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Chapter 3

Series, Operators and

Continued Fractions

3.1 Some Basic Facts about Series

3.1.1 Introduction

Series expansions are a very important aid in numerical calculations, especially
for quick estimates made in hand calculation—for example, in evaluating functions,
integrals, or derivatives. Solutions to differential equations can often be expressed in
terms of series expansions. Since the advent of computers it has, however, become
more common to treat differential equations directly, using, e.g., finite difference
or finite element approximations instead of series expansions. Series have some
advantages, especially in problems containing parameters. Automatic methods for
formula manipulation and some new numerical methods provide, however, new
possibilities for series.

In this section we will discuss general questions concerning the use of infi-
nite series for numerical computations including, e.g., the estimation of remainders,
power series and various algorithms for computing their coefficients. Often a series
expansion can be derived by simple operations with a known series. We also give
an introduction to formal power series. The next section treats perturbation ex-
pansions, ill-conditioned and semi-convergent expansions, from the point of view of
computing.

Methods and results will sometimes be formulated in terms of series, some-
times in terms of sequences. These formulations are equivalent, since the sum of an
infinite series is defined as the limit of the the sequence sn of its partial sums

Sn = a1 + a2 + . . .+ an.

Conversely, any sequence S1, S2, S3, . . . can be written as the partial sums of a series,

S1 + (S2 − S1) + (S3 − S2) + . . . .

We start with some simple examples and some general rules for the approxi-
mation of remainders.

1



2 Chapter 3. Series, Operators and Continued Fractions

Example 3.1.1.
Compute, to five decimals, y(0.5), where y(x) is the solution to the differential

equation y′′ = −xy, with initial conditions y(0) = 1, y′(0) = 0. The solution cannot
be simply expressed in terms of elementary functions. We shall use the method of
undetermined coefficients. Thus we try substituting a series of the form:

y(x) =

∞
∑

n=0

cnx
n = c0 + c1x+ c2x

2 + · · · .

Differentiating twice we get

y′′(x) =

∞
∑

n=0

n(n− 1)cnx
n−2

= 2c2 + 6c3x+ 12c4x
2 + · · · + (m+ 2)(m+ 1)cm+2x

m + · · · ,
−xy(x) = −c0x− c1x

2 − c2x
3 − · · · − cm−1x

m − · · · .

Equating coefficients of xm in these series gives

c2 = 0, (m+ 2)(m+ 1)cm+2 = −cm−1, m ≥ 1.

It follows from the initial conditions that c0 = 1, c1 = 0. Thus cn = 0, if n is not a
multiple of 3, and using the recursion we obtain

y(x) = 1 − x3

6
+

x6

180
− x9

12, 960
+ · · · .

This gives y(0.5) = 0.97925. The x9 term is ignored, since it is less than 2 · 10−7.
In this example also the first neglected term gives a rigorous bound for the error
(i.e. for the remaining terms), since the absolute value of the term decreases, and
the terms alternate in sign.

Since the calculation was based on a trial substitution, one should, strictly
speaking, prove that the series obtained defines a function which satisfies the given
problem. Clearly, the series converges at least for |x| < 1, since the coefficients
are bounded. (In fact the series converges for all x.) Since a power series can be
differentiated term by term in the interior of its interval of convergence, the proof
presents no difficulty. Note, in addition, that the finite series obtained for y(x)
by breaking off after the x9-term is the exact solution to the following modified
differential equation:

y′′ = −xy − x10

12, 960
, y(0) = 1, y′(0) = 0,

where the “perturbation term” −x10/12, 960 has magnitude less than 10−7 for |x| ≤
0.5.1

1We shall see, in Volume III, Chapter 13, how to find a rigorous bound for the difference
between the solutions of a differential system and a modified differential system.
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In practice, one is seldom seriously concerned about a rigorous error bound
when the computed terms decrease rapidly, and it is “obvious” that the terms will
continue to decrease equally quickly. One can then break off the series and use
either the last included term or a coarse estimate of the first neglected term as
an estimate of the remainder.

This rule is not very precise. How rapidly is “rapidly”? Questions like this
occur everywhere in scientific computing. If mathematical rigor costs little effort
or little extra computing time, then it should, of course, be used. Often, however,
an error bound that is both rigorous and realistic may cost more than what is felt
reasonable for (say) a one-off problem.

In problems, where guaranteed error bounds are not asked for, when it is
enough to obtain a feeling for the reliability of the results, one can handle these
matters in the same spirit as one handles risks in every day life. It is then a matter
of experience to formulate a simple and sufficiently reliable termination criterion
based on the automatic inspection of the successive terms.2

The unexperienced scientific programmer may, however, find such questions
hard, also in simple cases. In the production of general purpose mathematical soft-
ware, or in a context where an inaccurate numerical result can cause a disaster,
such questions are serious and sometimes hard also for the experienced scientific
programmer. For this reason, we shall formulate a few theorems, with which one
can often transform the feeling that “the remainder is negligible” to a mathemat-
ical proof. There are, in addition, actually numerically useful divergent series; see
Sec. 3.2.6. When one uses such series, estimates of the remainder are clearly essen-
tial.

Assume that we want to compute a quantity S, which can be expressed in a
series expansion, S =

∑∞
j=0 aj , and set

Sn =
∑n

j=0 aj , Rn = S − Sn.

We call
∑∞

j=n+1 aj the tail of the series; an is the “last included term” and an+1

is the “first neglected term”. The remainder Rn with reversed sign is called the
truncation error.3

The tail of a convergent series can often be compared to a series with a known
sum, for example, a geometric series, or with an integral which can be computed
directly.

Theorem 3.1.1. Comparison with a Geometric Series.

If |aj+1| ≤ k|aj |, ∀j ≥ n, where k < 1, then

|Rn| ≤
|an+1|
1 − k

≤ k|an|
1 − k

.

In particular if k < 1/2, then it is true that the absolute value of the remainder is
less than the last included term.

2Termination criteria for iterative methods will be discussed in Sec. 6.1.3.
3In this terminology the remainder is the correction one has to make in order to eliminate the

error.
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Proof. By induction, one finds that |aj | ≤ kj−1−n|an+1|, j ≥ n+ 1, since

|aj | ≤ kj−1−n|an+1| ⇒ |aj+1| ≤ k|aj | ≤ kj−n|an+1|.

Thus

|Rn| ≤
∞
∑

j=n+1

|aj | ≤
∞
∑

j=n+1

kj−1−n|an+1| =
|an+1|
1 − k

≤ k|an|
1 − k

,

according to the formula for the sum of an infinite geometric series. The last
statement follows from the inequality k/(1 − k) < 1, when k < 1/2.

Example 3.1.2. Power series with slowly varying coefficients.

Let aj = j1/2π−2j . Then a6 = 2.4·0.0000011< 3·10−6. Further,

|aj+1|
|aj |

≤ (j + 1)1/2

j1/2

π2j−2

π−2j
≤ (1 + 1/6)1/2π−2 < 0.11,

for j ≥ 6. Thus, by Theorem 3.1.1 |R6| < 3·10−6 0.11

1 − 0.11
< 4·10−7.
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Figure 3.1.1. Comparison with an integral, (n=5).

Theorem 3.1.2. Comparison of a Series with an Integral.

If |aj| ≤ f(j) for all j ≥ n, where f(x) is a nonincreasing function for x ≥ n,
then

|Rn| ≤
∫ ∞

n

f(x)dx,

which yields an upper bound for |Rn|, if the integral is finite.
If aj = f(j) > 0 for all j ≥ n+ 1, we also obtain a lower bound for the error,

namely
∫∞

n+1
f(x)dx.
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Proof. See Figure 3.1.1.

Example 3.1.3.
When aj is slowly decreasing, the two error bounds are typically rather close

to each other, and are hence rather realistic bounds, much larger than the first
neglected term an+1. Let aj = 1/(j3 + 1), f(x) = x−3. It follows that

0 < Rn ≤
∫ ∞

n

x−3dx = n−2/2.

In addition this bound gives an asymptotically correct estimate of the remainder,
as n→ ∞, which shows that Rn is here significantly larger than the first neglected
term.

For alternating series, however, the situation is typically quite different.

Definition 3.1.3.
A series is alternating for j ≥ n if, for all j ≥ n, aj and aj+1 have opposite

signs, or equivalently sign aj = −signaj+1, where sign x (read “signum” of x), is
defined by

sign x =

{

+1, if x > 0;
0, if x = 0;

−1, if x < 0.

- -

-

Sn S Sn+1

Rn −Rn+1

an+1

Figure 3.1.2. Illustration to Theorem 3.1.4

Theorem 3.1.4.
If Rn and Rn+1 have opposite signs, then S lies between Sn and Sn+1. Fur-

thermore

S =
1

2
(Sn + Sn+1) ±

1

2
|an+1|.

We also have the weaker results:

|Rn| ≤ |an+1|, |Rn+1| ≤ |an+1|, signRn = sign an+1.

This theorem has non-trivial applications to practically important divergent
sequences; see Sec. 3.2.6.
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Proof. The fact that Rn+1 and Rn have opposite signs means, quite simply, that
one of Sn+1 and Sn is too large and the other is too small, i.e. that S lies between
Sn+1 and Sn. Since an+1 = Sn+1 − Sn, one has for positive values of an+1, the
situation shown in Figure 3.1.2. From this figure, and an analogous one for the case
of an+1 < 0, the remaining assertions of the theorem clearly follow.

The actual error of the average 1
2 (Sn + Sn+1) is, for slowly convergent alter-

nating series, usually much smaller than the error bound 1
2 |an+1|. For example, if

Sn = 1− 1
2 + 1

3 − . . .± 1
n , limSn = ln 2 ≈ 0.6931, the error bound for n = 4 is 0.1,

while the actual error is less than 0.01. A systematic exploration of this observation,
by means of repeated averaging. is carried out in Sec. 3.4.3.
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4

Figure 3.1.3. The sum of an alternating series.

In Example 1.2.3 the error function was approximated for |x| ∈ [−1, 1] by a
power series. The series has terms of alternating sign, and the absolute values of
the terms decrease monotonically to zero. For such a series the above theorem can
be used to prove that the first neglected term gives a rigorous error estimate.

Theorem 3.1.5.
For an alternating series, the absolute values of whose terms approach zero

monotonically, the remainder has the same sign as the first neglected term an+1,
and the absolute value of the remainder does not exceed |an+1|. (It is well known
that such a series is convergent).

Proof. (Sketch) That the theorem is true is almost clear from Figure 3.1.3. The
figure shows how Sj depends on j when the premises of the theorem are fulfilled.
A formal proof is left to the reader.

The use of this theorem was illustrated in Examples 3.1.1 and 3.1.2. An
important generalization is given as Problem 3.2.1(g).

In the preceding theorems the ideas of well known convergence criteria are
extended to bounds or estimates of the error of a truncated expansion. In Sec. sec3.4,
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we shall see a further extension of these ideas, namely for improving the accuracy
obtained from a sequence of truncated expansions. This is known as convergence
acceleration.

3.1.2 Power Series

Consider an expansion into powers of a complex variable z, and suppose that it is
convergent for some z 6= 0, and denote its sum by f(z),

f(z) =
∞
∑

j=0

ajz
j, z ∈ C. (3.1.1)

It is then known from complex analysis that the series (3.1.1) either converges for
all z, or it has a circle of convergence with radius ρ, such that it either converges
for all |z| < ρ, and diverges for |z| > ρ. (For |z| = ρ convergence or divergence is
possible). The radius of convergence is determined by the relation

ρ = lim sup |an|−1/n. (3.1.2)

Another formula is ρ = lim |an|/|an+1|, if this limit exists.
The function f(z) can be expanded into powers of z − a around any point of

analyticity,

f(z) =

∞
∑

j=0

aj(z − a)j , z ∈ C. (3.1.3)

By Taylor’s formula the coefficients are given by

a0 = f(a), aj = f (j)(a)/j!, j ≥ 1. (3.1.4)

This infinite series is in the general case called a Taylor series, while the special
case, a = 0, is by tradition called a Maclaurin series.4

The function f(z) is analytic inside its circle of convergence, and has at least
one singular point on its boundary. The singularity of f , which is closest to the
origin, can often be found easily from the expression that defines f(z); so the radius
of convergence of a Maclaurin series can often be easily found.

Note that these Taylor coefficients are uniquely determined for the function f .
This is true also for a non-analytic function, for example if f ∈ Cp[a, b], although
in this case the coefficient aj exists only for j ≤ p. Also the remainder formulas
(3.1.5), (3.1.7), require only that f ∈ Cn. It is thus not necessary that the infinite
expansion converges or even exists.

There are several expressions for the remainder Rn(z), when the expansion
for f(z) is truncated after the term that contains zn−1. In order to simplify the
notation, we put a = 0, i.e. we consider the Maclaurin series. The following

4Brook Taylor (1685–1731), who announced his theorem in 1712, and Colin Maclaurin (1698–
1746) were British mathematicians.
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integral form can be obtained by the application of repeated integration by parts

to the integral z
∫ 1

0 f
′(zt) dt:

Rn(z) = zn

∫ 1

0

(1 − t)n−1

(n− 1)!
f (n)(zt) dt; (3.1.5)

the details are left for Problem 24 (b). From this follows the upper bound

|Rn(z)| ≤ 1

n!
|z|n max

0≤t≤1
|f (n)(zt)|. (3.1.6)

This holds also in the complex case; if f is analytic on the segment from 0 to z, one
integrates along this segment, i.e. for 0 ≤ t ≤ 1, otherwise another path is to be
chosen.

For a real-valued function, Lagrange’s formula5 for the remainder

Rn(x) =
f (n)(ξ)xn

n!
, ξ ∈ [0, x], (3.1.7)

is obtained by the mean value theorem of integral calculus.
For complex-valued functions and, more generally, for vector-valued functions

the mean value theorem and Lagrange’s remainder term are not valid with a single
ξ. (Sometimes componentwise application with different ξ is possible.) A different
form for the remainder, valid in the complex plane is given in Sec. sec3.1.cfft, in
terms of the maximum modulus M(r) = max|z|=r |f(z)|, which may sometimes
be easier to estimate than the nth derivative. A power series is uniformly convergent
in any closed bounded region strictly inside its circle of convergence. Roughly
speaking, the series can be manipulated like a polynomial, as long as z belongs to
such a region;

• it can be integrated or differentiated term by term,

• substitutions can be performed, and terms can be rearranged,

• it can be multiplied by another power series, etc.

Theorem 3.1.6.
If f(z) =

∑

ajz
j, g(z) =

∑

bkz
k, then

f(z)g(z) =
∑

cnz
n, cn =

n
∑

j=0

ajbn−j. (3.1.8)

The expression on the right side of (3.1.8) is called the convolution or the Cauchy
product of the coefficient sequences of f and g.

5Joseph Louis Lagrange (1736–1813) was born in Turin, Italy. In 1766 he succeeded Euler
in Berlin but in 1787 went to Paris where he remained until his death. He gave fundamental
contributions to most branches of Mathematics and Mechanics.
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The use of the Taylor coefficient formula and Lagrange’s form of the remainder
may be inconvenient, and it is often easier to obtain an expansion by manipulating
some known expansions. The geometric series,

1

1 − z
= 1 + z + z2 + z3 + · · · + zn−1 +

zn

1 − z
, z 6= 1, (3.1.9)

is of particular importance; note that the remainder zn/(1 − z) is valid even when
the expansion is divergent.

Example 3.1.4.
Set z = −t2 in the geometric series, and integrate:

∫ x

0

(1 + t2)−1 dt =

n−1
∑

j=0

∫ x

0

(−t2)j dt+

∫ x

0

(−t2)n(1 + t2)−1 dt.

Using the mean-value theorem of integral calculus on the last term we get

arctanx =

n−1
∑

j=0

(−1)jx2j+1

2j + 1
+

(1 + ξ2)−1(−1)nx2n+1

2n+ 1
, (3.1.10)

for some ξ ∈ int[0, x]. Both the remainder term and the actual derivation are
much simpler than what one would get by using Taylor’s formula with Lagrange’s
remainder term. Note also that Theorem 3.1.4 is applicable to the series obtained
above for all x and n, even for |x| > 1, when the infinite power series is divergent.

Some useful expansions are collected in Table 3.1.1.These formulas will be
used often without a reference; the reader is advised to memorize the expansions.
“Remainder ratio” means the ratio of the remainder to the first neglected term, if
x ∈ R; ξ means a number between 0 and x. Otherwise these expansions are valid
in the unit circle of C or in the whole of C.

The binomial coefficients are, also for non-integer k, defined by

(

k

n

)

=
k(k − 1) · · · (k − n+ 1)

1 · 2 · · ·n .

Depending on the context, they may be computed by one of the following well
known recurrences:

(

k

(n+ 1)

)

=

(

k

n

)

(k − n)

(n+ 1)
; or

(

k + 1

n

)

=

(

k

n

)

+

(

k

n− 1

)

, (3.1.11)

with appropriate initial conditions. The latter recurrence follows from the matching
of the coefficients of tn in the equation (1 + t)k+1 = (1 + t)(1 + t)k. (Compare the
Pascal triangle; see Problem 1.2.3.) The explicit formula

(

k
n

)

= k!
n!(k−n)! , for integers

k, n, is to be avoided, if k can become large, because k! has overflow for k ≥ 170 in
IEEE double precision.
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Table 3.1.1. Maclaurin expansions for some elementary functions.

Function Expansion (x ∈ C) Remainder ratio (x ∈ R)

(1 − x)−1 1 + x+ x2 + x3 + · · · if |x| < 1 (1 − x)−1 if x 6= 1

(1 + x)k 1 + kx+

(

k

2

)

x2 + · · · if |x| < 1 (1 + ξ)k−n if x > −1

ln(1 + x) x− x2

2
+
x3

3
− x4

4
+ · · · if |x| < 1 (1 + ξ)−1 if x > −1

ex 1 + x+
x2

2!
+
x3

3!
+ · · · all x eξ, all x

sinx x− x3

3!
+
x5

5!
− x7

7!
+ · · · all x cos ξ, all x, n odd

cosx 1 − x2

2!
+
x4

4!
− x6

6!
+ · · · all x cos ξ, all x, n even

1
2 ln
(1 + x

1 − x

)

x+
x3

3
+
x5

5
+ · · · if |x| < 1

1

1 − ξ2
, |x| < 1, n even

arctanx x− x3

3
+
x5

5
+ · · · if |x| < 1

1

1 + ξ2
, all x

The exponent k in (1+x)k is not necessarily an integer; it can even be an irra-
tional or a complex number. This function may be defined as (1 + x)k = ek ln(1+x).
Since ln(1+x) is multi-valued, (1+x)k is multi-valued too, unless k is an integer.
We can, however, make them single-valued by forbidding the complex variable x to
take real values less than −1. In other words, we make a cut along the real axis from
−1 to −∞ that the complex variable must not cross. (The cut is outside the circle
of convergence.) We obtain the principal branch by requiring that ln(1 + x) > 0
if x > 0. Let 1 + x = reiφ, r > 0, φ→ ±π. Note that

1 + x→ −r, ln(1 + x) → ln r +

{

+iπ, if φ→ π;
−iπ, if φ→ −π.

(3.1.12)

Two important power series, not given in Table 3.1.1, are:

Gauss’ hypergeometric function

F (a, b, c; z) = 1 +
ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!

+
a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)

c(c+ 1)(c+ 2)

z3

3!
+ . . . , (3.1.13)
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Figure 3.1.4. The partial sums of the Maclaurin expansions for two func-
tions. The upper curves are for f(x) = cosx, n = 0 : 2 : 26, 0 ≤ x ≤ 10. This
series converges for all x, but the rounding errors cause trouble for large values of
x; see Sec. 3.2.5, Ill-conditioned series. The lower curves are for f(x) = 1/(1+x2),
n = 0 : 2 : 18, 0 ≤ x ≤ 1.5. The convergence radius is 1 in this case.

where a and b are complex constants and c 6= −1,−2. . . . . The radius of convergence
for this series equals unity; see [1, Chap. 15].6

Kummer’s confluent hypergeometric function7

M(a, b; z) = 1 +
a

b

z

1!
+
a(a+ 1)

b(b + 1)

z2

2!
+
a(a+ 1)(a+ 2)

b(b+ 1)(b+ 2)

z3

3!
+ . . . , (3.1.14)

converges for all z (see [1, Ch. 13]). It is named “confluent” because

M(a, c; z) = lim
b→∞

F (a, b, c, z/b).

The coefficients of these series are easily computed and the functions are easily
evaluated by recurrence relations. (You also need some criterion for the truncation
of the series, adapted to your demands of accuracy.) In Sec. 3.5, these functions are

6This classical Handbook of Mathematical Functions, edited by Milton Abramowitz and Irene
A. Stegun, will be used as a reference throughout this book. We will often refer to it just as “the
Handbook”.

7Ernst Eduard Kummer (1810–1893) German mathematician, professor in Berlin from 1855.
He extended Gauss work on hypergeometric series. He, together with Weierstrass and Kronecker,
made Berlin into one of the leading centers of mathematics.
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also expressed in terms of infinite continued fractions that typically converge faster
and in larger regions than the power series do.

Example 3.1.5.
The following procedure can generally be used in order to find the expansion

of the quotient of two expansions. We illustrate it in a case, where the result is of
interest to us later.

The Bernoulli8 numbers Bn are defined by the Maclaurin series

x

ex − 1
≡

∞
∑

j=0

Bjx
j

j!
(3.1.15)

For x = 0 the left hand side is defined by Hôpital’s rule; the value is 1. If we
multiply this equation by the denominator, we obtain

x ≡
( ∞
∑

i=1

xi

i!

)( ∞
∑

j=0

Bjx
j

j!

)

.

By matching the coefficients of xn, n ≥ 1, on both sides, we obtain a recurrence
relation for the Bernoulli numbers, which can be written in the form

B0 = 1,
n−1
∑

j=0

1

(n− j)!

