order to minimize the maximum magnitude
of Φn(x) =

∏n
i=1(x − xi) in the interval the formula is to be used. For the inter-

val [−1, 1] the answer is given directly by the minimax property (Lemma 3.2.3) of
the Chebyshev polynomials—choose Φn(x) = Tn(x)/2n−1. Thus the interpolation
points should be taken as the zeros of Tn(x). (In case of an interval [a, b] one makes
the linear substitution x = 1

2 (a + b) + 1
2 (b − a)t.) We have already seen examples

of the use of Chebyshev interpolation in the discussion of the Runge phenomenon
in Sec. 4.1.4.

−1.5 −1 −0.5 0 0.5 1 1.5
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

−1.5 −1 −0.5 0 0.5 1 1.5
−6

−4

−2

0

2

4

6

8

10

12
x 10

−3

Figure 4.2.1. Error of interpolation in Pn for f(x) = xn, using equidistant
points and Chebyshev points; n = 8 (left) n = 12 (right).

Example 4.2.2.
Use the same notations as before. For f(x) = xn the interpolation error

becomes f(x) − p∗(x) = Φn(x), because f (n)(x)/n! ≡ 1. Figure 4.2.1 shows the
interpolation error with n equidistant points on [−1, 1] and with n Chebyshev points
on the same interval, i.e.

xi = −1 + 2
i− 1

n− 1
, xi = cos

(2i− 1

n

π

2

)

,

respectively, for n = 6 and n = 12. The behaviour of the error curves are rather
typical for functions where f (n)(x) is slowly varying. Also note that the error
increases rapidly, when x leaves the interval int(x1, x2, . . . , xn). In the equidistant
case, the error is quite large also in the outer parts of the interval.

18 Chapter 4. Interpolation and Approximation

Example 4.2.3.
Set f(x; z) = 1/(z − x); x is the variable, z is a parameter; both may be

complex. The following elementary, though remarkable, expansion can be proved
directly by induction (Problem 3a).

1

z − x
=

1

z − x1
+

x− x1

(z − x1)(z − x2)
+ . . .+

(x− x1)(x − x2) · · · (x− xn−1)

(z − x1)(z − x2) · · · (z − xn)

+
(x− x1) · · · (x− xn)

(z − x1) · · · (z − xn)(z − x)

=

n∑

j=1

Φj−1(x)

Φj(z)
+

Φn(x)

Φn(z)(z − x)
. (4.2.17)

When we match this with Newton’s interpolation formula we find that

[x1, x2, . . . , xj]f(x; z) =
1

Φj(z)
, [x1, x2, . . . , xj , x]f(x; z) =

1

Φj(z)(z − x)
.

(4.2.18)
These formulas can also be proved by induction, by working algebraically with
1/(z − x) in the divided difference table (Problem 3). See also Problem 3.2.2a for
the equidistant case.

An interesting feature is that these formulas do not require that the points
xi are distinct. (They are consistent with the extension to non-distinct points that
will be made in Sec. 4.3.) Everything is continuous except if z = xi, i = 1 : n, or,
of course if z = x, see Sec. 4.3. If all the xi coincide, we obtain a geometric series
with a remainder.

This is more than a particular example. Since 1/(z − x) is the kernel of
Cauchy’s integral (and several other integral representations), this expansion is
easily generalized to arbitrary analytic functions.

For given interpolation points the divided differences in Newton’s interpola-
tion formula depends on the ordering in which the points xi are introduced. Math-
ematically all orderings give the same unique interpolation polynomial. However,
the condition number for the coefficients c in the Newton polynomial can depend
strongly on the ordering of the interpolation points. For simple everyday interpola-
tion problems the increasing order x1 < x2 < · · · < xn will give satisfactory results.
If the point x̃ where the polynomial is to be evaluated is known, then an ordering
such that

|x̃− x1| ≤ |x̃− x2| ≤ · · · ≤ |x̃− xn|
can be recommended. (In the equidistant case this corresponds to using Stirling’s
or Bessel’s formula.)

Another suitable choice in case convergence is slow and an interpolation poly-
nomial of high order is used, is the Leja ordering defined by

x1 = max
1≤i≤n

|xi|,
j−1
∏

k=1

|xj − xk| = max
i≥j

j−1
∏

k=0

|xi − xk|, j = 2 : n− 1. (4.2.19)

4.2. Interpolation Formulas and Algorithms 19

Note also that the barycentric Lagrange interpolation formula, to be introduced in
Sec. 4.2.2, has very good stability properties.

Let K be a compact set in the complex plane with a connected complement.
Any sequence of points ξ1, ξ2, . . . which satisfies the conditions

|ξ1| = max
ξ∈K

|ξ|,
j−1
∏

k=1

|ξj − ξk| = max
ξ∈K

j−1
∏

k=0

|ξ − ξk|, j = 2, 3, (4.2.20)

are Leja points for K. The points may not be uniquely defined by (4.2.20). For a
real interval [a, b] the Leja points are distributed similarly to the Chebyshev points.
The main advantage of the Leja points is that it is easy to add new Leja points
successively to an already computed sequence of Leja points.

Theorem 4.2.5. For equidistant points xi = x1 +(i−1)h, fi = f(xi), it holds that

[xi, xi+1, . . . , xi+k]f =
∆kfi

hkk!
. (4.2.21)

Proof. By induction, with the use of equation (4.2.8). The details are left to the
reader.

We have noted above that, in the notation for the equidistant case, ∇kfn ≈
hkf (k), while in the divided difference notation f [xn, xn−1, . . . , xn−k] ≈ f (k)/k!.
For the basis functions of the interpolation formulas, we have, respectively,

(
x

k

)

= O(1), (x − xn)(x − xn−1) · · · (x− xn−k+1) = O(hk),

provided that x− xn−j = O(h), j = 0 : k − 1.
For many applications the quantities used in the equidistant case have a more

appropriate order of magnitude. In some applications to differential equations,
there may even be a risk for overflow or underflow, when divided differences are
used. F. Krogh [35] introduced a scaling for the divided differences with the same
advantage; in the equidistant case these scaled divided differences are identical to
∇kfn. The main application so far has been to multistep methods for ordinary
differential equations.

4.2.2 Lagrange’s Interpolation Formula

A basis that is often advantageous to use is the cardinal basis of Pn generated by
the polynomial

Φn(x) = (x− x1)(x− x2) · · · (x− xn), (4.2.22)

where xi, i = 1 : n are n distinct real numbers. The basis reads,

ℓj(x) =
Φn(x)

(x− xj)Φ′
n(xj)

=

n∏

i=1

i6=j

(x− xi)

(xj − xi)
, j = 1 : n (4.2.23)

20 Chapter 4. Interpolation and Approximation

Here ℓj, the Lagrange polynomials of degree n− 1, satisfy

ℓj(xi) = δij =

{
1 if i = j;
0 if i 6= j.

Theorem 4.2.6 (Lagrange’s interpolation formula).
The unique interpolation polynomial p ∈ Pn interpolating the function f(x) at

the distinct points xi, i = 1 : n, can be written

p(x) =

n∑

j=1

f(xj)ℓj(x), (4.2.24)

where

ℓj(x) =

n∏

i=1

i6=j

(x− xi)

(xj − xi)
, j = 1 : n, (4.2.25)

Quite often it is asserted that the Lagrange form is a bad choice for practical
computations10, since for each new value of x the functions ℓi(x) have to be recom-
puted at a cost O(n2). Further, adding a new data point xn+1, fn+1 will require a
new computation from scratch. It is concluded that the expression (4.2.24) is not
as efficient as the Newton formula.

The above assertions are, however, not well-founded. The Lagrange represen-
tation can easily be rewritten in two more attractive forms, which both are eminently
suitable for computation; see Berrut and Trefethen [3]. Taking out the common fac-
tor Φn(x) in (4.2.24) and introducing the support coefficients

wj = 1
/ m∏

i=1

i6=j

(xj − xi), j = 1 : n, (4.2.26)

Lagrange interpolation formula can be written in the modified form

p(x) = Φn(x)

n∑

j=1

wj

x− xj
f(xj), (4.2.27)

Here wj depend only on the given points xj , j = 1 : n, and can be computed
in n(n − 1) operations. This is twice the work required to compute the divided
differences for Newton’s interpolation formula. Then, to evaluate p(x) from (4.2.27)
for a new value of x we only need to compute Φn(x) and wj/(x − xj), j = 1 : n,
which requires O(n) operations.

10Steffensen [51, p. 25] “For actual numerical interpolation Lagrange’s formula is, however, as a
rule not very suitable.

4.2. Interpolation Formulas and Algorithms 21

The product factor Φn(x) in (4.2.27) can be eliminated as follows. Since the
interpolation formula is exact for f(x) ≡ 1, we have

1 = Φn(x)

n∑

j=1

wj

x− xj
.

Substituting this in (4.2.27)

p(x) =

n∑

j=1

wj

x− xj
f(xj)

n∑

j=1

wj

x− xj

, if x 6= xj , j = 1 : n, (4.2.28)

which is the barycentric form of Lagrange’s interpolation formula. This expresses
the value p(x) as a weighted mean of the values fi. (Note that the coefficients
wj/(x−xj) need not be positive, so the term “barycentric” is not quite appropriate.)

The barycentric formula (4.2.28) has a beautiful symmetric form and is “em-
inently suitable for machine computation” (Henrici [29, p. 237]) Unlike Newton’s
interpolation formula, it does not depend on the order in which the nodes are or-
dered. The numerical stability of the two modified Lagrange interpolation formulas
is, contrary to what is often stated, very good. Note that interpolation property of
p(x) is preserved even if the coefficients wi are perturbed, but then p(x) is usually
no longer a polynomial but a rational function.

There seems to be a stability problem for the formula (4.2.28) when x is very
close to one of the interpolation points xi. In this case wi/(x − xi) will be very
large and not accurately computed because of the cancellation in the denominator.
However, this is in fact no problem, since there will be exactly the same error in
the denominator. Further, in case ∆i = fl (x − xi) is exactly zero, we simply put
∆i = u (the unit roundoff).

The Lagrange representation of the interpolation formula can be as efficiently

updated. as as Newton’s formula. Suppose the support coefficients w
(k−1)
i , i = 1 :

k − 1 for the points x1, . . . , xk−1 are known. Adding the point xk the first k − 1
new support coefficients can be calculated from

w
(k)
i = w

(k−1)
i /(xi − xk), i = 1 : k − 1,

using (k− 1) divisions and subtractions. Finally we have w
(k)
k = 1

/ ∏k−1
i=1 (xk − xi).

The computation of the support coefficients is summarized in the following program:

w1 = 1;

for k = 2 : n

wk = 1;

for i = 1 : k − 1

wi := wi/(xi − xk);

wk = wk/(xk − xi);

end

end

22 Chapter 4. Interpolation and Approximation

Note that the support coefficients wi do not depend on the function to be interpolated.
Once they are known interpolating a new function f only requires O(n) operations.
This contrasts with Newton’s interpolation formula, which requires the calculation
of a new table of divided differences for each new function.

Suppose that we use interpolation points in an interval [a, b] of length 2C.
Then as n → ∞ the scale of the weights will grow or decay exponentially at the
rate C−n. If n is large or C is far from 1, the result may underflow or overflow even
in IEEE double precision. In such cases there may be a need to rescale the support
coefficients.

The computation of the support coefficients can be done in only 1
2n(n− 1) by

using the relation (see Problem 5 and [46, Sec. 3.2.1])

n∑

i=1

wi = 0, n > 1;

to compute wn =
∑n−1

i=1 wi. However, using this identity destroys the symmetry
and can lead to stability problems for large n. Serious cancellation in the sum will
occur whenever maxi |wi| is much larger than |wn|. Hence the use of this identity
is not recommended in general.

For various important distributions of interpolating points, it is possible to
compute the support coefficients wi analytically.

Example 4.2.4.
For interpolation at the equidistant points x1, xi = x1 + (i − 1)h, i = 2 : n,

the support coefficients are

wi = 1
/

((xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn))

= (−1)n−i
/ (
hn−1(i− 1)! (n− i)!

)
=

(−1)n−i

hn−1(n− 1)!

(
n− 1

i

)

In the barycentric formula (4.2.28) a common factor in the coefficients wi cancels
and we may use instead the modified support coefficients

w∗
i = (−1)i+1

(
n− 1

i

)

. (4.2.29)

For a given n these can be evaluated in only 2n operations using the recursion

w∗
1 = n− 1, w∗

i = w∗
i−1

n− i

i
, i = 2 : n.

Example 4.2.5.
Explicit support coefficients are also known for the Chebyshev points of the

first and second kind on [−1, 1]. For the Chebyshev points

xi = cos
(2i− 1)

n

π

2
, i = 1 : n,

4.2. Interpolation Formulas and Algorithms 23

they are

wi = (−1)i sin
(2i− 1)

n

π

2
. (4.2.30)

For the Chebyshev points of the second kind,

xi = cos
(i− 1)

(n− 1)
π, i = 1 : n

they are

wi = (−1)iδj , δj =

{
1/2 if i = 1 or i = n,
1, otherwise

. (4.2.31)

Note that all but two weights are equal! This will be considered from another point
of view in Sec. 4.6.

For an interval [a, b] the Chebyshev points can be generated by a linear trans-
formation. The corresponding weights wi then gets multiplied by 2n(b− a)n. How-
ever, this factor cancels out in the barycentric formula, and there is no need to
include it. Indeed, by not doing the risk of overflow or underflow, when |b − a| is
far from 1 and n is large, is avoided.

The two examples above show that with equidistant or Chebyshev points only
O(n) operations are needed to get the weights wi. For these cases the barycentric
formula seems superior to all other interpolation formulas.

Lagrange interpolation formula can be used to compute the inverse of the
Vandermonde matrix V in (4.1.5) in O(n2) operations. If we set V −1 = W =
(wij)

n
i,j=1, then WV = I, the ith row of which can be written

n∑

j=1

wijx
j
k = δik, k = 1 : n.

This is an interpolation problem that is solved by the Lagrange basis polynomial

ℓi(x) =

n∏

k=1

k 6=i

(x− xk)

(xi − xk)
=

n∑

j=1

wijx
j , j = 1 : n. (4.2.32)

This shows that V is nonsingular if and only if the points xi are distinct.
The elements wij can be computed as follows. First we compute the coeffi-

cients of the polynomial

Φn(x) = (x− x1)(x− x2) · · · (x− xn) =

n+1∑

j=1

ajx
j−1.

This can be done by the recursion:

a1 = −x1; a2 = 1;

for k = 2 : n

24 Chapter 4. Interpolation and Approximation

ak+1 = 1;

for i = k : −1 : 2

ai = ai−1 − xkai;

end

a1 = −xka1;

end

Next the coefficients of polynomials

qi(x) = Φn(x)/(x − xi), i = 1 : n.

are computed by synthetic division. Finally, the Lagrange polynomials are obtained
from ℓi(x) = qi(x)/qi(xi), where the scalars qi(xi) are computed by Horner’s rule.
The cost of computing the n2 elements inW by this algorithm is only 6n2 operations.

4.2.3 Iterative Linear Interpolation

There are other recursive algorithms for interpolation. Of interest are those based
on successive linear interpolations. The basic formula is given in the following
theorem.

Theorem 4.2.7.
Assume that the two polynomials pn−1(x) and qn−1(x), both in Pn−1 inter-

polate f(x) at the points x1, . . . , xn−1, and x2, . . . , xn, respectively. If the n points
x1, x2, . . . , xn−1, xn are distinct then

pn(x) =
(x − x1)qn−1(x) − (x − xn)pn−1(x)

xn − x1
.

is the unique polynomial in Pn that interpolates f(x) at the m points x1, x2, . . . ,
xn−1, xn.

Proof. Since qn−1(x) and pn−1(x) both interpolate f(x) at the points x2, . . . , xn−1

and
(x− x1) − (x− xn)

xn − x1
= 1,

it follows that also pn(x) interpolates f(x) at these points. Further, pn(x1) =
pn−1(x1) and hence interpolates f(x) at x1. A similar argument shows that, pn(x)
interpolates f(x) at x = xn. Hence pn(x) is the unique polynomial interpolating
f(x) at the distinct points x1, x2, . . . , xn.

Neville’s and Aitken’s algorithms both use Theorem 4.2.7 repeatedly to
construct successively higher order interpolation polynomials. Let pi,k denote the
polynomial interpolating at the k points xi−k+1, . . . , xi. In Neville’s interpolation
algorithm one puts

pi,1 = f(xi), i = 1 : n

4.2. Interpolation Formulas and Algorithms 25

and compute for i = 2 : n

pi,k+1 =
(x− xi−k)pi,k − (x− xi)pi−1,k

xi − xi−k
, k = 1 : i− 1, (4.2.33)

where pi,k+1 interpolates at the points xi−k, . . . , xi−1, xi. The calculations can be
arranged in a table, which for n = 4 has the form

x1 f(x1) = p1,1

p2,2

x2 f(x2) = p2,1 p3,3

p3,2 p4,4

x3 f(x3) = p3,1 p4,3

p4,2

x4 f(x4) = p4,1

Here any entry is obtained as a linear combination of the nearest two entries in
the preceding column. Note that it is easy to add a new interpolation point in this
scheme. To proceed only the last lower diagonal needs to be retained. If it is known
in advance that a fixed number k of points are to be used, then one can instead
generate the table column by column. When one column has been evaluated then
the preceding may be discarded.

These formulas are better than Newton’s only in the case that f(x) is to be
evaluated for the same values of x− xi for several functions (sequences) f . In this
case one should compute

tik =
x− xi−k

xi − xi−k

once and for all.
We saw in Sec. 3.3.5 its application to the extrapolation to x = 0 of a polyno-

mial given at a few positive arguments, a typical example, where it is efficient and
widely used.

Aitken’s scheme is similar to Neville’s, but uses another sequence of inter-
polants. Let pi,k, i ≥ k, denote the polynomial interpolating at the k points
x1, . . . , xk−1 and xi. Set pi,1 = f(xi), as above, and compute for i = 2 : n

pi,k+1 =
(x− xi−1)pi,k − (x− xi)pk,k

xk − xi−1
, k = 1 : i− 1, (4.2.34)

The table can again be generated column by column. To be able to add a new point
the whole upper diagonal pi,i, i = 1 : k, must be saved.

4.2.4 Conditioning of the Interpolation Problem

Consider the problem of finding a polynomial pf = pn(x) ∈ Pn that interpolates
given values fj at distinct points xj , j = 1 : n. With the terminology of Sec. 2.4.3
the input data are fj , j = 1 : n, and the output data is the value of the polynomial
pf evaluated at some fixed point x̃.

26 Chapter 4. Interpolation and Approximation

Definition 4.2.8.
The condition number of pf at fixed x̃ and fixed interpolation points but varying

data fj, j = 1 : n is

cond (x̃, f) = lim
ǫ→0

sup

{ |pf+∆f(x̃) − pf(x̃)|
ǫ|pf (x̃)| : |∆f | ≤ ǫ|f |

}

(4.2.35)

Lemma 4.2.9. N. J. Higham [32]
Let ℓj(x) be the Lagrange basis functions. Then the condition number in Def-

inition 4.2.8 is, for pf(x̃) 6= 0,

cond (x̃, f) =

∑n
j=1 |ℓj(x̃)fj |
|pf (x̃)| ≥ 1, (4.2.36)

and for any ∆f with |∆f | ≤ ǫ|∆f | we have

|pf+∆f(x̃) − pf (x̃)|
ǫ|pf (x̃)| ≤ cond (x̃, f)ǫ.

Proof. Using the Lagrange basis,

pf+∆f(x̃) − pf(x̃) =
n∑

j=1

ℓj(x̃)∆fj ,

It follows immediately that the expression in (4.2.36) is an upper bound for the
condition number and it is clearly at least 1. Equality is attained for ∆fj =
ǫ sign (ℓj(x̃))|fj |. The inequality follows trivially.

Assume that the interpolation points xj , j = 1 : n lie in [−1, 1]. Consider
cond (x, 1), the condition number of interpolating the function f(x) = 1 at these
points. By Lemma 4.2.9 we have

cond (x, 1) =

n∑

j=1

|ℓj(x)|.

This quantity is related to the so called Lebesgue constant defined by

Λn = sup
x∈[−1,1]

n∑

j=1

|ℓj(x)| ≥ cond (x, 1). (4.2.37)

For equally spaced point, however, Λn grows at a rate proportional to 2n/(n logn);
see Cheney and Light [12, Chap. 3].

4.2. Interpolation Formulas and Algorithms 27

Theorem 4.2.10 (N. Higham [32]).
Assume that xi, fi and x are floating point numbers. Then the computed value

p̄(x) of the interpolation polynomial using the modified Lagrange formula (4.2.27)
satisfies

p̄(x) = Φn(x)
n∑

i=1

wi

x− xi
f(xi)

5(n+1)
∏

j=1

(1 + δij)
±1, (4.2.38)

where |δij | ≤ u.
Thus the formula (4.2.27) computes the exact value of an interpolating polyno-

mial corresponding to slightly perturbed function values f(xi). Hence this formula
is backward stable in the sense of Definition 2.4.9.

From this theorem and Lemma 4.2.9 the forward error bound

|pn(x̃) − p̄n(x̃)|
|pn(x̃)| ≤ γ5n+5cond (x̃, f). (4.2.39)

can be obtained.
The barycentric formula is not backward stable. A forward error bound similar

to (4.2.39) but containing an extra term proportional to cond (x̃, 1) =
∑n

j=1 |ℓj(x)|
can be shown. Hence the barycentric formula can be significantly less accurate
than the modified Lagrange formula (4.2.27) only for a poor choice of interpolation
points.

4.2.5 Interpolation by Rational Functions

Rational approximation is often superior to polynomial approximation in the neigh-
borhood of a point at which the function has a singularity. The rational interpola-
tion problem is to determine a rational function

fm,n(z) =
Pm(z)

Qn(z)
≡

∑m
j=0 pjz

j

∑n
j=0 qjz

j
, (4.2.40)

so that
fm,n(xi) = fi, i = 0 : m+ n. (4.2.41)

A necessary condition for (4.2.41) to hold clearly is that

Pm(xi) − fiQn(xi) = 0, i = 0 : m+ n. (4.2.42)

or for i = 0 : m+ n,

p0xi + p1xi + · · · + pmx
m
i − fi(q0xi + q1xi + · · · + qnx

n
i) = 0, (4.2.43)

This is a homogeneous linear system of (m+ n+ 1) equations for the (m+ n+ 2)
coefficients in Pm,n and Qm,n. Such a system always has a nontrivial solution. The
coefficients are determined only up to a common factor ρ 6= 0.

In contrast to polynomial interpolation a solution to the rational interpolation
problem may not exist as shown in the following example:

28 Chapter 4. Interpolation and Approximation

Example 4.2.6.
Assume that we want to interpolate the first four of the points

x 0 1 2 3 4
y 2 3/2 4/5 1/2 6/17

by a rational function

f2,1 =
p0 + p1x+ p2x

2

q0 + q1x
.

Then we must solve the homogeneous linear system






1 0 0
1 1 1
1 2 4
1 3 9










p0

p1

p2



 −






2 0
3/2 3/2
4/5 8/5
1/2 3/2






(
q0
q1

)

= 0.

Setting p2 = 1 we find the solution p0 = 8, p1 = −6, q0 = 4, q1 = −2. The
corresponding rational function

f2,1 =
8 − 6x+ x2

4 − 2x
=

(4 − x)(2 − x)

2(2 − x)

has the common factor (2 − x) and is reducible to f2,1 = (4 − x)/2. The original
form is indeterminate 0/0 at x = 2 while the reduced form does not take on the
prescribed value at x = 2.

An algorithm similar to Newton’s algorithm can be used for finding rational
interpolants in continued fraction form. Set v0(x) = f(x), and use a sequence of
substitutions

vk(x) = vk(xk) +
x− xk

vk+1(x)
, k = 0, 1, 2, (4.2.44)

The first two substitutions give

f(x) = v0(x) = v0(x1) +
x− x0

v1(x)
= v0(x0) +

x− x0

v1(x1) +
x− x1

v2(x)

.

In general this gives a continued fraction

f(x) = a0 +
x− x0

a1 +
x− x1

a2 +
x− x2

a3+

. . . = a0 +
x− x1

a1+

x− x2

a2+

x− x3

a3+
. . . , (4.2.45)

where ak = vk(xk), and we have used the compact notation introduced in Sec. 3.5.1.
This becomes an identity if the expansion is terminated by replacing an in the last
denominator by an + (x − xn)/vn+1(x). If we set x = xk, k ≤ n, then the fraction
terminates before the the residual (x−xn)/vn+1(x) is introduced. This means that

4.2. Interpolation Formulas and Algorithms 29

setting 1/vk+1 = 0 will give a rational function which agrees with f(x) at the points
xi, i = 0 : k ≤ n, assuming that the constants a0, . . . , ak exist. These continued
fractions give a sequence of rational approximations fk,k, fk+1,k, k = 0, 1, 2,

Introducing the notation

vk(x) = [x0, x1, . . . , xk−1, x]φ (4.2.46)

we have ak = [x0, x1, . . . , xk−1, xk]φ. Then by (4.2.44) we have

[x]φ = f(x), [x0, x]φ =
x− x0

[x]φ− [x0]φ
=

x− x0

f(x) − f(x0)
,

[x0, x1, x]φ =
x− x1

[x0, x]φ− [x0, x1]φ
,

and in general

[x0, x1, . . . , xk−1, x]φ =
x− xk−1

[x0, . . . , xk−2, x]φ− [x0, . . . , xk−2, xk−1]φ
. (4.2.47)

Therefore we also have

ak =
x− xk−1

[x0, . . . , xk−2, xk]φ− [x0, . . . , xk−2, xk−1]φ
. (4.2.48)

We call the quantity defined by (4.2.48) the kth inverse divided difference of
f(x). Note that certain inverse differences can become infinite if the denominator
vanishes. They are, in general, symmetrical only in their last two arguments11

The inverse divided differences of a function f(x) can conveniently be com-
puted recursively and arrange in a table similar to the divided difference table.

x1 f(x1) [x1]φ
[x1, x2]φ

x2 f(x2) [x2]φ [x1, x2, x3]φ
[x2, x3]φ [x1, x2, x3, x4]φ

x3 f(x3) [x3]φ [x2, x3, x4]φ
[x3, x4]φ

x4 f(x4) [x4]φ

Here the upper diagonal elements are the desired coefficients in the expansion
(4.2.45).

Example 4.2.7.
Assume that we want to interpolate the points given in Example 4.2.7. Form-

11The reciprocal differences of Thiele [55] are symmetric functions of all their arguments; see
Hildebrand [33, pp. 406ff].

30 Chapter 4. Interpolation and Approximation

ing the inverse differences we get the table

xi fi φ1 φ2 φ3 φ4

0 2
−2

1 3/2 3
5/3 0

2 4/5 ∞ −5
−2 −1/5

3 1/2 −7
−17/7

4 6/17

This gives a sequence of rational approximations. If we terminate the expansion

f2,2 = 2 +
x

−2+

x− 1

3+

x− 2

0+

x− 3

−5
.

after a3 we recover the solution of the previous example. Note that the the
degeneracy of the approximation is shown by the entry a3 = 0. Adding the last
fraction gives the (degenerate) approximation

f2,2 =
2 + x

1 + x2
.

It is verified directly that this rational function interpolates all the given points.

The formulas using inverse or reciprocal differences are are useful if one wants
to determine the coefficients of the rational approximation, and use it for to compute
approximations for several arguments. If one is only wants the value of the rational
interpolating function for a single argument, then it is more convenient to use
an alternative algorithm of Neville-type. If we consider the sequence of rational
approximations of degrees (m,n)

(0, 0), (0, 1), (1, 1), (1, 2), (2, 2),

the following recursive algorithm results (Stoer and Bulirsch [52, Sec. 2.2]):
For i = 0, 1, 2, . . ., set Ti,−1 = 0, Ti,0 = fi, and

Tik = Ti,k−1 +
Ti,k−1 − Ti−1,k−1

x− xi−k

x− xi

[

1 − Ti,k−1 − Ti−1,k−1

Ti,k−1 − Ti−1,k−2

]

− 1

, 1 ≤ k ≤ i. (4.2.49)

Review Questions 31

As in Neville interpolation the calculations can be arranged in a table of the form

(m,n) = (0, 0) (0, 1) (1, 1) (1, 2) · · ·

f1 = T1,0

0 T2,1

f2 = T2,0 T3,2

0 T3,1 −→ T4,3

f3 = T3,0 T4,2

...
. . .

0 T4,1

...

f4 = T4,0

...
...

...

Here any entry is determined by a rhombus rule from three entries in the preceding
two columns. Note that it is easy to add a new interpolation point in this scheme.

Review Questions

1. Prove the theorem which says that the interpolation problem for polynomials
has a unique solution.

2. When is linear interpolation sufficient?

3. Derive Newton’s interpolation formula.

4. Derive Newton’s interpolation formula for the equidistant case, starting from
Newton’s general interpolation formula. How is this formula easily remem-
bered?

5. Discuss how various sources of error influence the choice of step length in
numerical differentiation.

6. Derive the Lagrange interpolation formula. Show how it can be rewritten in
barycentric form. When is the latter form more efficient to use?

Problems and Computer Exercises

1. (a) Compute f(3) by quadratic interpolation in the following table:

x 1 2 4 5
f(x) 0 2 12 21

Use the points 1, 2, and 4, and the points 2, 4, and 5, and compare the results.

(b) Compute f(3) by cubic interpolation.

32 Chapter 4. Interpolation and Approximation

2. Compute f(0) using one of the interpolation formulas treated above on the
following table:

x 0.1 0.2 0.4 0.8
f(x) 0.64987 0.62055 0.56074 0.43609

The interpolation formula is here used for extrapolation. Use also Richardson
extrapolation and compare the results.

3. Error in linear interpolation

(a) Suppose we want to compute by linear interpolation the value y(x) at a
point x = x0 + θh, h = x1 − x0. Using (4.2.10) show that for 0 ≤ θ ≤ 1 the
remainder R(x) = f(x) − p(x) satisfies

|R(x)| ≤ h2

8
M2, (4.2.50)

(b) Show that if the values f0 and f1 are given to t correct decimal digits
then the round-off error RT in linear interpolation p(x) = (1− θ)f0 + θf1, for
0 ≤ θ ≤ 1 satisfies |RT | =≤ 1

210−t. Show further that if h2M2 ≤ 4 · 10−t,
then the total error in p(x) is bounded by 10−t twice the round-off error in
the given values of f .

(c) Motivate the rule of thumb that linear interpolation suffices if |∆2fn|/8 is
a tolerable truncation error.

4. Work out the details of Example 4.2.3 (about divided differences etc. for
1/(z − x)).

5. (a) Consider the two polynomials p(x) and q(x), both in Pn, which interpolate
f(x) at the points x1, . . . , xn, and x2, . . . , xn+1, respectively. Assume that
{xi}n+1

i=1 is an increasing sequence, and that f (n)(x) has constant sign in the
interval [x1, xn+1]. Show that f(x) is contained between p(x) and q(x) for all
x ∈ [x1, xn+1].

(b) Suppose that f(x) = f1(x)−f2(x), where both f
(n)
1 (x) and f

(n)
2 (x) have the

same constant sign in [x1, xn+1]. Formulate and prove a kind of generalization
of the result in (a).

6. Using the barycentric formula (4.2.27) the interpolation polynomial can be
written

p(x) =

n∑

i=1

wif(xi)

m∏

j=1

j 6=i

(x− xj).

Show by taking f(x) ≡ 1 and equating the coefficients for xn−1 on both sides
that the support coefficients satisfy

∑n
i=1 wi = 0.

7. Show that, if the points xi are distinct,

[x1, x2, . . . , xm]f =

m∑

i=0

f(xi)

Φ′
m(xi)

,

4.3. Generalizations and Applications 33

where Φm(x) is defined in (4.2.26).

Hint: Compare the coefficients of xn−1 in Newton’s and Lagrange’s expressions
for the interpolation polynomial.

8. (a) Check Table 4.2.1 and the conclusions about the optimal step length in
the text, Investigate how the attainable accuracy varies with u.

(b) Study the analogous question for f ′′(x0) using the formula

f ′′(x0) ≈
(

1 − δ2

12
+
δ4

90
− δ6

560
+

δ8

3, 150
− . . .

)
δ2f0
h2

.

9. Prove the validity of Algorithm 4.2.3

10. Given a backwards (upwards) diagonal in the table of divided differences
(scaled or unscaled), 〈X ;m, i〉Y , i = 1 : k. Find a recurrence formula for
the computation of the next diagonal of the difference scheme for the inter-
polation polynomial P (x;m, k)Y , i.e. if 〈X ;m+ 1, k〉Y = 〈X ;m, k〉Y (why?),
find 〈X ;m+ 1, i〉Y , i = k − 1, k − 2, . . . , 0.

Hint: Look up the equidistant case in Example 3.2.6.

11. (Bulirsch and Rutishauser (1968))
(a) The function cotx has a singularity at x = 0. Use values of cotx for
x = 1◦, 2◦, . . . , 5◦. and rational interpolation of order (2,2) to determine an
approximate value of cotx for x = 2.5◦, and its error.

(b) Use polynomial interpolation for the same problem. Compare the result
with that in (a).

4.3 Generalizations and Applications

4.3.1 Interpolation using Values of Derivatives

The general Hermite interpolation problem is the following: Given n distinct
points {xi}n

i=1, and numbers ri ≥ 1, Find a polynomial p(x) of degree m− 1, where
∑n

i=1 ri = m, so that p(x) and its first ri − 1 derivatives agree with those of f(x)
at xi, i.e.

p(x)(j)(xi) = f(x)(j)(xi), j = 0 : ri − 1,

n∑

i=1

ri = m, (4.3.1)

i = 1 : n. (We use here the notation f (0)(x) for f(x).)
Hermite interpolation can be viewed as the result of passages to the limit in

interpolation at m points, where for i = 1 : n ri interpolation points coalesce into
the point xi. We say that the point xi has multiplicity ri. For example, the
Taylor polynomial in Pm

p(x) =

m−1∑

j=0

f (j)(x1)

j!
(x − x0)

j (4.3.2)

interpolates f(x) at the point x1 with multiplicity m (or x1 is repeated m times).

34 Chapter 4. Interpolation and Approximation

Note that (4.3.1) are precisely m conditions on p(x), so we can expect that
the Hermite interpolation problem is uniquely solvable.

Theorem 4.3.1.
The problem of finding a polynomial p ∈ Pm that satisfies the Hermite inter-

polation conditions

p(j)(xi) = f (j)(xi), i = 1 : n, j = 0 : ri − 1, (4.3.3)

where ri ≥ 1,
∑
ri = m, has a unique solution.

Proof. The conditions are expressed by a system of m linear equations for the
coefficients of p̂, with respect to some basis. This has a unique solution for any
right hand side, unless the corresponding homogeneous problem has a non-trivial
solution. Suppose that a polynomial p ∈ Pm comes from such a solution of the
homogeneous problem, i.e.

p(j)(xi) = 0, i = 1 : n, j = 0 : ri − 1.

Then, xi must be a zero of multiplicity ri of p(x), hence p(x) must have at least
∑
ri = m zeros (counting the multiplicities). But this is impossible, because the

degree of p is less than m. This contradiction proves the theorem.

Since Hermite interpolation is a boundary case of ordinary interpolation the
remainder term for interpolation given in Theorem 4.2.3 applies. Hence, assuming
that f is a real function, with continuous derivatives of order at least m, the error
in Hermitian interpolation is given by

f(x) − p(x) =
f (m)(ξx)

m!
Φn(x), Φn(x) =

n∏

i=1

(x− xi)
ri . (4.3.4)

for some point ξx ∈ int(x, x1, x2, . . . , xn).

Example 4.3.1.
Consider the problem of finding a polynomial p(x) ∈ P4 that interpolates the

function f and its first derivative f ′ at the two points x0 and x1, and also its second
derivative at x0. In the notations of Sec. 4.1.1 the linear system for the coefficient
vector c becomes V T c = f̃ , where f̃ = (f(x1), f

′(x1), f
′′(x1), f(x2), f

′(x2))
T , and

V =








1 0 0 1 0
x1 1 0 x2 1
x2

1 2x1 2 x2
2 2x2

x3
1 3x2

1 6x1 x3
2 3x2

2

x4
1 4x3

1 12x2
1 x4

2 4x3
2








(4.3.5)

is a confluent Vandermonde matrix. Note that the second, third, and fifth col-
umn of V is obtained by “differentiating” the previous column. From Theorem 4.3.1
we conclude that such confluent Vandermonde matrices are nonsingular.

4.3. Generalizations and Applications 35

There are explicit formulas, analogous to Lagrange’s formula, for Hermite
interpolation; see [52, Sec. 2.1.5]. The Hermite interpolation polynomial is written
in the form

p(x) =

n∑

i=1

ri−1∑

k=0

f (k)(xi)Lik(x), (4.3.6)

where Lik(x) are generalized Lagrange polynomials. These can be defined
starting from the auxiliary polynomials

lik(x) =
(x − xi)

k

k!

n∏

j=1

j 6=i

(
x− xj

xi − xj

)rj

, i = 1 : n, k = 0 : rj − 1.

Next, put

Li,ri−1 = li,ri−1, i = 1 : n,

and form recursively,

Lik(x) = lik(x) −
ri−1∑

ν=k+1

l
(ν)
ik (xi)Li,ν(x), k = ri − 2 : −1 : 0.

It can be showed by induction that

L
(σ)
ik (xi) =

{
1, if i = j and k = σ;
0, otherwise.