Bj

j!
= 0, n ≥ 2, i.e.

n−1
∑

j=0

(

n

j

)

Bj = 0. (3.1.16)

The last equation is a recurrence that determines Bn−1 in terms of Bernoulli num-
bers with smaller subscripts, hence B0 = 1, B1 = − 1

2 , B2 = 1
6 , B3 = 0, B4 = − 1

30 ,
B5 = 0, B6 = 1

42 , . . . .
We see that the Bernoulli numbers are rational. We shall now demonstrate

that Bn = 0, when n is odd, except for n = 1.

x

ex − 1
+
x

2
=
x

2

ex + 1

ex − 1
=
x

2

ex/2 + e−x/2

ex/2 − e−x/2
=

∞
∑

n=0

B2nx
2n

(2n)!
. (3.1.17)

Since the next to last term is an even function, i.e. its value is unchanged when x is
replaced by −x, its Maclaurin expansion contains only even powers of x, and hence
the last expansion is also true.

The recurrence obtained for the Bernoulli numbers by the matching of coeffi-
cients in the equation,

(ex/2 − e−x/2)

( ∞
∑

n=0

B2nx
2n/(2n)!

)

= 1
2x
(

ex/2 + e−x/2
)

,

8Jacob (or James) Bernoulli (1654-1705), Swiss mathematician, one of the earliest to realize
how powerful is the infinitesimal calculus. The Bernoulli numbers were published posthumously
in 1713, in his fundamental work Ars Conjectandi (on Probability). The notation for Bernoulli
numbers varies in the literature. Our notation seems to be the most common in modern texts.
Several members of the same family enriched mathematics by their teaching and writing. Their
role in the history of mathematics resembles the role of the Bach family in the history of music.
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is not the same as the one we found above. It turns out to have better properties
of numerical stability. We shall look into this experimentally in Problem 10(g).

The singularities of the function x/(ex − 1) are poles at x = 2nπi, n =
±1,±2,±3, . . ., hence the radius of convergence is 2π. Further properties of Bernoulli
numbers and the related Bernoulli polynomials and periodic functions, are presented
in Sec. 3.4.4, where they occur as coefficients in the important Euler–Maclaurin for-
mula.

If r is large the following formula is very efficient; the series on its right hand
side then converges rapidly.

B2r/(2r)! = (−1)r−12(2π)−2r
(

1 +

∞
∑

n=2

n−2r
)

. (3.1.18)

This is a particular case (t = 0) of a Fourier series for the Bernoulli functions that
we shall encounter in Lemma 3.3.1(c). In fact, you obtain IEEE double accuracy
for r > 26, even if the infinite sum on the right hand side is totally ignored. Thanks
to (3.1.18) we do not need to worry much over the instability of the recurrences.
When r is very large, however, we must be careful about underflow and overflow.

The Euler numbers En, which will be used later, are similarly defined by
the generating function

1

cosh z
≡

∞
∑

n=0

Enz
n

n!
, |z| < π

2
. (3.1.19)

Obviously En = 0 for all odd n. It can be shown that the Euler numbers are
integers, E0 = 1, E2 = −1, E4 = 5, E6 = −61; see Problem 7e.

Example 3.1.6.
Let f(x) = (x3 +1)−

1
2 . Compute

∫∞
10
f(x)dx to 9 decimal places, and f ′′′(10),

with at most 1% error. Since x−1 is fairly small, we expand in powers of x−1:

f(x) = x−3/2(1 + x−3)−1/2 = x−3/2
(

1 − 1

2
x−3 +

1·3
8
x−6 − . . .

)

= x−1.5 − 1

2
x−4.5 +

3

8
x−7.5 − . . . .

By integration,
∫ ∞

10

f(x)dx = 2·10−0.5 − 1

7
10−3.5 +

3

52
10−6.5 + . . . = 0.632410375.

Each term is less than 0.001 of the previous term.
By differentiating the series three times, we similarly obtain

f ′′′(x) = −105

8
x−4.5 +

1, 287

16
x−7.5 + . . . .

For x = 10 the second term is less than 1% of the first; the terms after the second
decrease quickly and are negligible. One can show that the magnitude of each term
is less than 8 x−3 of the previous term. We get f ′′′(10) = −4.12 10−4 to the desired
accuracy. The reader is advised to carry through the calculation in more detail.
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Example 3.1.7. How to compute sinhx.

On a computer using IEEE double precision the roundoff unit is u = 2−53 ≈
1.1 ·10−16. One wishes to compute sinhx with good relative accuracy, both for
small and large |x|, at least moderately large. Assume that ex is computed with a
relative error less than u in the given interval. The formula (ex − e−x)/2 for sinhx
is sufficiently accurate except when |x| is very small and cancellation occurs. Hence
for |x| ≪ 1, ex and e−x and hence (ex − e−x)/2 can have absolute errors of order
of magnitude (say) u. Then the relative error in (ex − e−x)/2 can have magnitude
≈ u/|x|; for example, this is more than 100% for x ≈ 10−16.

For |x| ≪ 1 one can instead use (say) two terms in the series expansion for
sinhx,

sinhx = x+ x3/3! + x5/5! + . . . .

Then one gets an absolute truncation error which is about x5/120, and a round-off
error of the order of 2u|x|. Thus the formula x+x3/6 is better than (ex − e−x)/2 if

|x|5/120 + 2u|x| < u.

If 2u|x| ≪ u, we have |x|5 < 120u ≈ 15·2−50, or |x| < 151/5 ·2−10 ≈ 0.00168, (which
shows that 2u|x| really could be ignored in this rough calculation). Thus, if one
switches from (ex − e−x)/2 to x + x3/6 for |x| < 0.00168, the relative error will
nowhere exceed u/0.00168 ≈ 0.66·10−14. If one needs higher accuracy, one can take
more terms in the series, so that the switch can occur at a larger value of |x|.

For very large values of |x| one must expect a relative error of order of mag-
nitude |xu| because of round-off error in the argument x. Compare the discussion
of range reduction in Sec. 2.2.4 and Problem 2.2.9.

In numerical computation a series should be regarded as a finite expansion
together with a remainder. Taylor’s formula with the remainder (3.1.5) is valid for
any function f ∈ Cn[a, a+ x], but the infinite series is valid only if the function is
analytic in a complex neighborhood of a.

If a function is not analytic at 0, it can happen that the Maclaurin expansion
converges to a wrong result. A classical example (see Appendix to Chapter 6 in
Courant [15]) is

f(x) = e−1/x2

, x 6= 0, f(0) = 0.

It can be shown that all its Maclaurin coefficients are zero. This trivial Maclaurin
expansion converges for all x, but the sum is wrong for x 6= 0. There is nothing
wrong with the use of Maclaurin’s formula as a finite expansion with a remainder.
Although the remainder that in this case equals f(x) itself, does not tend to 0 as
n→ ∞ for a fixed x 6= 0, it tends to 0 faster than any power of x, as x→ 0, for any
fixed n. The “expansion” gives, e.g., an absolute error less than 10−43 for x = 0.1,
but the relative error is 100%. Also note that this function (and there are lots
of other examples) can be added to any function without changing its Maclaurin
expansion.

From the point of view of complex analysis, however, the origin is a singular
point for this function, note, e.g., that |f(z)| → ∞ as z → 0 along the imaginary
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axis, and this prevents the application of any theorem that would guarantee that
the infinite Maclaurin series represents the function. This trouble does not occur
for a truncated Maclaurin expansion around a point, where the function under
consideration is analytic. The size of the first non-vanishing neglected term then
gives a good hint about the truncation error, when |z| is a small fraction of the
radius of convergence.

The above example may sound like a purely theoretical matter of curiosity.
We emphasize this distinction between the convergence and the validity of an in-
finite expansion in this text, as a background to other expansions of importance
in numerical computation, e.g., the Euler–Maclaurin expansion in Sec. 3.4.4, which
may converge to the wrong result, also in the application to a well-behaved analytic
function. On the other hand, we shall see, e.g., in Sec. 3.1.8, that divergent expan-
sions can sometimes be very useful. The universal recipe in numerical computation
is to consider an infinite series as a finite expansion plus a remainder term. A more
algebraic point of view on a series is, however, often useful in the design of a numer-
ical method. See, e.g., Sec. 3.1.5 (Formal Power Series) and Sec. 3.3.2 (The Calculus
of Operators). Convergence of an expansion is neither necessary nor sufficient for
its success in practical computation.

3.1.3 Analytic Continuation

Analytic functions have many important properties that you may find in any text
on complex analysis. A good summary for the purpose of numerical mathematics is
found in the first chapter of Stenger [43]. Two important properties are contained
in the following lemma.

We remark that the region of analyticity of a function f(z) is an open set. If,
e.g., we say that f(z) is analytic on a closed real interval, it means that there exists
an open set in C that contains this interval, where f(z) is analytic.

Lemma 3.1.7.
An analytic function can only have a finite number of zeros in a compact subset

of the region of analyticity, unless the function is identically zero.
Suppose that two functions f1 and f2 are analytic in regions D1 and D2,

respectively. Suppose that D1 ∩ D2 contains an interval throughout which f1(z) =
f2(z). Then f1(z) = f2(z) in the intersection D1 ∩D2.

Proof. We refer, for the first part, to any text on Complex Analysis. We here
follow Titchmarsh [45] closely. The second part follows by the application of the
first part to the function f1 − f2.

A consequence of this is known as the permanence of functional equations, i.e.
in order to prove the validity of a functional equation (or “a formula for a function”)
in a region of the complex plane, it may be sufficient to prove its validity in (say)
an interval of the real axis, under the conditions specified in the lemma.

Example 3.1.8. The permanence of functional equations.
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We know from elementary real analysis that the functional equation

e(p+q)z = epzeqz , (p, q ∈ R),

holds for all z ∈ R. We also know that all the three functions involved are analytic
for all z ∈ C. Set in the lemma D1 = D2 = C, and let “the interval” be any
compact interval of R. The lemma then tells us that that the displayed equation
holds for all complex z.

The right and the left hand side then have identical power series. Applying
the convolution formula and matching the coefficients of zn, we obtain

(p+ q)n

n!
=

n
∑

j=0

pj

j!

qn−j

(n− j)!
, i.e., (p+ q)n =

n
∑

j=0

n!

j!(n− j)!
pjqn−j .

This is not a very sensational result. It is more interesting to start from the following
functional equation

(1 + z)p+q = (1 + z)p(1 + z)q.

The same argumentation holds, except that—by the discussion around Table 3.1.1—
D1, D2 should be equal to the complex plane with a cut from −1 to −∞, and that
the Maclaurin series is convergent in the unit disk only.

We obtain the equations
(

p+ q

n

)

=

n
∑

j=0

(

p

j

)(

q

n− j

)

, n = 0, 1, 2, . . . . (3.1.20)

(They can also be proved by induction, but it is not needed.) This sequence of alge-
braic identities, where each identity contains a finite number of terms, is equivalent
to the above functional equation.

We shall see that this observation is useful for motivating certain “symbolic
computations” with power series, that can provide elegant derivations of useful
formulas in numerical mathematics.

Now we may consider the aggregate of values of f1(z) and f2(z) at points
interior to D1 or D2 as a single analytic function f . Thus f is analytic in the union
D1 ∪D2, and f(z) = f1(z) in D1, f(z) = f2(z) in D2.

The function f2 may be considered as extending the domain in which f1 is
defined, and it is called a (single-valued) analytic continuation of f1. In the
same way f1 is an analytic continuation of f2. Analytic continuation denotes both
this process of extending the definition of a given function, and the result of the
process. We shall see examples of this, e.g., in Sec. 3.1.3. Under certain conditions
the analytic continuation is unique.

Theorem 3.1.8.
Suppose that a region D is overlapped by regions D1, D2, and that (D1∩D2)∩D

contains an interval. Let f be analytic in D, and let f1 be an analytic continuation
of f to D1, and let f2 an analytic continuation of f to D2, so that

f(z) = f1(z) = f2(z) in (D1 ∩D2) ∩D.
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Then either of these functions provides a single-valued analytic continuation of f
to D1 ∩D2. The results of the two processes are the same.

Proof. Since f1−f2 is analytic in D1∩D2, and f1−f2 = 0 in the set (D1∩D2)∩D,
which contains an interval, it follows from the lemma that f1(z) = f2(z) in D1∩D2,
which proves the theorem.

If the set (D1 ∩ D2) ∩ D is void, the conclusion in the theorem may not be
valid. We may still consider the aggregate of values as a single analytic function,
but this function can be multi-valued in D1 ∩D2.

Example 3.1.9.
For |x| < 1 the important formula

arctanx =
1

2i
ln

(

1 + ix

1 − ix

)

easily follows from the expansions in the Table 3.1.1. The function arctanx has
an analytic continuation as single-valued functions in the complex plane with cuts
along the imaginary axis from i to ∞ and from −i to −∞. It follows from the
theorem that “the important formula” is valid in this set.

3.1.4 Manipulating Power Series

In some contexts, algebraic recurrence relations can be used for the computation of
the coefficients in Maclaurin expansions, in particular if only a moderate number
of coefficients are wanted. We shall study a few examples.

Example 3.1.10. Expansion of a composite function.
Let g(x) = b0 + b1x + b2x

2 + . . . , f(z) = a0 + a1z + a2z
2 + . . . , be given

functions, analytic at the origin. Find the power series

h(x) = f(g(x)) ≡ c0 + c1x+ c2x
2 + . . . .

In particular, we shall study the case f(z) = ez.
The first idea we may think of is to substitute the expansion b0+b1x+b2x

2+. . .
for z into the power series for f(z). This is, however, no good unless g(0) = b0 = 0,
because

(g(x))k = bk0 + kbk−1
0 b1x+ . . .

gives a contribution to, e.g., c0, c1, for every k, so we cannot successively compute
the cj by finite computation.

Now suppose that b0 = 0, b1 = 1, i.e. g(x) = x + b2x
2 + b3x

3 + . . .. (The
assumption that b1 = 1 is not important, but it simplifies the writing.) Then cj
depends only on bk, ak, k ≤ j, since (g(x))k = xk + kb2x

k+1 + . . . . We obtain

h(x) = a0 + a1x+ (a1b2 + a2)x
2 + (a1b3 + 2a2b2 + a3)x

3 + . . . ,
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and the coefficients of h(x) come out recursively,

c0 = a0; c1 = a1, c2 = a1b2 + a2, c3 = a1b3 + 2a2b2 + a3, . . . .

Now consider the case f(z) = ez, i.e. an = 1/n!. We first see that it is then
also easy to handle the case that b0 6= 0, since

eg(x) = eb0eb1x+b2x2+b3x3+....

But there exists a more important simplification if f(z) = ez. Note that h satisfies
the differential equation h′(x) = g′(x)h(x), h(0) = eb0 . Hence

∞
∑

n=0

(n+ 1)cn+1x
n ≡

∞
∑

j=0

(j + 1)bj+1x
j

∞
∑

k=0

ckx
k.

Set c0 = eb0 , apply the convolution formula (3.1.8), and match the coefficients of
xn on the two sides:

(n+ 1)cn+1 = b1cn + 2b2cn−1 + . . .+ (n+ 1)bn+1c0, (n = 0, 1, 2, . . .).

This recurrence relation is more easily programmed than the general procedure
indicated above. Other functions that satisfy appropriate differential equations
can be treated similarly; see Problem 8. More information is found in Knuth [29,
Sec. 4.7].

Formulas like these are often used in packages for symbolic differentiation
and for automatic or algorithmic differentiation. Expanding a function into a
Taylor series is equivalent to finding the sequence of derivatives of the function at a
given point. The goal of symbolic differentiation is to obtain analytic expressions
for derivatives of functions given in analytic form. This is handled by computer
algebra systems, e.g., Maple or Mathematica.

In contrast, the goal of automatic or algorithmic differentiation is to ex-
tend an algorithm (a program) for the computation of the numerical values of a few
functions to an algorithm that also computes the numerical values of a few deriva-
tives of these functions, without truncation errors. A simple example, Horner’s
scheme for computing values and derivatives for a polynomial was given in Sec. 1.3.1.
At the time of writing, there is a lively activity about automatic differentiation—
theory, software development and applications. Typical applications are in the
solution of ordinary differential equations by Taylor expansion; see Example 3.1.1.
Such techniques are also used in optimization for partial derivatives of low order,
e.g., for the computation of Jacobian and Hessian matrices.

Sometimes power series are needed with many terms, although rarely more
than 30 (say). (The ill-conditioned series are exceptions; see Sec. 3.2.5.) The de-
termination of the coefficients can be achieved by the Toeplitz matrix method
using floating point computation and an interactive matrix language. Computa-
tional details will be given in Problems 9–12 of this section for Matlab . (Systems
like Maple and Mathematica that include exact arithmetic and other features, are
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evidently also useful here.) An alternative method, the Cauchy–FFT method,
will be described in Sec. 3.2.2.

Both methods will be applied later in the book. See in particular Sec. 3.3.4,
where they are used for deriving approximation formulas in the form of expansions
in powers of elementary difference or differential operators. In such applications,
the coefficient vector, v (say), is obtained in floating point (usually in a very short
time). Very accurate rational approximations to v, often even the exact values, can
be obtained (again in a very short time) by applying Matlab function [N,D] =
rat(z,Tol) to the results, with two different values of the tolerance. This function
is based on a continued fraction algorithm, given in Example 3.5.2 for finding the
best rational approximation to a real number. This can be used for the “cleaning”
of numerical results which have, for practical reasons, been computed by floating
point arithmetic, although the exact results are known to be (or strongly believed
to be) rather simple rational numbers. The algorithm attempts to remove the
“dirt” caused by computational errors. In Sec. 3.5.1 you also find some comments
of importance for the interpretation of the results, e.g., for judging whether the
rational numbers are exact results or good approximations only.

Let

f(z) =
∞
∑

j=0

ajz
j

be the power series of a function analytic at z = 0. With this power series we can
associate an infinite upper triangular semicirculant matrix

Cf =













a0 a1 a2 a3 . . .
a0 a1 a2 . . .

a0 a1 . . .
a0 . . .

. . .













, (3.1.21)

Similarly, a truncated power series fN (z) =
∑N−1

j=0 ajz
j is represented by the finite

leading principalN×N submatrix of Cf (see Definition A.3.1), which can be written
as

fN (SN ) =

N−1
∑

j=0

ajS
j
N , (3.1.22)

where SN is a shift matrix. For example, with N = 4,

fN (SN ) =







a0 a1 a2 a3

0 a0 a1 a2

0 0 a0 a1

0 0 0 a0






, SN =







0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0






.

The following properties of SN explains the term “shift matrix”:

SN







x1

x2

x3

x4






=







x2

x3

x4

0






, (x1, x2, x3, x4)SN = (0, x1, x2, x3).
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An N × N matrix, with a structure analogous to f4(S4), is known as an upper
triangular Toeplitz matrix.9. Matrices (not necessarily triangular), whose entries
are constant along each diagonal, are called Toeplitz matrices.

What do the powers of SN look like? Note that SN
N = 0, i.e. SN is a nilpo-

tent matrix. This is one of the reasons why the Toeplitz matrix representation is
convenient for work with truncated power series, since it follows that

f(SN) =

∞
∑

j=0

ajS
j
N =

N−1
∑

j=0

ajS
j
N = fN(SN ).

It is easily verified that a product of upper triangular Toeplitz matrices is of the
same type. Also note that the multiplication of such matrices is commutative. It
is also evident that a linear combination of such matrices is of the same type.
Further it holds that

(f · g)(SN ) = f(SN )g(SN ) = fN(SN )gN (SN );

(αf + βg)(SN ) = αfN (SN ) + βgN (SN ).

(In general, Toeplitz matrices are not nilpotent, and the product of two non-
triangular Toeplitz matrices is not a Toeplitz matrix. Similarly for the inverse.
In this section we shall only deal with upper triangular Toeplitz matrices.)

Denote by eT
1 the first row of the unit matrix of a size appropriate in the

context. An upper triangular Toeplitz matrix of order N is uniquely determined by
its first row r by means of a simple and fast algorithm that we call toep (r,N). For
example, the unit matrix of order N is IN = toep (eT

1 , N), and the shift matrix is
SN = toep ([0 eT

1 ], N). A Matlab implementation is given in Problem 9.
Now it will be indicated how one can save CPU time and memory space by

working on the row vector level, with the first rows instead of with the full triangular
matrices.10 We shall denote by f1, g1, the row vectors with the first N coefficients
of the Maclaurin expansions of f(z), g(z). They are equal to the first rows of the
matrices f(SN ), g(SN ), respectively. Suppose that f1, g1 are given and we shall
compute f · g1, i.e. the first row of f(SN ) · g(SN ) in a similar notation. Then

f · g1 = eT
1 (f(SN ) · g(SN)) = (eT

1 f(SN )) · g(SN ) = f1 · toep(g1, N). (3.1.23)

Note that you never have to multiply two triangular matrices, if you work with
the first rows only. So, only about N2/2 flops and (typically) an application of
the toep(r,N) algorithm, are needed instead of about N3/6 if two upper trian-
gular matrices are multiplied; see Sec. 1.4.1, where the operation count for matrix
multiplication is discussed.

Similarly the quotient of two upper triangular Toeplitz matrices, (say)

Q(SN) = f(SN ) · g(SN )−1,

9Otto Toeplitz (1881-1940), German mathematician
10In interactive computations with rather short series the gain of time may sometimes be neu-

tralized by an increased number of manual operations. See the computer exercises.
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is also a matrix of the same type. (A hint to a proof is given in Problem 9.11) Note
that Q(SN ) · g(SN ) = f(SN ). With similar notations as above, we obtain for the
first row of this matrix equation the following triangular linear system where the
row vector q1 is the unknown.

q1 · toep(g1, N) = f1. (3.1.24)

Although the discussion in Sec. 1.3.4 is concerned with a linear system with a column
as the unknown (instead of a row), we draw from it the conclusion that only about
N2/2 scalar flops (including N scalar divisions) and one application of the toep
algorithm, are needed, instead of the N3/6 needed in the solution of the matrix
equation Q · g(SN) = f(SN ).12

A library called toeplib consists of short Matlab scripts mainly based on
Table 3.1.2. It is given in Problem 10 (a). In Problem 10 (b), etc., the series of the
library are combined by elementary operations to become interesting examples of
the Toeplitz matrix method. The convenience, the accuracy and the execution time
are probably much better than you expect; even the authors were surprised.

Next we shall study how a composite function h(z) = f(g(z)) can be
expanded in powers of z. Suppose that f(z) and g(z) are analytic at z = 0,
f(z) =

∑∞
j=1 f1(j)zj−1. An important assumption is that g(0) = 0. Then

we can set g(z) = zḡ(z), hence (g(z))n = zn(ḡ(z))n and, because Sn
N = 0, n ≥ N ,

we obtain

(g(SN ))n = Sn
N · (ḡ(SN ))n = 0, if n ≥ N and g(0) = 0,

h(SN ) ≡ f(g(SN )) =

N
∑

j=1

f1(j)(g(SN))j−1, if g(0) = 0. (3.1.25)

This matrix polynomial can be computed by a matrix version of Horner’s scheme.
The row vector version of this equation is written

h1 = comp(f1, g1, N). (3.1.26)

A Matlab implementation of the function comp is listed and applied in Prob-
lem 11.

If g(0) 6= 0, Equation (3.1.25) still provides an “expansion”, but it is wrong;
see Problem 11 (c). Suppose that |g(0)| is less than the radius of convergence of the
Maclaurin expansion of f(x). Then a correct expansion is obtained by a different
decomposition. Set g̃(z) = g(z) − g(0), f̃(x) = f(x+ g(0)). Then f̃ , g̃ are analytic

11In the terminology of algebra, the set of upper triangular N × N Toeplitz matrices, i.e.
{

PN−1
j=0 αjSj

N}, αj ∈ C, is a commutative integral domain that is isomorphic with the set of

polynomials
PN−1

j=0 αjxj modulo xN , where x is an indeterminate.
12The equations (3.1.23) and (3.1.24) are mathematically equivalent to the convolution product

in (3.1.8) and the procedure demonstrated in Example 3.1.6, respectively. Sometimes both proce-
dures suffer from the growth of the effects of rounding errors when n is very large, in particular
when the power series are ill- conditioned; see Sec. 3.1.11. An advantage of the Toeplitz matrix
method is that the coding, in a language with convenient matrix handling, becomes easier.
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at z = 0. g̃(0) = 0 and f̃(g̃(z)) = f(g(z)) = h(z). So, (3.1.25) and its row vector
implementations can be used if f̃ , g̃ are substituted for f, g.

Analytic functions of matrices are defined, in terms of their Taylor series; see
Sec. 9.2.5 in Vol. II. For example, the series

eA = I +A+
A2

2!
+
A2

2!
+ · · · ,

converges elementwise for any matrix A. There exist several algorithms for comput-
ing eA,

√
A, logA, where A is a square matrix. One can make linear combinations,

products, quotients and composite functions of them. For example, a “principal
matrix value” of Y = (I +A)α is obtained by

B = log(I +A), Y = eαB.

For a composite function f(g(A)), it is here not necessary that g(0) = 0, but it
is important that g(z) and f(g(z)) are analytic when z is an eigenvalue of A. We
obtain truncated power series if A = SN ; note that SN has a multiple eigenvalue at
0. The coding, and the manual handling in interactive computing, are convenient
with matrix functions, but the computer has to perform more operations on full
triangular matrices than with the row vector level algorithms described above. So,
for very long expansions the earlier algorithms are notably faster.

If the given power series, f(x), g(x), . . . have rational coefficients, then the
exact results of a sequence of additions, multiplications, divisions, compositions,
differentiations, integrations will have rational coefficients, because the algorithms
are all formed by a finite number of scalar additions, multiplications and divisions.
As mentioned above, very accurate rational approximations, often even the exact
values, can be quickly obtained by applying a continued fraction algorithm that
is presented in Sec. 3.5.2 to the results of a floating point computation. See also
Problems 9–12.

If f(x) is an even function, its power series contains only even powers of x.
You gain space and time, by letting the shift matrix SN correspond to x2 (instead
of x). Similarly, if f(x) is an odd function, you can instead work with the even
function f(x)/x, and let SN correspond to x2. See Problems 9–12.

Finally we consider a classical problem of mathematics, known as power
series reversion. The task is to find the power series for the inverse function
x = g(y) of the function y = f(x) =

∑∞
j=0 ajx

j , in the particular case where a0 = 0,
a1 = 1. Note that even if the series for f(x) is finite, the series for g(y) is in general
infinite!

The following simple cases of power series reversion are often sufficient and
useful in low order computations with paper and pencil.

y = x+ axk + . . . , (k > 1),

⇒ x = y − axk − . . . = y − ayk − . . . ; (3.1.27)

y = f(x) ≡ x+ a2x
2 + a3x

3 + a4x
4 + . . . ,

⇒ x = g(y) ≡ y − a2y
2 + (2a2

2 − a3)y
3 − (5a2

2 − 5a2a3 + a4)y
4 + . . . . (3.1.28)
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An application of power series reversion occurs in the derivation of a family of
iterative methods of arbitrary high order for solving scalar non-linear equations; see
Sec. 6.3.5.

Knuth [29] devotes Sec. 4.7 to the manipulation of power series. He presents
several algorithms for power series reversion, e.g., a classical algorithm due to La-
grange 1768 that requires O(N3) operations to compute the first N terms. Knuth
also includes a recent algorithm due to Brent and Kung [7]. It is based on an adap-
tation, to formal power series, of Newton’s method (1.2.3) for solving a numerical
algebraic equation. For power series reversion, the equation to be solved reads

f(g(y)) = y, (3.1.29)

where the coefficients of g are the unknowns. The number of correct terms is
roughly doubled in each iteration, as long as N is not exceeded. In the usual nu-
merical application of Newton’s method to a scalar non-linear equation (see Secs. 1.2
and 6.3) it is the number of significant digits that is (approximately) doubled, so-
called quadratic convergence. Brent–Kung’s algorithm can be implemented in about
150 (N logN)3/2 scalar flops.

In Problem 12, a convenient Toeplitz matrix implementation of the idea of
Brent and Kung is presented. It requires about cN3 logN scalar flops with a mod-
erate value of c. It is thus much inferior to the original algorithm if N is very large.
In some interesting interactive applications, however, N rarely exceeds 30. In such
cases our implementation is satisfactory, unless (say) hundreds of series are to be
reversed.

3.1.5 Formal Power Series

A power series is not only a means for numerical computation; it is also an aid
for deriving formulas in numerical mathematics and in other branches of applied
mathematics. Then one has another, more algebraic, aspect of power series that
we shall briefly introduce. A more rigorous and detailed treatment is found in
Henrici [25, Chapter 1], and in the literature quoted there.

In a formal power series, P = a0 + a1x + a2x
2 + · · ·, the coefficients aj

may be real or complex numbers (or elements in some other field), while x is an
algebraic indeterminate; x and its powers can be viewed as place keepers. No real
or complex values are assigned to x and P. Convergence, divergence and remainder
term have no relevance for formal power series. The coefficients of a formal power
series may even be such that the series diverges for any non-zero complex value that
you substitute for the indeterminate, e.g. the series

P = 0! − 1!x + 2!x2 − 3!x3 + · · · . (3.1.30)

In algebraic terminology, the set of formal power series is an integral domain. The
sum of P and another formal power series, Q = b0 + b1x + b2x

2 + · · ·, is defined as

P + Q = (a0 + b0) + (a1 + b1)x + (a2 + b2)x
2 + · · · .
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Similarly, the Cauchy product is defined as

PQ = c0 + c1x + c2x
2 + · · · ,

where the coefficients are given by the convolution formula (3.1.8). The division of
two formal power series is defined by a recurrence, as indicated in Example 3.1.5,
iff the first coefficient of the the denominator is not zero.

Other operations are defined without surprises, e.g., the derivative of P is
defined as P′ = 1a1 +2a2x+3a3x

2 + . . .. The limit process, by which the derivative
is defined in Calculus, does not exist for formal power series. The usual rules for
differentiation are still valid, and as an exercise you may verify that the formal power
series defined by (3.1.30) satisfies the formal differential equation x2P′ = x − P.

Formal power series can be used for deriving identities. In most applications
in this book difference operators or differential operators are substituted for the
indeterminates, and the identities are then used in the deriving of approximation
formulas, e.g. for interpolation, numerical differentiation and integration etc.

The formal definitions of the Cauchy product, (i.e. convolution) and division
are rarely used in practical calculation. It is easier to work with upper triangular
N×N Toeplitz matrices, as in Sec. 3.1.5, where N is any natural number. Algebraic
calculations with these matrices are isomorphic with calculations with formal power
series modulo xN .

If you perform operations on matrices fM (S), gM (S), . . ., where M < N , the
results are equal to the principal M ×M submatrices of the results obtained with
the matrices fN(S), gN(S), . . .. This fact follows directly from the equivalence with
power series manipulations. It is also related to the fact that in the multiplication
etc. of block upper triangular matrices, the diagonal blocks of the product equals
the products of the diagonal blocks, and no new off-diagonal blocks enter.

So, we can easily define the product of two infinite upper triangular matrices,
C = AB, by stating that if i ≤ j ≤ n then cij has the same value that it has in
the N × N submatrix CN = ANBN for every N ≥ n. In particular C is upper
triangular, and note that there are no conditions on the behaviour of the elements
aij , bij as i, j → ∞. One can show that this product is associative and distributive.
For the infinite triangular Toeplitz matrices it is commutative too.13

Henrici [25, Sec. 1.3], calls this a representation of formal power series by in-
finite upper triangular Toeplitz matrices, (which he names semicirculants), and
proves that the mapping of the set of formal power series onto the set of semicir-
culants is an isomorphism. If the formal power series a0 + a1x + a2x

2 + · · ·, and
its reciprocal series, which exists iff a0 6= 0, are represented by the semicirculants
A and B, respectively, Henrici proves that AB = BA = I, where I is the unit ma-
trix of infinite order. This indicates how to define the inverse of any infinite upper
triangular matrix if all diagonal elements aii 6= 0.

If a function f of a complex variable z is analytic at the origin, then we define14

f(x) as the formal power series with the same coefficients as the Maclaurin series
for f(z). In the case of a multivalued function we take the principal branch.

13For infinite non-triangular matrices the definition of a product generally contains conditions
on the behaviour of the elements as i, j → ∞, but we shall not discuss this here.

14Henrici, loc. cit., does not use this concept—it may not be established.
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We do not consider formal power series with several indeterminates. There
may occur expressions with several bold-type symbols. Only one of them is the
indeterminate, and the others are shorthand notations for analytic functions of this
indeterminate.

There is a kind of “permanence of functional equations” also for the gener-
alization from a function g(z) of a complex variable that is analytic at the origin,
to the formal power series g(x). We illustrate a general principle on an important
special example that we formulate as a lemma, since we shall need it in the next
section.

Lemma 3.1.9.
(ex)θ = eθx, (θ ∈ R). (3.1.31)

Proof. Let the coefficient of xj in the expansion of the left hand side be φj(θ).
The corresponding coefficient for the right hand side is θj/j!. If we replace x by
a complex variable z, the power series coefficients are the same, and we know that
(ez)θ = eθz, hence φj(θ) = θj/j!, j = 1, 2, 3 . . ., hence

∑∞
0 φj(θ)x

j =
∑∞

0 (θj/j!)xj ,
and the lemma follows.

Example 3.1.11.
Find (if possible) a formal power series Q = 0 + b1x + b2x

2 + b3x
3 + . . ., that

satisfies the equation
e−Q = 1 − x, (3.1.32)

where e−Q = 1 − Q + Q2/2!− . . ..
We can, in principle, determine an arbitrarily long sequence b1, b2, b3, . . . bk by

matching the coefficients of x,x2,x3, . . .xk, in the two sides of the equation. We
display the first three equations.

1 − (b1x + b2x
2 + b3x

3 + . . .) + (b1x + b2x
2 + . . .)2/2 − (b1x + . . .)3/6 + . . .

= 1 − 1x + 0x2 + 0x3 + . . . .

For any natural number k, the matching condition is of the form

−bk + φk(bk−1, bk−2, . . . , b1) = 0.

This shows that the coefficients are uniquely determined.

−b1 = −1 ⇒ b1 = 1;

−b2 + b21/2 = 0 ⇒ b2 = 1/2;

−b3 + b1b2 − b1/6 = 0 ⇒ b3 = 1/3;

There exists, however, a much easier way to determine the coefficients. For the
analogous problem with a complex variable z, we know that the solution is unique:
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q(z) = − ln(1 − z) =
∑∞

1 zj/j (the principal branch, where b0 = 0), and hence
∑∞

1 xj/j is the unique formal power series that solves the problem, and we can use
the notation Q = − ln(1 − x) for it.15

This example will be applied in Example 3.2.18 to the derivation of formulas
for numerical differentiation.

The theory of formal power series can in a similar way justify many elegant
“symbolic” applications of power series for deriving mathematical formulas.

Review Questions

1. (a) Formulate three general theorems that can be used for estimating the
remainder term in numerical series.

(b) What can you say about the remainder term, if the nth term is O(n−k),
k > 1? Suppose in addition that the series is alternating. What further
condition should you add, in order to guarantee that the remainder term will
be O(n−k)?

2. Give, with convergence conditions, the Maclaurin series for ln(1+x), ex, sinx,

cosx, (1 + x)k, (1 − x)−1, ln
1 + x

1 − x
, arctanx.

3. Describe the main features of a few methods to compute the Maclaurin coef-
ficients of, e.g.,

√
2ex − 1.

4. Give generating functions of the Bernoulli and the Euler numbers. Describe
generally how to derive the coefficients in a quotient of two Maclaurin series.

5. If a functional equation, e.g. 4(cosx)3 = cos 3x+ 3 cosx, is known to be valid
for real x, how do you know that it holds also for all complex x? Explain what
is meant by the statement that it holds also for formal power series, and why
is this true?

6. (a) Show that multiplying two arbitrary upper triangular matrices of order

N uses
∑N

k=1 k(N − k) ≈ N3/6 flops, compared to
∑N

k=1 k ≈ N2/2 for the
product of a row vector and an upper triangular matrix.

(b) Show that if g(x) is a power series and g(0) = 0, then g(SN )n = 0, n ≥ N .
Make an operation count for the evaluation of the matrix polynomial f(g(SN ))
by the matrix version of Horner’s scheme.

(c) Consider the product f(SN )g(SN ), where f(x) and g(x) are two power
series. Show, using rules for matrix multiplication, that for any M < N the
leading M ×M block of the product matrix equals f(SM )g(SM ).

7. Consider a power series y = f(x) =
∑∞

j=0 ajx
j , where a0 = 0, a1 = 1. What

is meant by reversion of this power series? In the Brent–Kung method the
problem of reversion of a power series is formulated as a nonlinear equation.
Write this equation for the Toeplitz matrix representation of the series.

15The three coefficients bj computed above agree, of course, with 1/j, j = 1 : 3.
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8. Let P = a0 + a1x + a2x
2 + · · · and Q = b0 + b1x + b2x

2 + · · · be two formal
power series. Define the sum P + Q and the Cauchy product PQ.

Problems and Computer Exercises

1. In how large a neighborhood of x = 0 does one get, respectively, four and six
correct decimals using the following approximations?

(a) sinx ≈ x; (b) (1+x2)−1/2 ≈ 1−x2/2; (c) (1+x2)−1/2e
√

cos x ≈ e(1− 3
4x

2).

Comment: The truncation error is asymptotically qxp where you know (?) p.

An alternative to an exact algebraic calculation of q, is a numerical estimation
of q, by means of the actual error for a suitable value of x—neither too big
nor too small (!). (Check the estimate of q for another value of x.)

2. (a) Let a, b, be the lengths of the two smaller sides of a right angle triangle,
b ≪ a. Show that the hypotenuse is approximately a+ b2/(2a) and estimate
the error of this approximation. If a = 100, how large is b allowed to be, in
order that the absolute error should be less than 0.01?

(b) How large a relative error do you commit, when you approximate the
length of a small circular arc by the length of the chord? How big is the error
if the arc is 100 km on a great circle of the earth? (Approximate the earth by
a ball of radius 40000/(2π) km.)

(c) P (x) = 1 − 1
2x

2 + 1
24x

4 is a polynomial approximation to cosx for small

values of |x|. Estimate the errors of P (x), P ′(x), 1
x

∫ x

0
P (t) dt, and compare

them, e.g., for x = 0.1.

(d) How accurate is the formula arctanx ≈ π/2 − 1/x for x≫ 1 ?

3. (a) Compute 10−(999.999)1/3 to 9 significant digits, by the use of the binomial
expansion. Compare with the result obtained by a computer in IEEE double
precision, directly from the first expression.

(b) How many terms of the Maclaurin series for ln(1 + x) would you need
in order to compute ln 2 with an error less than 10−6 ? How many terms
do you need, if you use instead the the series for ln (1 + x)/(1 − x), with an
appropriate choice of x?

4. Give an approximate expression of the form ahbf (c)(0) for the error of the

estimate of the integral
∫ h

−h f(x)dx obtained by Richardson extrapolation (ac-
cording to Sec. 1.2.2) from the trapezoidal values T (h) and T (2h).

5. Compute, by means of appropriate expansions, not necessarily in powers of t,
the following integrals to (say) five correct decimals.
(This is for paper, pencil and a pocket calculator.)

(a)

∫ 0.1

0

(1 − 0.1 sin t)1/2 dt; (b)

∫ ∞

10

(t3 − t)−1/2 dt.
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6. (a) Expand arcsinx into powers of x by the integration of the expansion of
(1 − x2)−1/2.

(b) Use the result in (a) to prove the expansion

x = sinhx− 1

2

sinh3 x

3
+

1·3
2·4

sinh5 x

5
− 1·3·5

2·4·6
sinh7 x

7
+ . . .

7. (a) Consider the power series for

(1 + x)−α, x > 0, 0 < α < 1.

Show that it is equal to the hypergeometric function F (α, 1, 1,−x). Is it true
that the expansion is alternating, and that the remainder has the same sign
as the first neglected term, also if x > 1, where the series is divergent? What
do the Theorems 3.1.3 and 3.1.4 tell you in the cases x < 1 and x > 1?

Comment: An application of the divergent case for α = 1
2 is found in Prob-

lem 3.2.9 (c).

(b) Express the coefficients of the power series expansions of y cot y and
ln(sin y/y) in terms of the Bernoulli numbers.

Hint: Set x = 2iy into (3.1.17). Differentiate the second function.

(c) Find a recurrence relation for the Euler numbers En, see Example 3.1.5,
and use it for showing that these numbers are integers.

(d) Show that

ln
(z + 1

z − 1

)

= 2
(1

z
+

1

3z3
+

1

5z5
+ . . .

)

, |z| > 1.

Find a recurrence relation for the coefficients of the expansion

(

ln
(z + 1

z − 1

))−1

=
1

2
z − µ1z

−1 − µ3z
−3 − µ5z

−5 − . . . , |z| > 1.

Compute µ1, µ3, µ5 and determine
∑∞

0 µ2j+1 by letting z ↓ 1. (Full rigor is
not required.)

Hint: Look at Example 3.1.5.

8. The power series expansion g(x) = b1x + b2x
2 + . . . is given. Find recurrence

relations for the coefficients of the expansion for h(x) ≡ f(g(x)) = c0 + c1x+
c2x

2 + . . . in the following cases:

(a) h(x) = ln(1 + g(x)), f(x) = ln(1 + x).

Hint: Show that h′(x) = g′(x) − h′(x)g(x). Then proceed analogously to
Example 3.1.10.

Answer:

c0 = 0, cn = bn − 1

n

n−1
∑

j=1

(n− j)cn−jbj .

(b) h(x) = (1 + g(x))k, f(x) = (1 + x)k, k ∈ R, k 6= 1.
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Hint: Show that g(x)h′(x) = kh(x)g′(x) − h′(x). Then proceed analogously
to Example 3.1.10.

Answer:

c0 = 1, cn =
1

n

n
∑

j=1

(

(k + 1)j − n
)

cn−jbj ,

n = 1, 2,. . . . The recurrence relation is known as the J. C.P. Miller formula.

(c) h1(y) = cos g(x), h2(y) = sin g(x), simultaneously.

Hint: Consider instead h(y) = eig(x), and separate real and imaginary parts
afterwards.

9. In Problems 9–12 we use notations and results from the Toeplitz matrix rep-
resentation in Sec. 3.1.4. For example, SN denotes the Nth order shift matrix
and f1 is the first row vector of the matrix f(SN). We also assume that
you are familiar with simple Matlab . We now present some more advanced
notions from Matlab that are important in our context.
The solution to the linear system (3.1.24), i.e. q1 · toep(g1, N) = f1, can in
Matlab be neatly written as q1 = f1/toep(g1,N). Note that this is the
vector by matrix division of Matlab .
If x is a vector, cumprod(x) is the cumulative product of the elements of x,
e.g., cumprod(2:5) = [2 6 24 120]; cumsum is analogously defined.
If some of the arguments of a function, in the sense of Matlab , are optional,
nargin is the number of input arguments actually used; nargout is defined
analogously.
The Matlab function [Nu,De] = rat(v,Tol) returns two integer vectors
so that abs(Nu./De - v) <= Tol*abs(v). There are several variants of the
function rat; see the help file. This function is based on a version of the
continued fraction algorithm presented in Sec. 3.5.2. Take at least two different
values for Tol, and compare the results. Use the rational form of a result,
only if it seems reliable and shorter than the floating form.
Choose N = 6 while you test that a code is correct. When you apply it
or examine the properties of the algorithm, choose N in the range [12, 24].
(Even then the computing time may be too short to be measured by the “the
stopwatch timer” tic . . . toc; tic starts the timer; toc, by itself, displays the
elapsed time since tic was used. (You can also save the elapsed time by a
statement like t = toc.) If you choose N very large you may risk exponent
underflow or overflow, or some other nuisance.
In most of the following examples, the algorithms are reasonably stable. Nu-
merical instability can occur, however, depending on the functions f, g, . . . that
they are applied to, and it is a good habit to try to compare the results of two
”independent” ways to derive an expansion. In applications to ill-conditioned
power series; see Sec. 3.2.5, high values of N are needed, and the results may
sometimes be ruined by numerical instability, unless multiple precision is used.