Hence the Lik are indeed the appropriate polynomials.

Example 4.3.2.
An important special case is when ri = 2, i = 1 : n. Then the Hermite

interpolating polynomial is the osculating polynomial, which agrees with f(x)
and f ′(x) at x = xi, i = 1 : n. In this case we can write

p(x) =

n∑

i=1

(f(xi)Li0(x) + f ′(xi)Li1(x)).

Here Lik(x) can be written in the form

Li1(x) = (x− xi)li(x)
2, Li0(x) = (1 − 2l′i(xi)(x− xi))li(x)

2,

where li(x), i = 1 : n, are the elementary Lagrange polynomials.

An interpolation problem that contains points of multiplicity greater than one
can be obtained from the case with distinct points by a passage to the limit. New-
ton’s interpolation formula is suitable for handling this case. Since by Theorem 4.2.2
a divided difference is a symmetric function of its arguments these can be permuted
before taking the limit. We can therefore assume, without loss of generality, that

36 Chapter 4. Interpolation and Approximation

equal arguments are placed together, and that the values xi for different groups of
arguments are different.

Assume that f (r)(x) is continuous. Then by Theorem 4.2.3,

[x1, x2, . . . xr+1]f = f (r)(ξ)/r!, ξ ∈ int(x1, x2, . . . , xr+1).

If we let xi → x, i = 1 : r + 1, then [x1, x2, . . . xr+1]f → f (r)(x)/r!. Hence the
natural definition of a divided difference with r equal arguments reads

[x, x, . . . , x]f = f (r)(x)/r!, r + 1 equal arguments. (4.3.7)

One may also establish the following more general formula

[x1, . . . , xk, x . . . , x]f =
1

r!

dr

dxr
[x1, . . . , xk, x]f r + 1 equal arguments. (4.3.8)

We now give a representation of the divided differences which allows several multi-
plicities.

Theorem 4.3.2.
Assume that f (n−1)(x) is continuous in [a, b], x1, . . . , xn ∈ [a, b] and x is

distinct from any xi. Then

[x, x1, x2, . . . , xn]f =
[x, x2, . . . , xn]f − [x1, x2, . . . , xn]f

x− x1
, (4.3.9)

gives the unique continuous extension of divided differences no matter what multi-
plicities occur in x1, . . . , xn.

Proof.

This definition and the usual recurrence formula for the divided differences are,
under the above assumptions, sufficient for the construction of a table of divided
differences in the case of multiple points, e.g.,

[x0, x0]f = lim
x1→x0

f(x1) − f(x0)

x1 − x0
= f ′(x0),

[x0, x0, x1]f =
[x0, x0]f − [x0, x1]f

x0 − x1
=
f ′(x0) − [x0, x1]f

x0 − x1
.

It can be shown that if f ∈ Ck, the divided differences belong to Ck+1−max ri ,
and that the interpolation polynomial has this kind of differentiability with respect
to the xi, nota bene if the “groups” do not coalesce further.

4.3. Generalizations and Applications 37

Example 4.3.3. Consider the interpolation problem in Example 4.3.1. For this
we construct the generalized divided-difference table, where x1 6= x0.

x0 f0
f ′
0

x0 f0
1
2f

′′
0

f ′
0 [x0, x0, x0, x1]f

x0 f0 [x0, x0, x1]f [x0, x0, x0, x1, x1]f
[x0, x1]f [x0, x0, x1, x1]f

x1 f1 [x0, x1, x1]f
f ′
1

x1 f1

The interpolating polynomial now reads

p(x) = f0 + (x− x0)f
′
0 + (x− x0)

2 1

2
f ′′
0 + (x− x0)

3[x0, x0, x0, x1]f

+ (x− x0)
3(x− x1)[x0, x0, x0, x1, x1]f.

f(x) − p(x) = [x0, x0, x0, x1, x1, x]f(x− x0)
3(x − x1)

2

= f (5)(ξx)(x− x0)
3(x− x1)

2/5!

For the simplest Hermite interpolation problem, i.e. cubic interpolation,
the given data are fi = f(xi), f

′
i = f ′(xi), i = 0, 1. We can write the interpolation

polynomial

p(x) = f0 + (x− x0)[x0, x1]f + (x− x0)(x− x1)[x0, x0, x1]f

+ (x− x0)
2(x− x1)[x0, x0, x1, x1]f.

Set x1 = x0 + h and x = x0 + θh, and denote the remainder f(x) − p(x) by RT .
Then one can show (Problem 1) that

p(x) = f0 + θ∆f0 + θ(1 − θ)(hf ′
0 − ∆f0)

− θ2(1 − θ)
[

(hf ′
0 − ∆f0) + (hf ′

1 − ∆f0)
]

= (1 − θ)f0 + θf1 + θ(1 − θ)
[

(1 − θ)(hf ′
0 − ∆f0) − θ(hf ′

1 − ∆f0)
]

,(4.3.10)

For x ∈ [x0, x1] we get the error bound

|RT | ≤
h4

384
max

x∈[x0,x1]
|f (4)(x)|. (4.3.11)

In particular, putting t = 1/2, we get the useful formula

f1/2 =
1

2
(f0 + f1) +

1

8
h(f ′

0 − f ′
1) +RT . (4.3.12)

38 Chapter 4. Interpolation and Approximation

Sometimes there are gaps in the sequence of derivatives that are numerically
known at a point. The problem is then called Birkhoff interpolation or lacunary
interpolation. We illustrate by two examples that such problems can either have a
unique solution or lead to a singular system of linear equations. See also Problems.
We use the notation of Sec. 4.1.1.

Example 4.3.4. Given f̃ =
(
f(−1), f ′(0), f(1)

)T
. Try to find a polynomial p ∈ P3

that satisfies such data. The new feature is that f(0) is missing.
Set up (4.1.4), i.e. Mpc = f̃ , in the power basis.

Mp =





1 −1 1
0 1 0
1 1 1



 .

The determinant is evidently zero, so there is no solution for most data. An expla-
nation is that hf ′ = µδf for all f ∈ P3.

Example 4.3.5. Given f̃ =
(
f(1), f(−1), f ′′(1), f ′′(−1)

)T
. Try to find a poly-

nomial p∗ ∈ P4 that satisfies such data. The new feature is that there are no first
derivatives. In this case, we obtain for the power basis,

Mp =






1 1 1 1
1 −1 1 −1
0 0 2 6
0 0 2 −6




 .

The determinant is 48, and this interpolation problem is uniquely solvable. The
coefficient vector of p is c = M−1

p f̃ .

The first coordinate of c, i.e. eT
1 c, is an approximation to f(0); this is also a lin-

ear functional of f . Denote by Rf the remainder functional for this approximation,
i.e.

Rf = f(0) − eT
1M

−1
p f̃ . (4.3.13)

4.3.2 Inverse interpolation

It often happens that one has a sequence of pairs {(xi, yi)} and want to determine
a point where y(x) = c. We saw an example as early as in the simulation of the
motion of a ball (Sec. 1.4), when we computed the landing point. We there used
linear interpolation.

In general a natural approach is to reverse the roles of x and y, i.e. to compute
the inverse function x(y) for y = c, by means of Newton’s interpolation formula
with the divided differences [yi, yi+1, . . . yi+j]x (unscaled or scaled). This is called
inverse interpolation It is convenient to order the points so that . . . < y5 < y3 <
y1 < c < y2 < y4 < This approach is successful if the function x(y) is suitable
for local approximation by a polynomial.

4.3. Generalizations and Applications 39

Sometimes, however, the function y(x) is much better suited for local approx-
imation by a polynomial than the inverse function x(y). Then we can instead, for
some m, solve the following equation,

y1 + [x1, x2]y · (x− x1) +

n−1∑

j=2

[x1, x2, . . . xj+1]yΦj(x) = c.

Again it is convenient to order the points so that the root α comes in the middle,
e.g., so that . . . < x5 < x3 < x1 < α < x2 < x4 <

We write the equation in the form x = x1 + F (x), where

F (x) ≡
(c− y1) −

∑n−1
j=2 [x1, x2, . . . xj+1]yΦj(x)

[x1, x2]y
.

Then we can use iteration. We ignore the sum to get the first guess x0; this means
the same as linear inverse interpolation. We then iterate, xi = x1 + F (xi−1), until
xi and xi−1 are close enough. A more careful termination criterion will be suggested
in Chapter 6, where the effect on the result of errors like the interpolation error is
also discussed.

Suppose that xi − x1 = O(h), i > 1, where h is some small parameter in
the context (usually some step size), then Φj(x) = O(hj), Φ′

j(x) = O(hj−1). The
divided differences are O(1), and we assume that [x1, x2]y is bounded away from
zero. Then the terms of the sum decrease like hj .

By the discussion of iteration in Sec. 1.2, the convergence ratio is F ′(x), and
this is here approximately

Φ′
2(x)[x1, x2, x3]y

[x1, x2]y
= O(h).

So, if h is small enough, the iterations converge rapidly. If more than two iterations
are needed, Aitken acceleration (Sec. 3.3.2) may be practical.

4.3.3 Numerical differentiation

An important problem in many applications is to approximate the derivative of
a function using only given function values. A straightforward solution to this
problem is to use the derivative of the corresponding interpolation polynomial as
the approximation to the derivative of the function. This can also be done for higher
order derivatives.

We shall first study the computation of f ′(x0). By the operator expansion
(3.3.50) derived in Sec. 3.3.4 we have

f ′(x0) =
(

1 − δ2

6
+
δ4

30
− δ6

140
+

δ8

630
− . . .

) 1

h
µδf0, µδf0 =

f1 − f−1

2
. (4.3.14)

By squaring this we obtain

f ′′(x0) ≈
(

1 − δ2

12
+
δ4

90
− δ6

560
+

δ8

3, 150
− δ10

16, 632
± . . .

)
δ2f0
h2

. (4.3.15)

40 Chapter 4. Interpolation and Approximation

Suppose that the function values have errors whose magnitude does not exceed 1
2U .

Then the error bound on µδf0 = 1
2 (f1 − f−1) is also equal to 1

2U . Similarly one

can show that the error bounds in µδ(2k+1)f0, for k = 1 : 3 are 1.5U, 5U, 17.5U ,
respectively. Thus one gets the upper bounds U/(2h), 3U/(4h), and 11U/(12h) for
the round-off error RXF if one, two, and three terms in (4.3.14).

The truncation error (called RT) can be estimated by the first neglected term,
where

1

h
µδ2k+1f0 ≈ h2kf (2k+1)(x0).

It has been mentioned several times (see, e.g., Example 3.3.15 in connection with the
use of Richardson extrapolation for numerical differentiation) that irregular errors
in the values of f(x) are of much greater importance in numerical differentiation
than in interpolation and integration.

Example 4.3.6.
Assume that k terms in the formula above is used to approximate f ′(x0),

where f(x) = lnx, x0 = 3, and U = 10−6. Then f (2k+1)(3) = (2k)!/32k+1, and for
the truncation and round-off errors we get:

k 1 2 3

RT 0.0123h2 0.00329h4 0.00235h6

RXF (1/2h)10−6 (3/4h)10−6 (11/12h)10−6

10
−3

10
−2

10
−1

10
0

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

h

E
rr

or

R
XF

R
T

Figure 4.3.1. Bounds for Truncation error RT and roundoff error RXF

as functions of h for u = 0.5 · 10−6.

4.3. Generalizations and Applications 41

In a log-log diagram the plots of RT and RXF versus h in Figure 4.2.2 are
straight lines that illustrate quantitatively the Scylla and Charybdis situation (see
explanation in Sec. 3.1.4); the truncation error increases, and the effect of the ir-
regular error decreases with h. One sees how the choice of h, which minimizes the
sum of the bounds for the two types of error, depends on u and k, and tells what
accuracy can be obtained. The optimal step-lengths for k = 1, 2, 3 are h = 0.0344,
h = 0.1869, and h = 0.3260, giving error bounds 2.91 · 10−5, 8.03 · 10−6, and
5.64 · 10−6. Note that the optimal error bound with k = 3 is not much better than
that for k = 2.

The effect of the pure rounding errors is important, though it should not be
exaggerated. Using IEEE double precision with u = 1.1 · 10−16, one can obtain the
first two derivatives very accurately by the optimal choice of h. The corresponding
figures are h = 2.08 · 10−5, h = 2.19 · 10−3, and h = 1.36 · 10−2, giving the optimal
errors bounds 1.07 · 10−11, 1.52 · 10−13, and 3.00 · 10−14, respectively.

It is left to the user (Problem 12) to check and modify the experiments and
conclusions indicated in this example. See also the appendix of Chapter 12, where
similar questions are discussed in a more general context, namely differentiation for
vector-valued functions of vector-valued arguments.

4.3.4 Fast Algorithms for Vandermonde Systems

Given distinct scalars x1, x2, . . . , xn, let V be the Vandermonde matrix

V = V (x1, x2, . . . , xn) =







1 1 · · · 1
x1 x2 · · · xn
...

... · · ·
...

xn−1
1 xn−1

2 · · · xn−1
n






. (4.3.16)

As shown in Sec. 4.1.1 the solution a = V −T f of the dual Vandermonde system

V T a = f (4.3.17)

gives the coefficients for the interpolating polynomial in the power basis. This
polynomial can be computed, e.g., by Newton’s interpolation formula in O(n2)
operations. The related primal Vandermonde systems

V y = b (4.3.18)

arises in problems of determining approximation of linear functionals (see Exam-
ple 4.1.1). We would like to have a stable and efficient method also for solving the
primal system. One possibility would be to use the algorithm given in Sec. 4.2.2,
which computes the inverse V −1 in about 6n2 operations and then form the product
V −1b = y.

We shall now derive a more efficient and accurate algorithm for solving primal
Vandermonde systems. We start by expressing the solution of the dual problem

42 Chapter 4. Interpolation and Approximation

in terms of a matrix factorization. Using the power basis the unique polynomial
satisfying the interpolation conditions p(xi) = fi, i = 1 : n, is

p(x) = (1, x, . . . , xn−1)a,

where the coefficient vector a satisfies the linear system V Ta = f ,
One of the most efficient ways to compute p(x) is by Newton’s interpolation

formula, which uses the basis polynomials

p1(x) = 1, pk(x) = (x− x1) · · · (x − xk−1), k = 2 : n.

We write the polynomial in the form

p(x) = c1 + c2p2(x) + · · · + cnpn(x).

where cj = [x1, . . . , xj−1]f . These divided differences can be recursively computed
as described in Sec. 4.2.1. Then the coefficient vector a of p(x) in the power basis

p(x) = a1 + a2x+ · · · + anx
n−1,

can be computed by Horner’s rule. This is implemented in the algorithm below.
Note that the matrix V T is never formed and we only need storage for a few vectors.
The operation count is 5

2n(n+ 1) flops.

Algorithm 4.3.1 Fast Dual Vandermonde Solver

function a = dvand(x,f)

% Newton’s method for solving a dual Vandermonde system

% V^T(x_1,x_2,...,x_n)a = f.

n = length(x);

a = f;

for k = 1:n-1

for j = n:(-1):k+1

a(j) = (a(j) - a(j-1))/(x(j) - x(j-k));

end

end

for k = n-1:(-1):1

for j = k:n-1

a(j) = a(j) - x(k)*a(j+1);

end

end

To derive a corresponding algorithm for solving primal Vandermonde systems
the above algorithm can be interpreted as a factorization of the matrix (V T)−1 into
a product of diagonal and lower bidiagonal matrices. Let

Dk = diag (1, . . . , 1, (xk+1 − x1), . . . , (xn − xn−k)).

4.3. Generalizations and Applications 43

and define the matrices

Lk(x) =

(
Ik−1 0

0 Bn−k+1(x)

)

, k = 1 : n− 1, (4.3.19)

where

Bp(x) =







1
−x 1

. . .
. . .

−x 1







∈ Rp×p, (4.3.20)

Then the dual Vandermonde algorithm can be written in matrix terms as c = UT f ,
a = LT c, where

UT = D−1
n−1Ln−1(1) · · ·D−1

1 L1(1), (4.3.21)

LT = LT
1 (x1)L

T
2 (x2) · · ·LT

n−1(xn−1). (4.3.22)

Since a = V −T f = LTUT f , we have V −T = LTUT .
We can now obtain a fast algorithm for solving a primal Vandermonde system

V y = b as follows. Transposing the matrix factorization of V −T gives V −1 = UL.
Hence y = V −1b = U(Lb) and the solution to the primal system can be computed
from d = Lb, y = Ud. Transposing (4.3.21)–(4.3.22) this gives

L = Ln−1(xn−1) · · ·L2(x2)L1(x1)

U = LT
1 (1)D−1

1 · · ·LT
n−1(1)D−1

n−1.

This leads to an algorithm for solving primal Vandermonde systems. The operation
count and storage requirement of this are the same as for dual system algorithm.

Algorithm 4.3.2 Fast Primal Vandermonde Solver

function y = pvand(x,b)

% Newton’s method for solving a primal Vandermonde system

% V(x_1,x_2,...,x_n)y = b.

n = length(x);

y = b;

for k = 1:n-1

for j = n:(-1):k+1

y(j) = y(j) - x(k)*y(j-1);

end

end

for k = n-1:(-1):1

for j = k+1:n

y(j) = y(j)/(x(j) - x(j-k));

end

for j = k:n -1

44 Chapter 4. Interpolation and Approximation

y(j) = y(j) - y(j+1);

end

end

The above two algorithms are not only fast. Also they can give almost full
relative accuracy in the solution of some Vandermonde systems, which are so ill-
conditioned that Gaussain elimination with complete pivoting fails to produce a
single correct digit. This was first observed by Björck and Pereyra [4], from which
the following example is taken.

Example 4.3.7.
Consider a primal Vandermonde system Vny = b, with

xi = 1/(i+ 2), bi = 1/2i−1, i = 1 : n.

The exact solution can be shown to be

yi = (−1)i−1

(
n

i

)

(1 + i/2)n−1.

Let ȳi be the solution computed by the primal Vandermonde algorithm and take as
a measure of the relative error

en = max
1≤i≤n

|yi − ȳi|/|yi|.

Using a hexadecimal floating point arithmetic with u = 16−13 = 2.22 · 10−16 the
following results were obtained:

n 5 10 15 20 25
en/u 4 5 10 54 81

The computed solution has small componentwise relative error, which is remarkable
since, e.g., κ(V10) = 9 · 1013.

A forward error analysis given by Higham [30], explains the surprisingly fa-
vorable results. If the points are positive and monotonically ordered

0 < x1 < x2 · · · < xn, (4.3.23)

then the error in the solution ā of a Vandermonde system V y = b computed by the
primal algorithm can be bounded as

|ā− a| ≤ 5u|V −1| |b| +O(u2). (4.3.24)

If the components of the right hand side satisfy (−1)nbi ≥ 0, then |V −1| |b| = |V −1b|,
and this bound reduces to

|ā− a| ≤ 5u|a| +O(u2), (4.3.25)

4.3. Generalizations and Applications 45

i.e. the solution is computed with small relative error indendent of the conditioning
of V . A similar result holds for the dual algorithm. These good results can be shown
to be related to the fact that when (4.3.23) holds, the matrix V (x1, x2, . . . , xn) is
totally positive, i.e. the determinant of every squares submatrix of V is positive;
see [8].

The given algorithms has been generalized to confluent Vandermonde matrices
(see Example 4.3.1) and other classes of Vandermonde-like matrices.

4.3.5 Multidimensional Interpolation

Much of the theory of the introduction can be generalized to other interpolation
problems than problems with polynomials in one variable, but one cannot be sure
that there is unconditionally a unique solution to the problem. It may not be enough
to require that the points are distinct.

Example 4.3.8.
The interpolation by a linear function in two variables,

p(xi, yi; c) = c1 + c2xi + c3yi = fi, i = 1 : 3,

leads to the linear system V c = f , where

V =





1 x1 y1
1 x2 y2
1 x3 y3



 , c =





c1
c2
c3



 , f =





f1
f2
f3



 .

This interpolation problem has exactly one solution if V is nonsingular, i.e. when
det(V) 6= 0. But 1

2 det(V) is just the area of the triangle with vertices (xi, yi),
i = 1 : 3. If this area is zero then the three points lie on a line and the problem has
either infinitely many solutions, or no solution.

The simplest way to generalize interpolation to functions of several variables
is to use repeated one-dimensional interpolation, i.e. to work with one variable at
a time. The following formula for bilinear interpolation,

f(x0 + ph, y0 + qh) ≈ (1 − q)ϕ(y0) + qϕ(y0 + k),

ϕ(y) = (1 − p)f(x0, y) + pf(x0 + h, y).

is the simplest example. After simplification it can written as

f(x0 + ph, y0 + qh) ≈ (1 − p)(1 − q)f0,0 + p(1 − q)f1,0 (4.3.26)

+ (1 − p)qf0,1 + pqf1,1,

where we have used the notation fij = f(x0+ih, y0+jk), i, j ∈ {0, 1}. This formula
is exact for functions of the form f(x, y) = a + bx + cy + dxy, and from equation
(4.2.50) we obtain the error bound,

max
(x,y)∈R

1

2

(
p(1 − p)h2|fxx| + q(1 − q)h2|fyy|

)
, 0 ≤ p, q ≤ 1,

46 Chapter 4. Interpolation and Approximation

where R = {(x, y) : x0 ≤ x ≤ x0 + h, y0 ≤ y ≤ y0 + k}. The formula for bilinear
interpolation can easily be generalized by using higher order interpolation in the x
and/or y direction.

In the following we consider explicitly only the case of two dimension, since
corresponding formulas for three and more dimensions are analogous.

A rectangular grid in the (x, y)-plane with grid spacings h, k in the x and y
directions, respectively, consists of points xi = x0 +ih, yi = y0+ik. In the following
we use the notation f(xi, yj) = fij .

Central difference approximations for partial derivatives using function values
can be obtained by working with one variable at a time,

∂f

∂x
=

1

2h
(fi+1,j − fi−1,j) +O(h2),

∂f

∂y
=

1

2k
(fi,j+1 − fi,j−1) +O(k2).

For second order derivatives

∂2f

∂x2
=

1

h2
(fi+1,j − 2fij + fi−1,j),

and a similar formula holds for ∂2f/∂y2.
Formulas of higher accuracy can also be obtained by operator techniques,

based on an operator formulation of Taylor’s expansion (see Theorem 4.6.6,

f(x0 + h, y0 + k) = exp

(

h
∂

∂x
+ k

∂

∂y

)

f(x0, y0) (4.3.27)

From this we obtain

f(x0 + h, y0 + k) = f0,0 +
(

h
∂

∂x
+ k

∂

∂y

)

f0,0

+
(

h2 ∂
2

∂x2
+ 2hk

∂2

∂x∂y
+ k2 ∂

2

∂y2

)

f0,0 +O(h2 + k2).

An interpolation formula valid for all quadratic functions can be obtained by re-
placing in Taylor’s formula the derivatives by difference approximations valid for
quadratic polynomials,

f(x0 + ph, y0 + qh) ≈ f0,0 +
1

2
p(f1,0 − f−1,0) +

1

2
q(f0,1 − f0,−1) (4.3.28)

+
1

2
p2(f1,0 − 2f0,0 + f−1,0)

+
1

4
pq(f1,1 − f1,−1 − f−1,1 + f−1,−1)

+
1

2
q2(f0,1 − 2f0,0 + f0,−1).

This formula uses function values in nine points. (The proof of the expression for

approximating the mixed derivative
∂2

∂x∂y
f0,0 is left as an exercise, Problem 2.

Review Questions 47

Review Questions

1. What is meant by Hermite interpolation (osculatory interpolation)? Prove
the uniqueness result for the Hermite interpolation problem.

2. (a) Write down the confluent Vandermonde matrix for the Hermite cubic in-
terpolation problem.

(b) Express the divided difference [x0, x0, x1, x1]f in terms of f0, f
′
0,and f1,f

′
1.

3. How is bilinear interpolation performed? What is the order of accuracy?

Problems and Computer Exercises

1. (a) Construct the divided difference scheme (unscaled or scaled) for the sim-
plest Hermite interpolation problem, where the given data are f(xi), f

′(xi),
i = 0, 1; x1 = x0 + h. Prove all the formulas concerning this problem that are
stated at the end of Sec. 4.3.2.

(b) For f(x) = (1 + x)−1, x0 = 1, x1 = 1.5, compute f(1.25) by Hermite
interpolation. Compare the error bound and the actual error.

(c) Show that for Hermite interpolation

|f ′(x) − p′(x)| ≤ h3

72
√

3

(

max
x∈[x0,x1]

|f (iv)(x)| +O(h|f (v)(x)|)
)

.

Hint: d
dx [x0, x0, x1, x1, x]f = [x0, x0, x1, x1, x, x]f ≤

2. Given xi, y(xi), y
′(xi), xi = x0 + ih, i = 1, 2, 3. Let p ∈ P6 be the Hermite

interpolation polynomial to these data.

(a) Find the remainder term, and show that the interpolation error for x ∈
[x1, x3] does not exceed h6 max |f (6)(x)|/4860 in magnitude.

(b) Write a program that computes p(x1 + 2jh/k), j = 0 : k.

Comment: This is one of several possible procedures for starting a multistep
method for an ordinary differential equation y′ = f(x, y). Two steps with
an accurate one-step method, provide values of y, y′, and this program then
produces starting values (y only) for the multistep method.

3. Give a short and complete proof of the uniqueness of the interpolation polyno-
mial for distinct points, by the use of the ideas of the proof of Theorem 4.3.1.

4. Derive an approximate formula for f ′(x0) when the values f(x−1), f(x0), f(x1)
are given at three non-equidistant points. Give an approximate remainder
term. Check the formula and the error estimate on an example of your own
choice.

5. (a) Given a sequence of function values f1, f2, f3 . . . at equidistant points xj =
x0 + jh. Assume that min fj = fn, and let p(x) be the quadratic interpolation

48 Chapter 4. Interpolation and Approximation

polynomial determined by fn−1, fn, fn+1. Show that

min p(x) = fn − (µδfn)2

2δ2fn
, at x = xn − h

µδfn

δ2fn
,

and that the error of the minimum value can be bounded by max |∆3fj|/
√

243,
where j is in some neighborhood of n. Why and how is the estimate of x less
accurate?

(b) Write a handy program that includes the search all local maxima and
minima. Sketch or work out improvements of this algorithm, perhaps with
ideas of inverse interpolation and with cubic interpolation. And perhaps for
non-equidistant data.

6. (a) Compute by bilinear interpolation f(0.5, 0.25) when

f(0, 0) = 1, f(1, 0) = 2, f(0, 1) = 3, f(1, 1) = 5.

(b) Set c = (c1, c2, c3, c4, c5, c6)
T ,

p(x, y; c) = c1 + c2x+ c3y + c4x
2 + c5xy + c6y

2.

Consider the interpolation problem: Given xi, yi, fi, i = 1 : 6; try to find c,
so that p(xi, yi; c) = fi, i = 1 : 6.
Choose xi, yi, fi, i = 1 : 6 by 18 independent random numbers, solve the
linear system p(xi, yi; c) = fi, i = 1 : 6, look at max |ci|. Repeat this (say) 25
times. You have a fair chance to avoid singular cases, or cases where max |ci|
is very large.

(c) Now choose (xi, yi) as 6 distinct points on some circle in R2, and choose fi

at random. This should theoretically lead to a singular matrix. Explain why,
and find experimentally the rank (if your software has convenient commands or
routines for that). Find a general geometric characterization of the sextuples
of points (xi, yi), i = 1 : 6, that lead to singular interpolation problems.

Hint: Brush up your knowledge of conic sections.

7. Derive a formula for f ′′
xy(0, 0) using fij , |i| ≤ 1, |j| ≤ 1, which is exact for all

quadratic functions.

4.4 Piecewise Polynomial Interpolation

4.4.1 Bernstein Polynomials

Parametric curves are often used to find a functional form of a curve (or surface)
given geometrically by a set of points. Let c(t), t ∈ [0, 1] a parametric curve con-
necting two points p0 and p1 in Rd, so that p0 = c(0) and p1 = c(1). In the simplest
case we can take c(t) to be linear and write

c(t) = (1 − t)p0 + tp1.

4.4. Piecewise Polynomial Interpolation 49

If extended to a set of points p0, . . . , pn, n > 1 this will not give a smooth curve
and is therefore of limited interest. We now generalize this approach and take c(t)
to be a polynomial of degree n.

The Bernstein polynomials12 are defined by

Bn
i (t) =

(
n

i

)

ti(1 − t)n−i, i = 0 : n. (4.4.1)

Using the binomial theorem we have

1 = ((1 − t) + t)n =

n∑

i=0

(
n

i

)

ti(1 − t)n−i =

n∑

i=0

Bn
i (t),

that is, the Bernstein polynomials of degree n are nonnegative and give a partition
of unity. The Bernstein polynomials of degree n form a basis for the space of
polynomials of degree ≤ n.

For n = 3 the four cubic Bernstein polynomials are

B3
0 = (1 − t)3, B3

1 = 3t(1 − t)2, B3
2 = 3t2(1 − t), B3

3 = t3. (4.4.2)

are plotted in Figure 4.4.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.4.1. Bernstein polynomials.

Some important properties of the Bernstein polynomials are given in the fol-
lowing theorem.

12Sergi NatanovičBernštein (1880–1968) Russian mathematician, who made major contributions
to polynomial approximation. In 1911 he introduced the polynomials named after him.

50 Chapter 4. Interpolation and Approximation

Theorem 4.4.1. The Bernstein polynomials Bn
i (t) have the following properties:

1. Bn
i (t) > 0, t ∈ (0, 1) (nonnegativity);

2. Bn
i (t) = Bn

n−i(1 − t) (symmetry);

3. The Bernstein polynomials Bn
i (t) have a unique maximum value at t = i/n

on [0, 1];

4. The Bernstein polynomials satisfy the following recursion formula

Bn
i (t) = (1 − t)Bn−1

i (t) + tBn−1
i−1 (t), i = 0 : n. (4.4.3)

Proof. The first three properties follows directly from the definition (4.4.1). The
recursion formula is a consequence of the relation

(
n

i

)

=

(
n− 1

i

)

+

(
n− 1

i− 1

)

between the binomial coefficients.

Starting with B0
0(t) = 1, and setting Bn

−1(t) = Bn
n+1(t) = 0 this recursion can

be used to evaluate the Bernstein polynomials at a given point t.

4.4.2 Parametric Bézier Curves

Given a set of n+ 1 control points pi, i = 0 : n, the Bézier curve is given by

c(t) =

n∑

i=0

piB
n
i (t), t ∈ [0, 1]. (4.4.4)

The Bézier curve interpolates the first and last control points p0 and p1. It follows
directly from the form of (4.4.4) that applying an affine transformation to c(t) can be
performed simply by applying the same transformation to the control points. Hence
the Bézier curve has the desirable property that it is invariant under translations
and rotations.

Bézier curves are a major tool in computer graphics, where usually pi ∈ R2

or R3. One important application is in computer aided design (CAD) systems,
used, e.g., in the auto industry. Often a curve is constructed by smoothly patching
together several Bézier curves of lower order.

Example 4.4.1. A quadratic Bézier curve is given by

c(t) = (1 − t)2p0 + 2t(1 − t)p1 + t2p2, t ∈ [0, 1].

Clearly c(0) = p0 and c(1) = p2. For t = 1/2 we get

c(1/2) =
1

2

(p0 + p2

2
+ p1

)

.

4.4. Piecewise Polynomial Interpolation 51

p
0

p
1

p
2

Figure 4.4.2. Quadratic Bézier curve with control points.

Hence we can construct the point c(1/2) geometrically as the intersection between
the the midpoint of the line between p0 and p2 and the point p1; see Figure 4.4.2.

The Bézier polygon is the closed piecewise linear curve connecting the con-
trol points pi and pi+1, i = 0 : n− 1 and finally pn and back to p0. In Figure 4.4.2
this is the polygon formed by the dashed lines. This polygon provides a rough idea
about the shape of the Bézier curve.

p
0

p
1

p
2

p
3

Figure 4.4.3. Cubic Bézier curve with control points P0, . . . , P3.

Definition 4.4.2. A set S in Rd is called convex if for any points x, y ∈ S, the
straight line

{tx+ (1 − t)y | t ∈ (0, 1)}

is also contained in S; The convex hull of a set S in Rd is the smallest convex
subset of Rd, which contains S.

52 Chapter 4. Interpolation and Approximation

From the definition (4.4.4) of the Bézier curve it follows that for all t ∈ [0, 1],
the curve c(t) is a convex combination of the control points. Therefore c(t) lies
within the convex hull of the control points. Often, but not always, the convex hull
is the region enclosed Bézier polygon; cf. Figures 4.4.2–3.

The variation of a function in an interval [a, b] is the least upper bound on the
sum of the oscillations in the closed subintervals [a, x1], [x1, x2], . . . , [xn, b], for all
possible such subdivisions. The Bézier curve is variation diminishing. In particular
if the control points pi are monotonic, so is c(t). Further, if pi are convex (concave)
so is c(t).

Usually all control points are not known in advance but the curves shape is
controlled by moving the control points until the curve has the desired shape. For
example, in the quadratic case moving p1 has a direct and intuitive effect on the
curve c(t). An advantage of the Bernstein basis for representing polynomials is that
the coefficients (control points) is closely related to the shape of the curve. This is
not the case when using a monomial or Chebyshev basis.

Theorem 4.4.3. The Bézier curve c(t) is tangent to p1 − p0 and pn − pn−1 for
t = 0 and t = 1, respectively.

Proof. To show this we compute the derivative of the Bernstein polynomial (4.4.1)

d

dt
Bn

i (t) =







−nBn−1
0 (t), if i = 0

n
(
Bn−1

i−1 (t) −Bn−1
i (t)

)
, if 0 < i < n;

nBn−1
n−1(t), if i = n.

This follows from

d

dt
Bn

i (t) =

(
n

i

)
(
iti−1(1 − t)n−i − (n− i)ti(1 − t)n−i−1

)
,

and using the definition of the Bernstein polynomials. Setting t = 0 we find that
d
dtB

n
i (0) = 0, i > 1, and therefore from (4.4.4)

d

dt
c(t) = n(p1 − p0),

which shows the statement for t = 0. The result for t = 1 follows from symmetry.

More generally, at a boundary point the kth derivative of the Bézier curve
depends only on the k closest control points. This fact is useful for smoothly joining
together several pieces of Bézier curves.

To evaluate the Bézier curve at t ∈ [0, 1] we use the recursion formula (4.4.3)
to obtain

c(t) =

n∑

i=0

piB
n
i (t)

4.4. Piecewise Polynomial Interpolation 53

= (1 − t)

n−1∑

i=0

piB
n−1
i (t) + t

n∑

i=1

piB
n−1
i−1 (t)

=

n−1∑

i=0

(
(1 − t)pi + tpi+1

)
Bn−1

i (t) =

n−1∑

i=0

p
(1)
i (t)Bn−1

i (t)

where we have introduced the new auxiliary control points

p
(1)
i (t) = (1 − t)pi + tpi+1, i = 0 : n− 1,

as convex combinations (depending on t) of the original control points. Using this
result we can successively lower the grade of the Bernstein polynomial until we
arrive at B0

0 = 1. This gives a recursion scheme for the auxiliary control points due
to de Casteljau:

p
(0)
i (t) = pi, i = 0 : n

p
(r)
i (t) = (1 − t)p

(r−1)
i (t) + tp

(r−1)
i+1 (t), i = 0 : n− r. (4.4.5)

It follows

c(t) =

n−r∑

i=0

p
(r)
i (t)Bn−r

i (t), r = 0 : n (4.4.6)

and in particular c(t) = p
(n)
0 .

De Casteljau’s algorithm can be arranged in a triangular array

p0 = p
(0)
0

p
(1)
0

p1 = p
(0)
1 p

(2)
0

p
(1)
1

p2 = p
(0)
2

... p
(2)
1

. . .
...

...
...

... p
(n)
0

... p
(1)
n−2

...

pn−1 = p
(0)
n−1 p

(2)
n−2

p
(1)
n−1

pn = p
(0)
n

(4.4.7)

Since at each step the new control points are convex combinations of the
previous control points, de Casteljau’s algorithm is very stable. It uses about n2

operations and so is less efficient than Horner’s algorithm for evaluating a polyno-
mial in the monomial basis.

The kth derivative of c(t) is also available from the de Casteljau scheme. It
holds that

c′(t) = n(pn−1
1 − pn−1

0),

54 Chapter 4. Interpolation and Approximation

c′′(t) = n(n− 1)(pn−2
2 − 2pn−2

1 + pn−2
0), . . . ,

and in general

c(k)(t) =
n!

(n− k)!
∆kpn−k

0 , 0 ≤ k ≤ n, (4.4.8)

where the difference operates on the lower index i.

p
0

p
1

p
2

p
0
(1)

p
1
(1)

p
0
(2)

Figure 4.4.4. Casteljau’s algorithm for n = 2, t = 1
2 .

De Casteljau’s algorithm is illustrated for the quadratic case in Figure 4.4.4,
where the following geometric interpretation can be observed. In the interval [0, t]

the Bézier curve is represented by a quadratic spline with control points p0, p
(1)
0 , p

(2)
0 .

In the remaining interval [t, 1] it is represented by a quadratic spline with control

points p
(2)
0 , p

(1)
1 , p2. Note that these two sets of control points lies closer to the curve

c(t). After a few more subdivisions it will be hard to distinguish the polygon joining
the control points form the curve.

4.4.3 Splines

The name spline comes from a very old technique in drawing smooth curves in
which a thin strip of wood, called a draftsman’s spline, is bent so that it passes
trough a given set of points, see Figure 4.5.5. The points of interpolation are called
knots and the spline is secured at the knots by means of lead weights called ducks.
Before the computer age splines were used in ship building and other engineering
designs.