(a) Convince yourself that the following function expands the row r to a tri-
angular Toeplitz matrix. What is done if length(r) < N and why? What is
the default value of the optional input argument N?
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function T = toep(r,N);

% toep expands the row vector r into an upper

% triangular Toeplitz matrix T.

%N is an optional argument.

%

lr= length(r);

if (nargin==1 | lr > N), N = lr; end;

if lr<N, r=[r, zeros(1,N-lr)]; end;

gs = zeros(N,N);

for i=1:N,

gs(i,i:N) = r(1:N-i+1);

end

T = gs;

(b) If you want N > 3, terms in your results, although the number of terms
in the given expression for f(x), e.g., (1 + x+ x2)/(1− x+ x2) is smaller, you
must augment this by sequences of zeros, so that the order of Toeplitz matrix
becomes N . Show experimentally and theoretically that the first row of

(IN + SN + S2
N )/(IN − SN + S2

N)

is, e.g., obtained by the statement

[1, 1, 1, zeros(1,N-3)]/toep([1, -1, 1, zeros(1,N-3)]).

(c) Let f(z) = −z−1 ln(1−z). Compute the first six coefficients of the Maclau-
rin series for the functions f(z)k, k = 1 : 5 in floating point, and convert them
to rational form. (The answer and an application to numerical differentiation
are given in Example 3.3.6.)

Comment: If you choose an appropriate tolerance in the Matlab function
rat you will obtain an accurate rational approximation, but it is not necessar-
ily exact. Try to judge which of the coefficients are exact.

(d) Compute in floating point the coefficients µ2j−1, j = 1 : 11, defined in
Problem 7 (d), and convert them to rational form.

Hint: First seek an equivalent problem for an expansion in ascending powers.

(e) Prove that Q = f(SN)g(SN )−1 is an upper triangular Toeplitz matrix.

Hint: Define Q = toep(q1, N), where q1 is defined by (3.1.24), and show that
each row of the equation Q · g(SN ) = f(SN ) is satisfied.

10. (a) Study the following “library” of Matlab lines for common applications
of the Toeplitz matrix method for arbitrary given values of N ; the shift matrix
SN corresponds to the variable x. You are welcome to add new “cases”, e.g.,
for some of the exercises below.

function y = toeplib(cas,N,par)

% cas is a string parameter;

% par is an optional real or complex scalar;

% the default value is 1.
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% All series are truncated to N terms.

if nargin == 2, par = 1; end

if cas == ’bin’,

y=[1 cumprod(par:-1:par-N+2)./cumprod(1:N-1)];

% y = 1st row of binomial series (1+x)^par, par in R;

elseif cas == ’con’,

y = cumprod([1 par*ones(1,N-1)]);

% The array multiplication y.*f1 returns the first

% row of f(par*S_N);

% sum(y.*f1) evaluates f(par). See also Problem~(b).

elseif cas == ’exp’,

y = [1 cumprod(par./[1:(N-1)]];

% y = 1st row of exponential \exp(par*x).

% Since par can be complex, circular

% (or trigonometric) functions can also be expanded.

elseif cas == ’log’,

y=[0 1./[1:(N-1)]].*cumprod ([-1 -par*ones(1:N-1)]);

% y= 1st row of logarithm \ln(1+par*x).

elseif cas == ’e1t’,

y=[1 zeros(1,N-1)];

% y=e_1^T , i.e. 1st row of (eye)N.

elseif cas == ’SN1’, y = [0 1 zeros(1,N-2)];

% y=1st row of S_N .

elseif cas == ’dif’, y = [0 1:(N-1)];

% The array multiplication y.*f1 returns xf’(x).

else cas == ’int’, y =1./[1:N].

% The array multiplication y.*f1 returns

% {1\over x}\int_0^x f(t) dt.

end

(b) Evaluation of f(x). Given N and f1 of your own choice, set fterms

= toeplib(’con’,N,x).*f1. What is sum(fterms) and cumsum(fterms)?
When can sum(fliplr(fterms)) be useful?

(c) Write a code that, for arbitrary given N , returns the 1st rows of the
Toeplitz matrices for cos x and sin x, with SN corresponding to x, and then
transforms them to to 1st rows for Toeplitz matrices with SN corresponding
to x2. Apply this, for (say) N = 36, to determine the errors of the coefficients
of 4(cosx)3 − 3 cosx− cos 3x.

(d) Find out how a library “toeplib2” designed for Toeplitz matrices for even
functions, where SN corresponds to x2, must be different from toeplib. For
example how are cas == ’dif’ and cas == ’int’ to be changed?

(e) Unfortunately, a toeplib “case” has at most one parameter, namely par.
Write a code that calls toeplib twice for finding the Maclaurin coefficients of
the three parameter function

y = (a+ bx)α, a > 0,

b, α real. Compute the coefficients in two different ways for N = 24; a = 2;
b = −1; α = ±3, and compare the results for estimating the accuracy of the
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coefficients.

(f) Compute the Maclaurin expansions for (1−x2)−1/2 and arcsin(x), and for
y = 2arcsinh (x/2). Expand also dy/dx and y2. Convert the coefficients to
rational numbers, as long as they seem to be reliable. Save the results, or make
it easy to reproduce them, for comparisons with the results of Problem 12(b).

Comment: The last three series are fundamental for the expansions of differ-
ential operators in powers of central difference operators, which lead to highly
accurate formulas for numerical differentiation.

(g) Two power series that generate the Bernoulli numbers are given in Exam-
ple 3.1.5, namely

x ≡
( ∞
∑

i=1

xi

i!

)( ∞
∑

j=0

Bjx
j

j!

)

;
x

2

ex/2 + e−x/2

ex/2 − e−x/2
=

∞
∑

j=0

B2jx
2j

(2j)!
.

Compute B2j for (say) j ≤ 30 in floating point, using each of these formulas,
and compute the difference of the results, which are influenced by rounding
errors. Try to find, whether one of the sequences is more accurate than the
other, by means of the formula in (3.1.18) for (say) j > 4. Then convert the
results to rational numbers. Use several tolerances in the function rat and
compare with [1, Table 23.2]. Some of the results are likely to disagree. Why?

(h) The Kummer confluent hypergeometric function M(a, b, x) is defined by
the power series (3.1.14). Kummer’s first identity, i.e.

M(a, b,−x) = e−xM(b− a, b, x),

is important, e.g., because the series on the left hand side is ill-conditioned
if x ≫ 1, a > 0, b > 0, while the expression on the right hand side is well-
conditioned. Check the identity experimentally by computing the difference
between the series on the left hand side and on the right for a few values of a, b,
The computed coefficients are afflicted by rounding errors. Are the differences
small enough to convince you of the validity of the formula?

11. Read about expansions of composite functions in Sec. 3.1.4
(a) Write the Horner recurrence for the evaluation of the matrix polynomial
f(g(SN)) according to (3.1.25). Then show that the following Matlab func-
tion evaluates the first row of h(SN ) = f(g(SN)), if g(0) = 0.

function h1 = comp(f1,g1,N);

%

% INPUT: the integer N and the rows f1, g1, with the

% first N Maclaurin coefficients for the analytic functions

% f(z), g(z).

% OUTPUT: The row h1 with the first N Maclaurin coefficients

% for the composite function h(z)=f(g(z)), where g1(1)=g(0)=0.

% computed according to the algorithm for a composite function.

% Error message if g(0)\ne 0.
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if g1(1) ~= 0,

error(‘g(0) ~= 0 in a composite function f(g(z))’)

end

e1t = zeros(1,N); e1t(1)=1;

r = f1(N)*e1t;

gs = toep(g1,N);

for j = N-1:-1:1,

r = r*gs + f1(j)*e1t;

end

h1 = r;

(b) Matrix functions in Matlab : For h(z) = eg(z) it is convenient to use the
matrix function expm(g(SN)) or, on the vector level, h1 = e1t*expm(g(SN)),
rather than to use h1 = comp(f1,g1). If f(0) 6= 0, you can analogously use
the functions logm and sqrtm. They may be slower and less accurate than
h1 = comp(f1,g1), but they are typically fast and accurate enough.
Compare computing time and accuracy in the use of expm(k * logm(eye(N)

+ SN) and toeplib(’bin’,N,k) for a few values of N and k.

Comment: The Matlab function funm should, however, not be used, because
it uses an eigenvalue method that does not work well for matrices that have
multiple eigenvalues. For triangular Toeplitz matrices the diagonal elements
are multiple eigenvalues. The functions expm, logm and sqrtm should not be
confused with the functions exp, log and sqrt, which operate on the matrix
elements.

(c) Expand esin(z) in powers of z in two ways: first using the function in
Problem 11(a); second using the matrix functions of Matlab. Show that the
latter can be written

HN = expm(imag(expm(i*SN))).
Do not be surprised if you find a dirty imaginary part of HN . Kill it!
Compare the results of the two procedures. If you have done the runs appro-
priately, the results should agree excellently.

(d) Treat the series h(z) =
√

(1 + ez) in three different ways, and compare
the results, with respect to validity, accuracy and computing time.
(i) Set ha(z) = h(z), and determine f(z), g(z), analytic at z = 0, so that
g(0) = 0. Compute ha1 = comp(f1,g1,N). Do you trust the result?

(ii) Set h(z) = H(z). Compute HN = sqrtm(eye(N) + expm(SN)).
In the first test, i.e. for N = 6, display the matrix HN , and check that HN

is an upper triangular Toeplitz matrix. For larger values of N , display the
first row only, and compare it to ha1. If you have done all this correctly, the
agreement should be extremely good, and we can practically conclude that
both are very accurate.
(iii) Try the “natural”, although “illegal’, decomposition hb(z) = f(g(z)), with
f(x) = (1+x)0.5, g(z) = ez. Remove temporarily the error stop. Demonstrate
by numerical experiment that hb1 is very wrong. If this is a surprise, read
Sec. 3.1.4 once more.

(e) Suppose that you perform matrix level operations on f(SM ), g(SM ), . . .,



34 Chapter 3. Series, Operators and Continued Fractions

where M < N . Show that the results are exactly equal to the principal M×M
submatrices of the results obtained with the matrices f(SN ), g(SN ), . . .

12. Reversion of series. Let

y = f(x) =

∞
∑

j=1

f1(j)xj−1,

where f1(1) = f(0) = 0, f1(2) = f ′(0) = 1 (with the notation used in
Sec. 3.1.5 and in the previous problems). Power series reversion is to find the
power series for the inverse function

x = g(y) =

∞
∑

j=1

g1(j)yj−1,

where g1(1) = g(0) = 0. Read also the last paragraphs of Sec. 3.1.5.
We work with truncated series withN terms in the Toeplitz matrix representa-
tion. The inverse function relationship gives the matrix equation f(g(SN)) =
SN . Because g(0) = 0, we have, by (3.1.25),

f(g(SN )) =
N
∑

j=1

f1(j)(g(SN)j−1.

Now Horner’s scheme can be used for computing the polynomial and its deriva-
tive, the latter is obtained by algorithmic differentiation; see Sec. 1.3.1.
The first row of this matrix equation is treated by Newton’s method in the
code breku listed below. The Horner algorithms are adapted to the first row.16

The notations in the code is almost the same as in the theoretical description,
although lower case letters are used, e.g., the matrix g(SN ) is denoted gs, and
fgs1 is the first row of the matrix f(g(SN )). The equation reads fgs1−s1 = 0.

(a) Convince yourself that the following Matlab function implements power
series reversion under a certain condition. Describe in a few words the main
features of the method.

function g1 = breku(f1,N);

%

% INPUT: The row vector f1 that represents a (truncated)

% Maclaurin series

% OUTPUT: The row g1, i.e. the first N terms of the series

% x = g(y) where y = f(x).

% Note that f1(1) = 0, f1(2) = 1; if not, there will

% be an error message. The integer N, i.e. the length

% of the truncated series wanted in the output, is optional

% input; by default N = length(f1).

16The name“breku” comes from Brent and Kung, who were probably the first mathematicians
to apply Newton’s method to series reversion, although with a different formulation of the equation
than ours (no Toeplitz matrices).
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% If length(f1) < N, f1 is extended to length N by zeros.

% Uses the function toep(r,N) (see Problem~9) for expanding

% a row to an upper triangular Toeplitz matrix.

%

if ~ (f1(1) ~= 0|f1(2) ~= 1),

error(‘wrong f1(1) or f1(2)’);

end

lf1 = length(f1);

if (nargin == 1|lf1 > N), N = lf1; end

if lf1 < N, f1 = [f1 zeros(1, N-lf1)] end

maxiter = floor(log(N)/log(2));

e1t = [1, zeros(1,N-1)];

s1 = [0 1 zeros(1,N-2)]; gs1 = s1;

for iter = 0:maxiter

gs = toep(gs1,N);

% Horner’s scheme for computing the first rows

% of f(gs) and f’(g(s)):

fgs1 = f1(N)*e1t; der1 = zeros(1,N);

for j = N-1:-1:1

ofgs1 = fgs1; %ofgs1 means "old" fgs1

fgs1 = ofgs1*gs + f1(j)*e1t ;

der1 = ofgs1 + der1*gs ;

end

% A Newton iteration for the equation fgs1 - s1 = 0:

gs1 = gs1 - (fgs1 - s1)/toep(der1,N);

end

g1 = gs1;

Comment: The radius of convergence depends on the singularities of g(y),
which are typically related to the singularities of f(x) and to the zeros of
f ′(x), (why?). There are other cases, e.g., if f ′(x) → 0 as x → ∞ then
lim f(x) may be a singularity of g(y).

(b) Apply the code breku to the computation of g(y) for f(x) = sinx and
for f(x) = 2 sinh(x/2). Compare with the results of Problem 10 (d). Then
reverse the two computed series g(y), and study how you return to the original
expansion of f(x), more or less accurately. Use tic toc to take the time, for a
few values of N .

(c) Apply the code breku to compute g(y) for f(x) = ln(1+x), f(x) = ex −1,
f(x) = x+ x2, f(x) = x+ x2 + x3.
If you know an analytic expression for g(y), find the Maclaurin expansion for
this, and compare with the expansions obtained from breku .
Apply breku to the computed expansions of g(y), and study how accurately
you return to the expansion of f(x).

(d)f(x) = xex; the inverse function g(y) is known as the Lambert W func-
tion.17 Determine g(y). Then reverse the power series for g(y), and compare
with the expansion of f(x).

17Johann Heinrich Lambert (1728–1777), German mathematician, physicist and astronomer,
and colleague of Euler and Lagrange at the Berlin Academy of Sciences. He is best known for
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(e) Estimate for f(x) = xex the radius of convergence approximately, by means
of the ratios of the coefficients computed in (d), and exactly; see the comment
after the code above.

(f)* Set y = f(x). Suppose that y(0) 6= 0, y′(0) 6= 0. Show that the code breku
can be used for expanding the inverse function in powers of (y − y(0))/y′(0).
Construct some good test example.

(g)* For the equation sinx − (1 − y)x = 0, express x2 = g(y) (why x2?),
with N = 12. Then express x in the form x ≈ ±y1/2P (y), where P (y) is a
truncated power series with (say) 11 terms.

(h)* Make simple temporary changes in the code breku, so that you can follow
the iterations on the screen.

3.2 More About Series

3.2.1 Laurent and Fourier Series

A Laurent series is a series of the form

∞
∑

n=−∞
cnz

n. (3.2.1)

Its convergence region is the intersection of the convergence regions of the expansions

∞
∑

n=0

cnz
n and

∞
∑

m=1

c−mz
−m,

the interior of which are determined by conditions of the form |z| < r2 and |z| > r1.
The convergence region can be void, e.g., if r2 < r1.

If 0 < r1 < r2 < ∞ the convergence region is an annulus, r1 < |z| < r2. The
series defines an analytic function in the annulus. Conversely, if f(z) is a single-
valued analytic function in this annulus, it is there represented by a Laurent
series, that converges uniformly in every closed subdomain of the annulus.

The coefficients are determined by the following formula, due to Cauchy18

cn =
1

2πi

∫

|z|=r

z−n−1f(z)dz, r1 < r < r2,−∞ < n <∞, (3.2.2)

and
|cn| ≤ r−n max

|z|=r
|f(z)|. (3.2.3)

The extension to the case when r2 = ∞ is obvious; the extension to r1 = 0 depends
on whether there are any terms with negative exponents or not. In the extension
of formal power series to formal Laurent series, however, only a finite number of

his illumination laws and for the continued fraction expansions of elementary functions, Sec. 3.5.3.
His W function was “rediscovered” a few years ago, [14].

18Augustin Cauchy (1789–1857) is the father of modern analysis. He is the creator of complex
analysis, a centerpiece of which this formula plays a fundamental role.
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terms with negative indices are allowed to be different from zero; see Henrici loc.
cit. Sec. 1.8. If you substitute z for z−1 an infinite number of negative indices is
allowed, if the number of positive indices is finite.

Example 3.2.1.
A function may have several Laurent expansions (with different regions of

convergence), e.g.,

(z − a)−1 =







−∑∞
n=0 a

−n−1zn if |z| < |a|
∑∞

m=1 a
m−1z−m if |z| > |a|.

The function 1/(z − 1) + 1/(z − 2) has three Laurent expansions, with validity
conditions |z| < 1, 1 < |z| < 2, 2 < |z|, respectively. The series contains both
positive and negative powers of z in the middle case only. The details are left for
Problem 4 (a).

Lemma 3.2.2 can, with some modifications, be generalized to Laurent series
(and to complex Fourier series), e.g.,(3.2.17) becomes

c̃n − cn = . . . cn−2Nr
−2N + cn−Nr

−N + cn+Nr
N + cn+2Nr

2N . . . (3.2.4)

Remark 3.2.1. The restriction to single-valued analytic functions is important
in this subsection. In this book we cannot entirely avoid to work with multi-
valued functions such as

√
z, ln z, zα, (α non-integer). We always work with such

a function, however, in some region where one branch of it, determined by some
convention, is single-valued. In the examples mentioned, the natural conventions
are to require the function to be positive when z > 1, and to forbid z to cross the
negative real axis. In other words, the complex plane has a cut along the negative
real axis. The annulus mentioned above is in these cases incomplete; its intersection
with the negative real axis is missing, and we cannot use a Laurent expansion.

For a function like ln
(z + 1

z − 1

)

, we can, depending on the context, cut out

either the interval [−1, 1] or the complement of this interval with respect to the
real axis. We then use an expansion into negative or into positive powers of z,
respectively.

If r1 < 1 < r2, we set F (t) = f(eit). Note that F (t) is a periodic function;
F (t+2π) = F (t). By (3.2.1) and (3.2.2), the Laurent series then becomes for z = eit

a Fourier series:

F (t) =

∞
∑

n=−∞
cne

int, cn =
1

2π

∫ π

−π

e−intF (t) dt. (3.2.5)

Note that c−m = O(rm
1 ) form→ +∞, and cn = O(r−n

2 ) for n→ +∞. The formulas
in (3.2.5), however, are valid in much more general situations, where cn → 0 much
more slowly, and where F (t) cannot be continued to an analytic function f(z), z =
reit, in an annulus. (In such a case r1 = 1 = r2, typically.)
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A Fourier series is often written in the following form,

F (t) = 1
2a0 +

∞
∑

k=1

(ak cos kt+ bk sin kt). (3.2.6)

Consider cke
ikt + c−ke

−ikt ≡ ak cos kt+ bk sinkt. Since e±ikt = cos kt± i sinkt, we
obtain for k ≥ 0:

ak = ck + c−k =
1

π

∫ π

−π

F (t) cos kt dt; bk = i(ck − c−k) =
1

π

∫ π

−π

F (t) sin kt dt.

(3.2.7)
Also note that ak − ibk = 2ck. If F (t) is real for t ∈ R then c−k = c̄k.

We mention without proof the important Riemann–Lebesgue theorem,19

by which the Fourier coefficients cn tend to zero as n → ∞ for any function that
is integrable (in the sense of Lebesgue), a fortiori for any periodic function that
is continuous everywhere. A finite number of finite jumps in each period are also
allowed.

A function F (t) is said to be of bounded variation in an interval if, in this
interval, it can expressed in the form F (t) = F1(t)−F2(t), where F1 and F2 are non-
decreasing bounded functions. A finite number of jump discontinuities are allowed.

The variation of F over the interval [a, b] is denoted
∫ b

a |dF (t)|. If F is differentiable

the variation of F equals
∫ b

a
|F ′(t)| dt.

Another classical result in the theory of Fourier series reads: If F (t) is of
bounded variation. in the closed interval [−π, π] then cn = O(n−1); see Titch-
marsh [45, § 13.21, §13.73]. This can be generalized. Suppose that F (p) is of bounded
variation on [−π, π], and that F (j) is continuous everywhere for j < p. Denote the

Fourier coefficients of F (p)(t) by c
(p)
n . Then

cn = (in)−pc(p)
n = O(n−p−1). (3.2.8)

This follows from the above classical result, after the integration of the formula for
cn in (3.2.2) by parts p times. Bounds for the truncation error of a Fourier series
can also be obtained from this. The details are left for Problem 4 (d), together with
a further generalization. A similar result is that cn = o(n−p) if F (p) is integrable,
hence a fortiori if F ∈ Cp.

In particular, we find for p = 1 (since
∑

n−2 is convergent) that the Fourier
series (3.2.2) converges absolutely and uniformly in R. It can also be shown that the
Fourier series is valid, i.e. the sum is equal to F (t).

3.2.2 The Cauchy–FFT Method

An alternative method for deriving coefficients of power series, when many terms
are needed is based on the following classic result. Suppose that the value f(z)

19Jean Baptist Joseph Fourier (1768–1830), French mathematician and physicist. In a pioneer-
ing publication about the flow of heat (1822), he utilized series of the type of equation (3.2.6).
B. Riemann (1826-1866), German mathematician, made fundamental contributions to Analysis
and Geometry. H. Lebesgue (1875-1941), French mathematician, created path-breaking general
concepts of measure and integral.
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of an analytic function can be computed at any point inside and on the circle
Cr = {z : |z − a| = r}, and set

M(r) = max |f(z)|, z ∈ Cr, z = a+ reiθ, z′ = a+ r′eiθ, (r′ < r).

Then the coefficients of the Taylor expansion around a are determined by Cauchy’s
formula,

an =
1

2πi

∫

Cr

f(z)

(z − a)(n+1)
dz =

r−n

2π

∫ 2π

0

f(a+ reiθ)e−niθ dθ. (3.2.9)

For a derivation, multiply the Taylor expansion (3.1.3) by (z − a)−n−1, integrate
term by term over Cr, and note that

1

2πi

∫

Cr

(z − a)j−n−1 dz =
1

2π

∫ 2π

0

rj−ne(j−n)iθ dθ =

{

1, if j = n;
0, if j 6= n.

(3.2.10)

The following inequalities are useful consequences of the definitions and of (3.2.9).

|an| ≤ r−nM(r), (3.2.11)

|Rn(z′)| ≤
∞
∑

j=n

|aj(z
′ − a)j | ≤

∞
∑

j=n

r−jM(r)(r′)j =
M(r)(r′/r)n

1 − r′/r
, 0 ≤ r′ < r.

This form of the remainder term of a Taylor series is useful in theoretical studies,
and also for practical purpose, if the maximum modulus M(r) is easier to estimate
than the nth derivative.

Set z = a + reiθ , ∆θ = 2π/N , and apply the trapezoidal rule to the second
integral in (3.2.9). Then20

an ≈ ãn ≡ 1

Nrn

N−1
∑

k=0

f(a+ reik∆θ)e−ink∆θ, n = 0 : N − 1. (3.2.12)

The approximate Taylor coefficients ãn, or rather the numbers a⋆
n = ãnNr

n, are here
expressed as a case of the (direct) Discrete Fourier Transform. More generally,
this transform maps an arbitrary sequence {αk}N−1

0 to a sequence {a⋆
n}N−1

0 , by the
following equations:

a⋆
n =

N−1
∑

k=0

αke
−ink∆θ, n = 0 : N − 1. (3.2.13)

The transform will be studied more systematically in Sec. 4.6.
If N is a power of 2, it is shown in Sec. 4.6 that, given the N values αk, k = 0 :

N−1, and e−i∆θ, no more than N log2N complex multiplications and additions are

20See (1.2.6). Note that the integrand has the same value for θ = 2π as for θ = 0. The terms
1
2
f0 and 1

2
fN that appear in the general trapezoidal rule can therefore in this case be replaced by

f0.
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needed for the computation of all the N coefficients a⋆
n, if an implementation of the

discrete Fourier transform known as the Fast Fourier Transform (FFT) is used.
This makes our theoretical considerations very practical. (Packages for interactive
mathematical computation usually contain commands related to FFT.)

It is also shown in Sec. 4.6 that the inverse of the discrete Fourier transform
(3.2.13) is given by the formulas,

αk = (1/N)

N−1
∑

n=0

a⋆
ne

ink∆θ, k = 0 : N − 1. (3.2.14)

It looks almost like the direct Discrete Fourier Transform (3.2.13), except for the
sign of i and the factor 1/N . It can therefore also be performed by means of
O(N logN) elementary operations, instead of the O(N3) operations that the most
obvious approach to this task would require, (i.e. by solving the linear system
(3.2.13)).

In our context, i.e. the computation of Taylor coefficients, we have, by (3.2.12)
and the line after that equation,

αk = f(a+ reik∆θ), a⋆
n = ãnNr

n. (3.2.15)

Set zk = a+ reik∆θ . Using (3.2.15), the inverse transformation then becomes,21

f(zk) =

N−1
∑

n=0

ãn(zk − a)n, k = 0 : N − 1. (3.2.16)

Since the Taylor coefficients are equal to f (n)(a)/n!, this is de facto a method
for the accurate numerical differentiation of an analytic function. If r and N are
chosen appropriately, it is more well-conditioned than most methods for numeri-
cal differentiation, such as the difference approximations mentioned in Chapter 1;
see also Sec. 3.3 and Chapter 4. It requires, however, complex arithmetic for a
convenient implementation. We call this the Cauchy–FFT method for Taylor
coefficients and differentiation.

The question arises, how to choose N and r. Theoretically, any r less than the
radius of convergence ρ would do, but there may be trouble with cancellation if r is
small. On the other hand, the truncation error of the numerical integration usually
increases with r. “Scylla and Charybdis situations” 22 like this are very common
with numerical methods.

It is typically the rounding error that sets the limit for the accuracy; it is
usually not expensive to choose r and N , so that the truncation error becomes
much smaller. A rule of thumb for this situation is to guess a value of n̂, i.e. how

21One interpretation of these equations is that the polynomial
PN−1

n=0 ãn(z −a)n is the solution
of a special, although important, interpolation problem for the function f , analytic inside a circle
in C.

22According to American Heritage Dictionary Scylla is a rock on the Italian side of the Strait
of Messina, opposite to the whirlpool Charybdis, personified by Homer (Ulysses) as a female sea
monster who devoured sailors. The problem is to navigate safely between them.
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many terms will be needed in the expansion, and then to try two values for N
(powers of 2) larger than n̂. If ρ is finite try r = 0.9ρ and r = 0.8ρ, and compare
the results. They may or may not indicate that some other values of N and r (and
perhaps also n̂) should also be tried. On the other hand, if ρ = ∞, try, e.g., r = 1
and r = 3, and compare the results. Again the results indicate whether or not more
experiments should be made.

One can also combine numerical experimentation with a theoretical analysis
of a more or less simplified model, including a few elementary optimization calcu-
lations. The authors take the opportunity to exemplify below this type of “hard
analysis” on this question.

We first derive two lemmas, which are important also in many other contexts.
First we have a discrete analogue of equation (3.2.10).

Lemma 3.2.1. Let p,N be integers. Then
∑N−1

k=0 e2πipk/N = 0, unless p = 0 or
p is a multiple of N . In these exceptional case every term equals 1, and the sum
equals N .

Proof. If p is neither 0 nor a multiple of N , the sum is a geometric series, the
sum of which is equal to (e2πip − 1)/(e2πip/N − 1) = 0. The rest of the statement is
obvious.

Lemma 3.2.2. Suppose that f(z) =
∑∞

0 an(z−a)n is analytic in the disc |z−a| <
ρ. Let ãn be defined by (3.2.12), where r < ρ. Then

ãn − an = an+N rN + an+2N r2N + an+3N r3N + . . . , 0 ≤ n < N. (3.2.17)

Proof. Since ∆θ = 2π/N ,

ãn =
1

Nrn

N−1
∑

k=0

e−2πink/N
∞
∑

m=0

am

(

re2πik/N
)m

=
1

Nrn

∞
∑

m=0

amr
m

N−1
∑

k=0

e2πi(−n+m)k/N .

By the previous lemma, the inner sum of the last expression is zero, unless m − n
is a multiple of N . Hence (recall that 0 ≤ n < N),

ãn =
1

Nrn

(

anr
nN + an+N rn+NN + an+2N rn+2NN + . . .

)

,

from which equation (3.2.17) follows.

Let M(r) be the maximum modulus for the function f(z) on the circle Cr,
and denote by M(r)U an upper bound for the error of a computed function value
f(z), |z| = r, where U ≪ 1. Assume that rounding errors during the computation
of ãn are of minor importance.

Then, by (3.2.12), M(r)U/rn is a bound for the rounding error of ãn. (The
rounding errors during the computation can be included by a redefinition of U .)
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Next we shall consider the truncation error of (3.2.12). First we estimate the
coefficients that occur in (3.2.17) by means of max |f(z)| on a circle with radius r′;
r′ > r, where r is the radius of the circle used in the computation of the first N
coefficients. So, in (3.2.9) we substitute r′, j for r, n, respectively, and obtain the
inequality

|aj | ≤M(r′)(r′)−j , 0 < r < r′ < ρ.

The actual choice of r′, strongly depends on the function f .23 Put this inequality
into (3.2.17), where we shall choose r < r′ < ρ. Then

|ãn − an| ≤M(r′)
(

(r′)−n−NrN + (r′)−n−2Nr2N + (r′)−n−3N r3N + . . .
)

= M(r′)(r′)−n
(

(r/r′)N + (r/r′)2N + (r/r′)3N + . . .
)

=
M(r′)(r′)−n

(r′/r)N − 1
.

We make a digression here, because this is an amazingly good result. The trapezoidal
rule that was used in the calculation of the Taylor coefficients is typically expected
to have an error that is O

(

(∆θ)2
)

= O
(

N−2
)

. (As before, ∆θ = 2π/N .) This
application is, however, a very special situation: a periodic analytic function is
integrated over a full period. We shall return to results like this several times. In
this case, for fixed values of r, r′, the truncation error is O

(

(r/r′)N
)

= O
(

e−η/∆θ
)

,
where η > 0, ∆θ → 0+. This tends to zero faster than any power of ∆θ.

It follows that a bound for the total error of ãn, i.e. the sum of the bounds
for the rounding and the truncation errors, is given by

UM(r)r−n +
M(r′)(r′)−n

(r′/r)N − 1
, r < r′ < ρ. (3.2.18)

Example 3.2.2. “Scylla and Charybdis” in the Cauchy–FFT.
We shall discuss how to choose the parameters r and N , so that the absolute

error bound of an, given in (3.2.18) becomes uniformly small for (say) n = 0 : n̂.
1 + n̂ ≫ 1 is thus the number of Taylor coefficients requested. The parameter r′

does not belong to the Cauchy–FFT method, but it has to be chosen well in order
to make the bound for the truncation error realistic.

The discussion is rather technical, and you may omit it at a first reading.
It may, however, be useful to study this example later, because similar technical
subproblems occur in many serious discussions of numerical methods that contain
parameters that should be appropriately chosen.

First consider the rounding error. By the maximum modulus theorem, M(r)
is an increasing function, hence, for r > 1, maxnM(r)r−n = M(r) > M(1). On
the other hand, for r ≤ 1, maxnM(r)r−n = M(r)r−n̂.24 Let r∗ be the value of r,
for which this maximum is minimal. Note that r∗ = 1 unless M ′(r)/M(r) = n̂/r
for some r ≤ 1.

Then try to determine N and r′ ∈ [r∗, ρ) so that, for r = r∗, the bound for
the the second term of (3.2.18) becomes much smaller than the first term, i.e. the

23In rare cases we may choose r′ = ρ.
24n̂ was introduced in the beginning of this example.
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truncation error is made negligible compared to the rounding error. This works well
if ρ ≫ r∗. In such cases, we may therefore choose r = r∗, and the total error is
then just a little larger than UM(r∗)(r∗)−n̂.

For example, if f(z) = ez then M(r) = er, ρ = ∞. In this case r∗ = 1 (since
n̂≫ 1). Then we shall choose N and r′ = N , so that er′

/((r′)N −1) ≪ eU . One can
show that it is sufficient to choose N ≫ | lnU/ ln | lnU ||. For instance, if U = 10−15,
this is satisfied with a wide margin by N = 32. On a computer, the choice r = 1,
N = 32, gave (with 53 bits floating point arithmetic) an error less than 2 ·10−16.
The results were much worse for r = 10, and for r = 0.1; the maximum error of the
first 32 coefficients became 4·10−4 and 9·1013(!), respectively. In the latter case the
errors of the first 8 coefficients did not exceed 10−10, but the rounding error of an,
due to cancellations, increase rapidly with n.

If ρ is not much larger than r∗, the procedure described above may lead to a
value of N that is much larger than n̂. In order to avoid this, we now set n̂ = αN .
We now confine the discussion to the case that r < r′ < ρ ≤ 1, n = 0 : n̂. Then, with
all other parameters fixed, the bound in (3.2.18) is maximal for n = n̂. We simplify
this bound; M(r) is replaced by the larger quantity M(r′), and the denominator is
replaced by (r′/r)N .

Then, for given r′, α,N , we set x = (r/r′)N and determine x so that

M(r′)(r′)−αN (Ux−α + x)

is minimized. The minimum is obtained for x = (αU)1/(1+α), i.e. for r = r′x1/N ,
and the minimum is equal to25

M(r′)(r′)−nU1/(1+α)c(α), where c(α) = (1 + α)α−α/(1+α).

We see that the error bound contains the factor U1/(1+α). This is, e.g., pro-
portional to 2U1/2 for α = 1, and to 1.65U4/5 for α = 1

4 . The latter case is thus
much more accurate, but, for the same n̂, one has to choose N four times as large,
which leads to more than four times as many arithmetic operations. In practice, n̂
is usually given, and the order of magnitude of U can be estimated. Then α is to be
chosen to make a compromise between the requirements for a good accuracy and
for a small volume of computation. If ρ is not much larger than r∗, we may choose

N = n̂/α, x = (αU)1/(1+α), r = r′x1/N .

Experiments were made with f(z) = ln(1 − z). Then ρ = 1, M(1) =
∞. Take n̂ = 64, U = 10−15, r′ = 0.999. Then M(r′) = 6.9. For α =
1, 1/2, 1/4, we have N = 64, 128, 256, respectively. The above theory suggests
r = 0.764, 0.832, 0.894, respectively. The theoretical estimates of the absolute er-
rors become, 10−9, 2.4 10−12, 2.7 10−14, respectively. The smallest errors obtained
in experiments with these three values of α are, 6 10−10, 1.8 10−12, 1.8 10−14, which
were obtained for r = 0.766, 0.838, 0.898, respectively. So, the theoretical predic-
tions of these experimental results are very satisfactory.

25This is a rigorous upper bound of the error for this value of r, in spite of the simplifications
in the formulation of the minimization.
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3.2.3 Chebyshev Polynomials

The Chebyshev26 polynomials of the first kind are

Tn(z) = cosnφ, z = cosφ, (3.2.19)

Note that T0(z) = 1, T1(z) = z. That Tn(z) is an nth degree polynomial follows,
by induction, from the important recurrence relation,

Tn+1(z) = 2zTn(z) − Tn−1(z), (n ≥ 1), (3.2.20)

which follows from the well known trigonometric formula

cos(n+ 1)φ+ cos(n− 1)φ = 2 cosφ cosnφ.

We obtain,

T2(z) = 2z2 − 1; T3(z) = 4z3 − 3z; T4(z) = 8z4 − 8z2 + 1,

T5(z) = 16z5 − 20z3 + 5z; T7(z) = 64z7.− 112z5 + 56z3 − 7z
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Figure 3.2.1. The Chebyshev polynomial T12(x), x ∈ [−1, 1].

The Chebyshev polynomials of the second kind are

Un−1(z) =
sinnφ

sinφ
, where z = cosφ, (3.2.21)

satisfies the same recurrence relation, with the initial conditions U−1(z) = 0,
U0(z) = 1; its degree is n − 1. (When we write just Chebyshev polynomial we
refer to the first kind.)

The Chebyshev polynomial Tn(x) has n zeros in [−1, 1] given by

xk = cos
(2k − 1

n

π

2

)

, k = 1 : n, (3.2.22)

26Pafnuti Lvovich Chebyshev (1821–1894), Russian mathematician, pioneer in approximation
theory and the constructive theory of functions. His name has many different transcriptions, e.g.,
Tschebyscheff. This may explain why the polynomials that bear his name are denoted Tn(x). He
also gave important contributions to probability theory and number theory.
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the Chebyshev points, and n+ 1 extrema

x′k = cos
(kπ

n

)

, k = 0 : n. (3.2.23)

These results follow directly from the fact that cos(nφ) = 0 for φ = (2k+1)π/(2n),
and that cos(nφ) has maxima for φ = kπ/n.

Note that from (3.2.19) it follows that |Tn(x)| ≤ 1 for x ∈ [−1, 1], in spite
that its leading coefficient is as large as 2n−1. The Chebyshev polynomials have a
unique minimax property: (For a use of this property; see, Example 3.2.4.)

Example 3.2.3.
Figure 3.2.1 shows a plot of the Chebyshev polynomial T12(x) for x ∈ [−1, 1].

Setting z = 1 in the recurrence relation (3.2.20) and using T0(1) = T1(1) = 1, it
follows that Tn(1) = 1, n ≥ 0. From T ′

0(1) = 0 an T ′
1(1) = 1 and differentiating the

recurrence relation we get

T ′
n+1(z) = 2(zT ′

n(z) + Tn(z)) − T ′
n−1(z), (n ≥ 1).

It follows easily by induction that T ′
n(1) = n2, that is outside the interval [−1, 1]

the Chebyshev polynomials grow rapidly.

Lemma 3.2.3.
The Chebyshev polynomials have the following minimax property: Of all

nth degree polynomials with leading coefficient 1, the polynomial 21−nTn(x) has the
smallest magnitude 21−n in [−1, 1].

Proof. Suppose there were a polynomial pn(x), with leading coefficient 1 such that
|| < 21−n for all x ∈ [−1, 1]. Let x′k, k = 0 : n, be the abscissae of the extrema of
Tn(x). Then we would have

pn(x0) < 21−nTn(x′0), pn(x1) > 21−nTn(x′1), pn(x2) < 21−nTn(x′2), . . . ,

etc., up to x′n. From this it follows that the polynomial

pn(x) − 21−nTn(x)

changes sign in each of the n intervals (x′k, x
′
k+1), k = 0 : n− 1. This is impossible,

since the polynomial is of degree n− 1. This proves the minimax property.

Expansions in terms of Chebyshev polynomials are an important aid in study-
ing functions on the interval [−1, 1]. If one is working with a function f(t), t ∈ [a, b],
then one should make the substitution

t = 1
2 (a+ b) + 1

2 (b− a)x, (3.2.24)

which maps the interval [−1, 1] onto [a, b].
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Consider the approximation to the function f(x) = xn on [−1, 1] by a poly-
nomial of lower degree. From the minimax property of Chebyshev polynomials it
follows that the maximum magnitude of the error is minimized by the polynomial

p(x) = xn − 21−nTn(x). (3.2.25)

From the symmetry property Tn(−x) = (−1)nTn(x), it follows that this polynomial
has in fact degree n−2. The error 21−nTn(x) assumes its extrema 21−n in a sequence
of n+ 1 points, xi = cos(iπ/n). The sign of the error alternates at these points.

Suppose that one has obtained, e.g., by Taylor series, a truncated power series
approximation to a function f(x). By repeated use of (3.2.25), the series can be
replaced by a polynomial of lower degree with a moderately increased bound for the
truncation error. This process, called economization of power series often yields
a useful polynomial approximation to f(x) with a considerably smaller number of
terms than the original power series.

Example 3.2.4.
If the series expansion cosx = 1 − x2/2 + x4/24 − · · · is truncated after the

x4-term, the maximum error is 0.0014 in [−1, 1]. Since T4(x) = 8x4 − 8x2 + 1, it
holds that

x4/24 ≈ x2/24 − 1/192

with an error which does not exceed 1/192 = 0.0052. Thus the approximation

cosx = (1 − 1/192)− x2(1/2 − 1/24) = 0.99479 + 0.45833x2

has an error whose magnitude does not exceed 0.0052+0.0014< 0.007. This is less
than one-sixth of the error 0.042, which is obtained if the power series is truncated
after the x2-term.

Note that for the economized approximation cos(0) is not approximated by 1.
It may not be acceptable that such an exact relation is lost. In this example one
could have asked for a polynomial approximation to (1 − cosx)/x2 instead.

The Chebyshev polynomials are perhaps the most important example of a
family of orthogonal polynomials; see Sec. 4.5.5. The Chebyshev expansion
of a function f(z),

f(z) =

∞
∑

j=0

cjTj(z), (3.2.26)

have many useful properties. Set eiφ = w; φ and z may be complex. Then

z = 1
2 (w + w−1), Tn(z) = 1

2 (wn + w−n), (3.2.27)

w = z ±
√

z2 − 1, (z +
√

z2 − 1)n = Tn(z) + Un−1(z)
√

z2 − 1.

It follows that the Chebyshev expansion (3.2.26) formally corresponds to a sym-
metric Laurent expansion,

g(w) = f
(

1
2 (w + w−1)

)

=
∞
∑

−∞
ajw

j ; a−j = aj =

{

1
2cj , if j > 0;

c0, if j = 0.
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It can be shown, e.g., by the parallelogram law, that |z + 1|+ |z− 1| = |w|+ |w|−1,
Hence, if R > 1, z = 1

2 (w + w−1) maps the annulus {w : R−1 < |w| < R}, twice
onto an ellipse ER, determined by the relation,

ER = {z : |z − 1| + |z + 1| ≤ R+R−1}, (3.2.28)

with foci at 1 and −1. The axes are, respectively, R+R−1 and R−R−1, and hence
R is the sum of the semi-axes.