A mathematical model of a spline was given by Daniel Bernoulli (1742) and
Euler (1744)13. By Hamilton’s principle the shape the spline will take is such that its
elastic strain energy is minimized. The strain energy of a spline y = s(x), x ∈ [a, b]
in the plane is given by

E(s) =

∫ b

a

κ(x)2 dx

13Euler derived the differential equation satisfied by the spline using techniques now known as
calculus of variation and Lagrange multipliers. When Euler did this work Lagrange was still a
small child!

4.4. Piecewise Polynomial Interpolation 55

Figure 4.4.5. The original spline.

where

κ(x) =
s′′(x)

(1 + (s′(x))2)3/2
.

is the curvature of the spline. For slowly varying deflections, i.e. when (s′(x))2 is
approximately constant, the approximation

E(s) =≈ const ·
∫ b

a

s′′(x)2 dx,

Under this assumption, according to elasticity theory, s(x) is built up of piecewise
third degree polynomials (cubic polynomials) in such a way that s(x) and its two
first derivatives are everywhere continuous. Let xi, i = 0 : m be the points the
spline is forced to interpolate. Then the third derivative can have discontinuities
at the points xi. Such a function is called a cubic spline function, or shorter, a
cubic spline The points xi, i = 0 : m, are called breakpoints or knots.

The mathematical concept of spline functions was introduced in 1946 by
Schoenberg in the seminal paper [44]. The importance of the B-spline basis for
spline approximation (see Sec. sec4.4.6) was also first appreciated by Schoenberg.
These were not used in practical calculations for general knot sequences until the
early seventies, when a stable recurrence relation was established independently by
de Boor [6] and Cox [17].

Spline functions are now used extensively in computer aided design (CAD),
where curves and surfaces have to be represented mathematically, so that they can
be manipulated and visualized easily. Important applications occur in computer-
aided design, analysis and manufacturing as well as in aircraft and automotive in-
dustries. Spline functions can also be used in the numerical treatment of boundary-
value problems for differential equations.

With the use of splines, there is no reason to fear equidistant data, as opposed
to the situation with higher-degree polynomials. Also, if the function to be approx-
imated is badly behaved somewhere then, using spline approximation with properly
chosen knots, the effect of this can be confined locally, allowing good approximation
elsewhere in the interval. In the following we restrict ourself to consider curves in
the plane. For more information on spline approximations of curves and surfaces the
reader is referred to de Boor [7], where also Fortran programs for computations
with spline functions can be found, and Dierckx [22].

56 Chapter 4. Interpolation and Approximation

We have seen that it is often not efficient to approximate a given function
by a single polynomial over its entire range. On the other hand, polynomials of
low degree can give good approximations locally in a small interval. Therefore it is
natural to consider approximations by piecewise polynomials of different degrees of
global continuity.

We first consider the simplest curve interpolating given values yi = f(xi) ∈
[a, b on a grid

∆ = {a = x0 < x1 < · · · < xm = b}
is by a broken line s(x), where

s(x) = qi(x) = yi−1 + di(x− xi), x ∈ [xi−1, xi), i = 1 : m (4.4.9)

Here
hi = xi − xi−1, di = [xi−1, xi]f(x) = (yi − yi−1)/hi. (4.4.10)

i.e. di is the divided difference of f at [xi−1, xi]. If f ∈ C2[a, b] then the error
satisfies (see (4.2.50)).

|f(x) − s(x)| ≤ 1

8
max

i

(

h2
i max

x∈[xi−1,xi]
|f ′′(x)|

)

. (4.4.11)

Hence, we can make the error arbitrary small by decreasing maxi hi. An impor-
tant property of interpolation with a piecewise affine function is that it preserves
monotonicity and convexity of the interpolated function.

The broken line interpolating function has a discontinuous first derivative at
the knots, which makes it unsuitable for many applications. To get better smooth-
ness piecewise polynomials of higher degree need to be used. Although piecewise
quadratic approximation is sometimes useful, piecewise cubic polynomials with con-
tinuous second derivatives are by far the more important (see Figure 4.4.6.

0

0.5

1

1.5

2

2.5

3

3.5

x
0

x
1

x
2

x
3

x
4

Figure 4.4.6. Broken line and cubic spline interpolation.

4.4. Piecewise Polynomial Interpolation 57

A cubic polynomial qi(x) on the interval [xi−1, xi) is uniquely determined by
the values of the function and its first derivative at the end points of the interval.
This follows from the more general result on Hermite interpolation in Theorem 4.3.1.
By (4.3.11), translated to the notation in (4.4.10), the cubic qi(x) can be written in
the form

qi(x) = θyi + (1 − θ)yi−1 + hiθ(1 − θ) [(ki−1 − di)(1 − θ) − (ki − di)θ] , (4.4.12)

where hi, di, i = 1 : m, are as in (4.4.10),

θ =
x− xi−1

hi
∈ [0, 1), x ∈ [xi−1, xi), (4.4.13)

is a local variable and ki = q′i(xi).
If the interpolating spline s(x) is to be evaluated at many points, a form that

is more efficient to use than (4.4.12) is the piecewise polynomial form (pp form)

qi(x) = yi−1 + a1i(x− xi−1) + a2i(x− xi−1)
2 + a3i(x − xi−1)

3, (4.4.14)

i = 1 : m. From (4.4.12) we obtain after some calculation

a1i = q′i(xi−1) = ki−1,

a2i = 1
2q

′′
i (xi−1) = (3di − 2ki−1 − ki)/hi, (4.4.15)

a3i = 1
6q

′′′
i (xi−1) = (ki−1 + ki − 2di)/h

2
i .

Using Horner’s scheme qi(x) can be evaluated from (4.4.14) using only four multi-
plication.

With piecewise cubic polynomials we can interpolate given function values and
first derivatives on the grid ∆. By construction the interpolating piecewise cubic
function s(x) will have continuous first derivatives. If f ∈ C4[a, b] then it follows
from the remainder term (4.3.11) that the error satisfies

|f(x) − s(x)| ≤ 1

384
max

i

(

h4
i max

x∈[xi−1,xi]
|f (iv)(x)|

)

. (4.4.16)

It can be shown (Problem1c of Sec. 4.3) that also the first derivative of s(x) is a
good approximation to f ′(x). If f ∈ C5[a, b] we have

|f ′(x) − s′(x)| ≤ 1

72
√

3
max

i

(

h3
i max

x∈[xi,xi+1]
|f (iv)(x) +O(hif

(5)(x))|
)

. (4.4.17)

Sometimes it is useful to consider the values ki, i = 0 : m, as parameters which
are used to give the interpolating function the desired shape. In the next section
we show that it is possible to choose these parameters such that the interpolating
function s(x) also has a continuous second derivative.

We shall now formally define a spline function of order k ≥ 1.

Definition 4.4.4.
Let ∆ = {a = x0 < x1 < · · · < xm = b} be a subdivision of the interval [a, b].

A spline function on ∆ of order k ≥ 1 (degree k − 1 ≥ 0), is a real function s with
properties:

58 Chapter 4. Interpolation and Approximation

(a) For x ∈ [xi, xi+1], i = 0 : m− 1, s(x) is a polynomial of degree < k.

(b) For k = 1, s(x) is a piecewise constant function. For k ≥ 2, s(x) and its first
k − 2 derivatives are continuous on [a, b], i.e. s(x) ∈ Ck−2[a, b].

We denote by S∆,k the set of all spline functions of order k on ∆. From the
definition it follows that if s1(x) and s2(x) are spline functions of the same degree,
so is c1s1(x) + c2s2(x). Thus S∆,k is a linear space.

Examples of elements of S∆,k are the truncated power functions

(x− xj)
k−1
+ , j = 1 : m− 1,

and all their linear combinations. Moreover, Pk is a linear subspace of S∆,k.14

Conversely, together these functions span S∆,k. All we need for the first subinterval
is a basis of Pk, e.g., the power basis {1, x, . . . , xk−1}. Further, all we need for
each additional subinterval [xj , xj+1), j = 1 : m − 1, is the new basis function
(x−xj)

k−1
+ . One can show that these k+m− 1 functions are linearly independent.

The dimension of the linear space thus is k +m− 1.

4.4.4 Cubic Spline Interpolation

In the following we shall first study cubic spline functions which interpolate a given
function f(x) at the grid ∆, i.e. the space S∆,4. By definition a cubic spline consists
of cubic polynomials pieced together in such a way that their values and first two
derivatives coincide at the knots. In contrast to Hermite interpolation, the cubic
polynomial in each subinterval will now depend on all data points.

Theorem 4.4.5.
Every cubic spline function, with knots a = x0 < x1 < · · · < xm = b, which

interpolates the function y = f(x),

s(xi) = f(xi) = yi, i = 0 : m,

equals for x ∈ [xi−1, xi), i = 1 : m a third degree polynomial of the form (4.4.12).
The m+ 1 parameters ki, i = 0 : m, satisfy m− 1 linear equations

hi+1ki−1 + 2(hi + hi+1)ki + hiki+1 = 3(hidi+1 + hi+1di), (4.4.18)

i = 1 : m− 1,

where hi = xi − xi−1, di = (yi − yi−1)/hi.

Proof. We require the second derivative of the spline s(x) to be continuous at xi,
i = 1 : m− 1. We have

s(x) =

{
qi(x), x ∈ [xi−1, xi),
qi+1(x), x ∈ [xi, xi+1),

14Recall the notation (x − u)j
+

= max{x − u, 0} that was introduced in Sec. 3.2.3 in connection
with the Peano kernel.

4.4. Piecewise Polynomial Interpolation 59

where qi(x) is given by (4.4.14)–(4.4.15). Differentiating qi(x) twice we get 1
2q

′′
i (x) =

a2,i + 3a3,i(x− xi−1), and putting x = xi

1
2q

′′
i (xi) = a2,i + 3a3,ihi = (ki−1 + 2ki − 3di)/hi. (4.4.19)

Replacing i by i+ 1 we get 1
2q

′′
i+1(x) = a2,i+1 + 3a3,i+1(x− xi), and hence

1
2q

′′
i+1(xi) = a2,i+1 = (3di+1 − 2ki − ki+1)hi+1. (4.4.20)

These last two expressions must be equal, which gives the conditions

1

hi
(ki−1 + 2ki − 3di) =

1

hi+1
(3di+1 − 2ki − ki+1), i = 1 : m− 1. (4.4.21)

Multiplying both sides by hihi+1 we get (4.4.18).

The conditions (4.4.18) are (m − 1) linearly independent15 equations for the
(m+ 1) unknowns ki, i = 0 : m. Two additional conditions are therefore needed to
uniquely determine the interpolating spline. The four most important choices are
discussed below.

(i) If the derivatives at the end points are known we can take

k0 = f ′(a), km = f ′(b). (4.4.22)

The corresponding spline function s(x) is called the complete cubic spline inter-
polant. If k0 and km are determined by numerical differentiation with a truncation
error that is O(h4), we call the spline interpolant almost complete. For example,
k0 and km may be the sum of (at least) four terms of the expansions

Df(x0) =
1

h
ln(1 + ∆)y0, Df(xm) = − 1

h
ln(1 −∇)ym,

into powers of the operators ∆ and ∇, respectively.16

(ii) A physical spline is straight outside the interval [a, b], i.e. s′′(x) = 0 for x ≤ a
or x ≥ b. Thus q′′1 (x0) = q′′m(xm) = 0. From (4.4.20) and (4.4.19) we have

1
2q

′′
i (xi−1) = (3di − 2ki−1 − ki)/hi,

1
2q

′′
i (xi) = −(3di − ki−1 − 2ki)/hi.

Setting i = 1 in the first equation and i = m in the second gives the two conditions

2k0 + k1 = 3d1 (4.4.23)

km−1 + 2km = 3dm.

15The equations are strictly row diagonally dominant (see Sec. 7.4.1) and therefore linearly
independent

16Two terms of the central difference expansion in (3.3.45) or one Richardson extrapolation, see
Example 3.4.16, give higher accuracy, but need extra function values outside the grid ∆.

60 Chapter 4. Interpolation and Approximation

The corresponding approximating spline is called the natural spline interpolant.
It should be stressed that when a cubic spline is used for the approximation of a
smooth function, these boundary conditions are not natural!

(iii) If the end point derivatives are not known, a convenient condition is to require
that s′′′(x) be continuous across the first and last interior knots x1 and xm−1. Hence
q1(x) = q2(x) and qm−1(x) = qm(x). Then x1 and xm−1 are no longer knots, and
these conditions are known as “not a knot” conditions. From (4.4.15) we obtain,

1
6q

′′′
i (x) = a3i = (ki−1 + ki − 2di)/h

2
i , x ∈ [xi−1, xi), i = 1 : m.

Hence the condition q′′′1 = q′′′2 gives (k0 + k1 − 2d1)/h
2
1 = (k1 + k2 − 2d2)/h

2
2, or

h2
2k0 + (h2

2 − h2
1)k1 − h2

1k2 = 2(h2
2d1 − h2

1d2).

Since this equation would destroy the tridiagonal form of the system, we use (4.4.18),
with i = 1 to eliminate k2. This gives the equation

h2k0 + (h2 + h1)k1 = 2h2d1 +
h1(h2d1 + h1d2)

h2 + h1
. (4.4.24)

If the right boundary condition is treated similarly we get

(hm−1 + hm)km−1 + hm−1km = 2hm−1dm +
hm(hm−1dm + hmdm−1)

hm−1 + hm
. (4.4.25)

(iv) If the spline is used to represent a periodic function, then y0 = ym and the
boundary conditions

s′(a) = s′(b), s′′(a) = s′′(b), (4.4.26)

suffice to determine the spline uniquely. From the first condition it follows that
k0 = km, which can be used to eliminate k0 in the equation (4.4.18) for k = 1. The
second condition in (4.4.26) gives using (4.4.21) (k0 + 2k1 − 3d1)/h1 = −(2km−1 +
km − 3dm)/hm, or after eliminating k0,

2hmk1 + 2h1km−1 + (h1 + hm)km = 3(hmd1 + h1dm),

The spline interpolant has the following best approximation property.

Theorem 4.4.6.
Among all functions g that are twice continuously differentiable on [a, b] and

which interpolate f at the points a = x0 < x1 < · · · < xm = b, the natural spline
function minimizes

∫ b

a

(
s′′(t)

)2
dt.

The same minimum property holds for the complete spline interpolant, if the func-
tions g satisfy g′(a) = f ′(a), and g′(b) = f ′(b).

4.4. Piecewise Polynomial Interpolation 61

Proof. See de Boor [7, 1978, Chapter 5].

Due to this property spline functions yield smooth interpolation curves, except
for rather thin oscillatory layers near the boundaries if the “natural” boundary
conditions s′′(a) = s′′(b) = 0 are far from being satisfied. For the complete or
almost complete cubic spline and for cubic splines determined by the “not-a-knot”
conditions, these oscillations are much smaller; see Sec. 4.4.4.17

Equations (4.4.18) together with any of these boundary conditions give rise to
a well-conditioned system of linear equations for determining the derivatives ki. For
the first three boundary conditions the system is tridiagonal. As demonstrated in
Example 1.3.5 such systems can be solved by Gaussian elimination in O(n) flops. It
can be proved that a sufficient condition for the algorithm given there to be stable
is that A is diagonally dominant, i.e.

|b1| > |c1|, |bk| > |ak−1| + |ck|, k = 2 : m− 1, |bn| > |am−1|.

It is also stable for the system resulting from the not-a-knot boundary condition
although this is not diagonally dominant in the first and last row; see Problem 2b.
(Methods for solving general banded linear systems will be studied in more detail
in Volume II, Sec. 7.4).

Example 4.4.2. In the case of spline interpolation with constant stepsize hi = h
equation (4.4.18) becomes

ki−1 + 4ki + ki+1 = 3(di + di+1), i = 1 : m− 1. (4.4.27)

The “not a knot” boundary conditions (4.4.24)–(4.4.25) become

k0 + 2k1 = 1
2 (5d1 + d2), 2km−1 + km = 1

2 (dm−1 + 5dm). (4.4.28)

We obtain a tridiagonal system Tk = g, where,









1 2
1 4 1

. . .
. . .

. . .

1 4 1
2 1

















k0

k1
...

km−1

km









= 3









(5d1 + d2)/6
d1 + d2

...
dm−1 + dm

(dm−1 + 5dm)/6









.

except for the first and last row, the elements of T are constant along the diagonals.
The condition number of T increases very slowly with m; for example, κ(T) < 16
for m = 100.

Consider now the periodic boundary conditions in (iv). Setting km = k0 in
the last equation we obtain a linear system of equations Tk = g for k1, . . . , km−1

17When a spline is to be used for the approximate representation of a smooth function, the
natural spline is not a natural choice.

62 Chapter 4. Interpolation and Approximation

where

T =












b1 c1 am

a1 b2 c2 0
. . .

. . .
. . .

...
am−3 bm−2 cm−2 0

am−2 bm−1 cm−1

cm 0 · · · 0 am−1 bm












. (4.4.29)

Here T is tridiagonal except for its last row and last column, where an extra nonzero
element occurs. Such systems, called arrowhead system, can be solved with about
twice the work of a tridiagonal system; see further Chapter 7.

In some applications one wants to smoothly interpolate given points (xj , yj),
j = 0 : m, where a representation of the form y = f(x) is not suitable. Then
we can use a parametric spline representation x = x(θ), y = y(θ), where the
parameter values 0 = θ0 ≤ θ1 ≤ · · · ≤ θm correspond to the given points. Using
the approach described previously two spline functions sx(t) and sy(t) can then be
determined, that interpolate the points (θi, xi) and (θi, yi), i = 0 : m, respectively.
The parametrization is usually chosen as θi = di/d, i = 1 : m, where d0 = 0,

di = di−1 +
√

(xi − xi−1)2 + (yi − yi−1)2, i = 1 : m.

are the the cumulative distance and d =
∑m

j=1 dj .
For boundary conditions we have the same choices as mentioned previously.

In particular, using periodic boundary conditions for sx(t) and sy(t) allows the
representation of closed curves (see Problem 5).

We will now derive estimates of the error in cubic spline interpolation of a
function with good smoothness properties, f ∈ C5 (say). Let x ∈ Ii = [xi−1, xi],
and set

t = (x− xi−1)/hi, yi = f(xi), y′i = f ′(xi).

The error can be expressed as the sum of two components:

i. The error EH(x) due to Hermite interpolation with correct values of f ′(xi−1),
f ′(xi).

ii. The error ES(x) due to the errors of the slopes ei = ki − y′i, i = 0 : m.

We shall see that the first part is typically the dominant part. For the error EH(x)
we have from equations (4.4.16)–(4.4.17)

max
x∈Ii

|EH(x)| ≤ 1

384
max
x∈Ii

|h4
i f

(iv)(x)|, (4.4.30)

By (4.4.12) the second part of the error is

ES(x) = hit(1 − t)
[
ei−1(1 − t) − eit

]
, x = xi−1 + thi, t ∈ [0, 1).

Since |1 − t| + |t| = 1, it follows easily that

|ES(x)| ≤ 1

4
max

1≤i≤m
|hiej |, j = i− 1, i. (4.4.31)

4.4. Piecewise Polynomial Interpolation 63

We shall estimate |ej| in the case of constant step size. Set

li = 3(di + di+1) − (y′i−1 + 4y′i + y′i+1), i = 1 : m− 1.

Then by (4.4.18) (e1, . . . , em−1) satisfies









4 1
1 4 1

. . .
. . .

. . .

1 4 1
1 4

















e1
e2
...

em−2

em−1









=









l1
l2
...

lm−2

lm−1









−









e0
0
...
0
em









,

or Ae = l − b. We write e = eI − eB, where AeI = l, AeB = b. These two systems
will be treated differently.

We first estimate eI and note that, since the matrix A is diagonally dominant,
we can use Lemma 6.4.1 to obtain18

max
1≤i<m

|eI,i| ≤
1

α
max

1≤i<m
|li|, where α = min

i

(

|aii| −
∑

j 6=i

|aij |
)

= 2.

In order to estimate max1≤i<m |li|, note that the defining relation for li can be
rewritten as

h

3
li = yi+1 − yi−1 −

h

3
(y′i−1 + 4y′i + y′i+1).

The right hand side here equals the local error of Simpson’s formula for computing
the integral of y′ over the interval [xi−1, xi+1], which according to Problem 3.2.12
approximately is h5f (5)(xi)/90. It follows that19

max
1≤i<m

|eI,i| ≤
1

60
max

i
h4

i |f (5)(xi)|.

By (4.4.31) this shows that the contribution of eI to ES is O(h5) if f ∈ C5, while
EH(x) is O(h4). For complete splines e0 = em = 0, and for almost complete splines
e0 = O(h4), em = O(h4). Hence eB,i = O(h4), and its contribution to ES is O(h5).
So if h is sufficiently small, the Hermite interpolation error is, in the whole interval
[a, b], asymptotically, the dominant source of error for complete and almost complete
splines.20

Similar conclusions seem to hold also in the case of variable step size, under the
reasonable assumption that hn+1 − hn = O(h2

n), see Sec. 13.1 (in particular Prob-
lem 11), where variable step size is discussed in the context of ordinary differential
equations.

Finally we discuss the effect of the boundary slope errors for other boundary
conditions. The equation AeB = b can be written as a difference equation

eB,i+1 + 4eB,i + eB,i−1 = 0, i = 1 : m− 1.

18This is typically an overestimate, almost by a factor of 3, see Problem 3.3.37.
19Notice that, if f ∈ P5, the slopes ki becomes exact in complete cubic splines interpolation.
20In the literature the usual (rigorous) error bound for a perfect spline, due to Hall and Meyer,

is five times as large as the bound for the Hermite error. It is valid with h = max hi, independent
of the position of the knots, for all f ∈ C4, while we require f ∈ C5.

64 Chapter 4. Interpolation and Approximation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Figure 4.4.7. Boundary slope errors eB,i for a cubic spline, e0 = em = −1;
m = 20.

see Sec. 3.4. One can show (Problem 3.4.5) that, for any boundary condition,

eB,i ≈ uie0 + um−iem, u =
√

3 − 2 ≈ −0.268,

if um is negligible. (Here u and u−1 are the roots of the characteristic equation
u2 + 4u+ 1 = 0.)

Figure 4.4.7 shows (for m = 20, e0 = em = −1) how rapidly this error
component dies out, e.g., u4 = 0.005. At the midpoint x = 0.5 the error is 0.3816 ·
10−5.

If m ≫ 1, e0 6= 0, and em 6= 0 it follows that eB is negligible outside thin
oscillatory boundary layers near x = x0 and x = xm. The height and thickness
of the layers depend on e0 and em. We discuss the left boundary; the right one is
analogous. Assume that

e0 = eB,0 6= 0, e1 ≈ eB,1 ≈ ueB,0 ≈ ue0.

We then estimate e0 by putting

k0 = y′0 + e0, k1 = y′1 + e1 ≈ y′1 + ue0,

into the boundary condition at x0, i.e. the first equation of (4.4.23) for the natural
splines and (4.4.24) for the “not a knot” splines. (Complete splines have no oscil-
latory boundary layers; eB = 0.) The peak of the contribution of eB to the spline
interpolation error is then obtained by (4.4.12) for i = 1, and equals

he0 max
0≤t≤1

|t(1 − t(1 − t− ut)| ≈ 0.17he0. (4.4.32)

For the natural splines, this procedure leads to

(2 + u)e0 = 3
1

h
(y1 − y0) − 2y′0 − y′1 −O(h4)

4.4. Piecewise Polynomial Interpolation 65

= 3
(

y′0 +
1

2
hy′′0 + . . .

)

− 3y′0 − hy′′0 + . . . ∼ 1

2
hy′′0 .

Since 2 + u =
√

3, we obtain e0 ≈ 0.29hy′′0 , and, by (4.4.32), the peak near x =
x0 becomes approximately 0.049h2|y′′|, i.e. 40% of the linear interpolation error
(instead of cubic), often clearly visible in a graph of s(x).

For the “not a knot”-splines the procedure leads to

(1 + 2u)e0 =
5

2h
(y1 − y0) +

1

2h
(y2 − y1) − y′0 − 2y′1 −O(h4) ≈ h3

12
y(4);

see Problem 3.2.10. We thus obtain e0 ∼ 0.180h3y(4), and hence by (4.4.32) the
peak near x0 becomes 0.031h4y(4), typically very much smaller than we found for
natural splines. Still it is about 11.5 times as large as the Hermite interpolation
error, but since the oscillations die out by the factor u = 0.29 in each step, we
conclude that the Hermite interpolation is the dominant error source in cubic “not
a knot”-spline interpolation in (say) the interval [a+ 3h, b− 3h] .

For natural splines the boundary layers are much thicker, because the peaks
are much higher.

Example 4.4.3.
For the function f(x) = 1/(1 + 25x2), x ∈ [−1, 1], the maximum norm of the

error is 0.022, in interpolation with a natural cubic spline function at the eleven
equidistant points xi = −1 + 0.2i, i = 0 : 10. This good result contrasts sharply
with the unpleasant experience near the boundaries of interpolation with a tenth-
degree polynomial shown in Figure 4.2.1. An (almost) perfect cubic spline or a “not
a knot”-spline gives even better results near the boundaries.

4.4.5 Computing with B-Splines

It was shown in Sec. 4.4.3 that the set of spline functions of order k, S∆,k, on the
grid

∆ = {a = x0 < x1 < · · · < xm = b}
is a linear space of dimension k +m− 1. A basis was shown to be

{
1, x, . . . , xk−1

}
∪

{
(x − x1)

k−1
+ , (x − x2)

k−1
+ , . . . , (x− xm−1)

k−1
+

}
, (4.4.33)

which is the truncated power basis.

Example 4.4.4. For k = 2 the space S∆,k consists of continuous piecewise affine
(linear) functions also called linear splines. Then a basis is

{1, x} ∪ {l1(x), . . . , lm−1(x)}, li(x) = (x− xi)+.

Another basis for S∆,2 is obtained by introducing an artificial exterior knot x−1 ≤
x0. Then it is easy to see that using the functions li(x), i = −1 : m− 1 every linear

66 Chapter 4. Interpolation and Approximation

spline on [x0, xm] can also be written as

s(x) =

m−1∑

i=−1

cili(x).

The truncated power basis has several disadvantages. The basis functions are
not local; e.g., the monomial basis functions {1, x, . . . , xk−1} are nonzero on the
whole interval [a, b]. Also the basis functions (4.4.33) are almost linearly dependent
when the knots are close. Therefore this basis yields an ill-conditioned linear systems
for various tasks and is not suited for numerical computations. In the following we
will construct a more satisfactory basis for S∆,k.

In anticipation of the fact that it may be desirable to interpolate at other
points than the knots we consider from now on the sequence of knots

∆ = {τ0 ≤ τ1 ≤ · · · ≤ τm}. (4.4.34)

where τi ≤ τi+k, i = 0 : m − k, i.e. at most k successive knots are allowed to
coincide.

We start by considering k = 1. The space S∆,1 consists of piecewise constant
functions. As a basis for S∆,2 we can simply take the functions

Ni,1(x) =
{

1 x ∈ [τi, τi+1);
0 otherwise.

, i = 0 : m− 1. (4.4.35)

The functions Ni,1(x) are arbitrarily chosen to be continuous from the right.
For k = 2 we define the hat functions21 by

Ni,2(x) =







(x− τi)/(τi+1 − τi), x ∈ [τi, τi+1],
(τi+2 − x)/(τi+2 − τi+1), x ∈ [τi+1, τi+2),
0, x 6∈ (τi, τi+2),

i = −1 : m− 1. (4.4.36)

where we have introduced two exterior knots τ−1 ≤ τ0 and τm+1 ≥ τm at the
boundaries. (In the following we refer to the knots τ0, . . . , τm as interior knots.)
Note that for x ∈ (τi, τi+1) we have Nj,2(x) = 0, j 6= i−1, i. Hence, for a fixed value
of x at most two hat functions will be nonzero. The exterior knots are usually taken
to coincide with the boundary so that τ−1 = τ0 and τm+1 = τm; see Figure 4.4.8.
In this case N−1,1 and Nm−1,1 become “half-hats” with a singularity at τ0 and τm,
respectively.

The (m + 1) functions Ni,2(x), i = −1 : m − 1, are B-splines of order two
(degree one). At a distinct knot τi just one hat function is nonzero, Ni+1(x) = 1.
It follows that the spline function of order k = 2 interpolating the points (τi, yi),
i = 0 : m, can uniquely be written as

s(x) =

m−1∑

i=−1

ciNi,2(x). (4.4.37)

21The generalization of hat function to two dimensions is often called tent function. This concept
is very important in, e.g., in finite element methods;, see Chap. 14.

4.4. Piecewise Polynomial Interpolation 67

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t
−1

=t
0

t
1

t
2

t
3

t
4

t
5
 = t

6

N
−1,2

N
0,2

N
1,2

N
2,2

N
3,2

N
4,2

Figure 4.4.8. The six hat functions Ni,2(x), i = −1 : 4 (m + k − 1 = 6)
with knots t−1 = t0, t1, . . . , t4, t5 = t6.

with ci = yi+1. This shows that the restriction of the functions Ni,2(x), i = −1 :
m − 1, to the interval [τ0, τm] are (m + 1) linearly independent functions in S∆,2

and form a basis for S∆,2.
If we allow two interior knots coalesce, τi = τi+1, 0 < i < m − 1, then

Ni−1,2(x) and Ni,2(x) will have a discontinuity at τi. This generalizes the concept
of a B-spline of order 2 given in Definition 4.4.4 and allows us to model functions
with discontinuities at certain knots.

It is easily verified that the functions Ni,2(x) can be written as a linear com-
bination of the basis function

li(x) = (x− τi)+, i = 1 : m+ 1,

and it holds that

Ni,2(x) =
(
(x− τi+2)+ − (x− τi+1)+

)
/(τi+2 − τi+1)

−
(
(x− τi+1)+ − (x− τi)+

)
/(τi+1 − τi)

=
(
[τi+1, τi+2]t(t− x)+ − [τi, τi+1]t(t− x)+ (4.4.38)

= (τi+2 − τi)[τi, τi+1, τi+2]t(t− x)+, i = 1 : m.

Here [τi, τi+1, τi+2]t means the second order divided difference functional22 oper-
ating on a function of t, i.e. the values τi etc. are to be substituted for t not
for x. Recall that divided differences are defined also for coincident values of the
argument; see Sec. 4.3.1.

From the definition of the Peano kernel and its basic properties, given in
Sec. 3.2.3 it follows that the last expression in (4.4.38) tells us that Ni,2 is the Peano
kernel of a second order divided difference functional multiplied by the constant
τi+2 − τi. This observation suggests a definition of B-splines of arbitrary order k
and a B-spline basis for the space S∆,k.

Definition 4.4.7.

22The notation is defined in Sec. 4.2.1

68 Chapter 4. Interpolation and Approximation

Let ∆ = {τ0 ≤ τ1 ≤ · · · ≤ τm} be an arbitrary sequence of knots such that
τi < τi+k, i = 0 : m− k. Then a B-spline of order k equals (apart from a stepsize
factor) the Peano kernel of a k-th order divided difference functional; more precisely
we define (with the notations used in this chapter)

Ni,k(x) = (τi+k − τi)[τi, τi+1, . . . , τi+k]t(t− x)k−1
+ , (4.4.39)

where [τi, τi+1, . . . , τi+k]lk−1
x denotes the k-th divided difference of the function lk−1

x (·)
with respect to the set of points τi, τi+1, . . . , τi+k.

Since divided differences are defined also for coalescing points (see Sec. 4.4.3),
Definition 4.4.7 remains valid for knots that are not distinct.

Example 4.4.5. For k = 1 (4.4.38) gives (τi 6= τi+1)

Ni,1(x) = (τi+1 − τi)[τi, τi+1]t(t− x)0+.

If τi < x < τi+1, then (τi+1 − x)0+ = 1 and (τi − x)0+ = 0 and hence Ni,1 = 1;
otherwise Ni,1 = 0. This coincides with the piecewise constant functions in (4.4.35).

It can be shown that Ni,k(x) is defined for all x and is a linear combination
of functions (τj − x)k−1

+ . If the knots are distinct then by Problem 4.2.11,

Ni,k(x) = (τi+k − τi)

i+k∑

j=i

(τj − x)k−1
+

Φ′
i,k(τj)

, Φi,k(x) =

i+k∏

j=i

(x− τj). (4.4.40)

This shows that Ni,k is a linear combination of functions (τj − x)k−1
+ , j = i : i+ k,

and thus a spline of order k (as anticipated in the terminology).
The B-spline for equidistant knots is related to the probability density of

the sum of k uniformly distributed random variables on [− 1
2 ,

1
2]. This was known

already to Laplace.23

Theorem 4.4.8. The B-splines of order k has the following properties:

(i) Positivity: Ni,k(x) > 0, x ∈ (τi, τi+k).

(ii) Compact support: Ni,k(x) = 0, x 6∈ [τi, τi+k].

(iii) Summation property:
∑

iNi,k(x) = 1, ∀x ∈ [τ0, τm].

Proof. A proof can be based on the general facts concerning Peano kernels found
in Sec. 3.2.3, where also an expression for the B-spline (k = 3) is calculated for the
equidistant case. (Unfortunately the symbol x means opposite things here and in
Sec. 3.2.3.)

23Pierre Simon Laplace (1749–1827), French mathematician and astronomer, has also given
important contributions to mathematical physics and probability theory.

4.4. Piecewise Polynomial Interpolation 69

(i) By (4.2.11) Rf = [τi, τi+1, . . . , τi+k]f = f (k)(ξ)/k!, ξ ∈ (τi, τi+k), and
Rp = 0, for p ∈ Pk. It then follows from the corollary of Peano’s remainder
theorem that the Peano kernel does not change sign in [τi, τi+k]. It must then have
the same sign as

∫
K(u) du = R(x − a)k/k! = 1. This proves a somewhat weaker

statement than (i) (Ni,k(x) ≥ 0 instead of Ni,k(x) > 0).

(ii) This property follows since a Peano kernel always vanishes outside its
interval of support of the functional; in this case [τi, τi+k]. (A more general result
concerning the number of zeros is found, e.g., in Powell [38, Theorem 19.1]. Among
other things this theorem implies that the jth derivative of a B-spline, j ≤ k − 2,
changes sign exactly j times. This explains the “bell-shape” of B-splines.)

(iii) For a sketch of a proof of the summation property 24, see Problem 8.

0

0.2

0.4

0.6

0.8

1

t
−3

=t
−2

=t
−1

=t
0

t
1

t
2

t
3

t
4

N
−3,4

N
−2,4

N
−1,4

N
0,4

Figure 4.4.9. The four cubic B-splines nonzero for x ∈ (t0, t1) with coa-
lescing exterior knots t−3 = t−2 = t−1 = t0.

To get a basis of B-splines for the space S∆,k, ∆ = {τ0 ≤ τ1 ≤ · · · ≤ τm},
(m+k−1) B-splines of order k are needed. We therefore choose 2(k−1) additional
knots τ−k+1 ≤ · · · ≤ τ−1 ≤ τ0, and τm+k−1 ≥ · · · ≥ τm+1 ≥ τm, and B-splines
Ni,k(x), i = −k + 1 : m− 1.

It is convenient to let the exterior knots coincide with the end points,

τ−k+1 = · · · = τ−1 = τ0, τm = τm+1 = · · · = τm+k−1.

It can be shown that this choice tends to optimize the conditioning of the B-spline
basis. Figure 4.4.9 shows the first four cubic B-splines for k = 4 (the four last
B-splines are a mirror image of these). We note that N−3,4 is discontinuous, N−2,4

has a non-zero first derivative, and N−2,4 a non-zero second derivative at the left
boundary.

24The B-splines Mi,k originally introduced by Curry and Schoenberg were normalized so that
R

∞

−∞
Mi,k dx = 1.

70 Chapter 4. Interpolation and Approximation

Interior knots of multiplicity r > 1 are useful when we want to model a
function, which has less than k − 2 continuous derivatives at a particular knot. If
r ≤ k interior knots coalesce then the spline will only have k − 1 − r continuous
derivatives at this knot.

Lemma 4.4.9. Let τi be a knot of multiplicity r ≤ k, i.e.

τi−1 < τi = · · · = τi+r−1 < τi+r.

Then Ni,k is at least (k − r − 1) times continuously differentiable at τi. For r = k,
the B-spline becomes discontinuous.

Proof. The truncated power (t− τi)
k−1
+ is (k− 2) times continuously differentiable

and [τi, . . . , τi+k]g contains at most the (r − 1)st derivative of g. Hence the lemma
follows.

Consider the spline function

s(x) =

m−1∑

i=−k+1

ciNi,k(x). (4.4.41)

If s(x) = 0, x ∈ [τ0, τm], then s(τ0) = s′(τ0) = · · · = s(k−1)(τ0) = 0, and s(τi) = 0,
i = 1 : m− 1. From this it can be deduced by induction that in (4.4.41) ci = 0, i =
−k+1 : m−1. This shows that the (m+k−1) B-splines Ni,k(x), i = −k+1 : m−1,
are linearly independent and form a basis for the space S∆,k. (A more general result
is given in de Boor [7, Theorem IX.1].) Thus any spline function s(x) of order k
(degree k − 1) on ∆ can be uniquely written in the form (4.4.41). Note that from
the compact support property it follows that for any fixed value of x ∈ [τ0, τm] at
most k terms will be nonzero in the sum in (4.4.41), so we have

s(x) =

j
∑

i=j−k+1

ciNi,k(x), x ∈ [τj , τj+1). (4.4.42)

For developing a recurrence relation for B-splines we need the following dif-
ference analogue of Leibniz’25 formula.