Note that, as R → 1, the ellipse degenerates into the interval [−1, 1]. As
R → ∞, it becomes close to the circle |z| < 1

2R. It follows from (3.2.27) etc. that

this family of confocal ellipses are level curves of |w| = |z ±
√
z2 − 1|. In fact, we

can also write,

ER =
{

z : 1 ≤ |z +
√

z2 − 1| ≤ R
}

. (3.2.29)

Theorem 3.2.4.
Let f(z) be real-valued for z ∈ [−1, 1], analytic and single-valued for z ∈

ER, R > 1. Assume that |f(z)| ≤M for z ∈ ER. Then27

∣

∣

∣f(x) −
n−1
∑

j=0

cjTj(x)
∣

∣

∣ ≤ 2MR−n

1 − 1/R
for x ∈ [−1, 1].

Proof. Set as before, z = 1
2 (w + w−1), g(w) = f

(

1
2 (w + w−1)

)

. Then g(w) is
analytic in the annulus R−1 + ǫ ≤ |w| ≤ R − ǫ, and hence the Laurent expansion
(1.2) converges there. In particular it converges for |w| = 1, hence the Chebyshev
expansion for f(x) converges when x ∈ [−1, 1].

Set r = R− ǫ. By Cauchy’s formula, we obtain, for j > 0,

|cj | = 2|aj| =
∣

∣

∣

2

2πi

∫

|w|=r

g(w)w−(j+1)dw
∣

∣

∣ ≤ 2

2π

∫ 2π

0

Mr−j−1rdφ = 2Mr−j .

We then obtain, for x ∈ [−1, 1],

∣

∣

∣
f(x) −

n−1
∑

j=0

cjTj(x)
∣

∣

∣
=
∣

∣

∣

∞
∑

n

cjTj(x)
∣

∣

∣
≤

∞
∑

n

|cj | ≤ 2M
∞
∑

n

r−j ≤ 2M
r−n

1 − 1/r
.

This holds for any ǫ > 0. We can here let ǫ→ 0 and thus replace r by R.

If a Chebyshev expansion converges rapidly, the truncation error is, by and
large, determined by the first few neglected terms. As indicated by Figures 3.2.1
and 3.2.5 the error curve is oscillating with slowly varying amplitude in [−1, 1]. In
contrast, the truncation error of a power series is proportional to a power of x.

Note that f(z) is allowed to have a singularity arbitrarily close to the interval
[−1, 1], and the convergence of the Chebyshev expansion will still be exponential,
although the exponential rate deteriorates, as R ↓ 1.

27A generalization to complex values of x is formulated in Problem 6.
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The numerical value of a truncated Chebyshev expansion can be computed
by means of Clenshaw’s algorithm which holds for any sum of the form S =
∑n

k=1 ckφk, where {φk} satisfies a three term recurrence relation

Theorem 3.2.5. Clenshaw’s algorithm [13]
Suppose that a sequence {pk} satisfies the three term recurrence relation

pk+1 = γkpk − βkpk−1, k = 0 : n− 1, (3.2.30)

where p−1 = 0. Then

S =

n
∑

k=0

ckpk = y0p0

where y0 is obtained by the recursion

yn+1 = 0, yn = cn,

yk = ck + γk−1yk+1 − βkyk+2, k = n− 1 : −1 : 0. (3.2.31)

Proof. Write the recursion (3.2.30) in matrix form as

















1

−γ0 1

β1 −γ1 1
. . .

. . .
. . .

βn−1 −γn−1 1





























p0

p1
...

pn−1

pn













=













p0

0
...
0
0













,

or Lp = g, g = p0e1, where L is unit lower triangular and e1 is the first column of
the unit matrix. Then

S = cT p = cTL−1g = gT (LT )−1c = gT y,

where y is the solution to the upper triangular system LT y = c. Solving this by
backsubstitution we get the recursion (3.2.31).

It can proved that Clenshaw’s algorithm is componentwise backward stable
with respect to the data γk and βk; see Smoktunowicz [41].

Clenshaw’s algorithm can also be applied to series of Legendre functions,
Bessel functions, Coulomb wave functions etc., because they satisfy recurrence rela-
tions of this type, where the αk, γk depend on x; see the Handbook [1] or any text on
special functions. Other applications are the case when the φk are the denominators
or numerators of the approximants of a continued fraction; see Sec. 3.5.1

Important properties of trigonometric functions and Fourier series can be re-
formulated in the terminology of Chebyshev polynomials. For example, they satisfy
certain orthogonality relations; see Sec. 4.5.5. Also results like (3.2.8) concerning
how the rate of decrease of the coefficients or the truncation error of a Fourier series,
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is related to the smoothness properties of its sum, can be translated to Chebyshev
expansions. So, even if F is not analytic, a Chebyshev expansion converges under
amazingly general conditions (unlike a power series), but the convergence is much
slower than exponential. A typical result reads: if f ∈ Ck[−1, 1], k > 0, there
exists a bound for the truncation error that decreases uniformly like O(n−k logn).
Sometimes convergence acceleration can be successfully applied to such series.

3.2.4 Perturbation Expansions

In the equations of applied mathematics it is often possible to identify a small
dimensionless parameter (say) ǫ, ǫ ≪ 1. The case when ǫ = 0 is called the reduced
problem or the unperturbed case, and one asks for a perturbation expansion,
i.e. an expansion of the solution of the perturbed problem into powers of the
perturbation parameter ǫ. In many cases it can be proved that the expansion has
the form c0+c1ǫ+c2ǫ

2+. . ., but there are also important cases, where the expansion
contains fractional or a few negative powers.

In this subsection, we consider an analytic equation φ(z, ǫ) = 0 and seek
expansions for the roots zi(ǫ) in powers of ǫ. This has some practical interest in its
own right, but it is mainly to be considered as a preparation for more interesting
applications of perturbation methods to more complicated problems. A simple
perturbation example for a differential equation is given in Problem 10.

If zi(0) is a simple root, i.e. if ∂φ/∂z 6= 0, for (z, ǫ) = (zi(0), 0), then a theorem
of complex analysis tells us that zi(ǫ) is an analytic function in a neighborhood of
the origin, hence the expansion

zi(ǫ) − zi(0) = c1ǫ+ c2ǫ
2 + . . .

has a positive (or infinite) radius of convergence. We call this a regular pertur-
bation problem. The techniques of power series reversion, presented in Sec. 3.1.4,
can often be applied after some preparation of the equation. Computer algebra
systems are also used in perturbation problems, if expansions with many terms are
needed.

Example 3.2.5.
We shall expand the roots of φ(z, ǫ) ≡ ǫz2 − z + 1 = 0 into powers of ǫ. The

reduced problem −z+1 = 0 has only one finite root z1(0) = 1. Set z = 1+xǫ, x =
c1 + c2ǫ+ c3ǫ

2 + . . .. Then φ(1 + xǫ, ǫ)/ǫ = (1 + xǫ)2 − x = 0, i.e.

(1 + c1ǫ+ c2ǫ
2 + . . .)2 − (c1 + c2ǫ+ c3ǫ

2 + . . .) = 0.

Matching the coefficients of ǫ0, ǫ1, ǫ2, we obtain the system

1 − c1 = 0 ⇒ c1 = 1;

2c1 − c2 = 0 ⇒ c2 = 2;

2c2 + c21 − c3 = 0 ⇒ c3 = 5;

hence z1(ǫ) = 1 + ǫ+ 2ǫ2 + 5ǫ3 + . . ..
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Now, the easiest way to obtain the expansion for the second root z2(ǫ), is to
use the fact that the sum of the roots of the quadratic equation equals ǫ−1, hence
z2(ǫ) = ǫ−1 − 1 − ǫ− 2ǫ2 + . . ..

Note the appearance of the term ǫ−1. This is due to a characteristic feature
of this example. The degree of the polynomial is lower for the reduced problem
than it is for ǫ 6= 0; one of the roots escapes to ∞ as ǫ → 0. This is an example of
a singular perturbation problem, an important type of problem for differential
equations; see Problem 10.

If ∂φ/∂z = 0, for some zi, the situation is more complicated; zi is a multiple
root, and the expansions look differently. If zi(0) is a k-fold root then there may
exist an expansion of the form

zi(ǫ) = c0 + c1ǫ
1/k + c2(ǫ

1/k)2 + . . .

for each of the k roots of ǫ, but this is not always the case. See (3.2.32) below, where
the expansions are of a different type. If one tries to determine the coefficients in an
expansion of the wrong form, one usually runs into contradictions, but the question
about the right form of the expansions still remains.

The answers are given by the classical theory of algebraic functions, where
Riemann surfaces and Newton polygons are two of the key concepts, see, e.g.,
Bliss [5]. We shall, for several reasons, not use this theory here. One reason is
that it seems hard to generalize some of the methods of algebraic function theory to
more complicated equations, such as differential equations. We shall instead use a
general balancing procedure, recommended in Lin and Segel [31, Sec. 9.1], where
it is applied to singular perturbation problems for differential equations too.

The basic idea is very simple: each term in an equation behaves like some
power of ǫ. The equation cannot hold, unless there is a β, such that a pair of terms
of the equation behave like Aǫβ, (with different values of A), and the ǫ-exponents of
the other terms are larger than or equal to β. (Recall that larger exponents make
smaller terms.)

Let us return to the previous example. Although we have already determined
the expansion for z2(ǫ) (by a trick that may not be useful for other problems than
single analytic equations), we shall use this task to illustrate the balancing proce-
dure. Suppose that

z2(ǫ) ∼ Aǫα, (α < 0).

The three terms of the equation ǫz2 − z + 1 = 0 then get the exponents

1 + 2α, α, 0.

Try the first two terms as the candidates for being the dominant pair. Then 1+2α =
α, hence α = −1. The three exponents become −1, −1, 0. Since the third exponent
is larger than the exponent of the candidates, this choice of pair seems possible, but
we have not shown that it is the only possible choice.

Now try the first and the third terms as candidates. Then 1 + 2α = 0, hence
α = − 1

2 . The exponent of the non-candidate is − 1
2 ≤ 0; this candidate pair is thus
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impossible. Finally, try the second and the third terms. Then α = 0, but we are
only interested in negative values of α.

The conclusion is that we can try coefficient matching in the expansion z2(ǫ) =
c−1ǫ

−1 + c0 + c1ǫ+ . . .. We don’t need to do it, since we know the answer already,
but it indicates how to proceed in more complicated cases.

Example 3.2.6.
First consider the equation z3 − z2 + ǫ = 0. The reduced problem z3 − z2 = 0

has a single root, z1 = 1, and a double root, z2,3 = 0. No root has escaped
to ∞. By a similar coefficient matching as in the previous example we find that
z1(ǫ) = 1− ǫ− 2ǫ2 + . . .. For the double root, set z = Aǫβ , β > 0. The three terms
of the equation obtain the exponents 3β, 2β, 1. Since 3β is dominated by 2β we
conclude that 2β = 1, i.e.β = 1/2,

z2,3(ǫ) = c0ǫ
1/2 + c1ǫ+ c2ǫ

3/2 + . . . .

By matching the coefficients of ǫ, ǫ3/2, ǫ2, we obtain the system

−c20 + 1 = 0 ⇒ c0 = ±1,

−2c0c1 + c30 = 0 ⇒ c1 = 1
2 ,

−2c0c2 − c21 + 2c20c1 + c1c
2
0 = 0 ⇒ c2 = ± 5

8 ,

hence z2,3(ǫ) = ±ǫ1/2 + 1
2ǫ± 5

8 ǫ
3/2 + . . ..

There are, however, equations with a double root, where the perturbed pair
of roots do not behave like ±c0ǫ1/2 as ǫ→ 0. In such cases the balancing procedure
may help. Consider the equation

(1 + ǫ)z2 + 4ǫz + ǫ2 = 0. (3.2.32)

The reduced problem reads z2 = 0, with a double root. Try z ∼ Aǫα, α > 0. The
exponents of the three terms become 2α, α + 1, 2. We see that α = 1 makes the
three exponents all equal to 2; this is fine. So, set z = ǫy. The equation reads,
after division by ǫ2, (1 + ǫ)y2 + 4y + 1 = 0, hence y(0) = a ≡ −2 ±

√
3. Coefficient

matching yields the result

z = ǫy = aǫ+ (−a+ a2/2)ǫ2 + . . . , a = −2 ±
√

3,

where all exponents are natural numbers.

If ǫ is small enough, the last term included can serve as an error estimate. A
more reliable error estimate (or even an error bound) can be obtained by inserting
the truncated expansion into the equation. It shows that the truncated expansion
satisfies a modified equation exactly. The same idea was indicated for a differential
equation in Example 3.1.2; see also Problem 10, and it can be applied to equations
of many other types.
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3.2.5 Ill-Conditioned Series

Slow convergence is not the only numerical difficulty that occurs in connection with
infinite series. There are also series with oscillating terms and a complicated type
of catastrophic cancellation. The size of some terms are many orders of magnitude
larger than the sum of the series. Small relative errors in the computation of the
large terms lead to a large relative error in the result. We call such a series ill-
conditioned.

An important class of sequences {cn}, are known as completely monotonic.

Definition 3.2.6.
A sequence {un} is completely monotonic for n ≥ a iff

un ≥ 0, (−∆)jun ≥ 0, ∀j ≥ 0, n ≥ a, (integers).

Such series have not been subject to many systematic investigations. One
simply tries to avoid them. For the important “special functions” of Applied Math-
ematics, such as Bessel Functions, confluent hypergeometric functions etc., there
usually exists expansions into descending powers of z that can be useful, when
|z| ≫ 1 and the usual series, in ascending powers, are divergent or ill-conditioned.
Another possibility is to use multiple precision in computations with ill-conditioned
power series; this is relatively expensive and laborious (but the difficulties should
not be exaggerated). There are, however, also other, less known, possibilities that
will now be exemplified. The subject is still open for new fresh ideas, and we hope
that the following pages and the related problems at the end of the section will
stimulate some readers to thinking about it.

First, we shall consider power series of the form

∞
∑

n=0

(−x)ncn
n!

, (3.2.33)

where x≫ 1, although not so large that there is risk for overflow. We assume that
the coefficients cn are positive and slowly varying (relatively to (−x)n/n!). The
ratio of two consecutive terms is

cn+1

cn

−x
n+ 1

≈ −x
n+ 1

.

We see that the series converges for all x, and that the magnitude increases iff
n + 1 < |x|. The term of largest magnitude is thus obtained for n ≈ |x|. Denote
its magnitude by M(x). Then, for x≫ 1, the following type of approximations can
be used, e.g., for crude estimates of the number of terms needed, the arithmetic
precision that is to be used etc. in computations related to ill-conditioned power
series:

M(x) ≈ cxe
x(2πx)−1/2, i.e., log10M(x)/c0 ≈ 0.43x− 1

2 log10(2πx). (3.2.34)
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This follows from the classical Stirling’s formula,

x! ∼ (x/e)x
√

2πx, x≫ 1, (3.2.35)

that gives x! with a relative error that is about 1
12x . You find a proof of this in

most textbooks on calculus. It will often be used in the rest of this book. A more
accurate and general version is given in Example 3.3.12 together with a few more
facts about the gamma function, Γ(z), an analytic function that interpolates the
factorial, Γ(n+ 1) = n! if n is a natural number. Sometimes the notation z! is used
instead of Γ(z + 1) also if z is not an integer.

There exist preconditioners, i.e. transformations that can convert classes
of ill-conditioned power series (with accurately computable coefficients) to more
well-conditioned problems. One of the most successful preconditioners known to
the authors is the following:28

∞
∑

n=0

(−x)ncn
n!

= e−x
∞
∑

m=0

xm(−∆)mc0
m!

. (3.2.36)

This identity is proved in Example . A hint to a shorter proof is given in Prob-
lem 3.21.

Example 3.2.7.
Consider the function

F (x) =
1

x

∫ x

0

1 − e−t

t
dt = 1 − x

22 · 1!
+

x2

32 · 2!
− . . . ,

i.e. F (x) is a particular case of (3.2.33) with cn = (n + 1)−2. We shall look
at three methods of computing F (x) for x = 10 : 10 : 50, named A,B,C. F (x)
decreases smoothly from 0.2880 to 0.0898. The computed values of F (x) are denoted
FA(x), FB(x), FC(x).

The coefficients cn, n = 0 : 119, are given in IEEE floating point, double
precision. The table of results show that, except for x = 50, 120 terms is much
more than necessary for the rounding of the coefficients to become the dominant
error source.

x 10 20 30 40 50

F (x) ≈ 0.2880 0.1786 0.1326 0.1066 0.0898

lasttermA 1 · 10−82 8 · 10−47 7 · 10−26 6 · 10−11 2 · 101

M(x;A) 3 · 101 1 · 105 9 · 108 1 · 1013 1 · 1017

|FA(x) − F (x)| 2 · 10−15 5 · 10−11 2 · 10−7 3 · 10−3 2 · 101

lasttermB 4 · 10−84 1 · 10−52 4 · 10−36 2 · 10−25 2 · 10−18

M(x;B) 4 · 10−2 2 · 10−2 1 · 10−2 7 · 10−3 5 · 10−3

|FC(x) − FB(x)| 7 · 10−9 2 · 10−14 6 · 10−17 0 1 · 10−16

28The notation ∆mcn for high order differences was introduced in Sec. 1.1.3.
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Figure 3.2.2. Example 3.2.5A: Terms of (3.2.33), cn = (n+1)−2, x = 40,
no preconditioner. Note the scale, and look also in the table. Since the largest term
is 1013, it is no surprise that the relative error of the sum is not better than 0.03,
in spite that double precision floating point has been used.
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Example 3.1.17B. x=40.

Figure 3.2.3. Example 3.2.5B: cn = (n + 1)−2, x = 40, with the pre-
conditioner in (3.2.36). The terms of the right hand side, including the factor e−x,
becomes a so-called bell sum; the largest term is about 7 10−3. The computed sum
is correct to 16 decimal places.

A We use (3.2.33) without preconditioner. M(x;A) is the largest magnitude
of the terms of the expansion. M(x;A) · 10−16 tells the order of magnitude of the
effect of the rounding errors on the computed value FA(x). Similarly, the truncation
error is crudely estimated by lasttermA. See also Figure 3.1.6.

B. We use the preconditioner (3.2.36). In this example cn = (n + 1)−2. In
Problem 3.2.2(c) we find the following explicit expressions, related to the series on
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the right hand side of the preconditioner for this example.

(−∆)mc0 = (−∆)mcn|n=0 = c0(−∆)mx−2|x=1 =
c0

m+ 1

m
∑

k=0

1

k + 1
,

F (x) = c0e
−x

∞
∑

m=0

xm

m!

1

(m+ 1)

m
∑

k=0

1

k + 1
. (3.2.37)

Note that (−∆)mc0 is positive and smoothly decreasing; (This is not a special
feature only for this example, but it holds for sequences {cn}, which are completely
monotonic.)

The largest term is thus smaller than the sum, and the series (3.2.37) is well-
conditioned. It can be shown that, if x ≫ 1, the mth term is approximately
proportional to the value at m of the normal probability density with mean x and
standard deviation equal to

√
x; note the resemblance to a Poisson distribution.

Multiple precision is not needed here.
M(x;B) and lasttermB are defined analogously to M(x;A) and lasttermA,

The B-values are very different from the A-values. In fact they indicate that all
values of FB(x), referred to in the table, give F (x) to full accuracy.

C. The following expression for F (x),

xF (x) ≡
∞
∑

n=1

(−x)n

nn!
= −γ − lnx− E1(x); E1(x) =

∫ ∞

x

e−t

t
dt, (3.2.38)

is valid for all x > 0; see [1, 5.1.11]. E1(x) is known as the exponential integral,
and

γ = 0.57721 56649 01532 86061 . . .

is the well known Euler’s constant. In the next section, an asymptotic expansion
for E1(x) for x ≫ 1 is derived, the first two terms of which are used here in the
computation of F (x;C) for the table above.

E1(x) ≈ e−x(x−1 − x−2), x≫ 1.

This approximation is the dominant part of the error of F (x;C); it is less than
e−x2x−4. F (x;C) gives full accuracy for (say) x > 25.

More examples of sequences, for which rather simple explicit expressions for
the high order differences are known, are given in Problem 3.21. The Kummer
confluent hypergeometric function M(a, b, x) was defined in (3.1.14). We have

M(a, b, x) = 1 +

∞
∑

n=1

(−x)ncn
n!

, cn = cn(a, b) =
a(a+ 1) . . . (a+ n− 1)

b(b+ 1) . . . (b + n− 1)
.

In our context b > a > 0, n > 0. The oscillatory series for M(a, b,−x), x > 0, is
ill-conditioned if x≫ 1.
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By Problem 3.21, (−∆)nc0(a, b) = cn(b − a, b) > 0, n > 0, hence the precon-
ditioner (3.2.36) yields the equation

M(a, b,−x) = e−xM(b− a, b, x), (3.2.39)

where the series on the right hand side has positive terms, because b−a > 0, x > 0,
and is a well-conditioned bell sum. The mth term has typically a sharp maximum
for m ≈ x; compare Figure 3.2.7. Equation (3.2.39) is in the theory of the confluent
hypergeometric functions known as Kummer’s first identity. It is emphasized
here, because several functions with famous names of their own are particular cases
of the Kummer function. These share the numerous useful properties of Kummer’s
function, e.g., the above identity; see the theory in Lebedev [30, Secs. 9.9–9.14]29 and
the formulas in [1, Ch. 13] in particular Table 13.6 of special cases. An important
example is the error function (see Example 1.2.3) that can be expressed in terms of
Kummer’s confluent hypergeometric as .

erf(x) =
2√
π

∫ x

0

e−t2 dt =
2x√
π
M

(

1

2
,
3

2
,−x2

)

. (3.2.40)

If we cannot find explicit expressions for high order differences, we can make a
difference scheme by the recurrence ∆m+1cn = ∆mcn+1 − ∆mcn. Unfortunately
the computation of a difference scheme suffers from numerical instability. Suppose
that the absolute errors of the cn are bounded by ǫ. Then the absolute errors can
become as large as 2ǫ in the first differences, 4ǫ in the second differences etc. More
generally, the absolute errors of (−∆)mcn can become as large as 2mǫ. (You find
more about this in Examples 3.2.2 and 3.2.3.) In connection with ill-conditioned
series, this instability is much more disturbing than in the traditional applications
of difference schemes to interpolation etc., where m is seldom much larger than 10.
Recall that m ≈ x for the largest term of the preconditioned series. So, if x > 53
even this term may not have any correct bit if IEEE double precision is used, and
many terms are needed after this.