Theorem 4.4.10.
Let f(x) = g(x)h(x), and xi ≤ xi+1 ≤ . . . ≤ xi+k. Then

[xi, . . . , xi+k]f =

i+k∑

r=i

[xi, . . . , xr]g · [xr, . . . , xi+k]h, (4.4.43)

provided that g(x) and f(x) are sufficiently many times differentiable so that the
divided differences on the right hand side are defined for any coinciding points xj .

25Gottfried Wilhelm von Leibniz (1646–1716). Leibniz developed his version of calculus at the
same time as Newton. Many of the notations he introduced are still used today.

4.4. Piecewise Polynomial Interpolation 71

Proof. Note that the product polynomial

P (x) =

i+k∑

r=i

(x− xi) · · · (x− xr−1)[xi, . . . , xr]g

·
i+k∑

s=i

(x− xs+1) · · · (x− xi+k)[xs, . . . , xi+k]h

agrees with f(x) at xi, . . . , xi+k since by Newton’s interpolation formula the first
factor agrees with g(x) and the second with h(x) there. If we multiply out we can
write P (x) as a sum of two polynomials

P (x) =

i+k∑

r,s=i

. . . =
∑

r≤s

. . .+
∑

r>s

. . . = P1(x) + P2(x).

Since in P2(x) each term in the sum has
∏i+k

j=i (x − xj) as a factor it follows that
P1(x) will also interpolate f(x) at xi, . . . , xi+k. The theorem now follows since the

leading coefficient of P1(x), which equals
∑i+k

r=i [xi, . . . , xr]g · · · [xr, . . . , xi+k]h, must
equal the leading coefficient of the unique interpolation polynomial of degree k,
which is [xi, . . . , xi+k]f .

Theorem 4.4.11. The B-splines satisfy the recurrence relation

Ni,k(x) =
x− τi

τi+k−1 − τi
Ni,k−1(x) +

τi+k − x

τi+k − τi+1
Ni+1,k−1(x). (4.4.44)

Proof. (de Boor [7, pp. 130–131]) The recurrence is derived by applying Leibniz’
formula for the k-th divided difference to the product

(t− x)k−1
+ = (t− x)(t− x)k−2

+ .

This gives

[τi, . . . , τi+k]t(t− x)k−1
+ = (τi − x)[τi, . . . , τi+k]t(t− x)k−2

+

+ 1 · [τi+1, . . . , τi+k]t(t− x)k−2
+ . (4.4.45)

since [τi]t(t − x) = (τi − x), [τi, τi+1]t(t − x) = 1, and [τi, . . . , τj]t(t − x) = 0 for
j > i+ 1. By the definition of a divided difference

(τi − x)[τi, . . . , τi+k]t =
τi − x

τi+k − τi
([τi+1, . . . , τi+k]t − [τi, . . . , τi+k−1]t) .

Substitute this in (4.4.45), simplify and apply the definition of B-splines. This yields
(4.4.44).

72 Chapter 4. Interpolation and Approximation

Note that with k multiple knots at the boundaries the denominators in (4.4.44)
can become zero. In this case the corresponding nominator also is zero and the term
should be set equal to zero.

From Property (ii) in Theorem 4.4.8 we conclude that only k B-splines of
order k may be nonzero on a particular interval [τj , τj+1]. Starting from Ni,1(x) =
1, x ∈ [τi, τi+1) and 0 otherwise, cf. (4.4.35), these B-splines of order k can be
simultaneously evaluated using this recurrence by forming successively their values
for order 1 : k in only about 3

2k
2 flops. This recurrence is extremely stable, since

it consists of taking positive (nonnegative) combinations of positive (nonnegative)
numbers.

Suppose that x ∈ [τi, τi+1], and τi 6= τi+1. Then the B-splines of order k =
1, 2, 3, . . ., nonzero at x can be simultaneously evaluated by computing the triangular
array

0
0 . . .

0 Ni−3,4

0 Ni−2,3 . . .
Ni−1,2 Ni−2,4

Ni,1 Ni−1,3 . . .
Ni,2 Ni−1,4

0 Ni,3 . . .
0 Ni,4

0 . . .
0

(4.4.46)

The boundary of zeros in the array is due to the fact that all other B-splines not
mentioned explicitly vanish at x. This array can be generated column by column.
The first column is known from (4.4.35), and each entry in a subsequent column can
be computed as a linear combination with nonnegative coefficients of its two neigh-
bors using (4.4.44). Note that if this is arranged in a suitable order the elements in
the new column can overwrite the elements in the old column.

To evaluate s(x), we first determine the index i such that x ∈ [τi, τi+1) using,
e.g., a linear search or bisection (see Sec. 6.1). The recurrence above is then used
to generate the triangular array (4.4.46), which provides Nj,k(x), j = i− k + 1 : i.
in the sum (4.4.42).

Using the B-spline basis we can formulate a more general interpolation prob-
lem, where the n = m+ k − 1 interpolation points, or nodes, xj do not necessarily
coincide with the knots τi. We consider determining a spline function s(x) ∈ S∆,k,
such that

s(xj) = fj, j = 1 : m+ k − 1.

Since any spline s(x) ∈ S∆,k can be written as a linear combination of B-splines,
the interpolation problem can equivalently be written

m−1∑

i=−k+1

ciNi,k(xj) = fj , j = 1 : m+ k − 1. (4.4.47)

4.4. Piecewise Polynomial Interpolation 73

These equations form a linear system Ac = f for the coefficients, where

aij = Ni−k,k(xj), i, j = 1 : m+ k − 1, (4.4.48)

and
c = (c−k+1, . . . , cm−1)

T , f = (f1, . . . , fm+k−1)
T .

The elements aij = Ni−k,k(xj) of the matrix A can be evaluated by the recurrence
(4.4.44). The matrix A will have a banded structure since aij = 0 unless xj ∈
[τi, τi+k]. Hence at most k elements are nonzero in each row of A. (Note that if
xj = τi for some i only k−1 elements will be nonzero, which explains why tridiagonal
systems were encountered in cubic spline interpolation in earlier sections.)

Schoenberg and Whitney [45, ] showed that the matrix A is nonsingular
if and only if its diagonal elements are nonzero,

ajj = Nj−k,k(xj) 6= 0, j = 1 : n,

or equivalently if the nodes xj satisfy

τj−k < xj < τj , j = 1 : n. (4.4.49)

Further, the matrix can be shown to be totally nonnegative, i.e. the determinant
of every submatrix is nonnegative. For such systems, if Gaussian elimination is
carried outwithout pivoting, the error bound is particularly favorable. This will also
preserve the banded structure of A during the elimination.

When the B-spline representation (4.4.41) of the interpolant has been deter-
mined it can be evaluated at a given point using the recursion formula (4.4.44).
If it has to be evaluated at many points it is more efficient to first convert the
spline to its polynomial representation (4.4.14). For hints on how to do that see
Problem 9 (b) and (c).

Unless the Schoenberg–Whitney condition (4.4.49) is well-satisfied the system
may become ill-conditioned. For splines of even order k the interior nodes

τ0 = x0, τj+1 = xj+k/2, j = 0 : n− k − 1, τm = xn,

is a good choice in this respect. In the important case of cubic splines this means
that knots are positioned at each data point except the second and next last (cf.
the “not a knot” condition in Sec. 4.4.4.

In some application we are given function values fj = f(xj), j = 1 : n,
that we want to approximate with a spline functions with much fewer knots so
that m + k − 1 ≤ n. Then (4.4.47) is an overdetermined linear system and the
interpolation conditions cannot be satisfied exactly. We therefore consider the linear
least squares spline approximation problem

min

n∑

j=1

(m−1∑

i=−k+1

ciNi,k(xj) − fj

)2

. (4.4.50)

Using the same notation as above this can be written in matrix form

min
c

‖Ac− f‖2
2. (4.4.51)

74 Chapter 4. Interpolation and Approximation

The matrix A will have full column rank equal to m+ k − 1 if and only if there is
a subset of points τj satisfying the Schoenberg–Whitney conditions (4.4.49).

If A has full column rank then the least squares solution c is unique and is
uniquely determined by the normal equations ATAc = AT f . The matrix ATA
is symmetric and positive definite and hence the normal equations can be solved
using Cholesky factorization of ATA. A will have at most k nonzero elements in
each row and advantage should be taken of the banded form of the matrix ATA;
see Figure 4.4.10. More stable methods for solving linear least squares problems
(4.4.51) will be introduced in Sec. 8.5.7.

0 5 10 15 20

0

5

10

15

20

25

30

35

40

45

50

nz = 191

0 5 10 15 20

0

5

10

15

20

nz = 121

Figure 4.4.10. Structure of the matrices A and ATA arising in cubic
spline approximation of Titanium data.(nonzero elements showed).

Example 4.4.6. (de Boor [7]) Consider experimental data describing a property
of titanium as a function of temperature. Experimental values for ti = 585 + 10i,
i = 1 : 49, are given. We want to fit this data using a least squares cubic spline
Figure 4.4.11 shows results from using a least squares fitted cubic spline with 9 and
17 knots, respectively. The spline with 9 knots shows oscillations near the points
where the curve flattens out and the top of the peak is not well matched. Increasing
the number of knots to 17 we get a very good fit.

We have in the treatment above assumed that the set of (interior) knots {τ0 ≤
τ1 ≤ · · · ≤ τm} is given. In many spline approximation problems it is more realistic
to consider the location of knots to be free and try to determine a small set of knots
such that the given data can be approximated to a some preassigned accuracy.
Several schemes have been developed to treat this problem.

One class of algorithms start with only a few knots and iteratively add more

Review Questions 75

550 600 650 700 750 800 850 900 950 1000 1050 1100
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

550 600 650 700 750 800 850 900 950 1000 1050 1100
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Figure 4.4.11. Least squares cubic spline approximation of Titanium data;
the knots are marked on the axes by a “o”; left: 9 knots;left: 17 knots.

knots guided by some measure of the error; see de Boor [6, Chapter XII]. The
placement of the knots are chosen so that the Schoenberg–Whitney conditions are
always satisfied. The iterations are stopped when the approximation is deemed
satisfactory. If a node τ̃ ∈ [τj , τj+1) is inserted then the B-spline series with respect
to the enlarged set of nodes can cheaply and stably be computed from the old one
(see Dierckx [22]).

Other algorithms starts with many knots and successively remove knots, which
are not contributing much to the quality of the approximation. In these two classes
of algorithms one does not seek an optimal knot placement at each step. This is
done in a more recent algorithms; see Schwetlick and Schütze [47].

Review Questions

1. What is meant by a cubic spline function? Give an example where such a
function is better suited than a polynomial for approximation over the whole
interval.

2. (a) What is the dimension of the space S∆,k of spline functions of order k on
a grid ∆ = {x0, x1, . . . , xm}? Give a basis for this space.

(b) Set up the linear system for cubic spline interpolation in the equidistant
case for some common boundary conditions. What does the unknown quan-
tities mean, and what conditions are expressed by the equations? About how
many operations are required to interpolate a cubic spline function to m+ 1,
m≫ 1, given values of a function?

3. What error sources have influence on the results of cubic spline interpolation?
How fast do the boundary errors die out? How do the results in the interior
of the interval depend on the step size (asymptotically)? One of the common
types of boundary conditions yield much larger error than the others. Which

76 Chapter 4. Interpolation and Approximation

one? Compare it quantitatively with one of the others.

4. Approximately how many arithmetic operations are required to evaluate the
function values of all cubic B-splines that are nonzero at a given point?

5. Express the restrictions of f(x) = 1 and f(x) = x to the interval [x0, xm] as
linear combinations of the hat functions defined by (4.4.36).

6. The Schoenberg–Whitney conditions give necessary and sufficient conditions
for a certain interpolation problem with B-splines of order k. What is the
interpolation problem and what are the conditions?

Problems and Computer Exercises

1. Consider a cubic Bézier curve defined by the four control points p0, p1, p2 and
p3. Show that at t = 1/2

c(1/2) =
1

4

p0 + p3

2
+

3

4

p1 + p2

2

and interpret this formula geometrically.

2. (G. Eriksson) Approximate the function y = cosx on [−π/2, π/2] by a cubic
Bézier curve. Determine the four control points in such a way that it interpo-
lates cosx and its derivative at −π/2, 0 and π/2.

Hint Use symmetry and the result of Problem 1 to find the y-coordinate of p1

and p2.

3. Suppose that f(x) and the grid ∆ are symmetric around the midpoint of the
interval [a, b]. You can then considerably reduce the amount of computa-
tion needed for the construction of the cubic spline interpolant by replacing
the boundary condition at x = b by an adequate condition at the midpoint.
Which?

(a) Set up the matrix and right hand side for this in the case of constant step
size h.

(b) Do the same for a general case of variable step size.

4. (a) Write a program for solving a tridiagonal linear system by Gaussian elim-
ination without pivoting. Assume that the nonzero diagonals are stored in
three vectors. Adapt it to cubic spline interpolation with equidistant knots
with several types of boundary conditions.

(b) Consider the tridiagonal system resulting from the not-a-knot boundary
conditions. Show that after eliminating k0 between the first two equations
and km between the last two equations the remaining tridiagonal system for
k1, . . . , km−1 is diagonally dominant.

(c) Interpolate a cubic spline s(x) through the points (xi, f(xi)), where

f(x) = (1 + 25x2)−1, xi = −1 +
2

10
(i− 1), i = 1 : 11.

Compute a natural spline, a complete spline (here f ′(x1) and f ′(x11) are

Problems and Computer Exercises 77

needed) and a “not a knot” spline. Compute and compare error curves (nat-
ural and logarithmic).

(c) Similar runs as in (b), though for f(x) = 1/x, 1 ≤ x ≤ 2, with h = 0.1
and h = 0.05. Compare the “almost complete”, as described in the text, with
the complete and the natural boundary condition.

5. If f ′′ is known at the boundary points, then the boundary conditions can be
chosen so that f ′′ = s′′ at the boundary points. Show that this leads to the
conditions

2k0 + k1 = 3d1 − h1f
′′(x0),

km−1 + 2km = 3dm + hmf
′′(xm).

6. Show that the formula

∫ xm

x0

s(x)dx =

m∑

i=1

(1

2
hi(yi−1 + yi) +

1

12
(ki−1 − ki)h

2
i

)

,

is exact for all cubic spline functions s(x). How does the formula simplify if
all hi = h?

Hint: Integrate (4.4.12) from xi−1 to xi.

7. In (4.4.12) the cubic spline qi(x) on the interval [xi−1, xi) is expressed in terms
of function values yi−1, yi, and the first derivatives ki−1, ki.

(a) Show that if Mi = s′′(xi), i = 0 : m, are the second derivatives (also called
moments) of the spline function then

ki − di =
hi

6
(2Mi +Mi−1), ki−1 − di = −hi

6
(Mi + 2Mi−1).

Hence qi(x) can also be uniquely expressed in terms of yi−1, yi and Mi−1,Mi.

(b) Show that, using the parametrization in (a), the continuity of the first
derivative of the spline function at an interior point xi gives the equation

hiMi−1 + 2(hi + hi+1)Mi + hi+1Mi+1 = 6(di+1 − di).

8. (a) Develop an algorithm for solving the arrowhead linear system Tk = g
(4.4.29), using Gaussian elimination without pivoting. Show that about twice
the number of arithmetic operations are needed compared to a tridiagonal
system.

(b) At the end of Sec. 4.4.4 parametric spline interpolation to given points
(xi, yi), i = 0 : m, is briefly mentioned. Work out the details on how to use
this to represent a closed curve. Try it out on a boomerang, an elephant, or
what have you?

9. (a) Compute and plot a B-spline basis of order k = 3 (locally quadratic) and
m = 6 subintervals of equal length.

Hint: In the equidistant case there is some translation invariance and symme-
try, so you do not really need more than essentially three different B-splines.

78 Chapter 4. Interpolation and Approximation

You need one spline with triple knot at x0 and a single knot at x1 (very easy
to construct), and two more splines.

(b) Set up a scheme to determine a locally quadratic B-spline, which interpo-
lates given values at the midpoints xi = (τi+1 +τi)/2 (τi+1 6= τi), i = 0 : m−1,
and the boundary points τ0, τm. Show that the spline is uniquely determined
by these interpolation conditions.

10. Derive the usual formula of Leibniz for the kth derivative from (4.4.43) by a
passage to the limit.

11. Use the recurrence (4.4.44)

Ni,k(x) =
x− τi

τi+k−1 − τi
Ni,k−1(x) +

τi+k − x

τi+k − τi+1
Ni+1,k−1(x)

to show that
∑

i

Ni,k(x) =
∑

i

Ni,k−1(x), τ0 ≤ x ≤ τm,

where the sum is taken over all nonzero values. Use this to give an induction
proof of the summation property in Theorem 4.4.8.

12. (a) Using the result
d

dx
(t − x)k−1

+ = −(k − 1)(t − k)k−2
+ , k ≥ 1, show the

formula for differentiating a B-spline

d

dx
Ni,k(x) = (k − 1)

(
Ni,k−1(x)

τi+k−1 − τi
− Ni+1,k−1(x)

τi+k − τi+1

)

.

Then use the relation (4.4.44) to show

d

dx

s∑

i=r

ciNi,k(x) = (k − 1)

s+1∑

i=r

ci − ci−1

τi+k−1 − τi
Ni,k−1(x),

where cr−1 := cs+1 := 0.

(b) Given the B-spline representation of a cubic spline function s(x). Show
how to find its polynomial representation (4.4.14) by computing the function
values and first derivatives s(τi), s

′(τi), i = 0 : m.

(c) Apply the idea in (a) recursively to show how to compute all derivatives
of s(x) up to order k − 1. Use this to develop a method for computing the
polynomial representation of a spline of arbitrary order k from its B-spline
representation.

13. Three different bases for the space of cubic polynomials of degree ≤ 3 on
the interval [0, 1] are the monomial basis {1, t, t2, t3}, the Bernstein basis
{B3

0(t), B3
1(t), B3

2(t), B3
3(t)}, and the Hermite basis. Determine the matrices

for these basis changes.

4.5 Approximation and Function Spaces

Function space concepts have been introduced successively in this book. Recall, e.g.,
the discussion of operators and functionals in Sec. 3.2.1, where also the linear space

4.5. Approximation and Function Spaces 79

Pn, the n-dimensional space of polynomials of degree less than n was introduced.
This terminology was used and extended in Sec. 4.1, in the discussion of various
bases and coordinate transformations in Pn.

For coming applications of functional analysis to interpolation and approxi-
mation it is now time for a digression about:

• distances and norms in function spaces;

• a general error bound that we call the norm and distance formula;

• inner-product spaces and orthogonal systems.

4.5.1 Distance and Norm

For the study of accuracy and convergence of methods of interpolation and approx-
imation we now introduce the concept of a metric space. By this we understand a
set of points S, and a real-valued function d, a distance defined for pairs of points
in S in such a way that the following axioms are satisfied for all x, y, z in S. (Draw
a triangle with vertices at the points x, y, z.)

1. d(x, x) = 0, (reflexivity)

2. d(x, y) > 0 if x 6= y, (posivity)

3. d(x, y) = d(y, x), (symmetry)

4. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

The axioms reflect familiar features of distance concepts used in mathematics
and everyday life, such as the absolute value of complex numbers, the shortest
distance along a geodesic on the surface of the earth, or the shortest distance along
a given road system.26.

Many other natural and useful relations can be derived from these axioms,
e.g.

d(x, y) ≥ |d(x, z) − d(y, z)|, d(x1, xn) ≤
n−1∑

i=1

d(xi, xi+1), (4.5.1)

where x1, x2, . . . , xn is a sequence of points in S; see Problem 1.

Definition 4.5.1.
A sequence of points {xn} in a metric space S is said to converge to a limit

x∗ ∈ S if d(xn, x
∗) → 0. As n → ∞, we write xn → x∗ or limn→∞ xn = x∗.

A sequence {xn} in S is called a Cauchy sequence, if for every ǫ > 0, there is
an integer N(ǫ) such that d(xm, xn) < ǫ, for all m,n ≥ N(ǫ). Every convergent
sequence is a Cauchy sequence, but the converse is not necessarily true. S is called
a complete space if every Cauchy sequence in S converges to a limit in S.

26If S is a functions space, the points of S are functions with operands in some other space, e.g.,
in R or Rn

80 Chapter 4. Interpolation and Approximation

It is well known that R satisfies the characterization of a complete space, but
the set of rational numbers is not complete. For example, the iteration x1 = 1,
xn+1 = 1

2 (xn + 2/xn), studied in Example 1.2.1, defines a sequence of rational

numbers that converges to
√

2, which is not a rational number.
The distance of a point x ∈ S from a subset (subspace) S′ ⊂ S is defined by27

dist (x,S′) = inf
f∈S′

d(f, x). (4.5.2)

Many important problems in Pure and Applied Mathematics can be formulated as
minimization problems. The function space terminology often makes proofs and
algorithms less abstract.

Most spaces that we shall encounter in this book are linear spaces. Their
elements are called vectors, why these spaces also are called vector spaces Two
operations are defined in these spaces, namely the addition of vectors and the mul-
tiplication of a vector by a scalar. They obey the usual rules of algebra.28 The
set of scalars can be either R or C; the vector space is then called real or complex,
respectively.

We shall be concerned with the problem of linear approximation, i.e. a
function f is to be approximated using a function f∗ that can be expressed as a
linear combination

f∗ = c1φ1(x) + c2φ2(x) + · · · + cnφn(x), (4.5.3)

of n given linearly independent functions φ1(x), φ2(x), . . . , φn(x), where c1, c2, . . . , cn
are parameters to be determined.29 They may be considered as coordinates of f∗

in the functions space spanned by φ1(x), φ2(x), . . . , φn(x).
In a vector space the distance of the point f from the origin is called the norm

of f and denoted by ‖f‖, typically with some subscript that more or less cryptically
indicates the relevant space. The definition of the norm depends namely on the
space. The following axioms must be satisfied.

Definition 4.5.2.
A real valued function ‖f‖ is called a norm on a vector space S, if it satisfies

the conditions 1–3 below for all f, g ∈ S, and for all scalars λ

1. ‖f‖ > 0, unless f = 0, (positivity)

2. ‖λf‖ = |λ|‖f‖, (homogeneity)

3. ‖f + g‖ ≤ ‖f‖ + ‖g‖ (triangle inequality)

27inf x denotes the infimum of x, i.e. the greatest lower bound of x. Similarly sup x is short for
supremum, i.e. the least upper bound.

28See Appendix A.1 for a summary about vector spaces. In larger texts on linear algebra
or functional analysis you find a collection of eight axioms (commutativity, associativity, etc.)
required by a linear vector space.

29The functions φj , however, are typically not linear. The term “linear interpolation” is from
our present point of view rather misleading.

4.5. Approximation and Function Spaces 81

A normed vector space is a metric space; the distance reads

d(x, y) = ‖x− y‖.

If it is also a complete space, it is called a Banach space.30

The most common norms in spaces of (real and complex) infinite sequences
x = (ξ1, ξ2, ξ3, . . .)

T or spaces of functions on a bounded and closed interval [a, b]
and in the spaces Rn and Cn are

‖x‖∞ = max
j

|ξj |, ‖f‖∞ = max
x∈[a,b]

|f(x)|,

‖x‖2 =
(∞∑

j=1

|ξj |2
)1/2

, ‖f‖2 = ‖f‖2,[a,b] =
(∫ b

a

|f(x)|2 dx
)1/2

,

‖x‖2,ω =
(∞∑

j=1

ωj |ξj |2
)1/2

, ‖f‖2,ω =
(∫ b

a

|f(x)|2ω(x) dx
)1/2

,

These norms are called

• the max(imum) norm (or the uniform norm);

• the Euclidean norm (or the L2 norm for integrals and l2 norm for coordinate
sequences);

• the weighted Euclidean norm. Here ω(x) is a weight function, assumed to
be continuous and strictly positive on the open interval (a, b).

We assume that the integrals
∫ b

a

|x|kω(x) dx

exist for all k. Integrable singularities at the end points are permitted; an important
example is ω(x) = (1 − x2)−1/2 on the interval [−1, 1].

The above norms are special cases or limiting cases (p → ∞ gives the max
norm) of the lp or Lp norms and weighted variants of these. They are defined for
p ≥ 1, as follows31

‖x‖p =
(∞∑

j=1

|ξj |p
)1/p

, ‖f‖p =
(∫ b

a

|f(x)|p dx
)1/p

. (4.5.4)

(The sum in the lp norm has a finite number of terms, if the space is finite dimen-
sional.)

30Stefan Banach (1892–1945) Polish mathematician. professor at the University in Lvov. Banach
founded modern Functional Analysis and gave major contributions to the theory of topological
vector spaces, measure theory and related topics. In 1939 he was elected President of the Polish
Mathematical Society.

31The triangle inequality for ‖x‖p is derived from two classical inequalities due to Hölder and
Minkowski. Elegant proofs of these are presented, e.g., in Hairer and Wanner [28, p. 327].

82 Chapter 4. Interpolation and Approximation

From the minimax property of Chebyshev polynomials (Lemma 3.2.3) it fol-
lows that the best approximation in the maximum norm to the function f(x) = xn

on [−1, 1] by a polynomial of lower degree is given by xn − 21−nTn(x). The error
assumes its extrema in a sequence of n+ 1 points xi = cos(iπ/n). The sign of the
error alternates at these points.

The above property is generalized in the following theorem, which we give
without proof. It is the basis of many algorithm for computing approximations in
the maximum norm.

Theorem 4.5.3.
Let f be a continuous function on [a, b] and let p̂ be the nth degree polynomial

which best approximates f in the maximum norm. Then p̂ is characterized by the
fact that there exists at least n+ 2 points

a ≤ ζ0 < ζ1 < ζ2 < · · · < ζn+1 ≤ b,

where the error r = p̂ − f takes on its maximal magnitude with alternating signs;
i.e. |r(ζi)| = ‖r‖∞ and

r(ζi+1) = −r(ζi), i = 0 : n.

This characterization constitutes both a necessary and sufficient condition. If
f (n+1)(x) has constant sign in [a, b] then ζ0 = a, ζn+1 = b.

Convergence in a space, equipped with the max norm, means uniform con-
vergence. Therefore, the completeness of the space C[a, b] follows from a classical
theorem of Analysis that tells that the limit of a uniformly convergent sequence is
a continuous function. The generalization of this theorem to several dimensions
implies the completeness of the space of continuous functions, equipped with the
max norm on a closed bounded region in Rn.

Other classes of functions can be normed with the max norm maxx∈[a,b] |f(x)|,
e.g., C1[a, b], but this space is not complete; one can subtract a sequence of functions
in this space with a limit that is not continuous, but one can often live well with
incompleteness.

The notation L2 norm comes from the function space L2[a, b], which is the class

of functions for which the integral
∫ b

a
|f(x)|2 dx exists, in the sense of Lebesgue;32 the

Lebesgue integral was needed in order to make the space complete. No knowledge of
Lebesgue integration is needed for the study of this book, but this particular fact can
be interesting as a background. One can apply this norm also to the (smaller) class
of continuous functions on [a, b]. In this case the Riemannn33 integral is equivalent.
This also yields a normed linear space but it is not complete.

32Henri Léon Lebesgue (1875–1941) French mathematician. His definition of the Lesbegue inte-
gral greatly extended the scope of Fourier analysis.

33George Friedrich Bernhard Riemann (1826–1866) German mathematician. He got his Ph. D.
1951 at Göttingen, supervised by Gauss. In his habilitation lecture on Geometry Riemann intro-
duced the curvature tensor and laid the groundwork for Einstein’s theory of relativity.

4.5. Approximation and Function Spaces 83

A modification of the L2 norm that also includes higher derivatives of f is used
in the Sobolev spaces, which is a theoretical framework for the study of the prac-
tically very important Finite Element Methods (FEM), used in particular for the
numerical treatment of partial differential equations; see Vol III. Although C[0, 1]
is an infinite-dimensional space, the restriction of the continuous functions f to the
equidistant grid defined by xi = ih, h = 1/n, i = 0 : n, constitute an n+ 1 dimen-
sional space, with the function values on the grid as coordinates. If we choose the
norm

‖f‖2,Gh
=

(1/h
∑

i=0

h|f(xi)|2
)1/2

,

then

lim
h→0

‖f‖2,Gh
=

(
∫ 1

0

|f(x)|2 dx
)1/2

= ‖f‖2,[0,1].

Limit processes of this type are common in Numerical Analysis.
Notice that even if n+1 functions φ1(x), φ1(x), . . . , φn+1(x) are linearly inde-

pendent on the interval [0, 1] (say), their restrictions to a grid with n points must
be linearly dependent; but if a number of functions are linearly independent on
a set M (a discrete set or continuum), any extensions of these functions to a set
M′ ⊃ M will also be linearly independent.

The class of functions, analytic in a simply connected domain D ⊂ C, normed
with ‖f‖D = maxz∈∂D |f(z)|, is a Banach space denoted by Hol(D). (The explana-
tion to this term is that analytic functions are also called holomorphic.) By the
maximum principle for analytic functions |f(z)| ≤ ‖f‖D for z ∈ D.

4.5.2 Operator Norms and the Distance Formula

The concepts of linear operator and linear functional were introduced in
Sec. 3.2.2. We here extend to a general vector space B some definitions for a fi-
nite dimensional vector space given in Appendix A.

Next we shall generalize the concept operator norm that we have previously
used for matrices. Consider an arbitrary bounded linear operator A : S1 7→ S2 in a
normed vector space S.

‖A‖ = sup
‖f‖S1

‖Af‖S2
(4.5.5)

Note that ‖A‖ depends on the vector norm in both S1 and S2. It follows that
‖Af‖ ≤ ‖A‖‖f‖. Moreover, whenever the ranges of the operators A1, A2 are such
that A1 +A2 and A1A2 are defined

‖λA‖ ≤ |λ|‖A‖, ‖A1+A2‖ ≤ ‖A1‖+‖A2‖, ‖A1 ·A2‖ ≤ ‖A1‖·‖A2‖. (4.5.6)

Similarly for sums with an arbitrary number of terms and for integrals, etc. It
follows that ‖An‖ ≤ ‖A‖n, n = 2, 3,

84 Chapter 4. Interpolation and Approximation

Example 4.5.1.
Let f ∈ C[0, 1], ‖f‖ = ‖f‖∞,

Af =
m∑

i=1

aif(xi) ⇒ ‖A‖ =
m∑

i=1

|ai|,

Af =

∫ 1

0

e−xf(x) dx ⇒ ‖A‖ =

∫ 1

0

e−x dx = 1 − e−1,

B =

m∑

i=1

aiA
i ⇒ ‖B‖ ≤

m∑

i=1

|ai|‖A‖i, (ai ∈ C),

Kf =

∫ 1

0

k(x, t)f(t) dt ⇒ ‖K‖∞ ≤ sup
x∈[0,1]

∫ 1

0

|k(x, t)| dt.

The proofs of these results are left as a problem. In the last example, approximate
the unit square by a uniform grid (xi, tj)

m
i,j=1, h = 1/m, and approximate the

integrals by Riemann sums. Then approximate ‖K‖∞ by the max norm for the
matrix with the elements ki,j = hk(xi, tj), see Appendix A.8.

The integral operator K can thus be considered as an analogue of a matrix.
This is a useful point of view also for the numerical treatment of linear integral
equations, e.g., equations of the form f − λKf = g, g given, see Volume III.

Example 4.5.2.
For the forward difference operator ∆ we obtain ‖∆‖∞ = 2, hence ‖∆k‖∞ ≤

2k. In fact ‖∆k‖∞ = 2k, because the upper bound 2k is attained by the sequence
{(−1)n}∞0 . The same holds for ∇k, δk, and µδk.

Example 4.5.3.
Let D be a domain in C, the interior of which contains the closed interval

[a, b]. Define the mapping Dk: HolD ⇒ C[a, b] (with maxnorm), by

Dkf(x) =
∂k

∂xk

1

2πi

∫

∂

Df(z)
1

(z − x)
dz =

1

2πi

∫

∂

D k!f(z)

(z − x)k+1
dz.

supx∈[a,b]‖Dkf(x)‖ ≤ max
z∈∂D

|f(z)| · sup
x∈[a,b]

k!

2π

∫

∂D

|dz|
|z − x|k+1

<∞.

Note that Dk is in this setting a bounded operator, while if we had considered Dk

to be a mapping from Ck[a, b] to C[a, b], where both spaces are normed with the
max norm in [a, b], Dk would have been an unbounded operator.

Many of the procedures for the approximate computation of integrals, deriva-
tives, etc. that encounter in this book, may be characterized as follows. Let A be a
linear functional, such that Af cannot be easily computed for an arbitrary function

4.5. Approximation and Function Spaces 85

f , but it can be approximated by another linear functional Ãk, more easily com-
putable, such that Ãkf = Af ∀f ∈ Pk. A general error bound to such procedures
was given in Sec. 3.2.3 by the Peano Remainder Theorem, in terms of an integral,

∫

f (k)(u)K(u) du

where the Peano kernel K(u) is determined by the functional R = Ã−A.
Now we shall give a different type of error bound for more general approxi-

mation problems, where other classes of functions and operators may be involved.
Furthermore, no estimate of f (k)(u) is required. It is based on the following almost
trivial theorem. It yields, however, often less sharp bounds than the Peano formula,
in situations when the latter can be applied.

Theorem 4.5.4. The Norm and Distance Formula

Let A, Ã be a two linear operators bounded in a Banach space B, such that
for any vector s in a certain linear subspace S, Ãs = As. Then

‖Ãf −Af‖ ≤ ‖Ã−A‖ dist(f,S) ∀f ∈ B.

Proof. Set R = Ã−A. For any positive ǫ, there exists a vector sǫ ∈ S such that

‖f − sǫ‖ = dist(f, sǫ) < inf
s∈S)

dist(f, s) + ǫ = dist(f,S) + ǫ.

Then ‖Rf‖ = ‖Rf−Rsǫ‖ = ‖R(f−sǫ)‖ ≤ ‖R‖‖f−sǫ‖ < (dist(f,S)+ǫ)‖R‖.
The theorem follows, since this holds for every ǫ > 0.

The following is a common particular case of the theorem. If A, Ak are linear
functionals such that Akp = Ap ∀p ∈ Pk, then

|Akf −Af | ≤ (‖Ak‖ + ‖A‖)dist(f,Pk). (4.5.7)

Another important particular case of the theorem concerns projections P
from a function space to a finite dimensional subspace, Sk, e.g., interpolation and
series truncation operators, A = I, Ã = P , see the beginning of Sec. 4.5.2. Then

‖Pf − f‖ ≤ ‖(P − I)f‖ ≤ (‖P‖ + 1)dist(f,Sk). (4.5.8)

The Norm and Distance Formula requires bounds for ‖Ã‖, ‖A‖ and dist(f,S).
We have seen examples above, how to obtain bounds for operator norms. Now we
shall exemplify how to obtain bounds for the distance of f from some relevant
subspace S, in particular spaces of polynomials or trigonometric polynomials re-
stricted to some real interval [a, b]. For the efficient estimation of dist(f,S) it may
be important, e.g., to take into account that f is analytic in a larger domain than
[a, b].

86 Chapter 4. Interpolation and Approximation

Theorem 4.5.5. Estimation of dist∞(f,Pk) in terms of ‖f (k)‖∞.

Let f ∈ Ck[a, b] ⊂ R, ‖g‖ = maxt∈[a,b] |g(t)|, ∀g ∈ C[a, b]. Then

dist∞,[a,b](f,Pk) ≤ 2‖f (k)‖∞,[a,b]

k!

(b− a

4

)k

.

Proof. Let p(t) be the polynomial which interpolates f(t) at the points tj ∈ [a, b],
j = 1 : k. By the remainder term in interpolation, (4.2.6),

|f(t) − p(t)| ≤ max
ξ∈[a,b]

|f (k)(ξ)|
k!

k∏

j=1

|t− tj |.

Set t = 1
2 (b + a) + 1

2 (b − a)x, and choose tj = 1
2 (b + a) + 1

2 (b − a)xj where xj are
the zeros of the Chebyshev polynomial Tk(x), i.e. p is the Chebyshev interpolation
polynomial for f on the interval [a, b]. Set M = ‖f (k)‖/k!. Then

|f(t) − p(t)| ≤M
k∏

j=1

(b − a)|x− xj |
2

, x ∈ [−1, 1].

Since the leading coefficient of Tk(x) is 2k−1, and |Tk(x)| ≤ 1, we have, for t ∈ [a, b],

|f(t) − p(t)| ≤M

(
b− a

2

)k
1

2k−1
|Tk(x)| ≤M

(
b− a

2

)k
1

2k−1
,

The bound stated for dist∞(f,Pk) is thus satisfied.

Example 4.5.4.
By the above theorem, the function et can be approximated on the interval

[0, 1] by a polynomial in P6 with the error bound 2e·4−6/6! ≈ 2· 10−6. According
to the proof this accuracy is attained by Chebyshev interpolation on [0, 1].

If one instead uses the Maclaurin series, truncated to P6, then the remainder
is eθ/(6!) ≥ 1.3 · 10−3. Similarly, with the truncated Taylor series about t =
1
2 the remainder is eθ/(266!) ≥ 2 · 10−5, still significantly less accurate than the
Chebyshev interpolation. Economization of power series (see Problem 3.2.4), yields
approximately the same accuracy as Chebyshev interpolation.

If we do these things on an interval of length h (instead of the interval [0, 1])
all the bounds are to multiplied by h6.

Example 4.5.5. The use of analyticity in estimates for dist∞(f,Pk) etc.

Denote by ER an ellipse in C with foci at −1 and 1; R is equal to the sum
of the semi-axes. Theorem 3.2.3 gives the following truncation error bound for the
Chebyshev expansion for a function f ∈ Hol(ER) and real-valued on [−1, 1].

∣
∣
∣f(x) −

k−1∑

j=0

cjTj(x)
∣
∣
∣ ≤ 2‖f‖ER

R−k

1 −R−1
, x ∈ [−1, 1].

4.5. Approximation and Function Spaces 87

This implies that, on the same assumptions concerning f ,

dist∞,[−1,1](f,Pk) ≤ 2‖f‖ER
R−k

1 −R−1
.

Suppose that f ∈ Hol(D), where D ⊇ b+ a

2
+
b− a

2
ER. Then transforming

from [−1, 1] to a general interval [a, b] ⊂ R, we have

dist∞,[a,b](f,Pk) ≤ 2‖f‖D
(
b− a

2R

)k
2R

2R− (b− a)
.

Example 4.5.6.
As a first simple example we shall derive an error bound for one step with the

trapezoidal rule. Set

Af =

∫ h

0

f(x) dx, A2f =
h

2

(
f(0) + f(h)).

We know that A2p = Ap if p ∈ P2. By Theorem 4.5.5, dist∞(f,P2) ≤ ‖f ′′‖∞h2/16.

Furthermore, ‖A‖∞ =
∫ h

0
dx = h, ‖A2‖∞ = h, hence by (4.5.7). the requested

error bound becomes

‖A2f −Af‖∞ ≤ 2h · ‖f ′′‖∞h2/16 = ‖f ′′‖∞h3/8.

This general method does not always give the best possible bounds but, typically,
it gives no gross overestimate. For the trapezoidal rule we know by Peano’s method
(Example 3.4.7) that ‖f ′′‖h3/12 is the best possible estimate, so we now obtained
a 50% overestimate of the error.

The norm and distance formula can also be written in the form

dist(f,S) ≥ |Af − Ãf |/‖A− Ã‖.

This can be used for finding a simple lower bound for dist (f,Pk) in terms of an
easily computed functional that vanishes on Pk.

Example 4.5.7.
Let Ã = 0. The functional Af = f(1)− 2f(0)+ f(−1) vanishes for f ∈ P2. If

the maximum norm is used on [-1,1], then ‖A‖ = 1 + 2 + 1 = 4. Thus

dist(f,P2)∞,[−1,1] ≥
|Af |
‖A‖ =

1

4
|f(1) − 2f(0) + f(−1)|.

It follows, e.g., that the curve y = ex cannot be approximated by a straight line
in [−1, 1] with an error less than (e − 2 + e−1)/4 ≈ 0.271. (This can also be seen
without the use of the Norm and Distance Formula.)

88 Chapter 4. Interpolation and Approximation

It is harder to derive the following generalization without the Norm and Dis-
tance Formula. By Example 4.5.2, ‖∆k‖ = 2k, ∆kp = 0 if p ∈ Pk, hence

dist(f,Pk)∞,[x0,xk] ≥ 2−k|∆kf(x0)|. (4.5.9)

There is another inequality that is usually sharper but less convenient to use. (It
follows from the discrete orthogonality property of the Chebyshev polynomials, see
Sec. 4.6.)

dist(f,Pk)∞,[x0,xk] ≥
1

k

∣
∣
∣
∣
∣
∣

k∑

j=0

(−1)jajf

(

cos
jπ

k

)
∣
∣
∣
∣
∣
∣

, (4.5.10)

where aj = 1
2 , j = 0, k and aj = 1 otherwise. Inequalities of this type can reveal

when one had better using piecewise polynomial approximation of a function on
an interval instead of using a single polynomial over the whole interval. See also
Sec. 4.4.

One of the fundamental theorems in approximations theory is Weierstrass’34

approximation theorem.

Theorem 4.5.6. Weierstrass’ Approximation Theorem
For every continuous function f defined on a closed, bounded interval [a, b] it

holds that
lim

n→∞
dist(f,Pn)∞,[a,b] = 0.

Proof. For an elegant proof due to S. Bernstein using Bernstein polynomials; see
Davis [19, Sec. 6.2].

The smoother f is, the quicker dist(f, Pn) decreases, and the narrower the
interval is, the less dist(f, Pn) becomes. In many cases dist(f, Pn) decreases so
slowly toward zero (as n grows) that it is impractical to attempt to approximate f
with only one polynomial in the entire interval [a, b].

In infinite-dimensional spaces, certain operators may not be defined every-
where, but only in a set that is everywhere dense in the space. For example, in
the space C[a, b] of continuous functions on a bounded interval (with the maximum
norm), the operator A = d/dx is not defined everywhere, since there are continuous
functions, which are not differentiable. By Weierstrass’ Approximation Theorem
any continuous function can be approximated uniformly to arbitrary accuracy by a
polynomial. In other words: the set of polynomials is everywhere dense in C, and
hence the set of differentiable functions is so too. Moreover, even if Au exists, A2u
may not exist. That A−1 may not exist, is no novel feature of infinite-dimensional
spaces. In C[a, b] the norm of A = d/dx is infinite. This operator is said to be
unbounded.

34Kurt Theodor Wilhelm Weierstrass (1815–1897) German mathematician, whose lectures at
Berlin University attracted students from all over the world. He set high standards of rigor in his
work and is known as the father of modern analysis.

4.5. Approximation and Function Spaces 89

4.5.3 Inner Product Spaces and Orthogonal Systems

An abstract foundation for least squares approximation is furnished by the theory
of inner product spaces, which we now introduce.

Definition 4.5.7.
A normed linear space S will be called an inner product space, if for each two

elements f, g in S there is a scalar designated by (f, g) with the following properties

1. (f + g, h) = (f, h) + (g, h) (linearity)

2. (f, g) = (g, f) (symmetry)
3. (αf, g) = α(f, g), α scalar (homogeneity)
4. (f, f) ≥ 0, (f, f) = 0, iff f = 0 (positivity)

The inner product (f, g) is scalar, i.e. real in a real space and complex in a
complex space. The norm is defined as

‖f‖ = (f, f)1/2.

We shall show below that the triangle inequality is satisfied. (The other axioms
for a norm are obvious.) The standard inner products introduced in § 1.6.2, are
particular cases, if we set (x, y) = yTx in Rn, and (x, y) = yHx in Cn. A complete
inner-product space is called a Hilbert space and is often denoted H in this book.

One can make computations using the more general definition of (f, g) given
above in the same way that one does with scalar products in linear algebra. Note,
however, the conjugations necessary in a complex space, e.g.,

(f, αg) = ᾱ(f, g), (4.5.11)

because, by the axioms, (f, αg) = (αg, f) = α(g, f) = ᾱ(g, f) = ᾱ(f, g). By the
axioms it follows by induction that

(

φk,

n∑

j=1

cjφj

)

=

n∑

j=1

(φk, cjφj) =

n∑

j=1

c̄j(φk, φj). (4.5.12)

Theorem 4.5.8.
The Cauchy–Schwarz inequality in a complex space

|(f, g)| ≤ ‖f‖ ‖g‖.

Proof. Let f , g be two arbitrary elements in an inner-product space. Then35, for
every real number λ,

0 ≤ (f + λ(f, g)g, f + λ(f, g)g) = (f, f) + 2λ|(f, g)|2 + λ2|(f, g)|2(g, g).
35We found this proof in [41, n◦83]. The application of the same idea in a real space can be

made simpler, see Problem X.

90 Chapter 4. Interpolation and Approximation

This polynomial in λ with real coefficients cannot have two distinct zeros, hence
the discriminant cannot be positive, i.e.

|(f, g)|4 − (f, f)|(f, g)|2(g, g) ≤ 0.

So, even if (f, g) = 0), |(f, g)|2 ≤ (f, f)(g, g).

By the definition and the Cauchy–Schwarz inequality,

‖f + g‖2 = (f + g, f + g) = (f, f) + (f, g) + (g, f) + (g, g)

≤ ‖f‖2 + ‖f‖ ‖g‖+ ‖g‖ ‖f‖+ ‖g‖2 = (‖f‖ + ‖g‖)2.

This shows that the triangle inequality is satisfied by the norm defined above.

Example 4.5.8.
The set of all complex infinite sequences {xi} for which

∑∞
i=1 |xi|2 < ∞ and

equipped with the inner product

(x, y) =
∞∑

i=1

xiyi,

constitutes a Hilbert space.

Definition 4.5.9.
Two functions f and g are said to be orthogonal if (f, g) = 0. A finite or

infinite sequence of functions φ0, φ1, . . . , φn constitutes an orthogonal system, if

(φi, φj) = 0, i 6= j, and ‖φi‖ 6= 0, ∀i. (4.5.13)

If, in addition, ‖φi‖ = 1∀i, then the sequence is called an orthonormal system.

Theorem 4.5.10 (Pythagoras’ theorem).
Let {φ1, φ2, . . . , φn} be an orthogonal system in an inner-product space. Then

∥
∥
∥

n∑

j=1

cjφj

∥
∥
∥

2

=

n∑

j=1

|cj |2‖φj‖2.

The elements of an orthogonal system are linearly independent.

Proof. We start as in the proof of the triangle inequality:

‖f + g‖2 = (f, f) + (f, g) + (g, f) + (g, g) = (f, f) + (g, g) = ‖f‖2 + ‖g‖2.

Using this result and induction the first stement follwos. The second statement
then follows because

∑
cjφj = 0 ⇒ |cj | = 0, ∀j.

4.5. Approximation and Function Spaces 91

Theorem 4.5.11.
A linear operator P is called a projection (or projector) if P = P 2. Let V be

the range of the operator P . Then P is a projection if and only Pv = v if for each
v ∈ V.

Proof. If P is a projection, then v = Px for some x ∈ B, hence Pv = P 2x = Px =
v. Conversely, if Q is a linear operator, such that Qx ∈ V , ∀x ∈ B, and v = Qv,
∀v ∈ V , then Q is a projection, in fact Q = P .

Note that I − P is also a projection, because

(I − P)(I − P) = I − 2P + P 2 = I − P.

Every vector x ∈ B can be written uniquely in the form x = u+ w, where u = Px,
w = (I − P)x, so that u ∈ range (P), w ∈ range (I − P).

Important examples of projections in function spaces are interpolation oper-
ators, e.g., the mapping of C[a, b] into Pk by Newton or Lagrange interpolation,
because each polynomial is mapped to itself. The two types of interpolation are
the same projection, although they use different bases in Pk. Another example is
the mapping of a linear space of functions, analytic on the unit circle, into Pk so
that each function is mapped to its Maclaurin expansion truncated to Pk. There are
analogous projections where, e.g., periodic functions and trigonometric polynomials
are involved, or functions in C3 and cubic splines.

In an inner product space, the adjoint operator A∗ of a linear operator A
is defined by the requirement that

(A∗u, v) = (u,Av), ∀ u, v. (4.5.14)

An operator A is called self-adjoint if A = A∗. In Rn, we define (u, v) = uvT ,
i.e. the standard scalar product. Then (A∗u)T v = uTAv, i.e. uT ((A∗)T v = uTAv
hence (A∗)T = A. It follows that symmetric matrices are self-adjoint. Similarly, in
Cn, we define (u, v) = uvH . It follows that A∗ = AH and that Hermitean matrices
are self-adjoint. An operator B is positive definite if (u,Bu) > 0 ∀ u 6= 0.

Example 4.5.9.
An important example of an orthogonal system is the sequence of trigonomet-

ric functions φj(x) = cos jx, j = 0 : m. These form an orthogonal system, with the
either of the two inner products

(f, g) =

∫ π

0

f(x)g(x) dx (continuous case, m = ∞),

(f, g) =

m∑

i=0

f(xµ)g(xµ), xµ =
2µ+ 1

m+ 1

π

2
(discrete case).

Moreover, it holds that

‖φj‖2 =
1

2
π, j > 0, ‖φ0‖2 = π, (continuous case),

92 Chapter 4. Interpolation and Approximation

‖φj‖2 =
1

2
(m+ 1), 1 ≤ j ≤ m, ‖φ0‖2 = m+ 1. (discrete case).

These results are closely related to the orthogonality of the Chebyshev polynomials;
see Theorem 4.5.17.

Trigonometric interpolation and Fourier analysis will be treated in Sec. 4.6.

There are many other examples of orthogonal systems. Orthogonal systems
of polynomials play an important role in approximation and numerical integration.
Orthogonal systems also occur in a natural way in connection with eigenvalue prob-
lems for differential equations, which are quite common in mathematical physics.

4.5.4 Solution of the Approximation Problem

Orthogonal systems give rise to extraordinary formal simplifications in many situa-
tions. We now consider the least squares approximation problem of minimizing the
norm of the error function ‖f∗ − f‖ over all functions f∗ =

∑n
j=0 cjφj .

Theorem 4.5.12.
If φ0, φ1, . . . , φn are linearly independent, then the least squares approximation

problem has a unique solution,

f∗ =

n∑

j=0

c∗jφj , (4.5.15)

which is characterized by the orthogonality property that f∗ − f is orthogonal to all
φj, j = 0 : n. The coefficients c∗j , which are called orthogonal coefficients (or
Fourier coefficients), satisfy the linear system of equations

n∑

j=0

(φj , φk)c∗j = (f, φk). (4.5.16)

called normal equations. In the important special case when φ0, φ1, . . . , φn form an
orthogonal system, the coefficients are computed more simply by

c∗j = (f, φj)/(φj , φj), j = 0 : n. (4.5.17)

Proof. Let (c0, c1, . . . , cn) be a sequence of coefficients with cj 6= c∗j for at least one
j. Then

n∑

j=0

cjφj − f =
n∑

j=0

(cj − c∗j)φj + (f∗ − f).

If f∗ − f is orthogonal to all the φj , then it is also orthogonal to the linear combi-
nation

∑n
j=0(cj − c∗j)φj , and according to the Pythagorean Theorem

∥
∥
∥

n∑

j=0

cjφj − f
∥
∥
∥

2

=
∥
∥
∥

n∑

j=0

(cj − c∗j)φj

∥
∥
∥

2

+ ‖(f∗ − f)‖2 > ‖(f∗ − f)‖2.

4.5. Approximation and Function Spaces 93

Thus if f∗ − f is orthogonal to all φk, then f∗ is a solution to the approximation
problem. It remains to show that the orthogonality conditions

(n∑

j=0

c∗jφj − f, φk

)

= 0, k = 0 : n,

can be fulfilled. The above conditions are equivalent to the normal equations in
(4.5.16). If {φj}n

j=0 constitutes an orthogonal system, then the system can be
solved immediately, since in each equation all the terms with j 6= k are zero. The
formula in (4.5.17) then follows immediately.

Suppose now that we know only that {φj}n
j=0 are linearly independent. The

solution to the normal equations exists and is unique, unless the homogeneous
system,

n∑

j=0

(φj , φk)c∗j = 0, k = 0 : n

has a solution c0, c1, . . . , cn, with at least one ci 6= 0. But this would imply

∥
∥
∥

n∑

j=0

cjφj

∥
∥
∥

2

=
(n∑

j=0

cjφj ,

n∑

k=0

ckφk

)

=

n∑

k=0

n∑

j=0

(φj , φk)cjck =

n∑

k=0

0 · ck = 0,

which contradicts that the φj were linearly independent.

In the case where {φj}n
j=0 form an orthogonal system, the Fourier coefficients

c∗j are independent of n (see formula (4.5.17)). This has the important advan-
tage that one can increase the total number of parameters without recalculating
any previous ones. Orthogonal systems are advantageous not only because they
greatly simplify calculations; using them, one can often avoid numerical difficulties
with round-off error which may occur when one solves the normal equations for a
nonorthogonal set of basis functions.

With every continuous function f one can associate an infinite series,

f ∼
∞∑

j=0

c∗jφj , c∗j =
(f, φj)

(φj , φj)
.

Such a series is called an orthogonal expansion. For certain orthogonal systems
this series converges with very mild restrictions on the function f .

Theorem 4.5.13.
If f∗ is defined by formulas (4.5.15) and (4.5.17), then

‖f∗ − f‖2 = ‖f‖2 − ‖f∗‖2 = ‖f‖2 −
n∑

j=0

(c∗j)
2‖φj‖2.

Proof. Since f∗ − f is, according to Theorem 4.5.12, orthogonal to all φj , 0 ≤
j ≤ n, then f∗ − f is orthogonal to f∗. The theorem then follows directly from the
Pythagorean Theorem and Theorem 4.5.10.

94 Chapter 4. Interpolation and Approximation

We obtain as corollary Bessel’s inequality:

n∑

j=0

(c∗j)
2‖φj‖2 ≤ ‖f‖2. (4.5.18)

The series
∑∞

j=0(c
∗
j)

2‖φj‖2 is convergent. If ‖f∗− f‖ → 0 as n→ ∞, then the sum

of the latter series is equal to ‖f‖2, which is Parseval’s identity.

Theorem 4.5.14.
If {φj}m

j=0 are linearly independent on the grid {xi}m
j=0, then the interpolation

problem of determining the coefficients {ci}m
j=0 such that

m∑

j=0

cjφj(xi) = f(xi), i = 0 : m, (4.5.19)

has exactly one solution. Interpolation is a special case (n = m) of the method of
least squares. If {φj}m

j=0 is an orthogonal system, then the coefficients cj are equal
to the orthogonal coefficients in (4.5.17).

Proof. The system of equations (4.5.19) has a unique solution, since its column
vectors are the vectors φj(G), j = 0 : n, which are linearly independent. For the
solution of the interpolation problem it holds that ‖cjφj − f‖ = 0; that is, the error
function has the least possible semi-norm. The remainder of the theorem follows
from Theorem 4.5.12.

The following collection of important and equivalent properties is named
the Fundamental theorem of orthonormal expansions, by Davis [19, The-
orem8.9.1], whom we follow closely at this point.

Theorem 4.5.15.
Let φ1, φ2, · · ·, be a sequence of orthonormal elements in in a complete inner

product space H. The following seven statements are equivalent: 36

(A) The φj is a complete orthonormal system in H.

(B) The orthonormal expansion of any element y ∈ H converges in norm to y; i.e.

lim
n→∞

∥
∥
∥y −

n∑

j=1

(y, φj)φj

∥
∥
∥. (4.5.20)

(C) Parseval’s identity holds for every y ∈ H, i.e.

‖y‖2 =

∞∑

j=1

|(y, φj)|2. (4.5.21)

36We assume that H is not finite-dimensional, in order to simplify the formulations. Only minor
changes are needed in order to cover the finite-dimensional case.

4.5. Approximation and Function Spaces 95

(C’) The extended Parseval’s identity holds for every x, y ∈ H, i.e.

(x, y) =

∞∑

j=1

(x, φj)(φj , y). (4.5.22)

(D) There is no strictly larger orthonormal system containing φ1, φ2, · · ·

(E) If y ∈ H and (y, φj) = 0, j = 1, 2, . . . , then y = 0.

(F) An element of H is determined uniquely by its Fourier coefficients, i.e. if
(w, φj) = (y, φj), j = 1, 2, · · ·, then w = y.

Proof. For the rest of the proof, See Davis [19, pp. 192ff].

Theorem 4.5.16.
The converse of statement (F) holds, i.e. let H be a complete inner product

space, and let aj be constants such that
∑∞

j=1 |aj |2 < ∞. Then there exists an

y ∈ H, such that y =
∑∞

j=1 ajφj and (y, φj) = aj ∀ j.

Proof. Omitted.

4.5.5 Orthogonal Polynomials and Least Squares Approximation

By a family of orthogonal polynomials we mean a triangle family of polynomials,
which (in the continuous case) is an orthogonal system with respect to a given inner
product Expansions of functions in terms of orthogonal polynomials are very useful.
They are easy to manipulate, have good convergence properties and usually give
a well conditioned representation. The theory of orthogonal polynomials is also of
fundamental importance for many problems, which at first sight seem to have little
connection with approximation (e.g., numerical integration, continued fractions,
and the algebraic eigenvalue problem).

Perhaps the most important example of a family of orthogonal polynomials
is the Chebyshev polynomials Tn(x) = cos(n arccos(x)) introduced in Sec. 3.2.3.
These are are orthogonal on [−1, 1] with respect to the weight function (1−x2)−1/2

and also with respect to a discrete inner product. Their properties can be derived
by rather simple methods.

Theorem 4.5.17.
The Chebyshev polynomials have the following two orthogonality properties.

Set

(f, g) =

∫ 1

−1

f(x)g(x)(1 − x2)−1/2 dx (4.5.23)

96 Chapter 4. Interpolation and Approximation

(the continuous case). Then (T0, T0) = π, and

(Tj , Tk) =

{
0 if j 6= k,
π/2 if j = k 6= 0.

(4.5.24)

Let xk be the zeros of Tm+1(x) and set

(f, g) =

m∑

k=0

f(xk)g(xk), xk = cos
(2k + 1

m+ 1

π

2

)

(4.5.25)

(the discrete case). Then (T0, T0) = m+ 1, and

(Tj , Tk) =

{
0 if j 6= k,
(m+ 1)/2 if j = k 6= 0.

(4.5.26)

Proof. In the continuous case, let j 6= k, j ≥ 0, k ≥ 0. From x = cosφ it follows
that dx = sinφdφ = (1 − x2)1/2dφ. Hence

(Tj, Tk) =

∫ π

0

cos jx cos kx dx =

∫ π

0

1

2

(
cos(j − k)x+ cos(j + k)x

)
dx

=
1

2

(sin(j − k)π

j − k
+

sin(j + k)π

j + k

)

= 0,

whereby orthogonality is proved.
In the discrete case, set h = ∂µ/(m+ 1), xµ = h/2 + µh,

(Tj , Tk) =
m∑

µ=0

cos jxµ cos kxµ =
1

2

m∑

µ=0

(
cos(j − k)xµ + cos(j + k)xµ

)
.

Using notation from complex numbers (i =
√
−1) we have

(Tj , Tk) =
1

2
Re

(m∑

µ=0

ei(j−k)h(1/2+µ) +
m∑

µ=0

ei(j+k)h(1/2+µ)
)

. (4.5.27)

The sums in (4.5.27) are geometric series with ratios ei(j−k)h and ei(j+k)h, respec-
tively. If j 6= k, 0 ≤ j ≤ m, 0 ≤ k ≤ m, then the ratios are never equal to 1,
since

0 < | (j ± k)h| ≤ 2m

m+ 1
π < π.

The first sum in (4.5.27) is, then, using the formula for the sum of a geometric series

ei(j−k)(h/2) e
i(j−k)(m+1)h − 1

ei(j−k)h − 1
=

ei(j−k)π − 1

ei(j−k)(h/2) − e−i(j−k)(h/2) − 1
=

(−1)j−k − 1

2i sin(j − k)h/2
.

The real part of the last expression is clearly zero. An analogous computation shows
that the real part of the other sum in (4.5.27) is also zero. Thus the orthogonality
property holds in the discrete case also. It is left to the reader to show that the
expressions when j = k given in the theorem are correct.

4.5. Approximation and Function Spaces 97

Example 4.5.10. Chebyshev interpolation

Let p(x) denote the Chebyshev interpolation polynomial of degree m. For
many reasons it is practical to write this interpolation polynomial in the form

p(x) =

m∑

i=0

ciTi(x). (4.5.28)

Then using the discrete orthogonality property (4.5.26)

ci =
(f, Ti)

‖Ti‖2
=

1

‖Ti‖2

m∑

k=0

f(xk)Ti(xk), (4.5.29)

where
‖T0‖2 = m+ 1, ‖Ti‖2 = 1

2 (m+ 1), i > 0.

The recursion formula (3.2.20) can be used for calculating the orthogonal coefficients
according to (4.5.29). For computing p(x) with (4.5.28) Clenshaw’s algorithm (The-
orem 3.2.5) can be used.

Occasionally on is interested in the partial sums of (4.5.28). For example, if
the values of f(x) are afflicted with statistically independent errors with standard
deviation σ, then the series can be broken off when for the first time

∥
∥
∥f −

p
∑

i=0

ciTi(x)
∥
∥
∥ < σm1/2.

We assume in the following that in the continuous case the weight function
w(x) ≥ 0 is such that the moments

µk = (xk, 1) =

∫ b

a

xkw(x) dx. (4.5.30)

are defined for all k ≥ 0, and µ0 > 0. Note that the inner product (4.5.38) has the
property that

(xf, g) = (f, xg). (4.5.31)

Given a linearly independent sequence of vectors in an inner-product space an
orthogonal system can be derived by a process analogous to Gram–Schmidt orthog-
onalization. The proof below is constructive and leads to a unique construction of
the sequence of orthogonal polynomials φk, n ≥ 1, with leading coefficients equal
to 1.

Theorem 4.5.18.
In an inner product space with the inner product (4.5.38), there is a triangle

family of orthogonal polynomials φk(x), k = 1, 2, 3, . . ., such that φk+1(x) has exact
degree k, and is orthogonal to all polynomials of degree less than k. The family is
uniquely determined apart from the fact that the leading coefficients can be given
arbitrary positive values.

98 Chapter 4. Interpolation and Approximation

The monic orthogonal polynomials satisfy the three-term recurrence formula,

φk+1(x) = (x− βk)φk(x) − γ2
k−1φk−1(x), k ≥ 1, (4.5.32)

with initial values φ0(x) = 0, φ1(x) = 1. The recurrence coefficients are given by

βk =
(xφk, φk)

‖φk‖2
, γk−1 =

‖φk‖
‖φk−1‖

. (4.5.33)

If the weight distribution is symmetric about x = β, then βk = β for all k.

Proof. By induction: Suppose that the φj 6= 0 have been constructed for 1 ≤ j ≤ k.
We now seek a polynomial φk+1 of degree k with leading coefficient equal to 1,
which is orthogonal to all polynomials in Pk. Since {φj}k

j=1 is a triangle family,
every polynomial of degree k − 1 can be expressed as a linear combination of these
polynomials. Therefore we can write

φk+1 = xφk −
k∑

i=1

ck,iφi. (4.5.34)

Clearly φk+1 has leading coefficient one. The orthogonality condition is fulfilled if
and only if

(xφk, φj) −
k∑

i=1

ck,i(φi, φj) = 0, j = 1 : k.

But (φi, φj) = 0 for i 6= j, and thus ck,j‖φj‖2 = (xφk, φj). From the definition of
inner product (4.5.38), it follows that

(xφk, φj) = (φk, xφj).

But xφj is a polynomial of degree j. Thus if j < k, then it is orthogonal to φk. So
ckj = 0 for j < k − 1. From (4.5.34) it then follows that

φk+1 = xφk − ck,kφk − ck,k−1φk−1, (4.5.35)

which has the same form as the original assertion of the theorem if, we set

βk = ck,k =
(xφk, φk)

‖φk‖2
, γ2

k−1 = ck,k−1 =
(φk, xφk−1)

‖φk−1‖2
. k ≥ 1.

This shows the first part of (4.5.33).
The expression for γk−1 can be written in another way. If we scalar-multiply

(4.5.34) by φk+1 we get

(φk+1, φk+1) = (φk+1, xφk) −
k∑

i=1

ck,i(φk+1, φi) = (φk+1, xφk).

Thus (φk+1, xφk) = ‖φk+1‖2, or if we decrease all indices by 1, (φk, xφk−1) = ‖φk‖2.
Substituting this in the expression for γk−1 gives the second part of (4.5.33)

4.5. Approximation and Function Spaces 99

Sometimes it is advantageous to consider corresponding orthonormal polyno-
mials φ̂k(x), which satisfy ‖φ̂k‖ = 1. Setting φ̂1 = c, we find

‖φ̂1‖ =

∫ b

a

c2w(x) dx = c2µ0 = 1,

and thus φ̂1 = 1/
√
µ0. If we scale the monic orthogonal polynomials according to

φk = (γ1 · · · γk−1)φ̂k, k > 1, (4.5.36)

then we find using (4.5.33) that

‖φ̂k‖
‖φ̂k−1‖

=
γ1 · · · γk−2

γ1 · · · γk−1

‖φk‖
‖φk−1‖

= 1.

Substituting (4.5.36) in (4.5.32) we obtain a recurrence relation for the orthonormal
polynomials

γkφ̂k+1(x) = (x − βk)φ̂k(x) − γk−1φ̂k−1(x), k ≥ 1, (4.5.37)

Let p̂n denote the polynomial of degree n for which

‖f − p̂n‖∞ = En(f) = min
p∈Pn+1

‖f − p‖∞.

Set pn =
∑n

j=0 cjφj , where cj is the jth Fourier coefficient of f and {φj} are the
orthogonal polynomials with respect to the inner product

(f, g)w =

∫ b

a

f(x)g(x)w(x) dx, w(x) ≥ 0. (4.5.38)

If we use the weighted Euclidian norm, p̂n is of course not a better approximation
than pn. In fact

‖f − p‖2
w =

∫ b

a

|f(x) − pn(x)|2w(x) dx

≤
∫ b

a

|f(x) − p̂n(x)|2w(x) dx ≤ En(f)2
∫ b

a

w(x) dx. (4.5.39)

This can be interpreted as saying that a kind of weighted mean of |f(x)− pn(x)| is
less than or equal to En(f), which is about as good result as one could demand. The
error curve has an oscillatory behavior. In small subintervals |f(x)− pn(x)| can be
significantly greater than En(f). This is usually near the ends of the intervals or in
subintervals where w(x) is relatively small. Note that from (4.5.39) and Weierstrass
approximation theorem it follows that

lim
n→∞

‖f − p‖2
2,w = 0

100 Chapter 4. Interpolation and Approximation

for every continuous function f . From (4.5.39) one gets after some calculations

∞∑

j=n+1

‖φj‖2 = ‖f − p‖2
2,w ≤ En(f)2

∫ b

a

w(x) dx,

which gives one an idea of how quickly the terms in the orthogonal expansion
decrease.

In Sec. 4.1.3 we considered the discrete least squares approximation problem

f(x) ≈ p(x) =

n∑

j=1

cjpj(x) ∈ Pn,

where p1(x), p2(x), . . . , pn(x) is a basis for Pn. Then S(c) = ‖p − f‖2, the least
squares problem to minimize S(c) is equivalent to minimizing the norm of the
error function p − f . Thus, if we could determine the basis functions so that they
constitute an orthogonal system, i.e.

(pi, pk) =

{
0, i 6= k,
‖pi‖2 6= 0, i = k,

then by Theorem 4.5.12 the coefficients of the least squares approximations are

cj = (f, pj)/(pj , pj), j = 1 : n. (4.5.40)

Example 4.5.11.
For the case n = 1, p1(x) = 1, the normal equations reduce to the single

equation (p0, p0)c0 = (f, p0). Hence using the discrete inner product we get

c1 =
1

ω

m∑

i=0

wif(xi), ω =
m∑

i=0

wi.

Here c1 is said to be a weighted mean of the values of the function.

Let {xi}m
i=1 ∈ (a, b) be distinct points and {wi}m

i=1 a set of weights and define
the weighted discrete inner product of two real-valued functions f and g on the grid
{xi}m

j=1 by

(f, g) =

m∑

i=1

wif(xi)g(xi). (4.5.41)

From Theorem 4.5.18 it follows that there is a unique associated triangle family of
orthogonal polynomials p0, p1, . . . , pm−1, with leading coefficients equal to one, that
satisfy the three-term recurrence

p−1(x) = 0, p0(x) = 1, (4.5.42)

pk+1(x) = (x− αk)pk(x) − βkpk−1(x), k = 0, 1, 2, . . . , (4.5.43)

4.5. Approximation and Function Spaces 101

where

αk =
(xpk, pk)

‖pk‖2
, βk =

‖pk‖2

‖pk−1‖2
(k > 0). (4.5.44)

If the weight distribution is symmetric about x = α, then αk = α for all k.
For a discrete weight distribution on a grid with m points, the family ends

with pm(x); pm+1(x) becomes zero at each grid point. In the continuous case, the
family has infinitely many members.

Using (4.5.33 the coefficients αk and βk and the value of the polynomials pk

at the grid points xi can be recursively computed, in the order

α0, p1(xi), α1, β1, p2(xi),

(Note that β0 is not needed since p−1 = 0.) This procedure is called the Stieltjes
procedure37

For k = m the constructed polynomial pm must be equal to

(x− x0)(x− x1) · · · (x− xm),

because this polynomial is zero at all the grid points, and thus orthogonal to all
functions. From this it follows that ‖pm+1‖ = 0; thus the computation of αk cannot
be carried out for k = m+ 1 and the construction stops at k = m. This is natural,
since there cannot be more than m + 1 orthogonal (or even linearly independent)
functions on a grid with m+ 1 points.

There are many computational advantages of using the recurrence relation
(4.5.43) for discrete least squares data fitting. In a least squares approximation of
the form

p(x) =
n∑

k=0

ckpk,

the coefficients

ck = (p, pk)/‖pk‖2,

are independent of n. In the computation of the coefficients ck one can make
use of the recursion formula (4.5.43). approximations of increasing degree can be
recursively generated as follows. Suppose that pi, i = 0 : k − 1, and the least
squares approximation pk of degree k have been computed. In the next step the
coefficients βk, γk are computed from (4.5.44) and then pk+1 by (4.5.43). The next
approximation of f can now be obtained by

pk+1 = pk + ck+1pk+1, ck+1 = (f, pk+1)/‖pk+1‖2. (4.5.45)

Since pk+1 is orthogonal to pk, an alternative expression for the new coefficient is

ck+1 = (rk, pk+1)/‖pk+1‖2, rk = f − pk. (4.5.46)

37Thomas Jan Stieltjes (1856–1894), was born in the Netherlands. After working with astro-
nomical calculations at the Observatory in Leiden he got a university position in Toulouse, France.
His work on continued fractions and the moment problem and invented a new concept of integral.

102 Chapter 4. Interpolation and Approximation

Assuming unit weights and that the grid is symmetric the coefficients αk, ck
and the orthogonal functions pk at the grid points can be using the Stieltjes proce-
dure in about 4mn flops. If there are differing weights, then about mn additional
operations are needed; similarly, mn additional operations are required if the grid
is not symmetric. If the orthogonal coefficients are determined simultaneously for
several functions on the same grid, then only about mn additional operations per
function are required. (In the above, we assume m≫ 1, n ≫ 1.) Hence the proce-
dure is much more economical than the general methods based on normal equations
which require O(mn2) flops.

Mathematically the two formulas (4.5.45) and (4.5.46) for ck+1 are equivalent.
In finite precision, as higher degree polynomials pk+1 are computed, they will grad-
ually lose orthogonality to previously computed pj , j ≤ k. In practice there is an
advantage in using (4.5.46) since cancellation then will mostly take place in com-
puting the residual rk = f − pk, and then the inner product (rk, pk+1) is computed
accurately. Theoretically the error ‖pk − f‖ must be a non-increasing function of k.
I However, when using the first formula one sometimes finds that the residual norm
increases when the degree of the approximation is increased! With the modified
formula (4.5.46) this is very unlikely to happen; see Problem 8.

Note that for n = m we obtain the (unique) interpolation polynomial for the
given points. Often the error decreases rapidly with k and then pk provides a good
representation of f already for small values of k. With some nets e.g., equidis-
tant nets, one should choose n less than 2

√
m, since otherwise the approximation

polynomial will have large oscillatory behavior between the grid points.
When the coefficients cj in the orthogonal expansion are known, then the eas-

iest way to compute the numerical values of p(x) is to use Clenshaw’s algorithm;
see Theorem 3.2.4.

For equidistant data, the Gram polynomials {Pn,m}m
n=0 are of interest.38

These polynomials are orthogonal with respect to the inner product

(f, g) =
1

m

m∑

i=1

f(xi)g(xi), xi = −1 + (2i− 1)/m.

The weight distribution is symmetric around the origin αk = 0. and for the monic
Gram polynomials the recursion formula is (see [2])

P−1,m(x) = 0, P0,m = 1,

Pn+1,m(x) = xPn,m(x) − βn,mPn−1,m(x), n = 0 : m− 1,

where (n < m)

βn,m =
n2

4n2 − 1

(

1 − n2

m2

)

.

When n ≪ m1/2, these polynomials are well behaved. However, when n ≥
m1/2, the Gram polynomials have very large oscillations between the grid points,

38Jørgen Pedersen Gram (1850–1916), Danish mathematician, worked on probability and nu-
merical analysis. Gram is now best remembered for the Gram–Schmidt orthogonalization process.

4.5. Approximation and Function Spaces 103

and a large maximum norm in [−1, 1]. This fact is related to the recommendation
that when fitting a polynomial to equidistant data, one should never choose n larger
than about 2m1/2.

4.5.6 Statistical Aspects of the Method of Least Squares

One of the motivations for the method of least squares is that it effectively re-
duces the influence of random errors in measurements. Let f ∈ Rm be a vector of
observations that is related to a parameter vector c ∈ Rn by the linear relation

f = Ac+ ǫ, A ∈ Rm×n, (4.5.47)

where A is known matrix of full column rank and ǫ ∈ Rm is a vector of random
errors. We assume here that ǫi, i = 1 : m has zero mean and covariance equal to
σ2, and that ǫi and ǫi are uncorrelated if i 6= j, that is

E(ǫ) = 0, var(ǫ) = σ2I,

(Recall the definitions of mean value and correlation in Sec. 1.5.1.) The parameter c
is then a random vector, which we want to estimate in terms of the known quantities
A and f .