So, during the computation of the new coefficients, (−∆)mcn, (only once for
the function F , and with double accuracy in the results), the old coefficients cn
must be available with multiple accuracy, and multiple precision must be used in
the computation of their difference scheme. Otherwise, we cannot evaluate the
series with a decent accuracy for much larger values of x than we could have done
without preconditioning. Note, however, that if satisfactory coefficients have been
obtained for the preconditioned series, double precision is sufficient when the series
is evaluated for large values of x. (It is different for method A above.)

Let F (x) be the function that we want to compute for x ≫ 1, where it is
defined by an ill-conditioned power series F1(x). A more general preconditioner can
be described as follows. Try to find a power series P (x) with positive coefficients
such that the power series P (x)F1(x) has less severe cancellations than than F1(x).

In order to distinguish between the algebraic manipulation and the numerical
evaluation of the functions defined by these series, we introduce the indeterminate

29Unfortunately, the formulation of Kummer’s first identity in [30, Eqn. (9.11.2)] contains a
serious sign error.
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x and describe a more general preconditioner as follows:

F∗
2(x) = P(x) ·F1(x); F2(x) = F ∗

2 (x)/P (x). (3.2.41)

The second statement is a usual scalar evaluation (no bold-face). Here P (x) may
be evaluated by some other method than the power series, if it is more practical. If
P (x) = ex, and F1(x) is the series defined by (3.2.33), then it can be shown that
F2(x) is mathematically equivalent to the right hand side of (3.2.36); see Exam-
ple 3.2.1. In these cases F2(x) has positive coefficients.

If, however, F1(x) has a positive zero, this is also a zero of F ∗
2 (x), and hence it is

impossible that all coefficients of the series F∗
2(x) have the same sign. Nevertheless,

the following example shows that the preconditioner (3.2.41) can sometimes be
successfully used in such a case too.

Table 3.2.1.

1 x 10 20 30 40 50

2 J0(x) ≈ −2 · 10−1 2·10−1 −9 · 10−2 7 · 10−3 6 · 10−2

3 N1(x) 26 41 55 69 82

4 J(x; N1) − J0(x) 9 · 10−14 3 · 10−10 −2 · 10−6 −1 · 10−1 −2 · 102

5 N2(x) 16 26 36 46 55

6 IJ(x; N2) ≈ −7 · 102 7 · 106 −7 · 1010 1 · 1014 2 · 1019

7 I0(x) ≈ 3 · 103 4 · 107 8 · 1011 1 · 1016 3 · 1020

8 IJ(x)/I0(x) − J0(x) 3 · 10−17 2 · 10−14 3 · 10−13 −5 · 10−12 2 · 10−10

Example 3.2.8.
The two functions

J0(x) =

∞
∑

n=0

(−1)n (x2/4)n

(n!)2
, I0(x) =

∞
∑

n=0

(x2/4)n

(n!)2
,

are examples of Bessel functions of the first kind; I0 is nowadays called a modified
Bessel function. J0(x) is oscillatory and bounded, while I0(x) ∼ ex/

√
2πx for x≫ 1.

Since all coefficients of I0 are positive, we shall set P = I0, F1 = J0, and try

F∗
2(x) = IJ(x) ≡ I0(x) · J0(x), F2(x) = F ∗

2 (x)/I0(x),

as a preconditioner for the power series for J0(x), which is ill-conditioned if x≫ 1.
In Table 3.2.1 line 2 and line 7 are obtained from the fully accurate built-in functions
for J0(x) and I0(x). J(x;N1) is computed in IEEE double precision from N1 terms
of the above power series for J0(x). N1 = N1(x) is obtained by a termination
criterion that should give full accuracy or, if the estimate of the effect of the rounding
error is bigger than 10−16, the truncation error should be smaller than this estimate.
We omit the details; see also Problem 12 (d).

The coefficients of IJ(x) are obtained from the second expression for γm given
in Problem 12 (c). N2 = N2(x) is the number of terms used in the expansion
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of IJ(x), by a termination criterion, similar to the one described for J(x;N1).
Compared to line 4, line 8 is a remarkable improvement, obtained without the use
of multiple precision.

For series of the form ∞
∑

n=0

an
(−x2)n

(2n)!

one can generate a preconditioner from P (x) = coshx. This can also be applied to
J0(x) and other Bessel functions; see Problem 12 (e).

3.2.6 Divergent or Semiconvergent Series

That a series is convergent is no guarantee that it is numerically useful. In this
section, we shall see examples of the reverse situation: a divergent series can be of
use in numerical computations. This sounds strange, but it refers to series where
the size of the terms decreases rapidly at first and increases later, and where an
error bound (see Figure 3.2.4), can be obtained in terms of the first neglected term.
Such series are sometimes called semiconvergent. An important subclass are the
asymptotic series; see below.

Example 3.2.9.
We shall derive a semiconvergent series for the computation of Euler’s function

f(x) = exE1(x) = ex

∫ ∞

x

e−tt−1 dt =

∫ ∞

0

e−u(u+ x)−1 du

for large values of x. (The second integral was obtained from the first by the
substitution t = u + x.) The expression (u + x)−1 should first be expanded in a
geometric series with remainder term, valid even for u > x,

(u+ x)−1 = x−1(1 + x−1u)−1 = x−1
n−1
∑

j=0

(−1)jx−juj + (−1)n(u+ x)−1(x−1u)n

We shall frequently use the well known formula
∫ ∞

0

uje−u du = j! = Γ(j + 1).

We write f(x) = Sn(x) +Rn(x), where

Sn(x) = x−1
n−1
∑

j=0

(−1)jx−j

∫ ∞

0

uje−udu =
1

x
− 1!

x2
+

2!

x3
− . . .+ (−1)n−1 (n− 1)!

xn
,

Rn(x) = (−1)n

∫ ∞

0

(u+ x)−1
(u

x

)n

e−udu.



3.2. More About Series 59

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

1 2 3 4 5 6 7 8 9 10 11

Remainder for x=5, n=1:11

Figure 3.2.4. The first 11 error estimates of the semiconvergent series of
Example 3.2.7; see (3.2.43). The smallest actual error is only 5% of the smallest
error estimate.

The terms in Sn(x) qualitatively behave as in Figure 3.2.4. The ratio between
the last term in Sn+1 and the last term in Sn is

− n!

xn+1

xn

(n− 1)!
= −n

x
, (3.2.42)

and since the absolute value of that ratio for fixed x is unbounded as n → ∞, the
sequence {Sn(x)}∞n=1 diverges for every positive x. But since signRn(x) = (−1)n

for x > 0, it follows from Theorem 3.1.4 that

f(x) =
1

2

(

Sn(x) + Sn+1(x)
)

± 1

2

n!

xn+1
. (3.2.43)

The idea is now to choose n so that the estimate of the remainder is as small
as possible. According to (3.2.42), this happens when n is equal to the integer part
of x. For x = 5 we choose n = 5,

S5(5) = 0.2 − 0.04 + 0.016− 0.0096 + 0.00768 = 0.17408,

S6(5) = S5(5) − 0.00768 = 0.16640,

which gives f(5) = 0.17024 ± 0.00384. The correct value is 0.17042, so the actual
error is only 5% of the error bound.

For larger values of x the accuracy attainable increases. One can show that
the bound for the relative error using the above computational scheme decreases
approximately as (π·x/2)1/2e−x; an extremely good accuracy for large values of x,
if one stops at the smallest term. It can even be improved further, by the use of
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the convergence acceleration techniques presented in Sec. 3.4, notably the repeated
averages algorithm, also known as the Euler transformation; see Sec. 3.4.3. The
algorithms for the transformation of a power series into a rapidly convergent con-
tinued fraction, mentioned in Sec. 3.5.1, can also be successfully applied to this
example and to many other divergent expansions.

One can derive the same series expansion as above by repeated integration by
parts. This is often a good way to derive numerically useful expansions, convergent
or semi-convergent, with a remainder in the form of an integral. For convenient
reference, we formulate this as a lemma that is easily proved by induction and the
mean value theorem of integral calculus. See Problem 13 for applications.

Lemma 3.2.7. Repeated Integration by Parts.

Let F ∈ Cp(a, b), let G0 be a piecewise continuous function, and let G0, G1, . . .
be a sequence of functions such that G′

j+1(x) = Gj(x) with suitably chosen constants
of integration. Then

∫ b

a

F (t)G0(t) dt =

p−1
∑

j=0

(−1)jF (j)(t)Gj+1(t)
∣

∣

∣

b

t=a
+ (−1)p

∫ b

a

F (p)(t)Gp(t) dt.

The sum is the “expansion”, and the last integral is the “remainder”. If Gp(t) has
a constant sign in (a, b), the remainder term can also be written in the form

(−1)pF (p)(ξ)(Gp+1(b) −Gp+1(a)), ξ ∈ (a, b).

The expansion in Lemma 3.2.7 is valid as an infinite series, if and only if the
remainder tends to 0 as p → ∞. Even if the sum converges as p → ∞, it may
converge to the wrong result.

The series in Example 3.2.9 is an expansion in negative powers of x, with the
property that for all n, the remainder, when x→ ∞, approaches zero faster than the
last included term. Such an expansion is said to represent f(x) asymptotically
as x→ ∞. Such an asymptotic series can be either convergent or divergent (semi-
convergent). In many branches of applied mathematics, divergent asymptotic series
are an important aid, though they are often needlessly surrounded by an air of
mysticism.

It is important to appreciate that an asymptotic series does not define a sum
uniquely. For example f(x) = e−x is asymptotically represented by the series
∑

0x−j , as x→ ∞. So e−x, (and many other functions), can therefore be added to
the function, for which the expansion was originally obtained.

Asymptotic expansions are not necessarily expansions into negative powers of
x. An expansion into positive powers of x− a,

f(x) ∼
n−1
∑

ν=0

cν(x− a)ν +Rn(x),
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represents f(x) asymptotically when x→ a if

lim
x→a

(x − a)−(n−1)Rn(x) = 0.

Asymptotic expansions of the error of a numerical method into positive powers of
a step length h are of great importance in the more advanced study of numeri-
cal methods. Such expansions form the basis of simple and effective acceleration
methods for improving numerical results; see Sec. 3.4.

Review Questions

1. Give the Cauchy formula for the coefficients of Taylor and Laurent series, and
describe the Cauchy–FFT method. Give the formula for the coefficients of
a Fourier series. For which of the functions in Table 3.1.1 does also another
Laurent expansion exist?

2. Describe by an example the balancing procedure that was mentioned in the
subsection about perturbation expansions.

3. Define the Chebyshev polynomials, and tell some interesting properties of
these and of Chebyshev expansions. For example, what do you know about the
speed of convergence of a Chebyshev expansion for various classes of functions?
(The detailed expressions are not needed.)

4. Describe and exemplify, what is meant by an ill-conditioned power series and
a preconditioner for such a series.

5. Define what is meant, when one says that the series
∑∞

0 anx
−n

(a) converges to a function f(x) for x ≥ R;

(b) represents a function f(x) asymptotically as x→ ∞.

(c) Give an example of a series that represents a function asymptotically as
x→ ∞, although it diverges for every finite positive x.

(d) What is meant by semi-convergence? Say a few words about termination
criteria and error estimation.

Problems and Computer Exercises

1. Some of the functions appearing in Table 3.1.1, in Problem 3.1.6, and in other
examples and problems are not single-valued in the complex plane. Brush up
your Complex Analysis, and find out how to define the branches, where these
expansions are valid, and (if necessary) define cuts in the complex plane that
must not be crossed. It turns out not to be necessary for these expansions.
Why?

(a) If you have access to programs for functions of complex variables (or to
commands in some package for interactive computation), find out the con-
ventions used for functions like square root, logarithm, powers, arctan etc.
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If the manual does not give enough detail, invent numerical tests, both with
strategically chosen values of z and with random complex numbers in some
appropriate domain around the origin. For example, do you obtain

ln

(

z + 1

z − 1

)

− ln(z + 1) + ln(z − 1) = 0, ∀z?

Or, what values of
√
z2 − 1 do you obtain for z = ±i? What values should

you obtain, if you want the branch which is positive for z > 1?

(b) What do you obtain, if you apply Cauchy’s coefficient formula or the
Cauchy–FFT method to find a Laurent expansion for

√
z? Note that

√
z is

analytic everywhere in an annulus, but that does not help. The expansion is
likely to become weird. Why?

2. (a) Apply (on a computer) the Cauchy–FFT method to find the Maclaurin
coefficients an of (say) ez, ln(1 − z) and (1 + z)1/2. Make experiments with
different values of r and N , and compare with the exact coefficients. This
presupposes that you have access to good programs for complex arithmetic
and FFT.

Try to summarize your experiences of how the error of an depends on r, N .
You may find some guidance in Example 3.2.2.

0 0.5 1 1.5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5
−1

−0.5

0

0.5

1
x 10

−3

Figure 3.2.5. Illustrations to Problem 3 c. Upper part: The function
f(x) = 1

1+x2 , x ∈ [0, 1.5]. Lower part: The error of the expansion of f(x) in a

sum of Chebyshev polynomials {Tn(x/1.5)}, n ≤ 10. The scale is 10−3 in the lower
curve.

3. (a) Suppose that r is located inside the unit circle; t is real. Show that

1 − r2

1 − 2r cos t+ r2
= 1 + 2

∞
∑

n=1

rn cosnt,
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2r sin t

1 − 2r cos t+ r2
= 2

∞
∑

n=1

rn sinnt.

Hint: First suppose that r is real. Set z = reit. Show that the two series
are the real and imaginary parts of (1 + z)/(1 − z). Finally make analytic
continuation of the results.

(b) Let a be positive, x ∈ [−a, a], while w is complex, w /∈ [−a, a]. Let
r = r(w), |r| < 1 be a root of the quadratic r2 − (2w/a)r + 1 = 0. Show that
(with an appropriate definition of the square root)

1

w − x
=

1√
w2 − a2

·
(

1 + 2
∞
∑

n=1

rnTn

(x

a

)

)

, (w /∈ [−a, a], x ∈ [−a, a]).

(c) Find the expansion of 1/(1 + x2) for x ∈ [−1.5, 1.5] into the polynomials
Tn(x/1.5). Explain the order of magnitude of the error and the main features
of the error curve in Figure 3.2.5.

Hint: Set w = i, and take the imaginary part. Note that r becomes imaginary.

4. (a) Find the Laurent expansions for

f(z) = 1/(z − 1) + 1/(z − 2).

(b) How do you use the Cauchy–FFT method for finding Laurent expansions?
Test your ideas on the function in the previous subproblem (and on a few
other functions). There may be some pitfalls with the interpretation of the
output from the FFT program, related to so-called aliasing; see Sec. 4.6.4 and
Strang [44].

(c) As in Sec. 3.2.1, suppose that F (p) is of bounded variation in [−π, π] and

denote the Fourier coefficients of F (p) by c
(p)
n . Derive the following general-

ization of (3.2.8):

cn =
(−1)n−1

2π

p−1
∑

j=0

F (j)(π) − F (j)(−π)

(in)j+1
+

c
(p)
n

(in)p
,

and show that if we add the condition that F ∈ Cj [−∞,∞], j < p, then the
asymptotic results given in (and after) (3.2.8) hold.

(d) Let z = 1
2 (w + w−1). Show that |z − 1| + |z + 1| = |w| + |w|−1.

Hint: Use the parallelogram law, |p− q|2 + |p+ q|2 = 2(|p|2 + |q|2).
5. (a) The expansion of arcsinh t into powers of t, truncated after t7, is obtained

from Problem 1.6 (b). Using economization of a power series construct from
this a polynomial approximation of the form c1t+c3t

3 in the interval − 1
2 ≤ t ≤

1
2 . Give bounds for the truncation error for the original truncated expansion
and for the economized expansion.

(b) The graph of T12(x) for x ∈ [−1, 1] is shown in Figure 3.2.1. Draw the
graph of T12(x) for (say) x ∈ [−1.1, 1.1].
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6. Show the following generalization of Theorem 3.2.4. Assume that |f(z)| ≤M
for z ∈ ER. Let |ζ| ∈ Eρ, 1 < ρ < r ≤ R − ǫ. Then the Chebyshev expansion
of f(ζ) satisfies the inequality

∣

∣

∣

∣

f(ζ) −
n−1
∑

j=0

cjTj(ζ)

∣

∣

∣

∣

≤ 2M(ρ/R)n

1 − ρ/R
.

Hint: Set ω = ζ +
√

ζ2 − 1, and show that |Tj(ζ)| = | 12 (ωj + ω−j)| ≤ ρj .

7. Compute a few terms of the expansions into powers of ǫ or k of each of the
roots of the following equations, so that the error is O(ǫ2) or O(k−2) (ǫ is
small and positive; k is large and positive). Note that some terms may have
fractional or negative exponents. Also try to fit an expansion of the wrong
form in some of these examples, and see what happens.

(a) (1 + ǫ)z2 − ǫ = 0; (b) ǫz3 − z2 + 1 = 0; (c) ǫz3 − z + 1 = 0;

(d) z4 − (k2 + 1)z2 − k2 = 0, (k2 ≫ 1).

8. Modify Clenshaw’s algorithm to a formula for the derivative of an orthogonal
expansion.

9. (a) Let αj , j = 1 : n be the zeros of the Chebyshev polynomial Tn(x), n ≥
1. (There are, of course, simple trigonometric expressions for them.) Apply

Clenshaw’s algorithm to compute
∑n−1

m=0 Tm(α1)Tm(x), for x = αj , j = 1 : n.
It turns out that the results are remarkably simple. (An explanation to this
will be found in Sec. 4.5.

(b) Show that S =
∑n−1

k=0 ckφk can be computed by a forward version of
Clenshaw’s algorithm that reads

y−2 = 0; y−1 = 0;

for k = 0 : n− 1,

yk = (−yk−2 + αkyk−1 + ck)/γk+1;

end

S = cnφn + γnyn−1φn−1 − yn−2φn.

Add this version as an option to your program, and study Numerical Recipes
[36, Sec. 5.4], from which this formula is quoted (with adaptation to our nota-
tion etc.). Make some test example of your own choice.

10. The solution of the boundary value problem

(1 + ǫ)y′′ − ǫy = 0, y(0) = 0, y(1) = 1,

has an expansion of the form y(t; ǫ) = y0(t) + y1(t)ǫ+ y2(t)ǫ
2 + . . ..

(a) By coefficient matching, set up differential equations and boundary condi-
tions for y0, y1, y2, and solve them. You naturally use the boundary conditions
of the original problem for y0. Make sure you use the right boundary condi-
tions for y1, y2.
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(b) Set R(t) = y0(t) + ǫy1(t) − y(t; ǫ). Show that R(t) satisfies the (modified)
differential equation

(1 + ǫ)R′′ − ǫR = ǫ2(7t− t3)/6, R(0) = 0, R(1) = 0.

11. (a) Apply Kummer’s first identity (3.2.39) to the error function erf(x), to show
that

erf(x) =
2x√
π
e−x2

M
(

1,
3

2
, x2
)

=
2x√
π
e−x2

(

1 +
2x2

3
+

(2x2)2

3 · 5 +
(2x2)3

3 · 5 · 7 + . . .
)

.

Why is this series well conditioned? (Note that it is a bell sum; compare
Figure 3.2.7.) Investigate the largest term, rounding errors, truncation errors
and termination criterion etc. in the same way as in (a).

(b) erfc(x) has a semi-convergent expansion for x≫ 1 that begins

erfc(x) = 1 − erf(x) =
2√
π

∫ ∞

x

e−t2 dt =
e−x2

x
√
π

(

1 − 1

2x2
+

3

4x4
− 15

8x6
+ . . .

)

.

Give an explicit expression for the coefficients, and show that the series di-
verges for every x. Where is the smallest term? Estimate its size.

Hint: Set t2 = x2 + u, and proceed analogously to Example 3.2.8. See Prob-
lem 3.1.7 (c), α = 1

2 , about the remainder term. Alternatively, apply repeated
integration by parts. It may be easier to find the remainder in this way.

12. Other notations for series, with application to Bessel functions.

(a) Set

f(x) =
∞
∑

n=0

anx
n

n!
; g(x) =

∞
∑

n=0

bnx
n

n!
; h(x) =

∞
∑

n=0

cnx
n

n!
;

φ(w) =

∞
∑

n=0

αnw
n

n!n!
; ψ(w) =

∞
∑

n=0

βnw
n

n!n!
; χ(w) =

∞
∑

n=0

γnw
n

n!n!
.

Let h(x) = f(x) · g(x); χ(w) = φ(w) · ψ(w). Show that

cn =

n
∑

j=0

(

n

j

)

ajbn−j; γn =

n
∑

j=0

(

n

j

)2

αjβn−j .

Derive analogous formulas for series of the form
∑∞

n=0 anw
n/(2n)! etc..

Suggest how to divide two power series in these notations.

(b) Let aj = (−1)ja′j; g(x) = ex. Show that

cn =

n
∑

j=0

(

n

j

)

(−1)ja′j .