Let yT c be a linear functional of the parameter c in (4.5.47). We say that
θ = θ(A, f) is an unbiased linear estimator of yT c if E(θ) = yT c. It is a best
linear unbiased estimator (BLUE) if θ) has the smallest variance among all
such estimators.

The Gauss–Markov theorem39 places the method of least squares on a
sound theoretical basis.

Theorem 4.5.19.
Consider a linear model (4.5.47), where ǫ is an uncorrelated random vector

with zero mean and variance equal to σI. Then the best linear unbiased estimator
of any linear functional yT c is yT ĉ, where

c̄ = (ATA)−1AT f

is the least squares estimator obtained by minimizing the sum of squares ‖f −Ac‖2
2.

The covariance matrix of the least squares estimate ĉ equals

var(ĉ) = σ2(ATA)−1. (4.5.48)

Furthermore, the quadratic form

s2 = ‖f −Aĉ‖2
2/(m− n). (4.5.49)

is an unbiased estimate of σ2, i.e. E(s2) = σ2.

39This theorem is originally due to C. F. Gauss 1821. His contribution was somewhat neglected
until rediscovered by the Russian mathematician A. A Markov in 1912.

104 Chapter 4. Interpolation and Approximation

Proof. See Zelen [58, pp. 560–561].

Suppose that the values of a function have been measured in the points
x1, x2, . . . , xm. Let f(xp) be the measured value, and let f̄(xp) be the “true” (un-
known) function value, which is assumed to be the same as the expected value of
the measured value. Thus no systematic errors are assumed to be present. Sup-
pose further that the errors in measurement at the various points are statistically
independent. Then we have a linear model f(xp) = f̄(xp) + ǫ, where

E(ǫ) = 0, var(ǫ) = diag (σ2
1 , . . . , σ

2
n), (4.5.50)

where E denotes expected value and var variance. The problem is to use the
measured data to estimate the coefficients in the series

f(x) =

n∑

j=1

cjφ(x), n ≤ m.

where φ1, φ2, . . . , φn are known functions. According to Theorem 4.5.19 the esti-
mates c∗j , which one gets by minimizing the sum

m∑

p=1

wp

(

f(xp) −
n∑

j=1

cjφj(xp)
)2

, wp = σ−2
p ,

have a smaller variance than the values one gets by any other linear unbiased es-
timation method. This minimum property holds not only for the estimates of the
coefficients cj , but also for every linear functional of the coefficients, e.g., the esti-
mate

f∗
n(α) =

n∑

j=1

c∗jφ(α)

of the value f(α) at an arbitrary point α.
Suppose now that σp = σ for all p and that the functions {φj}n

j=1 form an
orthonormal system with respect to the discrete inner product

(f, g) =
m∑

p=1

f(xp)g(xp).

Then the least squares estimates are c∗j = (f, φj), j = 1 : n. By Theorem 4.5.19 the
estimates c∗j and c∗k are uncorrelated if j 6= k and

E{(c∗j − c̄j)(c
∗
k − c̄k)} =

{
0, if j 6= k;
σ2 if j = k,

From this it follows that

var{f∗
n(α)} = var

{ n∑

j=1

c∗jφj(α)
}

=
n∑

j=1

var{c∗j}|φj(α)|2 = σ2
n∑

j=1

|φj(α)|2.

4.5. Approximation and Function Spaces 105

As an average, taken over the grid of measurement points, the variance of the
smoothed function values is

1

m

n∑

j=1

var{f∗
n(xi)} =

σ2

m

n∑

j=1

m∑

i=1

|φj(xi)|2 = σ2 n

m
.

Between the grid points, however, the variance can in many cases be signifi-
cantly larger. For example, when fitting a polynomial to measurements in equidis-
tant points, the Gram polynomial Pn,m can be much larger between the grid points
when n > 2m1/2. Set

σ2
I = σ2

n∑

j=1

1
2

∫ 1

−1

|φ(x)|2 dx.

Thus σ2
I is an average variance for f∗

n(x) taken over the entire interval [−1, 1]. The
following values for the ratio ρ between σ2

I and σ2(n + 1)/(m + 1) when m = 42
were obtained by H. Björk:

n+ 1 5 10 15 20 25 30 35
ρ 1.0 1.1 1.7 26 7 · 103 1.7 · 107 8 · 1011

These results are related to the recommendation that one should choose n < 2m1/2

when fitting a polynomial to equidistant data. This recommendation seems to
contradict the Gauss–Markov theorem, but in fact it just means that one gives up
the requirement that there be no systematic errors. Still it is remarkable that this
can lead to such a drastic reduction of the variance of the estimates.

If the measurement points are the Chebyshev abscissae, then no difficulties
arise in fitting polynomials to data. The Chebyshev polynomials have a magnitude
between grid points not much larger than their magnitude at the grid points. In
this case the choice of n when m is given, is a question of compromising between
taking into account the truncation errors (which decreases as n increases) and the
random errors (which grow when n increases). If f is a sufficiently smooth function
then in the Chebyshev case |cj | decreases quickly with j. In contrast the part of
cj which comes from errors in measurements varies randomly with a magnitude of
about σ(2/(m+1)1/2, using (4.5.25)) and ‖Tj‖2 = (m+1)/2. The expansion should
be broken off when the coefficients begin to “behave randomly”. An expansion in
terms of Chebyshev polynomials can hence be used for filtering away the “noise”
from the signal, even when σ is initially unknown.

Example 4.5.12.
Fifty-one equidistant values of a certain analytic function were rounded to four

decimals. In Figure 4.5.?, a semilog diagram is given which shows haw |ci| varies
in an expansion in terms of the Chebyshev polynomials for this data. For i > 20
(approximately) the contribution due to noise dominates the contribution due to
signal. Thus it is sufficient to break off the series at n = 20.

106 Chapter 4. Interpolation and Approximation

Figure 4.5.1. Magnitude of coefficients ci in a Chebyshev expansion of an
analytic function contaminated with roundoff noise.

Review Questions

1. State the axioms that any norm must satisfy. Define the maximum norm and
the Euclidean norm for a continuous function f on a closed interval.

2. Define dist(f, Pn), and state Weierstrass’ approximation theorem.

3. Prove the Pythagorean theorem in an inner product space.

4. Define and give examples of orthogonal systems of functions.

5. Formulate and prove Bessel’s inequality and Parseval’s identity, and interpret
them geometrically.

6. (a) Give some reasons for using orthogonal polynomials in polynomial approx-
imation with the method of least squares.

(b) Give some argument against the assertion that orthogonal polynomials are
difficult to work with.

7. The Gram polynomials are examples of orthogonal polynomials. With respect
to what inner product are they orthogonal?

Problems and Computer Exercises

1. Compute ‖f‖∞ and ‖f‖2 for the function f(x) = (1 + x)−1 on the interval
[0, 1].

2. Determine straight lines which approximate the curve y = ex such that

(a) the discrete Euclidean norm of the error function on the grid (−1,−0.5, 0, 0.5, 1)
is as small as possible;

Problems and Computer Exercises 107

(b) the Euclidean norm of the error function on the interval [−1, 1] is as small
as possible.

(c) the line is tangent to y = ex at the point (0, 1), i.e. the Taylor approxima-
tion at the midpoint of the interval.

3. Determine, for f(x) = π2 − x2, the “cosine polynomial” f∗ =
∑n

j=0 cj cos jx,
which makes ‖f∗ − f‖2 on the interval [0, π] as small as possible.

4. (a) Show that on any interval containing the points −1,−1/3, 1/3, 1,

E2(f) ≥ 1

8

∣
∣
∣f(1) − 3f(1/3) + 3f(−1/3)− f(−1)

∣
∣
∣.

(b) Compute the above bound and the actual value of E2(f) for f(x) = x3.

5. (a) Let a scalar product be defined by (f, g) =
∫ b

a
f(x)g(x) dx. Calculate the

matrix of normal equations, when φj(x) = xj , j = 0 : n, when a = 0, b = 1.

(b) Do the same when a = −1, b = 1. Show how in this case the normal
equations can be easily decomposed into two systems, with approximately
(n+ 1)/2 equations in each.

6. Verify the formulas for ‖φj‖2 given in Example 4.5.9.

7. (a) Show that ‖f − g‖ ge‖f‖ − ‖g‖ for all norms. (use the axioms mentioned
in Sec. 4.5.1.)

(b) Show that if {cj}n
0 is a set of real numbers and if {fj}n

0 is a set of vectors,
then ‖

∑
cjfj‖ ≤

∑
|cj |‖fj‖.

8. Let G ∈ Rn×n be a symmetric positive definite matrix. Show that an inner
product is defined by the formula (u, v) = uTGv. Show that A∗ = G−1ATG.

9. In a space of complex-valued twice differentiable functions of t, which vanish
at t=0 and t=1, let the inner product be:

(u, v) =

∫ 1

0

u(t)v̄(t) dt.

What is the adjoint of the operator A = d/dt? Is it true that the operator iA
is self-adjoint, and that −A2 is self-adjoint and positive definite?

10. a) Show that, in a real inner-product space,

4(u, v) = ‖u+ v‖2 − ‖u− v‖2.

In a complex space this gives only the real part of the inner product. Show
that one has to add ‖u− iv‖2 − ‖u+ iv‖2.

(b) This can be used to reduce many questions concerning inner-products to
questions concerning norms. For example, in a general inner product space a
unitary operator is defined by the requirement that ‖Au‖ = ‖u‖ ∀u. Show
that (Au,Av) = (u, v) ∀u, v.
Note, however, that the relation (u,Au) = (Au, u) ∀u, which, in a real space,
holds for every operator A, does not imply that (u,Av) = (Au, v) ∀u, v. The
latter holds only if A is self-adjoint.

108 Chapter 4. Interpolation and Approximation

11. Show that (AB)∗ = B∗A∗. Also show that if C is self-adjoint and positive
definite, then A∗CA is so too. (A is not assumed to be self-adjoint.)

12. Show that
(A−1)∗ = ((A∗))−1, (Ap)∗ = ((A∗))p,

for all integers p, provided that the operators mentioned exist. Is it true that
Cp is self-adjoint and positive definite, if C is so?

13. Show the following minimum property of orthogonal polynomials: Among
all nthe degree polynomials pn with leading coefficient 1, the smallest value of

‖pn‖2 =

∫ b

a

p2
n(x)w(x)dx, w(x) ≥ 0

is obtained for pn = φn/An, where φn is the orthogonal polynomial with
leading coefficient An associated with the weight distribution w(x).

Hint: Determine the best approximation to xn in the above norm or consider
the expansion pn = φn/An +

∑n−1
j=0 cjφj .

14. Verify the formulas for ‖Tj‖2 given in Theorem 4.5.17.

14. (a) Write a Matlab function c = stieltjes(x,y,w,n) that computes the
least squares polynomial fit to data (xi, fi) and weights wi, i = 1 : n, using
the Stieltjes procedure. Compute the orthogonal polynomials pj, from the
recursion (4.5.43) and the coefficients cj , j = 1 : n, from (4.5.45) or (4.5.45).

(b) (L. F. Shampine) Apply the function in (a) to the case when fi = x7
i ,

wi = 1/(fi)
2, and n = 20. Compute and print the error ‖p−f‖, for n = 1 : 10

using the expression (4.5.45) for ck+1. Note that the fits for k > 7 should be
exact!

(c) Repeat the calculations, now using the modified formula (4.5.45). Compare
the error for n = 1 : 10 with the results in (a).

4.6 Trigonometric Interpolation and Fourier
Transforms

Many natural phenomena, e.g., acoustical and optical, are of a periodic character.
For instance, it is known that a musical sound is composed of regular oscillations,
partly a fundamental tone with a certain frequency f , and partly overtones with
frequencies 2f , 3f , 4f ,. . . . The ratio of the strength of the fundamental tone to
that of the overtones is decisive for our impression of the sound. Sounds, which are
free from overtones occur, for instance, in electronic music, where they are called
pure sine tones.

In an electronic oscillator, a current is generated whose strength at time t
varies according to the formula r sin(ωt+ v), where r is called the amplitude of the
oscillation; ω is called the angular frequency, and is equal to 2π times the frequency;
v is a constant which defines the state at the time t = 0. In a loudspeaker, variations
of current are converted into variations in air pressure which, under ideal conditions,
are described by the same function. In practice, however, there is always a certain

4.6. Trigonometric Interpolation and Fourier Transforms 109

distortion, overtones occur. The variations in air pressure which reach the ear can,
from this viewpoint, be described as a sum of the form

∞∑

k=0

rk sin(kωt+ vk). (4.6.1)

The separation of a periodic phenomenon into a fundamental tone and over-
tones permeates not only acoustics, but also many other areas. It is related to
an important, purely mathematical theorem, first given by Fourier40 According to
this theorem, every function f(t) with period 2π/ω can, under certain very general
conditions, be expanded in a series of the form (4.6.1). (A function has period p
if f(t + p) = f(t), for all t.) A more precise formulation will be given later in
Theorem 4.6.2.

An expansion of the form of (4.6.1) can be expressed in many equivalent ways.
If we set ak = rk sin vk, bk = rk cos vk, then using the addition theorem for the sine
function we can write

f(t) =

∞∑

k=0

(ak cos kωt+ bk sin kωt), (4.6.2)

where ak, bk are real constants. Another form, which is often the most convenient,
can be found with the help of Euler’s formulas,

cosx =
1

2
(eix + e−ix), sinx =

1

2i
(eix − e−ix), (i =

√
−1).

Then one gets

f(t) =

∞∑

k=−∞
cke

ikωt, (4.6.3)

where

c0 = a0, ck =
1

2
(ak − ibk), c−k =

1

2
(ak + ibk), k = 1, 2, 3, (4.6.4)

In the rest of this chapter we shall use the term Fourier series to denote an
expansion of the form of (4.6.3) or (4.6.4). We shall call the partial sums of the
form of these series trigonometric polynomials. Sometimes the term spectral
analysis is used to describe the above methods.

Fourier series are valuable aids in the study of phenomena which are periodic in
time (vibrations, sound, light, alternating currents, etc.) or in space (waves, crystal
structure, etc.). One very important area of applications is in digital signal and
image processing, which is used in interpreting radar and sonar signals. Another
is statistical time series, which are used in communications theory, control theory,
and the study of turbulence. For the numerical analyst, Fourier analysis is partly

40Jean Baptist Joseph Fourier (1768–1830), French mathematician and engineer. In 1807 Fourier
presented before the French Academy his famous theorem.

110 Chapter 4. Interpolation and Approximation

a very common computational task and partly an important aid in the analysis of
properties of numerical methods.

Basic formulas and theorems are derived in Sec. 4.6.1, which relies to a great
extent on the theory in Sec. 4.5. Modifications of pure Fourier methods are used
as a means of analyzing nonperiodic phenomena; see, e.g., Sec. 4.6.2 (periodic con-
tinuation of functions) and Sec. 4.6.3 (Fourier transforms). The approximation of
Fourier transforms using sampled data and discrete Fourier transforms are treated
in Sec. 4.6.4. FFT (Fast Fourier Transforms) algorithms have had an enormous
impact and have caused a complete change of attitude toward what can be done
using discrete Fourier methods. Sec. 4.7 treats the computational aspects of the
basic FFT algorithms.

4.6.1 Basic Formulas and Theorems

We shall study functions with period 2π. If a function of t has period L, then the
substitution x = 2πt/L transforms the function to a function of x with period 2π.
We assume that the function can have complex values, since the complex exponential
function is convenient for manipulations.

The inner product of two complex-valued functions f and g of period 2π is
defined in the following way (the bar over g indicates complex conjugation)

(f, g) =

∫ π

−π

f(x)ḡ(x)dx, (continuous case). (4.6.5)

(It makes no difference what interval one uses, as long as it has length 2π—the
value of the inner product is unchanged.) Often the function f is known only at
equidistant arguments xα = 2πα/N , α = 0 : N − 1. In this case we define

(f, g) =

N−1∑

α=0

f(xα)ḡ(xα), xα =
2πα

N
(discrete case). (4.6.6)

As usual the norm of the function f is defined by ‖f‖ = (f, f)1/2. One can make
computations with these inner products in the same way as with the inner products
defined in Sec. 4.3.1, with certain obvious modifications. Notice especially that
(g, f) = (f, g). In the continuous case,

Theorem 4.6.1.
The following orthogonality relations hold for the functions

φj(x) = eijx, j = 0,±1,±2,

Continuous case:

(φj , φk) =

{
2π, if j = k,
0, if j 6= k.

Discrete case:

(φj , φk) =

{

N, if (j − k)/N is an integer,
0, otherwise.

4.6. Trigonometric Interpolation and Fourier Transforms 111

Proof. In the continuous case, if j 6= k, it holds that

(φj , φk) =

∫ π

−π

eijxe−ikxdx =
∣
∣
∣

π

−π

ei(j−k)x

i(j − k)
=

(−1)j−k − (−1)j−k

i(j − k)
= 0.

whereby orthogonality is proved. For j = k

(φk, φk) =

∫ π

−π

eikxe−ikxdx =

∫ π

−π

1 dx = 2π.

In the discrete case, set h = 2π/N , xα = hα,

(φj , φk) =
N−1∑

α=0

eijxαe−ikxα =
N−1∑

α=0

ei(j−k)hα.

This is a geometric series with ratio q = ei(j−k)h. If (j − k)/N is an integer, then
q = 1 and the sum is N . Otherwise q 6= 1, but qN = ei(j−k)2π = 1. From the
summation formula of a geometric series

(φj , φk) = (qN − 1)/(q − 1) = 0.

If one knows that the function f(x) has an expansion of the form

f =

b∑

j=a

cjφj ,

where a = −∞, b = ∞ in the continuous case and a = 0, b = N − 1 in the discrete
case, then it follows formally that

(f, φk) =

b∑

j=a

cj(φj , φk) = ck(φk, φk), a ≤ k ≤ b,

since (φj , φk) = 0 for j 6= k. Thus, changing k to j, we have

cj =
(f, φj)

(φj , φj)
=







1

2π

∫ π

−π

f(x)e−ijxdx, in the continuous case;

1

N

N−1∑

α=0

f(xα)e−ijxα , in the discrete case).

(4.6.7)

These coefficients are called Fourier coefficients, see the more general case in
Theorem 4.3.??. The purely formal treatment given above is, in the discrete case,
justified by Theorem 4.3.??. In the continuous case, more advanced methods are
required, but we shall not go into this further.

112 Chapter 4. Interpolation and Approximation

Now consider the continuous case. From a generalization of Theorem 4.3.??,
we know that

∥
∥
∥f −

n∑

j=−n

kjφj

∥
∥
∥, n <∞,

becomes as small as possible if we choose kj = cj , −n ≤ j ≤ n.
In accordance with (4.6.4), set aj = cj + c−j , bj = i(cj − c−j). Then with

a0 = 2c0,

aj =
1

π

∫ π

−π

f(x) cos jx dx, bj =
1

π

∫ π

−π

f(x) sin jx dx, j ≥ 0, (4.6.8)

N∑

j=−N

cje
ijx = c0 +

N∑

j=1

(
cj(cos jx+ i sin jx) + c−j(cos jx− i sin jx)

)

=
1

2
a0 +

N∑

j=1

(aj cos jx+ bj sin jx).

(Notice that the factors preceding the integral are different in the expressions for cj
and for aj , bj, respectively.)

Theorem 4.6.2. Fourier Analysis, Continuous Case.

Every piecewise continuous function f with period 2π can be associated with
a Fourier series in the following two ways:

1

2
a0 +

∞∑

j=1

(aj cos jx+ bj sin jx),

∞∑

j=−∞
cje

ijx.

The coefficients aj, bj, and cj can be computed using (4.6.8) in the first case and
(4.6.7) in the second case. If f and its first derivative are everywhere continuous,
then the series is everywhere convergent to f(x). If f and f ′ have a finite number
of jump discontinuities in each period, the series gives the mean of the limiting
values on the right and on the left of the relevant point. The partial sums of the
above expansions give the best possible approximations to f(x) by trigonometric
polynomials, in the least squares sense.

The proof of the convergence results is outside the scope of this book (see,
however, the beginning of Sec. 4.7; see also Courant and Hilbert [16].) The rest of
the assertions follow from previously made calculations in Theorem 4.6.1 and the
comments following; see also the proof of Theorem 4.3.??.

The more regular a function is, the faster its Fourier series converges.

4.6. Trigonometric Interpolation and Fourier Transforms 113

Theorem 4.6.3.
If f and its derivatives up to and including order k are periodic and everywhere

continuous, and if f (k+1) is piecewise continuous, then

|cj | ≤ j−(k+1)‖f (k+1)‖∞. (4.6.9)

This useful result is relatively easy to prove using (4.6.7) and integrating by
parts k + 1 times.

Theorem 4.6.4.
If f is an even function, i.e. if

f(x) = f(−x) ∀x,

then bj = 0 for all j; thus the Fourier series becomes a cosine series.
If f is an odd function, i.e. if

f(x) = −f(−x) ∀x,

then aj = 0 for all j; thus the Fourier series becomes a sine series.
The proof is left as an exercise to the reader (use the formulas in (4.6.10)).

Example 4.6.1. Fourier Expansion of a Rectangular Wave
Make a periodic continuation outside the interval (−π, π) of the function

f(x) =

{
−1, −π < x < 0,

1, 0 < x < π,
,

see Figure 4.6.3.

−π 0 π

Figure 4.6.1. Rectangular wave

The function f is odd, so aj = 0 for all j, and

bj =
2

π

∫ π

0

sin jx dx =
2

jπ
(1 − cos jπ).

Hence bj = 0 if j is even, and bj = 4/(jπ) if j is odd, and

f(x) =
4

π

(

sinx+
sin 3x

3
+

sin 5x

5
+ · · ·

)

.

114 Chapter 4. Interpolation and Approximation

Notice that the coefficients cj decay as j−1 in agreement with Theorem 4.6.3. The
sum of the series is zero at the points where f has a jump discontinuity; this agrees
with the fact that the sum should equal the average of the limiting values to the
left and to the right of the discontinuity. The Euler transformation can be used
for accelerating the convergence of such series, except in the immediate vicinity of
singular points, see Problem 3 of Sec. 4.6.

Theorem 4.5.13 and its corollary, Parseval’s identity

2π

∞∑

j=−∞
|cj |2 = ‖f‖2 =

∫ π

−π

|f(x)|2 dx, (4.6.10)

are of great importance in many applications of Fourier analysis. The integral in
(4.6.10) can be interpreted as the “energy” of the function f(x).

Although the data to be treated in Fourier analysis are often continuous in
the time or space domain, for computational purposes this data must usually be
represented in terms of a finite discrete sequence. For example, a function f(t) of
time, is recorded at evenly spaced intervals ∆ in time fi = f(i∆), i = 0, 1, 2,. . . .
Such data can be analyzed by discrete Fourier analysis.

Theorem 4.6.5. Fourier Analysis, Discrete Case
Every function, defined on the equidistant grid {x0, x1, . . . , xN−1}, where xα =

2πα/N , can be interpolated by the trigonometric polynomial

f(x) =







k+θ∑

j=−k

cje
ijx,

1
2a0 +

k∑

j=1

(aj cos jx+ bj sin jx) +
1

2
θak+1 cos(k + 1)x,

(4.6.11)

Here

θ =

{
1, if N even,
0, if N odd,

, k =

{
N/2 − 1, if N even,
(N − 1)/2, if N odd,

(4.6.12)

and

cj =
1

N

N−1∑

α=0

f(xα)e−ijxα , (4.6.13)

aj =
2

N

N−1∑

α=0

f(xα) cos jxα, bj =
2

N

N−1∑

α=0

f(xα) sin jxα. (4.6.14)

If the sums in (4.6.11) are terminated when |j| < k + θ, then one obtains the
trigonometric polynomial which is the best least squares approximation, among all
trigonometric polynomials with the same number of terms, to f on the grid.

4.6. Trigonometric Interpolation and Fourier Transforms 115

Proof. The expression for cj was formally derived previously, see (4.6.7), and the
derivation is justified by Theorem 4.3.??. By Eqs. (4.6.13)–(4.6.14)

aj = cj + c−j , bj = i(cj − c−j), ck+1 =
1

2
ak+1.

The two expressions for f(x) are equivalent, because

k+θ∑

j=−k

cje
ijx = c0 +

k∑

j=1

(
cj(cos jx+ i sin jx) + c−j(cos jx− i sin jx)

)

+ θck+1 cos(k + 1)x

= c0 +

k∑

j=1

(aj cos jx+ bj sin jx) +
1

2
θak+1 cos(k + 1)x.

The function f(x) coincides on the grid with the function

f∗(x) =

N−1∑

j=0

cje
ijx, (4.6.15)

because e−i(N−j)xα = eijxα , c−j = cN−j. The functions f and f∗ are, however, not
identical between the grid points.

Notice that the calculations required to compute the coefficients cj according
to (4.6.13), Fourier analysis, are of essentially the same type as the calculations
needed to compute f∗(x) at the grid points

xα = 2πα/N, α = 0 : N − 1,

when the expansion in (4.6.15) is known, so-called Fourier synthesis. Both cal-
culations can be performed very efficiently using FFT algorithms; see Sec. 4.7.

Functions of several variables are treated analogously. Quite simply, one takes
one variable at a time. As an example, consider the discrete case, with two variables.
Set

xα = 2πα/N, yβ = 2πβ/N,

and assume that f(xα, yβ) is known for α = 0 : N − 1, β = 0 : N − 1. Set

cj(yβ) =
1

N

N−1∑

α=0

f(xα, yβ)e−ijxα ,

cj,k =
1

N

N−1∑

β=0

cj(yβ)e−ikyβ .

116 Chapter 4. Interpolation and Approximation

From Theorem 4.6.5, then (with obvious changes in notations),

cj(yβ) =

N−1∑

k=0

cj,ke
ikyβ ,

f(xα, yβ) =

N−1∑

j=0

cj(yβ)eijxα =

N−1∑

j=0

N−1∑

k=0

cj,ke
(ijxα+ikyβ).

The above expansion is of considerable importance, e.g., in crystallography.

4.6.2 Periodic Continuation of a Function

Sometimes Fourier series are used for functions which are defined only on the interval
(−π, π). The series then defines a periodic continuation of the function outside the
interval (see Figure 4.6.2). Thus the definition is extended so that f(x) = f(x+2π)
for all x.

−3π −π π 3π 5π

Figure 4.6.2. Periodic continuation of a function outside [−π, π].

With this method, discontinuities in the values of the function or its derivatives
can occur at x = π. This singularity can give rise to a slow rate of convergence,
even for a function with good regularity properties in the open interval (−π, π); cf.
Theorem 4.6.3.

There are other ways to make a continuation of a function outside its interval
of definition. If the function is defined in [0, π], and if f(0) = f(π) = 0, then
one can continue f to the interval [−π, 0] by making the definition f(x) = f(−x);
thereafter the function is periodically continued outside [−π, π] by f(x) = f(x+2π),
see Figure 4.6.3. Since the resulting function is an odd function, by Theorems 4.6.4

−π 0 π 2π

Figure 4.6.3. Periodic continuation of f outside [0, π] as an odd function.

and 4.6.5, its Fourier expansion becomes a sine series:
Continuous case:

∞∑

j=1

bj sin jx, bj =
2

π

∫ π

0

f(x) sin jx dx. (4.6.16)

4.6. Trigonometric Interpolation and Fourier Transforms 117

Discrete case: (xα = πα/N)

N−1∑

j=1

bj sin jx, bj =
2

N

N−1∑

α=1

f(xα) sin jxα. (4.6.17)

If f(0) 6= 0 or f(π) 6= 0, one can still use such an expansion, but it will converge
slowly.

If the function is defined in [0, π], and if f ′(0) = f ′(π) = 0, then one can make
a continuation of f into an even function on [−π, π]. Outside [−π, π] the function
is continued periodically. Its Fourier series then becomes a pure cosine series:

Continuous case:

1

2
a0 +

∞∑

j=1

aj cos jx, aj =
2

π

∫ π

0

f(x) cos jx dx, (4.6.18)

Discrete case: (xα = πα/N

1

2
a0 +

N−1∑

j=1

aj cos jx, aj =
2

N

N−1∑

α=0

f(xα) cos jxα. (4.6.19)

4.6.3 The Fourier Integral Theorem

In Sec. 4.6.2 we showed how Fourier methods can be used on a nonperiodic function
defined on a finite interval. Suppose now that the function f(x) is defined on the
entire real axis, and that it satisfies the regularity properties which we required in
Theorem 4.6.2. Set

ϕ(ξ) = f(x), ξ = 2πx/L ∈ [−π, π],

and continue ϕ(ξ) outside [−π, π] so that it has period 2π. By Theorem 4.6.2, if

cj =
1

2π

∫ π

−π

ϕ(ξ)e−ijξ dξ =
1

L

∫ L/2

−L/2

f(x)e−2πixj/L dx, (4.6.20)

then ϕ(ξ) =
∑∞

j=−∞ cje
ijξ , ξ ∈ (−π, π), and hence

f(x) =

∞∑

j=−∞
cje

2πixj/L, x ∈ (−L/2, L/2).

If we set

gL(ω) =

∫ L/2

−L/2

f(x)e−2πixω dx, ω = j/L, (4.6.21)

then by (4.6.20) we have cj = (1/L)gL(ω), and hence

f(x) =
1

L

∞∑

j=−∞
gL(ω)e2πixω, x ∈ (−L/2, L/2). (4.6.22)

118 Chapter 4. Interpolation and Approximation

Now by passing to the limit L → ∞, one avoids making an artificial periodic
continuation outside a finite interval. The sum in (4.6.22) is a “sum of rectangles”
similar to the sum which appears in the definition of a definite integral. However,
here the argument varies from −∞ to +∞, and the function gL(t) depends on L.
By a somewhat dubious passage to the limit, then, the pair of formulas of (4.6.21)
and (4.6.22) becomes the pair

g(ω) =

∫ ∞

−∞
f(x)e−2πixω dx ⇐⇒ f(x) =

∫ ∞

−∞
g(ω)e2πixω dω. (4.6.23)

One can, in fact, after a rather complicated analysis, show that the above result is
correct; see, e.g., Courant–Hilbert [16]. The proof requires, besides the previously
mentioned “local” regularity conditions on f , the “global” assumption that

∫ ∞

−∞
|f(x)| dx

is convergent. The beautiful, almost symmetric relation of (4.6.23) is called the
Fourier integral theorem. This theorem, and other versions of it, with varying
assumptions under which they are valid, is one of the most important aids in both
pure and applied mathematics. The function g is called the Fourier transform41

of f .
Clearly the Fourier transform is a linear operator. Two other elementary

properties that can easily be verified are:

f(ax) ⇐⇒ 1

|a|g(ω/a), (4.6.24)

1

|b|f(x/b) ⇐⇒ g(bω). (4.6.25)

If the function f(x) has even or odd symmetry and is real or pure imaginary
this leads to relations between g(ω) and g(−ω) that can be used to increase com-
putational efficiency. Some of these properties are summarized in the table below.

Example 4.6.2.
The function f(x) = e−|x| has Fourier transform

g(ω) =

∫ ∞

−∞
e−|x|e−2πixω dx =

∫ ∞

0

(
e−(1+2πiω)x + e−(1−2πiω)x

)
dx

=
1

1 + 2πiω
+

1

1 − 2πiω
=

2

1 + 4π2ω2
.

Here f(x) is real and an even function. In agreement with the table above the
Fourier transform is also real and even.

41The terminology in the literature varies somewhat as to the placement of the factor 2π—e.g.,
it can be taken out of the exponent by a simple change of variable.

4.6. Trigonometric Interpolation and Fourier Transforms 119

Function Fourier transform

f(x) real g(−ω) = g(ω)

f(x) imaginary g(−ω) = −g(ω)

f(x) even g(−ω) = g(ω)

f(x) odd g(−ω) = −g(ω)

f(x) real even g(ω) real even

f(x) imaginary odd g(ω) real odd

Table 4.6.1. Useful symmetry properties of Fourier transforms.

From (4.6.23) it follows that

e−|x| =

∫ ∞

−∞

2

1 + 4π2ω2
e2πixω dω =

2

π

∫ ∞

0

1

1 + x2
cosπxdx, (2πω = x).

It is not so easy to prove this formula directly.

Many applications of the Fourier transform involve the use of convolutions.

Definition 4.6.6.
The convolution of f1 and f2 is the function

h(ξ) = conv (f1, f2) =

∫ ∞

−∞
f1(x)f2(ξ − x) dx. (4.6.26)

It is not difficult to verify that conv (f1, f2) = conv (f2, f1). The following
theorem states that the convolution of f1 and f2 can be computed as the inverse
Fourier transform of the product g1(ω)g2(ω). This fact is of great importance in the
application of Fourier analysis, e.g., to differential equations and probability theory.

Theorem 4.6.7.
Let f1 and f2 have Fourier transforms g1 and g2, respectively. Then the

Fourier transform g of the convolution of f1 and f2, is the product g(ω) = g1(ω)g2(ω).

Proof. By definition the Fourier transform of the convolution is

g(ω) =

∫ ∞

−∞
e−2πiξω

(∫ ∞

−∞
f1(x)f2(ξ − x) dx

)

dξ

=

∫ ∞

−∞

∫ ∞

−∞
e−2πi(x+ξ−x)ωf1(x)f2(ξ − x) dx dξ

=

∫ ∞

−∞
e−2πixωf1(x) dx

∫ ∞

−∞
e−2πi(ξ−x)ωf2(ξ − x) dξ

=

∫ ∞

−∞
e−2πixωf1(ξ) dx

∫ ∞

−∞
e−2πixωf2(x) dx = g1(ω)g2(ω)

120 Chapter 4. Interpolation and Approximation

The legitimacy of changing the order of integration is here taken for granted.

In many physical applications, the following relation, analogous to Parseval’s
identity (corollary to Theorem 4.5.13), is of great importance. If g is the Fourier
transform of f , then

∫ ∞

−∞
|g(ω)| dω =

∫ ∞

−∞
|f(ξ)| dξ. (4.6.27)

In signal processing this can be interpreted to mean that the total power in a signal
is the same whether computed in the time domain or the frequency domain.

4.6.4 Sampled Data and Aliasing

Consider a function f(x) which is zero outside the interval [0, L]. The Fourier
transform of f(x) is then given by

g(ω) =

∫ L

0

f(x)e−2πiωx dx. (4.6.28)

We want to approximate g(ω) using values of f(x) sampled at intervals ∆x,

fj = f(j∆x), 0 < j < N − 1, L = N∆x.

The integral (4.6.28) can be approximated by

g(ω) ≈ L

N

N−1∑

j=0

fje
−2πiωj∆x dx. (4.6.29)

Since only N values of fj are used as input and we want the computed values to be
linearly independent, we cannot approximate g(ω) at more thanN points. The wave
of lowest frequency associated with the interval [0, L] is ω = 1/L = 1/(N∆x), since
then [0, L] corresponds to one full period of the wave. We therefore choose in the
frequency space points ωk = k∆ω, i = 0 : N , such that the following reciprocity
relations hold:

LW = N, ∆x∆ω = 1/N (4.6.30)

With this choice it holds that

W = N∆ω = 1/∆x, L = N∆x = 1/∆ω. (4.6.31)

Noting that (j∆x)(k∆ω) = jk/N we get from the trapezoidal approximation

g(ωk) ≈ L

N

N−1∑

j=0

fje
−2πikj/N dx = Lck, k = 0 : N − 1,

where ck is the coefficient of the discrete Fourier transform.
The frequency ωc = 1/(2∆x) = ∆ω/2 is the so called Nyquist critical

frequency. Sampling the wave sin(2πωcx) with sampling interval ∆x will sample

4.6. Trigonometric Interpolation and Fourier Transforms 121

exactly two points per cycle. It is a remarkable fact that if a function f(x), defined
on [−∞,∞], is band-width limited to frequencies smaller or equal to ωc, then f(x)
is completely determined by its sample values j∆x, ∞ ≤ j ≤ ∞; see the Sampling
Theorem Sec. 4.8.3.

If the function is not band-width limited the spectral density outside the
critical frequency is moved into that range. This is called aliasing. The rela-
tionship between the Fourier transform g(ω) and the discrete Fourier transform
of a finite sampled representation can be characterized as follows. Assuming that
the reciprocity relations (4.6.30) are satisfied, the discrete Fourier transform of
fj = f̃(j∆x), 0 ≤ j < N , will approximate the periodic aliased function

g̃k = g̃(k∆ω), 0 ≤ j < N. (4.6.32)

where

g̃(ω) = g(ω) +
∞∑

k=1

(g(ω + kW) + g(ω − kW)) , ω ∈ [0,W] (4.6.33)

Since by (4.6.31) W = 1/∆x, we can increase the frequency range [0,W] covered
by decreasing ∆x.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

Figure 4.6.4. The real (top) and imaginary (bottom) parts of the Fourier
transform of e−x and the corresponding DFT with N = 32, T = 8.

Example 4.6.3.

122 Chapter 4. Interpolation and Approximation

The function f(x) = e−x, x > 0, f(x) = 0, x < 0, has Fourier transform

g(ω) = 1/(1 + 2πiω) =
1 − i2πω

1 + 4π2ω2

(cf. Example 4.6.2. Set f(0) = 1/2, the average of f(−0) and f(+0), which is the
value given by the inverse Fourier transform at a discontinuity.

Set N = 32, T = 8, and sample the f in the interval [0, T], at equidistant
points j∆x, j = 0 : N −1. Note that T is so large that the aliased function (4.6.32)
is nearly equal to f . This sampling rate corresponds to ∆x = 8/32 = 1/4 and
W = 4.

The effect of aliasing in the frequency domain is evident. The error is signifi-
cant for frequencies larger than the critical frequencyW/2. To increase the accuracy
W can be increased by decreasing the sampling interval ∆x.

Review Questions

1. Derive the orthogonality properties and coefficient formulas which are funda-
mental to Fourier analysis, for both the continuous and the discrete case.

2. Under what conditions does the Fourier series of the function f converge to f
in the continuous case?

3. How does one compute a Fourier expansion of a function of two variables?

4. Explain what a periodic continuation of a function is. What disadvantage for
Fourier analysis is incurred if the periodic continuation has a discontinuity in
its function value or derivatives at certain points?

5. Formulate the Fourier integral theorem.

6. (a) Explain what a periodic continuation of a function is.

(b) What disadvantage (for Fourier analysis) is incurred if the periodic con-
tinuation has a discontinuity—e.g., in its derivative at certain points?

Problems and Computer Exercises

1. Give a simple characterization of the functions which have a sine expansion
containing odd terms only.

2. Let f be an even function, with period 2π, such that

f(x) = π − x, 0 ≤ x ≤ π.

(a) Plot the function y = f(x) for −3π ≤ x ≤ 3π. Expand f in a Fourier
series.

(b) Use this series to show that 1 + 3−2] + 5−2] + 7−2] + · · · = π2/8.

(c) Compute the sum 1 + 2−2] + 3−2] + 4−2] + 5−2] + · · ·.

Problems and Computer Exercises 123

(d) Compute, using (4.6.10), the sum 1 + 3−4] + 5−4] + 7−4] + · · ·.
(e) Differentiate the Fourier series term by term, and compare with the result
in Example 4.6.1.

3. Show that the function G1(t) = t− 1/2, 0 < t < 1, has the expansion

G1(t) = −
∞∑

n=1

sin 2nπt

nπ
.

Derive by term-wise integration, the expansion for the functions Gp(t), and
show the statement (made in Sec. 10.3.1) that cp − Gp(t) has the same sign
as cp. Show also that

∑∞
n=1 n

−p = 1
2 |cp|(2π)p, p even.

4. (a) Prove that
N−1∑

k=1

sin
πk

N
= cot

π

2N
.

Hint: sinx is the imaginary part of eix.

(b) Determine a sine polynomial
∑n−1

j=1 bj sin jx, which takes on the value 1 at
the points xα = πα/n, α = 1 : n− 1.

Hint: Use (4.6.16) or recall that the sine polynomial is an odd function.

(c) Compare the limiting value for bj as n → ∞ with the result in Exam-
ple 9.6.2.

5. (a) Prove the inequality in (4.6.9)!

(b) Show, under the assumptions on f which hold in (4.6.9), that, for k ≥ 1,
f can be approximated by a trigonometric polynomial such that

∥
∥
∥f −

n∑

j=−n

cje
ijx

∥
∥
∥
∞
<

2

knk
‖f (k+1)‖∞.

In the following problems, we do not require any investigation of whether it is
permissible to change the order of summations, integrations, differentiations,
etc.; it is sufficient to treat the problems in a purely formal way.

6. The partial differential equation
∂u

∂t
=
∂2u

∂x2
is called the heat equation. Show

that the function

u(x, t) =
4

π

∞∑

k=0

sin(2k + 1)x

2k + 1
e−(2k+1)2t,

satisfies the differential equation for t > 0, 0 < x < π, with boundary con-
ditions u(0, t) = u(π, t) = 0 for t > 0, and initial condition u(x, 0) = 1 for
0 < x < π (see Example 4.6.1).

7. Show that if g(t) is the Fourier transform of f(x), then

(a) e2παt]g(t) is the Fourier transform of f(x+ α).

(b) (2πit)kg(t) is the Fourier transform of f (k)](x), assuming that f(x) and
its derivatives up to the kth order tend to zero, as x→ ∞.

124 Chapter 4. Interpolation and Approximation

8. The correlation of f1(x) and f2(x) is defined by

c(ξ) =

∫ ∞

−∞
φ1(x + ξ)φ2(x) dx. (4.6.34)

Show that if f1(x) and f2(x) have Fourier transforms g1(t) and g2(t), respec-
tively, then the Fourier transform of c(ξ) is h(t) = g1(t)g2(−t).
Hint: Compare Theorem 4.6.7.

9. Derive Parseval’s identities (4.6.27) and (4.6.10)

4.7 The Fast Fourier Transform

4.7.1 The Fast Fourier Algorithm

Consider the problem to compute the discrete Fourier coefficients {cj}N−1
j=0

f(x) =

N−1∑

j=0

cje
ijx,

for a function, whose values fα are known at the points xα = 2πα/N , α = 0 : N−1.
According to Theorem 4.6.5

cj =
1

N

N−1∑

α=0

fαe
−ijxα , j = 0 : N − 1.

Setting ωN = e−2πi/N (i.e. ω is an Nth root of unity, ωN = 1), we can rewrite the
problem as follows: compute

cj =
1

N

N−1∑

α=0

ωjα
N fα, j = 0 : N − 1. (4.7.1)

It seems from (4.7.1) that to compute the discrete Fourier coefficients would
require N2 complex multiplications and additions. As we shall see, with the Fast
Fourier Transform (FFT) one needs only aboutN log2N complex multiplications
and additions if N = 2k. For example, when N = 220 = 1 048 576 the FFT
algorithm is theoretically a factor of 84 000 faster than the “conventional” O(N2)
algorithm. On a 266 MHz Pentium laptop, a real FFT of this size takes about 1.2
seconds using Matlab 6, whereas 28 hours would be required by the conventional
algorithm! The FFT not only uses fewer operations to evaluate the DFT, it also
is more accurate. Whereas using the conventional method the roundoff error is
proportional to N , for the FFT algorithm it is proportional to log2N .

In many areas of application (digital signal and image processing, time-series
analysis, to name a few) the FFT has caused a complete change of attitude toward
what can be done using discrete Fourier methods. Without the FFT many mod-
ern devices like cell phones, digital cameras, CAT scans and DVDs would not be

4.7. The Fast Fourier Transform 125

possible. Some future applications considered in astronomy are expected to require
FFTs of several gigapoints

Similar ideas were used already by Gauss and several other mathematicians,
e.g., Danielson and Lanczos [18].42.

In the following we will use the common convention not to scale the sum in
(4.7.1) by 1/N .

Definition 4.7.1.
The Discrete Fourier Transform (DFT) of the vector f ∈ CN is

y = FNf. (4.7.2)

where Fn ∈ RN×N is the DFT matrix with elements

(FN)jα = ωjα
N , j, α = 0 : N − 1, (4.7.3)

where ωN = e−2πi/N .

From the definition it follows that the Fourier matrix FN is a complex Van-
dermonde matrix. Since ωjα

N = ωαj
N , FN is symmetric. By Theorem 4.6.5

1

N
F ∗

NFN = I,

where F ∗
N is the complex conjugate transpose of FN . Hence the inverse transform

can be written

f =
1

N
F ∗

Ny.

Example 4.7.1.
For n = 22 = 4, the DFT matrix is

F4 =







1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4







=







1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i






. (4.7.4)

where ω4 = e−2πi/4, and ω4
4 = 1.

We now describe the central idea of the FFT algorithm. Let N = 2k and set

α =

{
2α1, if α is even,
2α1 + 1 if α is odd,

, 0 ≤ α1 ≤ m− 1.

42The modern usage of FFT started in 1965 with the publication of the [15] by James W.
Cooley of IBM Research and John W. Tukey, Princeton University. Tukey came up with the
basic algorithm at a meeting of President Kennedy’s Science Advisory Committee. One problem
discussed at this meeting was that the ratification of a US–Sovjet Union nuclear test ban depended
on a fast method to detect nuclear tests by analyzing seismological time-series data.

126 Chapter 4. Interpolation and Approximation

where m = N/2 = 2k−1. Split the DFT sum in an even and an odd part

yj =
m−1∑

α1=0

(ω2
N)jα1f2α1

+ ωj
N

m−1∑

α1=0

(ω2
N)jα1f2α1+1, j = 0 : N − 1,

Let β be the quotient and j1 the remainder when j is divided by m, i.e. j = βm+j1.
Then, since ωN

N = 1,

(ω2
N)jα1 = (ω2

N)βmα1(ω2
N)j1α1 = (ωN

N)βα1(ω2
N)j1α1 = ωj1α1

m .

Thus if, for j1 = 0 : m− 1, we set

φj1 =

m−1∑

α1=0

f2α1
ωj1α1

m , ψj1 =

m−1∑

α1=0

f2α1+1ω
j1α1

m . (4.7.5)

then, yj = φj1 + ωj
Nψj1 , The two sums on the right are elements of the DFTs of

length N/2 applied to the parts of f with odd and even subscripts. The entire DFT
of length N is obtained by combining these two DFTs! Since ωm

N = −1 we have

yj1 = φj1 + ωj1
Nψj1 , (4.7.6)

yj1+N/2 = φj1 − ωj1
Nψj1 , j1 = 0 : N/2 − 1. (4.7.7)

These expressions, noted already by Danielson and Lanczos [18], are often called
butterfly relations because of the data flow pattern. Note that these can be
performed in place, i.e. no extra vector storage is needed.

The computation of φj1 and ψj1 means that one does two Fourier transforms
with m = N/2 terms instead of one with N terms. If N/2 is even the same idea can
be applied to these two Fourier transforms. One then gets four Fourier transforms,
each of with has N/4 terms; If N = 2k this reduction can be continued recursively
until we get N DFTs with 1 term. But F1 = I, the identity.

The number of complex operations required to compute {yj} from the but-
terfly relations when {φj1} and {ψj1} have been computed is 2k, assuming that the
powers of ω are precomputed and stored. Thus, if we denote by pk the total number
of operations needed to compute the DFT when N = 2k, we have

pk ≤ 2pk−1 + 2k, k ≥ 1.

Since p0 = 0, it follows by induction that pk ≤ k ·2k = N · log2N . Hence, when N is
a power of two, the fast Fourier transform solves the problem with at most N ·log2N
operations. The FFT is an example of the general technique of divide-and-conquer
algorithms (see Sec. 1.3.2). For a recursive implementation of the FFT algorithm,
see Problem 11.

Example 4.7.2.
Let N = 24 = 16. Then the 16-point DFT (0:1:15) can be split into two

8-points DFTs (0:2:14) and (1:2:15), which each can be split in two 4-point DFTs.

4.7. The Fast Fourier Transform 127

[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]

ւց
[0 2 4 6 8 10 12 14]

ւց
[1 3 5 7 9 11 13]

ւց
[0 4 8 12]

ւց
[2 6 10 14]

ւց
[1 5 9 13]

ւց
[3 7 11 15]

ւց
[0 8]

ւց
[4 12]

ւց
[2 10]

ւց
[6 14]

ւց
[1 9]

ւց
[5 13]

ւց
[3 11]

ւց
[7 15]

ւց
[0] [8] [4] [12] [2] [10] [6] [14] [1] [9] [5] [13] [3] [11] [7] [15]

Figure 4.7.1. The structure of an 24 = 16-point FFT.

Repeating these splittings we finally get 16 one-point DFTs, which are the identity
F1 = 1; see Figure 4.6.1.

In most implementations the explicit recursion is avoided. Instead the FFT
algorithm is implemented in two stages:

• a reordering stage in which the data vector f is permuted;

• a second stage in which first N/2 FFT transforms of length 2 are computed on
adjacent elements, next N/4 transforms of length 4, etc, until the final result
is obtained by merging two FFTs of length N/2.

We now consider each stage in turn.
Each step of the recursion involves an even-odd permutations. In the first

step the points with last digit equal to 0 are ordered first and those with last digit
equal to 1 last. In the next step the two resulting subsequences of length N/2 are
reordered according to the second binary digit, etc. It is not difficult to see that
the combined effect of the reorderings in stage 1 is a bit-reversal permutation
of the data points. For i = 0 : N − 1, let the index i have the binary expansion

i = b0 + b1 · 2 + · · · + bt−1 · 2t−1

and set
r(i) = bt−1 + · · · + b1 · 2t−2 + b0 · 2t−1.

That is, r(i) is the index obtained by reversing the order of the binary digits. If
i < r(i) then exchange fi and fr(i). This reordering is illustrated for N = 16 in
Figure 4.7.1.

We denote the permutation matrix corresponding to bit-reversal ordering by
PN . Note that if an index is reversed twice we end up with the original index. This
means that P−1

N = PT
N = PN , that is PN is symmetric. The permutation can be

carried out “in place” by a sequence of pairwise interchanges or transpositions of
the data points. For example, for N = 16 the pairs (1,8), (2,4), (3,12), (5,10), (7,14)

128 Chapter 4. Interpolation and Approximation

Decimal Binary

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

=⇒

Decimal Binary
0 0000
8 1000
4 0100

12 1100
2 0010

10 1010
6 0110

14 1110
1 0001
9 1001
5 0101

13 1101
3 0011

11 1011
7 0111

15 1111

Figure 4.7.2. Bit-reversal ordering. The original order left and the bit-
reversal order right.

and (11,13) are interchanged. The bit-reversal permutation can take a substantial
fraction of the total time to do the FFT. Which implementation is best depends
strongly on the computer architecture.

We now consider the second stage of the FFT. The key observation to develop
a matrix-oriented description of this stage is to note that the Fourier matrices FN

after an odd-even permutation of the columns can be expressed as a 2 × 2 block
matrix, where each block is either FN/2 or a diagonal scaling of FN/2.

Theorem 4.7.2. Van Loan [56, Theorem1.2.1]
Let ΠT

N be the permutation matrix, which applied to a vector groups the even-
indexed components first and the odd-indexed last.43 If N = 2m then

FNΠN =

(
Fm ΩmFm

Fm −ΩmFm

)

=

(
Im Ωm

Im −Ωm

) (
Fm 0
0 Fm

)

,

Ωm = diag (1, ωN , . . . , ω
m−1
N), ωN = e−2πi/N . (4.7.8)

Proof. The proof essentially follows from the derivation of the butterfly relations
(4.7.6)–(4.7.7).

43Note that ΠT
N = Π−1

N
is the so called perfect shuffle permutation. In this the permuted

vector ΠT
N

f is obtained by splitting f in half and then “shuffling” the top and bottom halves.

4.7. The Fast Fourier Transform 129

Example 4.7.3.
We illustrate Theorem 4.7.2 for N = 22 = 4. The DFT matrix F4 is given in

Example 4.7.3. After a permutation of the columns F4 can be written as a 2 × 2
block-matrix

F4Π
T
4 =







1 1 1 1
1 −1 −i i
1 1 −1 −1
1 −1 i −i







=

(
F2 Ω2F2

F2 −Ω2F2

)

,

where

F2 =

(
1 1
1 −1

)

, Ω2 = diag (1,−i).

When N = 2k the FFT algorithm can be interpreted as a sparse factorization
of the DFT matrix

FN = Ak · · ·A2PN , (4.7.9)

where PN is the bit-reversal permutation matrix and

Aq = diag (BL, . . . , BL
︸ ︷︷ ︸

r

), L = 2q, r = n/L. (4.7.10)

Here Bk ∈ CL×L is the radix-2 butterfly matrix defined by

BL =

(
IL/2 ΩL/2

IL/2 −ΩL/2

)

, (4.7.11)

ΩL/2 = diag (1, ωL, . . . , ω
L/2−1
L), ωL = e−2πi/L. (4.7.12)

The FFT algorithm described above is usually referred to as the Cooley–Tukey
FFT algorithm. Using the fact that both PN and the DFT matrix Fn is symmetric,
we obtain by transposing (4.7.9) the factorization

FN = FT
N = PNA

T
1 A

T
2 · · ·AT

k . (4.7.13)

This gives rise to a “dual” FFT algorithm, referred to as the Gentleman–Sande
algorithm [27]. In this the bit-reversal permutation comes after the other compu-
tations. In many important applications such as convolution and the solution of
discrete Poisson equation, this permits the design of in-place FFT solutions that
avoid bit-reversal altogether.

In the operation count for the FFT above we assumed that the weights ωj
L,

j = 1 : L− 1, ωL = e−2πi/L are precomputed. To do this one could use at

ωj
L = cos(jθ) − i sin(jθ), θ = 2π/L.

for L = 2q, q = 2 : k. This is accurate, but expensive, since it involves L − 1
trigonometric functions calls. An alternative is to compute ω = cos(θ) − i sin(θ)
and use repeated multiplication,

ωj = ωωj−1, j = 2 : L− 1.

This replaces one sine/cosine call with a single complex multiplication, but has the
drawback that accumulation of roundoff errors will give an error in ωj

L of order ju.

130 Chapter 4. Interpolation and Approximation

4.7.2 FFTs and Discrete Convolutions

Many applications of the FFT involve the use of a discrete version of the convolution,

Definition 4.7.3.
Given two sequences fi and gi, i = 0 : N − 1. Then the convolution of f and

g is the sequence defined by

hk = conv (f, g) =

N−1∑

i=0

figk−i, i = 0 : N − 1, (4.7.14)

where the sequences are extended to have period N , by setting fi = fi+jN , gi =
gi+jN , for all integers i, j.

The discrete convolution can be used to approximate the convolution defined
for continuous functions in Definition 4.6.6 in a similar way as the Fourier transform
was approximated Using sampled values in Sec. 4.6.4.

We can write the sum in (4.7.14) as a matrix-vector multiplication h = Gf ,
or writing out components









h0

h1

h2
...

hN−1









=









g0 gN−1 gN−2 · · · g1
g1 g0 gN−1 · · · g2
g2 g1 g0 · · · g3
...

...
... · · ·

gN−1 gN−2 gN−3 · · · g0

















f0
f1
f2
...

fN−1









.

Note that each column in G is a cyclic down-shifted version of the previous column.
Such a matrix is called a circulant matrix. We have

G = [g RNg R2
Ng · · · RN−1

N g] ,

and RN is a circulant permutation matrix. For example,

R4 =






0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0






(see Problem 11).

Theorem 4.7.4.
Let fi and gi, i = 0 : N − 1 be two sequences with DFTs equal to FNf and

FNg. Then the DFT of the convolution of f and g, is FNf. ∗ FNg, where .∗
denotes elementwise product.

Proof. The proof depends on the fact that the circulant matrix G is diagonalized
by the DFT matrix FN , i.e.

G = F−1
N diag (FNg)FN ;

4.7. The Fast Fourier Transform 131

see Problem 15. (Here diag (x), where x is a vector, denotes a diagonal matrix with
diagonal elements equal to x.) It follows that

h = Gf = F−1
N diag (FNg)FNf = F−1

N ((FNg). ∗ (FNf)). (4.7.15)

It follows from (4.7.15) that conv (f, g) = conv (g, f).

This shows that using the FFT algorithm the discrete convolution can be
computed in order N log2N operations as follows. First the two FFTs of f and
g are computed and multiplied (pointwise) together. Then the inverse DFT of
this product is computed. This is one of the most useful properties of the FFT.
Computing convolutions is of great importance in signal processing.

Using the Gentleman–Sande algorithm FN = PNA
T for the forward DFT and

the Cooley–Tukey algorithm for the inverse DFT, F−1 = (1/N)F̄N = (1/N)ĀPN/N ,
we get from (4.7.15)

f =
1

N
ĀPN ((PNA

Th). ∗ (PNA
T g)) =

1

N
Ā((ATh). ∗ (AT g)). (4.7.16)

This shows that h can be computed without the bit-reversal permutation PN , which
typically can save 10–30 percent of the overall computation time.

4.7.3 Real Data and Fast Trigonometric Transforms

Frequently the FFT of a real data vector is required. The complex FFT algorithm
can still be used, but is inefficient both in terms of storage and operations. Better
alternatives can be found by using symmetries in the DFT, which correspond to
the symmetries noted in the Fourier transform in Table 4.6.1.

We first show that the conjugate transpose of the DFT matrix FN can be
obtained by reversing the order of the last N − 1 rows.

Lemma 4.7.5. Van Loan [56, Theorem4.3.1]
Let TN be the N×N permutation matrix which reverses the last N−1 elements.

Then FN = TNFN = FNTN .

Proof. To verify that FN = TNFN , observe that

[TNFN]jα = ω
(N−j)α
N = ω−jα

N = ωjα
N = [FN]jα, 1 ≤ j ≤ N − 1.

Since FN and TN are both symmetric, we also have FN = (TNFN)T = FNTN .

We say that a vector x ∈ CN is conjugate even if x̄ = TNy, and conjugate
odd if x̄ = TNy. Suppose now that f is real and u = FNf . Then it follows that

u = FNf = TNFNf = TNu,

i.e. u is conjugate even. If a vector u of even length N = 2m is conjugate even, this
implies that

uj = ūN−j, j = 1 : m.

132 Chapter 4. Interpolation and Approximation

In particular uj is real for j = 0,m.
For purely imaginary data g and v = FNg, we have

v = FNg = −FNg = −TNFNg = −TNv,

i.e. v is conjugate odd. Some other useful symmetry properties are given in the
table below, where EN denotes the N × N permutation matrix which reverses all
elements in an N -vector.

Data f Definition DFT FNf

real conjugate even

imaginary conjugate odd

real even f = Tnf real

real odd f = −Tnf imaginary

conjugate even f = Tnf real

conjugate odd f = −Tnf imaginary

Table 4.7.1. Useful symmetry properties of DFTs.

We now outline how symmetries can be used to compute the DFTs u = FNf
and v = FNg of two real functions f and g simultaneously. First form the complex
function f + ig and compute its DFT

w = FN (f + ig) = u+ iv

by any complex FFT algorithm. Multiplying by TN we have

TNw = TNFN (f + ig) = TN (u+ iv) = ū+ iv̄,

where we have used that u and v are conjugate even. Adding and subtracting these
two equations we obtain

w + TNw = (u+ ū) + i(v + v̄),

w − TNw = (u− ū) + i(v − v̄).

We can now retrieve the two DFTs from

u = FNf =
1

2

[
Re(w + TNw) + i Im(w − TNw)

]
, (4.7.17)

v = FNg =
1

2

[
Im(w + TNw) − iRe(w − TNw)

]
. (4.7.18)

Note that because of the conjugate even property of u and v there is no need to
save the entire transforms.

The above scheme is convenient when, as for convolutions, two real transforms
are involved. It can also be used to efficiently compute the DFT of a single real

4.7. The Fast Fourier Transform 133

function of length N = 2k. First express this DFT as a combination of the two real
FFTs of length N/2 corresponding to even and odd numbered data points (see as
in (4.7.5)). Then apply the procedure above to simultaneously compute these two
real FFTs.

Two more real transforms, the discrete sine transform (DST) and dis-
crete cosine transform (DCT), are of interest. These are defined as follows:

• Given real fj, j = 1 : m− 1 compute

yk =

m−1∑

j=1

sin (kjπ/m) fj (DST). (4.7.19)

• Given real fj, j = 0 : m compute

yk =
1

2
(f0 + (−1)kfm) +

m−1∑

j=1

sin (kjπ/m) fj (DCT). (4.7.20)

These can be computed by applying the FFT algorithm (for real data) to an aux-
iliary vector formed by extending the given data f either into an odd or even
sequence.

For the DST the fj, j = 1 : m − 1 is extended to an odd sequence of length
N = 2m by setting

f0 = fm = 0, f2m−j ≡ −fj, j = 1 : m− 1.

For example, the data {f1, f2, f3}, (m = 22) is extended to

f̃ = {f0, f1, f2, f3, f0,−f3,−f2,−f1}.

The extended vector satisfies f̃ = −TN f̃ , and thus by Table 4.6.2 the DFT of f̃ will
imaginary.

For the DCT the data fj , j = 0 : m is extended to an even sequence of length
N = 2m by setting

f0 = fm = 0, f2m−j ≡ fj , j = 1 : m− 1.

For example, the data {f0, f1, f2, f3, f4}, (m = 22) is extended to

f̃ = {f0, f1, f2, f3, f4, f3, f2, f1}.

so that f̃ = TN f̃ . By Table 4.6.2 the DFT of f̃ will then be real.

Theorem 4.7.6. Van Loan [56, Sec. . 4.4]
Let fj, j = 1 : m − 1 form a real data vector f and extend it to a vector f̃

with f̃0 = f̃m = 0, so that f̃ = −TN f̃ . Then y(1 : m− 1) is the DST of f , where

y =
i

2
F2mf̃ .

134 Chapter 4. Interpolation and Approximation

Let fj, j = 0 : m form a real data vector f and extend it to an vector f̃ so

that f̃ = TN f̃ . Then y(0 : m) is the DST of f , where

y =
1

2
F2mf̃ .

There is an inefficiency factor of two in the above procedure. This can be
eliminated by using a different auxiliary vector. For details we refer to [39, p. 420–
421] and [56, Sec. 4.4.].

4.7.4 The General Case FFT

It can be argued ([39, p. 409]) that one should always choose N = 2k when using the
FFT. If necessary the data can be padded with zeros to achieve this. To introduce
an odd factor s, let N = sr, where r is a power of two. Then one can combine the
power of two algorithm for the r-point subseries with a special algorithm for the
s-point subseries. If s is a small number then one could generate the DFT matrix
Fs and use matrix-vector multiplication; see Problem 10. However, the general case
when if N is not a power of two, is at least of theoretical interest.

Suppose that N = r1r2 · · · rp. We will describe an FFT algorithm which
requires N(r1 + r2 + · · · + rp) operations. Set

Nν =

p
∏

i=ν+1

ri, ν = 0 : p− 1, Np = 1.

Thus
N = r1r2 · · · rνNν , N0 = N.

The algorithm is based on two representations of integers, which are generalizations
of the position principle (see Sec. 2.2.1).

I. Every integer j, 0 ≤ j ≤ N − 1 has a unique representation of the form

j = α1N1 + α2N2 + · · · + αp−1Np−1 + αp, 0 ≤ αi ≤ ri − 1. (4.7.21)

II. For every integer β, 0 ≤ β ≤ N − 1, β/N has a unique representation of the
form

β

N
=

k1

N0
+
k2

N1
+ · · · + kp

Np−1
, 0 ≤ ki ≤ ri − 1. (4.7.22)

Set

jν =

p
∑

i=ν+1

αiNi,
αν

Nν
=

p−1
∑

i=ν

ki+1

Ni
, (jν < Nν). (4.7.23)

As an exercise, the reader can verify that the coefficients in the above representations
can be recursively determined from the following algorithms: 44

j0 = j, ji−1/Ni = αi + ji/Ni, i = 1 : p;

44These algorithms can, in the special case that ri = B for all i, be used for converting integers
or fractions to the number system whose base is B; see Algorithm 2.2.1.

Review Questions 135

β0 = β, βi−1/ri = βi + ki/ri, i = 1 : p.

From (4.7.21)–(4.7.23), it follows that, since Ni is divisible by Nν for i ≤ ν,

jβ

N
= integer +

p−1
∑

ν=0

kν+1

Nν

(p
∑

i=ν+1

αiNi

)

=

p−1
∑

ν=0

kν+1jν
Nν

+ integer.

From this, it follows that

ωjβ = e2πijβ/N =

p−1
∏

ν=0

ekν+1jν2πi/Nν =

p−1
∏

ν=0

ωjνkν+1

ν , (4.7.24)

where ων = e2πi/Nν , ω0 = ω.
We now give an illustration of how the factorization in (4.7.24) can be utilized

in fast Fourier transform for the case p = 3. Set, in accordance with (4.7.22),

fβ = c(0)(k1, k2, k3).

We have then

cj =

N−1∑

β=0

fβω
jβ =

r1−1∑

k1=0

r2−1∑

k2=0

r3−1∑

k3=0

c(0)(k1, k2, k3)ω
j2k3

2 ωj1k2

1 ωjk1 .

One can thus compute successively (see (4.7.23))

c(1)(k1, k2, α3) =

r3−1∑

k3=0

c(0)(k1, k2, k3)ω
j2k3

2 (j2 depends only on α3),

c(2)(k1, α2, α3) =

r2−1∑

k2=0

c(1)(k1, k2, α3)ω
j1k2

1 (j1 depends only on α2, α3),

cj = c(3)(α1, α2, α3) =

r1−1∑

k1=0

c(2)(k1, α2, α3)ω
jk1 (j depends on α1, α2, α3).

The quantities c(i) are computed for all r1r2r3 = N combinations of the values of
the arguments. Thus the total number of operations for the entire Fourier analysis
becomes at most N(r3 + r2 + r1). The generalization to arbitrary p is obvious.

Review Questions

1. Suppose we want to compute the DFT for N = 210. Roughly how much faster
is the FFT algorithm compared to the straightforward O(N) algorithm?

2. Show that the matrix U = 1√
N
FN is unitary, i.e. U∗U = I, where U∗ = (U)T .

136 Chapter 4. Interpolation and Approximation

3. Show that the DFT matrix F4 can be written as a 2 × 2 block matrix where
each block is related to F2. Give a generalization of this for FN , N = 2m, that
holds for arbitrary m..

4. Work out on your own the bit-reversal permutation of the vector [0 : N − 1]
for the case N = 24 = 16. How many exchanges need to be performed?

Problems and Computer Exercises

1. The following Matlab script uses an algorithm due to Cooley et al. to per-
mute the vector x(1 : 2m), in bit-reversal order:

n = 2^m;

nv2 = n/2; nm1 = n - 1;

j = 1;

for i = 1:nm1

if i < j

t = x(j); x(j) = x(i); x(i) = t;

end

k = nv2;

while k < j

j = j - k; k = k/2;

end

j = j + k;

end

Plot the time taking by this algorithm on your computer for m = 5 : 10. Does
the execution time depend linearly on N = 2m?

2. The following Matlab program (C. Moler and S. Eddins [37]) demonstrates
how the FFT idea can be implemented in a simple but efficient recursive
Matlab program. The program uses the fast recursion as long as n is a
power of two. When it reaches an odd length it sets up the Fourier matrix
and uses matrix vector multiplication.

function y = fftx(x);

% FFT computes the Fast Fourier Transform of x(1:n)

x = x(:);

n = length(x);

omega = exp(-2*pi*i/n);

if rem(n,2) == 0

% Recursive divide and conquer

k = (0:n/2-1)

w = omega.^k;

u = fftx(x(1:2:n-1));

v = w.*fftx(x(2:2:n));

y = [u+v; u-v];

Problems and Computer Exercises 137

else

% Generate the Fourier matrix

j = 0:n-1;

k = j’;

F = omega.^(k*j);

y = F*x;

end

Apply this program to compute DFT of the function treated in Example 4.6.1
sampled at the points 2πα/N , α = 0 : N − 1. Choose, for instance, N =
32, 64, 128.

3. Write an efficient Matlab program for computing the DFT of a real data vector
of length N = 2m. As outlined in Sec. 4.7.3, first split the data in odd and even
data points. Compute the corresponding DFTs using one call of the function
fftx in Problem 10 with complex data of length N/2.

4. Verify the last four symmetry properties of DFTs in Table 4.6.2.

5. Let C be the square matrix

Cn =

(
0T

n−1 1
In−1 0n−1

)

=










0 0 · · · 0 1
1 0

1
...

. . . 0
1 0










∈ Rn×n.

Show that the effect of CnA and ACn, respectively, is a circular shift down-
wards of the rows and a shift to the left of the columns in A ∈ Rn×n. What
about CT ?

6. A circulant matrix A ∈ Rn×n generated by (a1, a2, . . . , an−1, an) has the form

A =









a0 an−1 · · · a2 a1

a1 a0 · · · a3 a2
...

...
...

...
an−2 an−3 · · · a0 an−1

an−1 an−2 · · · a1 a0









.

(a) Show that A = a0I + a1C + . . . + an−1C
n−1, where C is the circulant

matrix in Problem 6.

(b) Show that the eigenvalues and eigenvectors of A are given by

λj = a0 + a1ωj + . . .+ an−1ω
n−1
j , xj =

1√
n

(1, ωj, . . . , ω
n−1
j)T ,

where ωj = e2πj/n, j = 1 : n are the n roots of unity ωn = 1.

(c) Show that the result in (b) implies that C = FΛFH , where

Λ = diag (λ1, . . . , λn), F = (x1, . . . , xn)

138 Chapter 4. Interpolation and Approximation

is the matrix of the discrete Fourier transform, and the eigenvalues are given
by the Fourier transform of its first column

F (a0, an−1, . . . , a2, a1)
T = (λ1, . . . , λn)T .

4.8 Complex Analysis in Interpolation

In this section we make a more detailed theoretical and experimental study of
interpolation of an analytic function f(z) on a real interval. including an analysis
of the Runge phenomenon (see Sec. 4.1.4). We then study interpolation at an
infinite equidistant point set from the point of view of Complex Analysis. This
interpolation problem, which was studied by Whittaker and others at the beginning
of the century, became revived at the middle of the century under the name of the
Shannon sampling theorem, with important applications to Communication
Theory.

We shall encounter multi-valued functions: the logarithm and the square root.
For each of these we choose that branch, which is positive for large positive values
of the argument. They will appear in such contexts that we can then keep them
non-ambiguous by forbidding z to pass the interval [−1, 1]. (We can, however, allow
z to approach that interval.)

4.8.1 Interpolation of Analytic Functions

We first consider the general problem of polynomial interpolation of an analytic
function, at an arbitrary sequence of points in C. Multiple points are allowed.
Set45

Φ(z) = (z − u1)(z − u2) · · · (z − un), z, uj ∈ C.

Let D be a simply connected open domain in C that contains the point u and the
nodes u1, u2, . . . , un. We consider the interpolation problem to find the polynomial
p∗ ∈ Pn that is determined by the conditions p∗(uj) = f(uj), j = 1 : n, or the
appropriate Hermite interpolation problem in the case of multiple nodes. We know
that p∗ depends linearly on f , that is there exists a linear mapping Ln from some
appropriate function space so that p∗ = Lnf .

Assume that f is an analytic function in the closure of D, perhaps except for a
finite number of poles p. A pole must not be a node. Recall the elementary identity

1

z − u
=

n∑

j=1

Φj−1(u)

Φj(z)
+

Φn(u)

Φn(z)(z − u)
, (4.8.1)

which is valid also for multiple nodes. Introduce the linear operator Kn,

(Knf)(u) =
1

2πi

∫

∂D

Φn(u)f(z)

Φn(z)(z − u)
, (4.8.2)

45We use the notation u, ui instead of x, xi here, since x is traditionally associated with the real
part of a complex variable z.

4.8. Complex Analysis in Interpolation 139

multiply the above identity by f(z)/(2πi), and integrate along the boundary of D:

1

2πi

∫

∂D

f(z)

z − u
=

n∑

j=1

Φj−1(u)
1

2πi

∫

∂D

f(z)

Φj(z)
dz + (Knf)(u). (4.8.3)

The following theorem is valid, when the interpolation points xj are in the
complex plane, although we shall here mainly apply it to the case, when they are
located in the interval [−1, 1].

Theorem 4.8.1.
Assume that f(z) is analytic in a domain D that contains the points x1, x2, . . . xn,

as well as the point u ∈ C. Let Lnf be the solution of the interpolation problem
(Lnf)(xj) = f(xj), j = 1 : n. Then the interpolation error can be expressed as a
complex integral, f(u) − (Lnf)(u) = In(u), where

In(u) =
1

2πi

∫

∂D

Φ(u)f(z)

Φ(z)(z − u)
dz.

Proof. By the residue theorem,

In(u) =

n∑

j=1

Φ(u)f(xj)

(u− xj)Φ′(xj)
+ f(u),

where the sum, with reversed sign, is Lagrange’s form of the interpolation polyno-
mial.

(Note the relation between the Lagrange interpolation formula and the expan-
sion of f(z)/Φ(z) into partial fractions, when, e.g., f(z) is a polynomial.)

We now proceed to Chebyshev interpolation, i.e. interpolation at the the zeros
of the Chebyshev polynomials. We shall show that it is almost as efficient as the
truncation of a Chebyshev expansion. In this case, Φ(z) = 21−nTn(z). Let D = ER,
x ∈ [−1, 1], z ∈ ∂ER, where ER is the ellipse

ER = {z : |z − 1| + |z + 1| ≤ R+R−1},

introduced in Sec. 3.5.1 (see (3.2.24). Consider the integral in Theorem 4.8.1 and
assume that |f(z)| ≤M for z ∈ ∂ER. It can be shown (Problem 2) that |Tn(x)| ≤ 1
and

|Tn(z)| ≥ 1
2 (Rn −R−n), |z − x| ≥ a− 1,

∫

∂ER

|dz| ≤ 2πa,

where a is the major semi-axis of ER, i.e. a = 1
2 (R+R−1). Then, by a straightfor-

ward calculation,

|f(x) − (Lnf)(x)| ≤ 2MR−na

(1 −R−2n)(a− 1)
. (4.8.4)

140 Chapter 4. Interpolation and Approximation

This is somewhat less sharp than the result obtained by the Chebyshev expansion,
in particular when R ≈ 1. The details are left for Problem 2.

Note that f(z) is allowed to have a singularity arbitrarily close to the interval
[−1, 1], and the convergence of Chebyshev interpolation will still be exponential. Of
course, the exponential rate will be very poor, when R ≈ 1.

4.8.2 Analysis of a Generalized Runge Phenomenon

It is well known that the Taylor series of an analytic function converges at an expo-
nential rate inside its circle of convergence, while it diverges at an exponential rate
outside. We shall see that a similar result holds for certain interpolation processes.
In general, the domains of convergence are not disks but bounded by level curves of
a logarithmic potential, related to the asymptotic distribution of the interpolation
points.

For the sake of simplicity, we now confine the discussion to the case, when the
points of interpolation are located in the standard interval [−1, 1], but we are still
interested in the evaluation of the polynomials in the complex domain. Part of the
discussion can, however, be generalized to a case, when the interpolation points are
on an arc in the complex plane.

Let q : [a, b] 7→ [−1, 1] be an increasing and continuously differentiable func-
tion. Set tn,j = a+ (b − a)j/n, j = 0 : n, and let the interpolation points be xn,j ,
j = 1 : n, where q(tn,j−1) < xn,j ≤ q(tn,j), i.e. one interpolation point in each of n
subintervals of [−1, 1]. In the definition of Φ, we now write xn,j , Φn instead of xj ,
Φ. Note that, as n→ ∞,

1

n
ln Φn(z) =

1

n

n∑

j=1

ln (z − xn,j) → ψ(z) :=
1

b− a

∫ b

a

ln (z − q(t)) dt, z /∈ [−1, 1].

(4.8.5)
Put x = q(t), and introduce a density function w(x), x ∈]−1, 1[that is the derivative
of the inverse function of q, i.e. w(x) = 1/

(
q′(t(x))(b − a)

)
> 0. Then

ψ(z) =

∫ 1

−1

ln(z − x)w(x) dx, w(x) > 0,

∫ 1

−1

w(x) dx = 1, (4.8.6)

and ψ(z) is analytic in the whole plane outside the interval [−1, 1]. Its real part
P (z) is the logarithmic potential of a weight distribution,

P (z) = ℜψ(z) =

∫ 1

−1

ln |z − x|w(x) dx, w(x) > 0. (4.8.7)

The function 1
n ln |Φn(z)| is itself the logarithmic potential of a discrete distribution

of equal weights 1
n , at the interpolation points xj,n. This function is less pleasant

to deal with than P (z), since it becomes −∞ at the interpolation points while,
according to classical results of potential theory, P (z) is continuous everywhere,
also on the interval [−1, 1]. If we set z = x + iy, ∂P (z)/∂x is also continuous for
z ∈] − 1, 1[, while ∂P (z)/∂y has a jump there. We write it thus,

ψ′(x − 0i)− ψ′(x+ 0i) = 2πiw(x). (4.8.8)

4.8. Complex Analysis in Interpolation 141

Figure 4.8.1. Figure to be made.

By (4.8.6), ψ(z) = ln z+O(z−1), |z| → ∞, or even O(z−2), if the weight distribution
is symmetric around the origin.

We make the definition

D(v) = {z ∈ C : P (z) < P (v)}.
and set P ∗ = maxx∈[−1,1] P (x). It can be shown that D(v) is a simply connected
domain if P (v) > P ∗. The level curve ∂D(v) = {z : P (z) = P (v)} then encloses
[−1, 1]. A level curve {z : P (z) = a} is strictly inside the level curve {z : P (z) = a′}
if a ≤ P ∗ < a′. (The proof of these statements essentially utilizes the minimum
principle for harmonic functions and the fact that P (z) is a regular harmonic func-
tion outside [−1, 1] that grows to ∞ with |z|.)

We now consider two examples.

Example 4.8.1. Equidistant interpolation

In this case we may take q(t) = t, t ∈ [−1, 1], hence w(x) = 1/2. For the
equidistant case we have if z /∈ [−1, 1],

P (z) = 1
2ℜ

∫ 1

−1

ln(z − x) dx = 1
2ℜ

(
(1 − z) ln(z − 1) + (1 + z) ln(z + 1)

)
− 1.

The upper half of the level curves may look something like Figure 4.8.1.:
On the imaginary axis,

P (iy) = 1
2 ln(1 + y2) + y(1

2π − arctan y) − 1.

When z → x ∈ [−1, 1], from any direction, P (z) tends to

P (x) = 1
2

(
(1 − x) ln(1 − x) + (1 + x) ln(1 + x)

)
− 1. (4.8.9)

P ′(x) is continuous in the interior, but becomes infinite at x = ±1. The imaginary
part of ψ(z) has, however, different limits, when the interval is approached from
above and below: ℑ(ψ(x ± 0i)) = ±π(1 − x).

142 Chapter 4. Interpolation and Approximation

The level curve of P (z) that passes through the points ±1, intersects the
imaginary axis at the points ±iy, determined by the equation P (iy) = P (1) = ln 2−
1, with the root y = 0.5255. Theorem 4.8.2 (below) will tell us that Lnf(x) → f(x),
∀x ∈] − 1, 1[, if f(z) is analytic inside and on this contour.

In the classical example of Runge, f(z) = 1/(1 + 25z2) has poles inside this
contour at z = ±0.2i. Proposition 4.8.3 will tell us that the level curve of P (z) that
passes through these poles will separate between the points, where the interpolation
process converges and diverges. Its intersections with the real axis is determined
by the equation P (x) = P (0.2i) = −1.41142. The roots are x = ±0.72668.

Example 4.8.2. Chebyshev interpolation

In this example we have

q(t) = cos(π(1 − t)), t ∈ [0, 1], w(x) =
1

π
(1 − x2)−

1
2 .

Moreover (see Sec. 3.5.1) substitute s for w,

Φn(z) = 21−nTn(z) = 2−n(sn + s−n),

where z = 1
2 (s + s−1), s = z +

√
z2 − 1. Note that |s| ≥ 1, according to our

convention about the choice of branch for the square root. Hence,

P (z) = lim
1

n
ln |Φn(z)| − ln 2 = ln

|s|
2

= ln |z +
√

z2 − 1| − ln 2.

Therefore, the family of confocal ellipses ∂ER are, in this example, the level curves
of P (z). In fact, by (1.3’) and the formula for P (z), the interior of ER equals
D(lnR− ln 2). The family includes, as a limit case (R = 1), the interval [−1, 1], in
which P (z) = − ln 2.

Our problem is related to a more conventional application of potential theory,
namely the problem of finding the electrical charge distribution of a long insulated
charged metallic plate in the strip

{(x, y) ∈ R2 : − 1 < x < 1,−L < y < L}, L≫ 1.

Such a plate will be equipotential. The charge density at the point (x, y) is then
proportional to

w(x) =
1

π
(1 − x2)−1/2;

a fascinating relationship between electricity and approximation.

Note that if z /∈ [−1, 1], we can, by the definition of P (z) as a Riemann sum
(see (4.1)) find a sequence {ǫn} that decreases monotonically to zero, such that

1

n
| ln Φn(z) − ψ(z)| < ǫn, z /∈ [−1, 1]. (4.8.10)

4.8. Complex Analysis in Interpolation 143

It is conceivable that the same sequence can be used for all z on a curve that does
not touch the interval [−1, 1]. (The proof is omitted.)

We can only claim a one-sided inequality, if we allow that u ∈ [−1, 1].

1

n
(ℜ ln Φn(u) − ψ(u)) < ǫn, u ∈ C. (4.8.11)

(Recall that ℜ ln Φn(u) = −∞ at the interpolation points.) We can use the same
sequence for z and u. We can also say that |Φn(u)| behaves like exp

(
(P (u) ± δ)n

)

outside the immediate vicinity of the interpolation points.

Theorem 4.8.2.
Assume that [−1, 1] is strictly inside a simply connected domain D ⊇ D(v). If

f(ζ) is analytic in the closure of D, then the interpolation error (Lnf)(u) − f(u)
converges like an exponential to 0 for any u ∈ D(v).

Proof. By Theorem 4.8.1, f(u) − (Lnf)(u) = In(u), where

In(u) =
1

2πi

∫

∂D

Φn(u)f(z)

Φn(z)(z − u)
dz. (4.8.12)

Note that P (z) ≥ P (v), because D ⊇ D(v). Then, by (4.8.10) and (4.8.11),

|Φn(u)/Φn(z)| < expn
(
P (u) − P (v) + 2ǫn

)

Let |f(z)| ≤M . For any u ∈ D(v), we can choose δ > 0, such that P (u) < P (v)−3δ,
|z − u| > δ. Next, choose n large enough so that ǫn < δ. Then

|f(u) − (Lnf)(u)| < 1

2π
M expn(−3δ + 2δ)

∫

∂D(v)

|dz|
δ

≤ K exp(−nδ)
δ

.

where K = K(v) does not depend on n, δ and u, hence the convergence is expo-
nential.

Remark 4.8.1. If u is away from the boundary ∂D(v), more realistic estimates of
the interpolation error and the speed of convergence is for n≫ 1 given by

K1(v)|Φn(u)|e(−P (v)+δ)n ≤ K1(v)e
(P (u)−P (v)+δ)n,

where K1(v) is another constant. The latter estimate is realistic outside the imme-
diate vicinity of the interpolation points.

It seems, as if one should choose |v| as large as possible, in order to increase
P (v). A bound for P (v) is usually set by the singularities of f(z). If f(z) is an
entire function, the growth of the maximum modulus of |f(z)|, |z| ∈ D(v), hidden
in K1(v), sets a bound for P (v) that usually increases with n.

We shall now derive a complement and a kind of converse to Theorem 4.8.2,
for functions f(z) that have simple poles in D(v).

144 Chapter 4. Interpolation and Approximation

Proposition 4.8.3.
Assume that [−1, 1] is strictly inside a domain D ⊃ D(v), and that f(ζ) is

analytic in the closure of D, except for a finite number of simple poles p in the
interior, all with the same value of P (p).

Outside the interval [−1, 1], the curve ∂D(p) then separates the points, where
the sequence {(Lnf)(u)} converges, from the points, where it diverges. The behavior
of |(Lnf)(u) − f(u)|, when u ∈ D(v), n≫ 1 is roughly described by the formula,

|(f − Lnf)(u)| ≈ K|Φn(u)|e(−P (p)±δ)n/max
p

(1/|p− u|). (4.8.13)

This can be further simplified, if u is not in immediate vicinity of the interpolation
points, see (4.8.14).

Proof. (Sketch:) At the application of the residue theorem to the integral In(u),
see (4.8.12), we must this time also consider the poles of f(z). We obtain

In(u)

Φn(u)
=

(f − Lnf)(u)

Φn(u)
+

∑

p

resf(p)

Φn(p)(p− u)
,

where resf(p) is the residue of f at the pole p ∈ D(v). Roughly speaking, for n≫ 1,

In(u) = O
(
e−P (v)+δ)n

)
,

∑

p

= O
(
e(−P (p)±δ)n/max

p
(1/|p− u|), P (v) > P (p).

It follows that |In| ≪
∑

, unless there is a cancellation of terms in
∑

. For fixed
n,

∑
= 0 is equivalent to an algebraic equation of degree less than the number of

poles, and the roots will depend on n. We conclude that the case of cancellation can
be ignored, and hence we obtain (4.8.13), and the following simplified version, valid
if u is not in the immediate vicinity of the interpolation points. |Φn(u)| behaves
like exp(P (u) ± δ)n.

|(f − Lnf)(u)| ≈ Ke(P (u)−P (p)±δ)n/max
p

(1/|p− u|). (4.8.14)

The separation statement follows from this.

There are several interpolation processes with interpolation points in [−1, 1]
that converge for all u ∈ [−1, 1], when the condition of analyticity is replaced by
a more modest smoothness assumption, e.g., f ∈ Cp. This is the case, when the
sequence of interpolation points are the zeros of the orthogonal polynomials which
belong to a density function that is continuous and strictly positive in]− 1, 1[. We
shall prove the following result.

Proposition 4.8.4.
Consider an interpolation process where the interpolation points has a (perhaps

unknown) asymptotic density function w(x), x ∈ [−1, 1]. Assume that

(Lnf − f)(x) → 0, ∀x ∈ [−1, 1], ∀f ∈ Ck[−1, 1],

4.8. Complex Analysis in Interpolation 145

as n→ ∞, for some k ≥ 1. Then the logarithmic potential P (x) must be constant in
[−1, 1], and the density function must be the same as for Chebyshev interpolation,
i.e. w(x) = 1

π (1 − x2)−1/2.

Proof. Let f(z) be analytic in some neighborhood of [−1, 1], e.g. any function with
a pole at a point p (arbitrarily) close to this interval. A fortiori, for such a function
our interpolation process must converge at all points u in some neighborhood of the
interval [−1, 1].

Suppose that P (x) is not constant, and let x1, x2 be points, such that P (x1) <
P (x2). We can then choose the pole p so that P (x1) + δ < P (p) < P (x2) − δ. By
Proposition 4.8.3, the process would then diverge at some points u arbitrarily close
to x2. This contradiction shows that P (x) must be constant in [−1, 1], P (x) = a,
(say).

This gives a Dirichlet problem for the harmonic function P (z), z /∈ [−1, 1],
which has a unique solution, and one can verify that the harmonic function P (z) =
a+ ℜ ln(z +

√
z2 − 1) satisfies the boundary condition. We must also determine a.

This is done by means of the behaviour as z → ∞. We find that

P (z) = a+ ℜ ln(z + z(1 − z−2)1/2)

= a+ ℜ ln(2z −O(z−1) = a+ ℜ ln z + ln 2 −O(z−2).

This is to be matched with the result of the discussion of the general logarithmic
potential in the beginning of Sec. 4.8.2. In our case, where we have a symmetric

distribution, and
∫ 1

1 w(x) dx = 1, we obtain P (z) = ℜψ(z) = ℜ ln z + O(z−2). The
matching yields a = − ln 2.

Finally, by (4.8.6), we obtain after some calculation, w(x) = (1−x2)−1/2. The
details are left for Problem 3.

Compare the above discussion with the derivations and results concerning
the asymptotic distribution of the zeros of orthogonal polynomials, given in the
standard monograph G. Szegö [54].

4.8.3 The Sampling Theorem

The ideas of this paper can be applied to other interpolation problems than polyno-
mial interpolation. We shall apply them to a derivation of the celebrated sampling
theorem which is an interpolation formula that expresses a function that is band-
limited to the frequency interval [−W, W], i.e. a function that has a Fourier
representation of the following form (see also Strang [53, p. 325].

f(z) =
1

2π

∫ W

−W

f̂(k)eikz dk, |f̂(k)| ≤M, (4.8.15)

in terms of its values at all integer points. The Shannon Sampling Theorem
reads,

f(z) =
∞∑

j=−∞
f

(
jπ

W

)
sin(Wz − jπ)

(Wz − jπ)
. (4.8.16)

146 Chapter 4. Interpolation and Approximation

This is, like Lagrange’s interpolation formula, a so-called cardinal interpolation for-
mula. As Wz/π tends to an integer m, all terms except one on the right hand side
become zero; for j = m the term becomes f(mπ/W).

We shall sketch a derivation of this for W = π. We first note that (4.8.15)
shows that f(z) is analytic for all z. Then we consider the same Cauchy integral as
many times before,

In(u) =
1

2πi

∫

∂Dn

Φ(u)f(z)

Φ(z)(z − u)
dz, u ∈ Dn.

Here Φ(z) = sinπz, which vanishes at all integer points, and Dn is the open rectangle
with vertices at ±(n + 1/2) ± bi. By the residue theorem, we obtain after a short
calculation,

In(u) = f(u) +

n∑

j=−n

Φ(u)f(j)

Φ′(j)(j − u)
= f(u) −

n∑

j=−n

f(j) sinπ(j − u)

π(j − u)
.

Set z = x+ iy. Note that

|f(z)| ≤ 1

2π

∫ π

−π

Me−kydk ≤ M(e|πy| − e−|πy|)

|2πy| , |Φ(z)| ≥ e|πy|.

These inequalities, applied for y = b, allow us to let b → ∞; (2b is the height
of the symmetric rectangular contour). Then it can be shown that In(u) → 0 as
n → ∞, which establishes the sampling theorem for W = π. The general result is
then obtained by ”regula de tri”, but it is sometimes hard to get it right Strang [53]
gives an entirely different derivation, based on Fourier analysis.

Problems and Computer Exercises

1. We use the notations and assumptions of Theorem 4.8.1. (a) Using the repre-
sentation of the interpolation operator as an integral operator, show that

(Lnf)(x) =
1

2πi

∫

∂D
K(x, z)

f(z)

Φ(z)
dz, K(x, z) =

Φ(x) − Φ(z)

(x − z)
,

also if x /∈ D. Note that K(x, z) is a polynomial, symmetric in the two
variables x, z.

(b) A formula for the divided difference. Show that

[x1, x2, . . . , xn]f =
1

2πi

∫

∂D

f(z)

Φ(z)
dz.

Hint: Look at the leading term of the polynomial (Lnf)(x).

2. Check the omitted details of the derivations in Sec. 4.8.3.

Problems and Computer Exercises 147

3. Check the validity of (4.8.6) on the Chebyshev and the equidistant cases. Also

show that
∫ 1

−1
w(x) dx = 1, and check the statements about the behaviour of

P (z) for |z| ≫ 1.

4. (a) Work out the details of the proof of the Sampling Theorem.

(b) The formulation of the Sampling Theorem with a general W in Strang [53]
does not agree with ours in (4.8.16). Who is right?

5. (a) Write a program for solving equations of the form ψ(z) = c, where c runs
through a rectangular grid in a complex plane, not necessarily equidistant.
You may assume that ψ is defined in such a way, that that its derivative is
rather easily computed. When applicable, compute also the intersections of
two families of level curves, i.e. with constant ℜc and constant ℑc, with the
real axis.

(b) Apply your program(s) to the plotting of these level curves in the two cases
of the text, (related to, respectively, equidistant and Chebyshev interpolation).
Due to the symmetry it is sufficient to draw the curves in a quarter-plane.
Think of the ”aspect” of the plotting so that the conformality of the mappings
becomes visible.
If the scanning of the grid (of c) leads z to cross the forbidden interval [−1, 1],
or to some other exceptional situation, the program should return a nice mes-
sage, and continue the scanning without interrupt, with more fruitful values
of c, so that nothing is lost. By the way, find out, how the system you work
with, handles the logarithm and square root in the complex domain. It may
not be entirely according to our conventions, but it almost certainly produces
some value that your own program can modify appropriately.

(c) If ℜc≫ 1, the level curve for the real part is, close to a circle (why?). Use
equidistant values of ℑc ∈ [0, 1

2π]. The values of ℜc are to be chosen so that
the drawings become intellectually interesting and/or visually pleasing. You
are then likely to find that the density of the level curves for the imaginary
part, when they approach the interval [0, 1] is different for the Chebyshev case
and the equidistant case. Explain theoretically how this is related to the den-
sity function w in the text.

(d) The level curves of the imaginary part intersect the interval [0, 1], at dif-
ferent angles in the Chebyshev and the equidistant cases. Give a theoretical
analysis of this.

6. (a) (After Meray (1884) and Cheney [11, p. 65]. Let Lnf be the polynomial
of degree < n, which interpolates to the function f(z) = 1/z at the n’th roots
of unity. Show that (Lnf)(z) = zn−1, and that

lim
n→∞

max
|u|=1

|(Lnf − f)(u)| > 0.

Hint: Solve this directly, without the use of the previous theory.

(b) Modify the theory of Sec. 4.8.1 to the case in (a) with equidistant interpo-
lation points on the unit circle, and make an application to f(z) = 1/(z − a),
a > 0, a 6= 1. Here, Φn(z) = zn − 1. What is ψ(z), P (z)? The density
function? (The integral for ψ(z) is a little tricky, but you may find it in a

148 Chapter 4. Interpolation and Approximation

table. There are, however, simpler alternatives to the integral, see the end of
Sec. 4.8.1. Check your result by thinking like Faraday.) Find out for which
values of a, u, (|u| 6= 1, |u| 6= a), (Lnf − f)(u) → 0, and estimate the speed of
convergence (divergence).

(c) What can be said about the cases excluded above, i.e. |u| = 1, |u| = a?
Also look at the case, when |a| = 1, (a 6= 1).

(d) Is the equidistant interpolation on the unit circle identical to the Cauchy
FFT method (with a = 0, R = 1) for the approximate computation of the
coefficients in a power series? See, in particular (3.1.10).

7. (a) We saw in 6 (b) that the equidistant interpolation on the unit circle gives
no good polynomial approximation when the pole is inside the unit circle.
The coefficients computed by the Cauchy FFT are however useful with a
different interpretation, namely as coefficients in an interpolation polynomial
p(z−1) for f(z) = 1/(z− a), or as approximate coefficients in a Laurent series
1/(z − a) =

∑∞
j=1 cjz

−j, that converges for |z > a|. Note that the Cauchy
integral, (3.1.8), is valid also for the coefficients of a Laurent expansion. Now
consider

f(z) =
−5

(3 − z)(1 − 2z)
=

1

3 − z
− 2

1 − 2z
.

This has three Laurent expansions, i.e. an ordinary Taylor series for |z| < 1
2 ,

an expansion into negative powers for |z| > 3, and a mixed expansion for the
annulus 1

2 < |z| < 3. It is conceivable that the the first two expansions can be
found by FFT, with different interpretations of the results, but what about
the annulus case? It is easily seen from the above partial fraction form of f(z)
what the Laurent expansion should be. When the FFT is applied to f(z),
it does therefore, in principle, find a coefficient by adding a coefficient of a
negative power of z from the first term of the partial fraction decomposition,
to the coefficient of a positive power of z from the second term. Can this really
work?
Explain, why things go so well with a careful treatment, in spite that we almost
tried to convince you above that it would not work. Also try to formulate what
”careful treatment” means in this case.

Hint: Generalize to the case of a Laurent expansion the relation between the
FFT output and the series coefficients given (for a Taylor series) in (3.1.11).
Also read in Strang [53, Chapter 4] or somewhere else about ”aliasing”.

Notes and Further Reading

The problem of choosing a good orderings of points in Newton and Lagrange in-
terpolations is discussed in [57]. Newton interpolation using the Leja ordering of
points has been analyzed by Reichel [40]. The barycentric form of Lagrange’s in-
terpolation formula was advocated in lecture notes by Rutishauser [43] already in
the 1960’s. Berrut and Trefethen [3] argue convincingly that this should be the
standard method of polynomial interpolation, and in historical notes discuss why

Problems and Computer Exercises 149

it is not better known. The scheme for computing the inverse of a Vandermonde
matrix is due to Higham [31, Sec. 22.1].

The O(n2) algorithm for solving primal Vandermonde systems decribed in
Sec. 4.3.4 is due to Björck and Pereyra [4]. It has been generalized to yield fast
algorithm for Vandermonde-like matrices defined by V = (vij) = ((pi(xj)), where
pi is a polynomial of degree n that satisfies a thre term recurrence relation; see
Higham [31, Sec. 22.2]. Also so called Cauchy linear systems can be solved with a
Björck–Pereyra-type algorithm; see Boros, Kailath and Olshevsky [8].

The computational advantage of the Stieltjes approach for discrete least squares
fitting was pointed out by Forsythe [24, ]. Shampine [48, ] established the
advantage in using the alternative formula involving the residual rk.

Working for the French car companies Renault and Citroën, Bézier and de Castel-
jau, independently in 1962 developed the Bézier curve as a tool in Computer Aided
Design (CAD) for fitting curves and surfaces. A more geometric view of spline
functions is taken in Farin [23]. Several packages are available for computing with
splines, e.g., the spline toolbox in Matlab and FITPACK Dierckx [20]–[21].

The FFT algorithm algorithm has been discovered independently by several
people. Indeed the idea was published in a paper by Gauss and the doubling
algorithm is contained in a textbook by Runge and König [42]. The modern usage of
FFT started in 1965 with the publication of the papers [15, 14] by James W. Cooley
of IBM Research and John W. Tukey, Princeton University. The re-discovery of the
FFT algorithm is surveyed by James W. Cooley in [13]. Applications are surveyed
in [10] and [9]. The matrix-oriented framework for the FFT used in this book is
developed in [56]). A roundoff error analysis is given in [1].) Algorithms for the
bit-reversal permutation are reviewed in [34].

Ideas related to those in Sec. 4.8.2 were applied in the thesis of Lothar Reichel
at KTH. He studied the Helmholtz equation in 2D, with a regionally constant com-
plex coefficient, with potential applications (excuse our pun!), e.g., to the microwave
heating of cheeseburgers. Since one can find nice bases of particular solutions of
the Helmholtz equation in different regions, i.e. bread, meat and cheese, one may
try boundary collocation, to express the appropriate continuity conditions at the
interfaces between meat and cheese etc. in a finite number of points.

150 Chapter 4. Interpolation and Approximation

Bibliography

[1] Mario Arioli, Hans Z. Munthe-Kaas, and L. Valdettaro. Componentwise error
analysis for FFTs with applications to fast Helmholz solvers. Numer. Algo-
rithms, 12:65–88, 1996.

[2] R. W. Barnard, Germund Dahlquist, K. Pearce, Lothar Reichel, and K. C.
Richards. Gram polynomials and the Kummer function,. J. Approx. Theory,
94:128–143, 1998.

[3] Jean-Paul Berrut and Lloyd N. Trefethen. Barycentric Lagrange interpolation.
SIAM Review, 46:3:501–517, 2004.

[4] Åke Björck and Victor Pereyra. Solution of Vandermonde system of equations.
Math. of Comp., 24:893–903, 1970.

[5] P. Bloomfield. Fourier Analysis and Time Series. John Wiley, New York, 1976.

[6] Carl de Boor. On calculating with B-splines. J. Approx. Theory, 6:50–62, 1972.

[7] Carl de Boor. A Practical Guide to Splines. Springer-Verlag, Berlin, revised
edition, 1991.

[8] Tibor Boros, Thomas Kailath, and Vadim Olshevsky. A fast parallel Björck–
Pereyra-type algorithm for solving Cauchy linear systems. Linear Algebra
Appl., 302–303:265–293, 1999.

[9] W. L. Briggs and Van Emden Henson. The DFT. An Owners Manual for the
Discrete Fourier Transform. SIAM, Philadelphia, PA, 1995.

[10] E. O. Brigham. The Fast Fourier Transform and Its Application. Prentice-Hall,
Englewood Cliffs, NJ, 1988.

[11] E. W. Cheney. Introduction to Approximation Theory. McGraw-Hill, New
York, NY, 1966.

[12] E. W. Cheney and W. Light. A Course in Approximation Theory. Brooks/Cole,
Pacific Grove, CA, 2000.

[13] James W. Cooley. The re-discovery of the fast Fourier transform algorithm.
Mikrochimica Acta,, 3:33–45, 1987.

151

152 Bibliography

[14] James W. Cooley, Peter A. W Lewis, and Peter D. Welsh. The fast Fourier
transform and its application. IEEE Trans. Education,, E–12:27–34, 1969.

[15] James W. Cooley and John W. Tukey. An algorithm for machine calculation
of complex Fourier series. Math. Comp.,, 19:297–301, 1965.

[16] R. Courant and D. Hilbert. Methods of Mathematical Physics, volume I. In-
terscience, New York, 1953.

[17] Maurice G. Cox. The numerical evaluation of B-splines. J. Inst. Math. Appl.,
10:134–149, 1972.

[18] G. Danielson and Cornelius Lanczos. Some improvements in practical Fourier
analysis and their applications to x-ray scattering from liquids. J. Franklin
Inst., 233:365–380, 435–452, 1942.

[19] Philip J. Davis. Interpolation and Approximation. Dover, New York, NY, 1975.

[20] P. Dierckx. FITPACK user guide part i: Curve fitting routines. TW Report 89,
Department of Computer Science, Katholieke Universiteit, Leuven, Belgium,
1983.

[21] P. Dierckx. FITPACK user guide part i: Surface fitting routines. TW Re-
port 122, Department of Computer Science, Katholieke Universiteit, Leuven,
Belgium, 1983.

[22] P. Dierckx. Curve and Surface Fitting with Splines. Clarendon Press, New
York, 1993.

[23] Gerald Farin. Curves and Surfaces for Computer Aided Geometric Design: A
Practical Guide. Academic Press, New York, 1988.

[24] George E. Forsythe. Generation and use of orthogonal polynomials for data-
fitting with a digital computer,. J. Soc. Indust. Appl. Math., 5:74–88, 1957.

[25] Walter Gander. Change of basis in polynomial interpolation. Numer. Linear
Algebra Appl., page submitted, 2004.

[26] Walter Gautschi. Numerical Analysis, an Introduction. Birkhäuser, Boston,
MA, 1997.

[27] W. M. Gentleman and G. Sande. Fast Fourier transforms—for fun and profit.
In Proceedings AFIPS 1966 Fall Joint Computer Conference, pages 503–578.
Spartan Books, Washington, D.C., 1966.

[28] Ernst Hairer and Gerhard Wanner. Analysis by Its History. Springer Verlag,
Berlin, third corrected printing edition, 2000.

[29] Peter Henrici. Essentials of Numerical Analysis. John Wiley, New York, 1982.

[30] Nicholas J. Higham. Error asnalysis of the Björck–Pereyra algorithm for solving
Vandermonde systems. Numer. Math., 50:613–632, 1987.

Bibliography 153

[31] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, second edition, 2002.

[32] Nicholas J. Higham. The numerical stability of barycentric Lagrange interpo-
lation. IMA J. Numer. Anal., 24:547–556, 2004.

[33] F. B. Hildebrand. Introduction to Numerical Analysis. McGraw-Hill, New
York, 1974.

[34] Alan H. Karp. Bit reversal on uniprocessors. SIAM Review, 38:1:1–26, 1996.

[35] Fred T. Krogh. A variable step variable order multistep method for the nu-
merical solution of ordinary differential equations. In A. J. Morell, editor,
Proceedings of the IFIP Congress 1968, pages 194–199. North-Holland, Ams-
terdam, 1969.

[36] J. G. Mason and D. C. Handscomb. Chebyshev Polynomials. Chapman &
Hall/CRC, London, 2003.

[37] Cleve Moler and Steve Eddins. Fast finite Fourier transforms. MATLAB News
and Notes, pages 14–15, Winter, 2001.

[38] M. J. D. Powell. Approximation Theory and Methods. Cambridge University
Press, Cambridge, UK, 1981.

[39] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vet-
terling. Numerical Recipes in Fortran; The Art of Scientific Computing. Cam-
bridge University Press, Cambridge, GB, second edition, 1992.

[40] Lothar Reichel. Newton interpolation at Leja points. BIT, 30:332–346, 1990.

[41] Friedrich Riesz and Béla Sz.-Nagy. Vorlesungen Über Funktionalanalysis. VEB
Deutscher Verlag der Wissenschaften, Berlin, 1956.

[42] Carle Runge and H. König. Vorlesungen über Numerisches Rechnen. Band XI.
Verlag Julius Springer, Berlin, 1924.

[43] Heinz Rutishauser. Vorlesungen über numerische Mathematik, Vol. I.
Birkhäuser, Basel–Stuttgart, 1976. English translation Lectures on Numeri-
cal Mathematics, by W. Gautschi, Birkhäuser, Boston, 1990.

[44] I. J. Schoenberg. Contributions to the problem of approximation of equidistant
data by analytic functions. Quart. Appl. Math., 4:45–99 and 112–141, 1946.

[45] I. J. Schoenberg and A. Whitney. On Pólya frequency functions III: The pos-
itivity of translation determinants with an application to the interpolation
problem by spline curves. Trans. Amer. Math. Soc., 74:246–259, 1953.

[46] H. R. Schwarz. Numerische Methematik. Teubner, Stuttgart, fourth edition,
1997. English translation of 2nd ed.: Numerical Analysis: A Comprehensive
Introduction, John Wiley, New York.

154 Bibliography

[47] Hubert Schwetlick and Torsten Schütze. Least squares approximation by
splines with free knots. BIT, 35:361–384, 1995.

[48] Lawrence F. Shampine. Discrete least squares polynomial fits. Comm. ACM,
18:179–180, 1975.

[49] R. C. Singleton. On computing the fast Fourier transform. Comm. ACM,
10:647–654, 1967.

[50] R. C. Singleton. Algorithm 338: Algol procedure for the fast Fourier transform
with arbitrary factors. Comm. ACM, 11:773–779, 1968.

[51] J. F. Steffensen. Interpolation. Chelsea, New York, second edition, 1950.

[52] Joseph Stoer and Roland Bulirsch. Introduction to Numerical Analysis.
Springer-Verlag, New York, third edition, 2002.

[53] Gilbert Strang. Introduction to Applied Mathematics. Wellesley-Cambridge
Press, Wellesley, MA, 1986.

[54] Gabor Szegö. Orthogonal Polynomials, volume 23 of Colloq. Publ. Amer. Math.
Soc., Providence, RI, fourth edition, 1975.

[55] T. N. Thiele. Interpolationsrechnung. B. G. Teubner, Leipzig, 1909.

[56] Charles F. Van Loan. Computational Framework for the Fast Fourier Trans-
form. SIAM, Philadelphia, 1992.

[57] Wilhelm Werner. Polynomial interpolation: Lagrange versus Newton. Math.
Comp., 43:205–217, 1984.

[58] M. Zelen. Linear estimation and related topics. In John Todd, editor, Survey
of Numerical Analysis, pages 558–584. McGraw-Hill, New York, 1962.

Index

adjoint operator, 90
Aitken interpolation, 24–25
algorithm

divided difference table, 15
Newton coefficients, 15
Vandermonde system, 43

dual, 42
aliasing, 120
approximation

in maximum norm, 81
arrowhead system, 61

B-spline, 64–74
basis, 68
definition, 66
evaluation, 71
exterior knots, 65
hat function, 65
multiple knots, 68
properties, 67
recurrence relation, 69

Bézier
curve, 49–53
polygon, 50

Banach space, 80
Bernstein polynomials, 47–49

derivatives, 51
Bessel’s inequality, 93
bilinear interpolation, 44
Björck–Pereyra algorithm, 43
butterfly relations, 125

cardinal basis, 6
Cauchy sequence, 78
Cauchy–Schwarz inequality, 88
Chebyshev

interpolation, 8, 10, 17, 22, 96,
138

points, 4, 17
support coefficients, 22

circulant matrix, 129
complete space, 78
complex analysis, 137–145
computer aided design, 49
continued fraction, 28
control points, 49
convex

hull, 50
set, 50

convolution, 118
discrete, 129

correlation, 123
cubic spline

‘not a knot’ condition, 59
complete interpolant, 58
interpolation error, 61–64
natural interpolant, 59
periodic boundary conditions, 59,

60
tridiagonal system, 57

de Casteljau’s algorithm, 52
discrete

cosine transform (DCT), 132
sine transform (DST), 132

distance, 78
divided difference, 11

inverse, 29
reciprocal, 29
scaled, 19
table, 13

Euclidean norm, 80

155

156 Index

weighted, 80
Euler’s formulas, 108

Fast Fourier Transform, 123–134
FFT, see Fast Fourier Transform

Cooley–Tukey, 128
Gentleman–Sande, 128

Fourier, 108
analysis

continuous case, 111
discrete case, 113

coefficients, 91, 110
matrix, 124
series, 108

function
aliased, 120
analytic, 137–145

Gauss–Markov theorem, 102
Gram polynomials, 101

Hermite interpolation, 33–38
Hilbert space, 88

inner product space, 88–91
interpolation

Birkhoff, 37
broken line, 55
condition number, 25
error in linear, 32
Hermite, 33–38
inverse, 38–39
iterative linear, 24–25
lacunary, 37
of analytic functions, 137–139
osculatory, 33–38
piecewise cubic, 56
rational, 27–30
remainder term, 14
with derivatives, 33–38

interpolation formula
barycentric form, 21
Hermite’s, 33
Lagrange’s, 6, 19–24
Newton’s, 12

inverse divided difference, 29

inverse interpolation, 38–39

knot, 54

Lagrange
interpolation, 6
polynomial

generalized, 34
Lagrange’s

interpolation formula, 19–24
polynomials, 20

least squares, 7
approximation, 6–7
data fitting, 100
statistical aspects, 102–104

Lebesgue constant, 26
Leibniz’ formula, 69
Leja

ordering, 18
points, 19

linear approximation, 79
linear space, 79
linear system

overdetermined, 7
logarithmic potential, 139

matrix
circulant, 136
shift, 136
totally nonnegative, 72

maximum norm, 80
metric space, 78
multidimensional interpolation, 44–46
multiplicity

of interpolation point, 33

Neville’s algorithm, 24–25
Newton polynomials, 5
Newton’s interpolation formula, 12
norm, 79

Lp, 80
lp, 80
of operator, 82–83

norm and distance formula, 84–87
normal equations, 7, 91
numerical differentiation, 40

Index 157

Nyquist critical frequency, 119

operator
norm, 82–83
positive definite, 90
self-adjoint, 90

orthogonal
coefficients, 91
expansion, 92
function, 89
polynomials, 94–102

construction, 96
system, 88–91

orthonormal system, 89
osculating polynomial, 33
osculatory interpolation, 33–38

parametric spline, 61
Parseval’s identity, 93, 113
Peano kernel, 68
permutation

bit-reversal, 126
perfect shuffle, 127

polynomial interpolation, 137–145
power basis, 2

shifted, 4
truncated, 64

projection, 90
Pythagoras’ theorem, 89

rational interpolation, 27–30
Neville-type, 30

reciprocity relations, 119
remainder term

interpolation, 14
Runge’s phenomenon, 7–9

sampling theorem, 137–145
Schoenberg–Whitney condition, 72
Scylla and Charybdis, 40
self-adjoint operator, 90
Shannon’s sampling theorem, 144
smoothing, 7
spectral analysis, 108
spline

best approximation property, 59

function, 57–74
definition, 56

interpolation, 53–72
closed curves, 61

least squares, 72–74
parametric, 61
truncated power basis, 64

Stieltjes procedure, 100
support coefficients, 20

titanium data, 73
totally positive matrix, 44
triangle family

of polynomials, 4–5
triangle inequality, 89
trigonometric polynomials, 108

undetermined coefficients
method of, 3

uniform convergence, 81
unitary operator, 106

Vandermonde
systems, 41–44

Vandermonde matrix, 2
complex, 124
confluent, 34
inverse, 23

vector
conjugate even, 130
conjugate odd, 130

vector space, 79

Weierstrass’ theorem, 87
weighted mean, 99