Comment: By (3.2.1), this can can also be written cn = (−1)n∆na0. This
proves the mathematical equivalence of the preconditioners (3.1.55) and (3.1.59)
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if P (x) = ex.

(c) Set, according to Example 3.2.8 and (a) (of this problem), w = −x2/4,

J0(x) =

∞
∑

n=0

(−1)nwn

n!n!
; I0(x) =

∞
∑

n=0

wn

n!n!
; IJ(x) ≡ I0(x)J0(x) =

∞
∑

n=0

γnw
n

n!n!
.

Show that

γn =

n
∑

j=0

(−1)j

(

n

j

)(

n

n− j

)

=

{

(−1)m
(

2m
m

)

, if n = 2m;
0, if n = 2m+ 1.

Hint: The first expression for γn follows from (a). It can be interpreted as the
coefficient of tn in the product (1 − t)n(1 + t)n. The second expression for γn

is the same coefficient in (1 − t2)n.

(d) The second expression for γn in (c) is used in Example 3.2.8.30 Recon-
struct and extend the results of that example. Design a termination criterion.
Where is the largest modulus of a term of the preconditioned series, and how
large is it approximately? Make a crude guess in advance of the rounding
error in the preconditioned series.

*(e) Show that the power series of J0(x) can be written in the form

∞
∑

n=0

an
(−x2)n

(2n)!
,

where an is positive and decreases slowly and smoothly.

Hint: Compute an+1/an.
Try preconditioning with P (x) = coshx. At the time of writing the authors
do not know whether this is useful without multiple precision or not.

*(f) It is known; see Lebedev [30, (9.13.11)], that

J0(x) = e−ixM
(

1
2 , 1; 2ix

)

,

where M(a, b, c) is Kummer’s confluent hypergeometric function, this time
with an imaginary argument. Show that Kummer’s first identity is unfortu-
nately of no use here for preconditioning the power series.

Comment: Most of the formulas and procedures in this problem can be gener-
alized to the series for the Bessel functions of the first kind of general integer
order, (z/2)−nJn(x). These belong to the most studied functions of Applied
Mathematics, and there exist more efficient methods for computing them; see,
e.g., Numerical Recipes [36, Chapter 6]. This problem shows, however, that
preconditioning can work well for a non-trivial power series, and it is worth to
be tried, e.g., for other power series that may occur in connection with new
applications.

30It is much better conditioned than the first expression. This may be one reason why multiple
precision is not needed here.
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13. (a) Derive the expansion of Example 3.2.5 by repeated integration by parts.

(b) Derive the Maclaurin expansion with the remainder according to (3.1.5)
by the application of repeated integration by parts to the equation

f(z) − f(0) = z

∫ 1

0

f ′(zt) d(t− 1).

3.3 Difference Operators and Operator Expansions

3.3.1 Properties of Difference Operators

Difference operators are handy tools for the derivation, analysis, and practical ap-
plication of numerical methods for many problems for interpolation, differentiation,
and quadrature of a function in terms of its values at equidistant arguments. The
simplest notations for difference operators and applications to derivatives, were
mentioned in Sec. 1.2.3.

Let y denote a sequence {yn}. Then we define the shift operator E (or
translation operator) and the forward difference operator ∆ by the relations

Ey = {yn+1}, ∆y = {yn+1 − yn},

(see Sec. 1.2). E and ∆ are thus operators which map one sequence to another
sequence. Note, however, that if yn is defined for a ≤ n ≤ b only, then Eyb is
not defined, and the sequence Ey has fewer elements than the sequence y. (It is
therefore sometimes easier to extend the sequences to infinite sequences, e.g., by
adding zeros in both directions outside the original range of definition.)

These operators are linear, i.e. if α, β are real or complex constants and if
y, z are two sequences, then E(αy + βz) = αEy + βEz, and similarly for ∆.

Powers of E and ∆ are defined recursively, i.e.

Eky = E(Ek−1y), ∆ky = ∆(∆k−1y).

By induction, the first relation yields Eky = {yn+k}. We extend the validity of this
relation to k = 0 by setting E0y = y and to negative values of k. ∆ky is called
the kth difference of the sequence y. We make the convention that ∆0 = 1. There
will be little use of ∆k for negative values of k in this book, although ∆−1 can be
interpreted as a summation operator.

Note that ∆y = Ey − y, and Ey = y + ∆y for any sequence y. It is therefore
convenient to express these as equations between operators:

∆ = E − 1, E = 1 + ∆.

The identity operator is in this context traditionally denoted by 1. It can be shown
that all formulas derived from the axioms of commutative algebra can be used for
these operators, for example, the binomial theorem for positive integral k.

∆k = (E − 1)k =
k
∑

j=0

(−1)k−j

(

k

j

)

Ej , Ek = (1 + ∆)k =
k
∑

j=0

(

k

j

)

∆j , (3.3.1)
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giving

(∆ky)n =

k
∑

j=0

(−1)k−j

(

k

j

)

yn+j , yn+k = (Eky)n =

k
∑

j=0

(

k

j

)

(∆jy)n. (3.3.2)

We abbreviate the notation further and write, for example, Eyn = yn+1 instead of
(Ey)n = yn+1, and ∆kyn instead of (∆ky)n. However, it is important to remember
that ∆ operates on sequences and not on elements of sequences. Thus, strictly
speaking, this abbreviation is incorrect, though convenient. The formula for Ek

will, in next subsection, be extended to an infinite series for non-integral values of
k, but that is beyond the scope of algebra.

A difference scheme consists of a sequence and its difference sequences,
arranged in the following way:

y0
∆y0

y1 ∆2y0
∆y1 ∆3y0

y2 ∆2y1 ∆4y0
∆y2 ∆3y1

y3 ∆2y2
∆y3

y4

A difference scheme is best computed by successive subtractions; the formulas in
(3.3.1) are used mostly in theoretical contexts.

In many applications the quantities yn are computed in increasing order
n = 0, 1, 2, . . ., and it is natural that a difference scheme is constructed by means
of the quantities previously computed. One therefore introduces the backward
difference operator ∇yn = yn − yn−1 = (1 − E−1)yn. For this operator we have

∇k = (1 − E−1)k, E−k = (1 −∇)k. (3.3.3)

Note the reciprocity in the relations between ∇ and E−1.
Any linear combination of the elements yn, yn−1, . . . yn−k can also be ex-

pressed as a linear combination of yn, ∇yn, . . . ,∇kyn, and vice versa31 . For ex-
ample,

yn + yn−1 + yn−2 = 3yn − 3∇yn + ∇2yn,

because 1+E−1 +E−2 = 1+(1−∇)+ (1−∇)2 = 3−3∇+∇2. By the reciprocity,
we also obtain yn + ∇yn + ∇2yn = 3yn − 3yn−1 + yn−2.

31An analogous statement holds for the elements yn, yn+1, . . . , yn+k and forward differences.
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In this notation the difference scheme reads

y0
∇y1

y1 ∇2y2
∇y2 ∇3y3

y2 ∇2y3 ∇4y4
∇y3 ∇3y4

y3 ∇2y4
∇y4

y4

In the backward difference scheme the subscripts are constant along diagonals di-
rected upwards (backwards) to the right, while, in the forward difference scheme,
subscripts are constant along diagonals directed downwards (forwards). Note, e.g.,
that ∇kyn = ∆kyn−k. In a computer, a backward difference scheme is preferably
stored as a lower triangular matrix.

Example 3.3.1.
Part of the difference scheme for the sequence y = {. . . , 0, 0, 0, 1, 0, 0, 0, . . .} is

given below.

0 1 −7
0 1 −6 28

0 1 −5 21
0 1 −4 15 −56

1 −3 10 −35
1 −2 6 −20 70

−1 3 −10 35
0 1 −4 15 −56

0 −1 5 −21
0 1 −6 28

0 −1 7

This example shows the effect of a disturbance in one element on the sequence
of the higher differences. Because the effect broadens out and grows quickly, dif-
ference schemes are useful in the investigation and correction of computational and
other errors, so-called difference checks. Notice that, since the differences are
linear functions of the sequence, a superposition principle holds. The effect of
errors can thus be estimated by studying simple sequences such as the one above.

Example 3.3.2.
The following is a difference scheme for a 5 decimal table of the function

f(x) = tanx, x ∈ [1.30, 1.36], with step h = 0.01. The differences are given with



70 Chapter 3. Series, Operators and Continued Fractions

10−5 as unit.

x y ∇y ∇2y ∇3y ∇4y ∇5y ∇6y

1.30 3.60210
14498

1.31 3.74708 1129
15627 140

1.32 3.90335 1269 26
16896 166 2

1.33 4.07231 1435 28 9
18331 194 11

1.34 4.25562 1629 39
19960 233

1.35 4.45522 1862
21822

1.36 4.67344

We see that the differences decrease roughly by a factor of 0.1—that indicates that the

step size has been chosen suitably for the purpose of interpolation, numerical quadrature

etc.—until the last two columns, where the rounding errors of the function values have a

visible effect.

Example 3.3.3.
For the sequence yn = (−1)n one finds easily that

∇yn = 2yn, ∇2yn = 4yn, . . . , ∇kyn = 2kyn.

If the error in the elements of the sequence are bounded by ǫ, it follows that the
errors of the kth differences are bounded by 2kǫ. A rather small reduction of this
bound is obtained if the errors are assumed to be independent random variables
(Problem 3.4.25).

It is natural also to consider difference operations on functions not just on
sequences. E and ∆ map the function f onto functions whose values at the point
x are

E f(x) = f(x+ h), ∆f(x) = f(x+ h) − f(x), (3.3.4)

where h is the step size. Of course, ∆f depends on h; in some cases this should
be indicated in the notation. One can, for example, write ∆hf(x), or ∆f(x;h). If
we set yn = f(x0 + nh), the difference scheme of the function with step size h is
the same as for the sequence {yn}. Again it is important to realize that, in this
case, the operators act on functions, not on the values of functions. It would be
more correct to write f(x0 + h) = (Ef)(x0). Actually, the notation (x0)Ef would
be even more logical, since the insertion of the value of the argument x0 is the last
operation to be done, and the convention for the order of execution of operators
proceeds from right to left, but this notation would be too revolutionary.32

32The notation [x0]f occurs, however, naturally in connection with divided differences, Sec. 4.2.
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Note that no new errors are introduced during the computation of the differ-
ences, but the effects of the original irregular errors of y grow exponentially. We
emphasize the word irregular errors, e.g., rounding errors in y, since systematic
errors, e.g., the truncation errors in the numerical solution of a differential equation,
often have a smooth difference scheme. For example, if the values of y have been
produced by the iterative solution of an equation, where x is a parameter, with the
same number of iterations for every x and y and the same algorithm for the first
approximation, then the truncation error of y is likely to be a smooth function of x.

Difference operators are in many respects similar to differentiation operators.
Let f be a polynomial. By Taylor’s formula,

∆f(x) = f(x+ h) − f(x) = hf ′(x) +
1

2
h2f ′′(x) + . . . .

We see from this that deg∆f = deg f − 1. Similarly for differences of higher order;
if f is a polynomial of degree less than k, then

∆k−1f(x) = constant, ∆pf(x) = 0, ∀p ≥ k.

The same holds for backward differences.
The following important result can be derived directly from Taylor’s theorem

with the integral form of the remainder. Assume that all derivatives of f up to kth
order are continuous. If f ∈ Ck,

∆kf(x) = hkf (k)(ζ), ζ ∈ [x, x+ kh]. (3.3.5)

Hence h−k∆kf(x) is an approximation to f (k)(x); the error of this approximation
approaches zero as h → 0 (i.e. as ζ → x). As a rule, the error is approximately
proportional to h. We postpone the proof to Sec. 4.2.1, where it appears as a
particular case of a theorem concerning divided differences.

Even though difference schemes do not have the same importance today that
they had in the days of hand calculations or calculation with desk calculators, they
are still important conceptually, and we shall also see how they are still useful
also in practical computing. In a computer it is more natural to store a difference
scheme as an array, e.g. with yn, ∇yn, ∇2yn, . . ., ∇kyn in a row (instead of along
a diagonal).

Many formulas for differences are analogous to formulas for derivatives, though
usually more complicated. The following results are among the most important.

Lemma 3.3.1.
It holds that

∆k(ax) = (ah − 1)kax, ∇k(ax) = (1 − a−h)kax. (3.3.6)

For sequences, i.e. if h=1,

∆k{an} = (a− 1)k{an}, ∆k{2n} = {2n}. (3.3.7)
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Proof. Let c be a given constant. For k = 1 we have

∆(cax) = cax+h − cax = caxah − cax = c(ah − 1)ax

The general result follows easily by induction. The backward difference formula is
derived in the same way.

Lemma 3.3.2. Summation by Parts

N−1
∑

n=0

un∆vn = uNvN − u0v0 −
N−1
∑

n=0

∆un vn+1. (3.3.8)

Proof. (Compare the rule for integration by parts and its proof!) Notice that

N−1
∑

n=0

∆wn = (w1 − w0) + (w2 − w1) + . . .+ (wN − wN−1) = wN − w0.

Use this on wn = unvn. From the result in Lemma 3.3.1 one gets after summation,

uNvN − u0v0 =

N−1
∑

n=0

un∆vn +

N−1
∑

n=0

∆unvn+1,

and the result follows. (For an extension; see Problem 1d.)

Lemma 3.3.3. The Difference of a Product

∆(unvn) = un∆vn + ∆un vn+1. (3.3.9)

Proof. We have

∆(unvn) = un+1vn+1 − unvn = un(vn+1 − vn) + (un+1 − un)vn+1.

Compare the above result with the formula for differentials, d(uv) = udv + vdu.
Note that we have vn+1 (not vn) on the right-hand side.

3.3.2 The Calculus of Operators

Formal calculations with operators, using the rules of algebra and analysis, are
often an elegant means of assistance in finding approximation formulas that are
exact for all polynomials of degree less than (say) k, and they should therefore be
useful for functions that can be accurately approximated by such a polynomial.
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Our calculations often lead to divergent (or semi-convergent) series, but the way
we handle them can usually be justified by means of the theory of formal power
series, of which a brief introduction was given at the end of Sec. 3.1.5. The opera-
tor calculations also provide error estimates, asymptotically valid as the step size
h → 0. Strict error bounds can be derived by means of Peano’s remainder theo-
rem,Sec. 3.3.3.

Operator techniques are sometimes successfully used (see, e.g., Sec. 3.3.4) in a
way that it is hard, or even impossible, to justify by means of formal power series. It
is then not trivial to formulate appropriate conditions for the success and to derive
satisfactory error bounds and error estimates, but it can sometimes be done.

We make a digression about terminology. More generally, the word operator
is in this book used for a function that maps a linear space S into another linear
space S′. S can, for example, be a space of functions, a coordinate space, or a space
of sequences. The dimension of these spaces can be finite or infinite. For example,
the differential operator D maps the infinite-dimensional space C1[a, b] of functions
with a continuous derivative, defined on the interval [a, b], into the space C[a, b] of
continuous functions on the same interval.

In the following we denote by Pk the set of polynomials of degree less than
k.33 Note that Pk is a k-dimensional linear space, for which {1, x, x2, . . ., xk−1} is a
basis called the power basis; the coefficients (c1, c2, . . ., ck) are then the coordinates

of the polynomial p defined by p(x) =
∑k

i=1 cix
i−1.

For simplicity, we shall assume that the space of functions on which the op-
erators are defined is C∞(−∞,∞), i.e. the functions are infinitely differentiable on
(−∞,∞). This sometimes requires (theoretically) a modification of a function out-
side the bounded interval where it is interesting. There are techniques for achieving
this, but they are beyond the scope of this book. Just imagine that they have been
applied.

We define the following operators:

Ef(x) = f(x+ h) Shift (or translation) operator

∆f(x) = f(x+ h) − f(x) Forward difference operator

∇f(x) = f(x) − f(x− h) Backward difference operator

Df(x) = f ′(x) Differentiation operator

δf(x) = f(x+ 1
2h) − f(x− 1

2h) Central difference operator

µf(x) = 1
2

(

f(x+ 1
2h) + f(x− 1

2h)
)

Averaging operator

Suppose that the values of f are given on an equidistant grid only, e.g., xj = x0+jh,
j = −M : N , (j is integer). Set fj = f(xj). Note that δfj , δ

3fj . . ., (odd powers)
and µfj cannot be exactly computed; they are available halfway between the grid
points. (A way to get around this is given later; see (3.3.47)) The even powers
δ2fj , δ

4fj . . ., and µδfj, µδ
3fj . . ., can be exactly computed. This follows from the

formulas

µδf(x) =
1

2

(

f(x+ h) − f(x− h)
)

, µδ = 1
2 (∆ + ∇), δ2 = ∆ −∇. (3.3.10)

33Some authors use similar notations to denote the set of polynomials of degree less than or
equal to k.
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Several other notations are in use, e.g., at the study of difference methods for partial
differential equations D+h, D0h, D−h are used instead of ∆, µδ,∇, respectively.

An operator P is said to be a linear operator if

P (αf + βg) = αPf + βPg

holds for arbitrary complex constants α, β and arbitrary functions f, g. The above
six operators are all linear. The operation of multiplying by a constant α, is also a
linear operator.

If P and Q are two operators, then their sum, product, etc., can be defined in
the following way:

(P +Q)f = Pf +Qf,

(P −Q)f = Pf −Qf,

(PQ)f = P (Qf),

(αP )f = α(Pf),

Pnf = P · P · · ·Pf, n factors.

Two operators are equal, P = Q if Pf = Qf , for all f in the space of functions
considered. Notice that ∆ = E − 1. One can show that the following rules hold for
all linear operators:

P +Q = Q+ P, P + (Q+R) = (P +Q) +R,

P (Q+R) = PQ+ PR, P (QR) = (PQ)R.

The above six operators, E, ∆, ∇, hD, δ, and µ, and the combinations of them by
these algebraic operations make a commutative ring, so PQ = QP holds for these
operators, and any algebraic identity that is generally valid in such rings can be
used.

If S = Rn, S′ = Rm, and the elements are column vectors, then the linear
operators are matrices of size [m,n]. They do generally not commute.

If S′ = R or C, the operator is called a functional. Examples of functionals
are, if x0 denotes a fixed (though arbitrary) point,

Lf = f(x0), Lf = f ′(x0), Lf =

∫ 1

0

e−xf(x)dx,

∫ 1

0

|f(x)|2dx;

all except the last one are linear functionals.
There is a subtle distinction here. For example, E is a linear operator that

maps a function to a function. Ef is the function whose value at the point x is
f(x + h). If we consider a fixed point, e.g. x0, then (Ef)(x0) is a scalar. This is
therefore a linear functional. We shall allow ourselves to simplify the notation and
to write Ef(x0), but it must be understood that E operates on the function f , not
on the function value f(x0). This was just one example; simplifications like this will
be made with other operators than E, and similar simplifications in notation were
suggested earlier in this chapter. There are, however, situations, where it is, for
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the sake of clarity, advisable to return to the more specific notation with a larger
number of parentheses.

If we represent the vectors in Rn by columns y, the linear functionals in Rn are
the scalar products aTx =

∑n
i=1 aiyi; every row aT thus defines a linear functional.

Examples of linear functionals in Pk are linear combinations of a finite number
of function values, Lf =

∑

ajf(xj). If xj = x0 + jh the same functional can be
expressed in terms of differences, e.g.,

∑

a′j∆
jf(x0); see Problem 3. The main topic

of this section is to show how operator methods can be used for finding approxima-
tions of this form to linear functionals in more general function spaces. First, we
need a general theorem.

Theorem 3.3.4.
Let x1, x2, . . ., xk be k distinct real (or complex) numbers. Then no non-trivial

relation of the form
k
∑

j=1

ajf(xj) = 0 (3.3.11)

can hold for all f ∈ Pk. If we add one more point (x0), there exists only one non-

trivial relation of the form
∑k

j=0 a
′
jf(xj) = 0, (except that it can be multiplied by

an arbitrary constant). In the equidistant case, i.e. if xj = x0 + jh, then

k
∑

j=0

a′jf(xj) ≡ c∆kf(x0), c 6= 0.

Proof. If (3.3.11) were valid for all f ∈ Pk, then the linear system
∑k

j=1 x
i−1
j aj = 0,

i = 1 : k,would have a non-trivial solution (a1, a2, . . ., ak). The matrix of the system,
however, is a so called Vandermonde matrix

V = [xi−1
j ]ki,j=1 =









1 1 · · · 1
x1 x2 · · · xk
...

... · · ·
...

xk−1
1 xk−1

2 · · · xk−1
k









. (3.3.12)

Its determinant is known to equal the product of all differences (xi − xj), i > j,
1 < i ≤ k, which is nonzero.

Now we add the point x0. Suppose that there exist two relations,

k
∑

j=0

bjf(xj) = 0,
k
∑

j=0

cjf(xj) = 0.

with linearly independent coefficient vectors. Then we can find a (non-trivial) linear
combination, where x0 has been eliminated, but this contradicts the result that we
have just proved. Hence the hypothesis is wrong; the two coefficient vectors must
be proportional. We have seen above that, in the equidistant case, ∆kf(x0) = 0 is
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such a relation. More generally, we shall see in Chapter 4 that, for k + 1 arbitrary
distinct points, the kth order divided difference is zero for all f ∈ Pk.

Corollary 3.3.5.
Suppose that a formula for interpolation, numerical differentiation or integra-

tion etc. has been derived, for example by an operator technique. If it is a linear
combination of the values of f(x) at k given distinct points xj, j = 1 : k, and is
exact for all f ∈ Pk, this formula is unique. (If it is exact for all f ∈ Pm, m < k,
only, it is not unique.)

In particular, for any {cj}k
j=1, a unique polynomial P ∈ Pk is determined by

the interpolation conditions P (xj) = cj, j = 1 : k.

Proof. The difference between two formulas that use the same function values
would lead to a relation that is impossible, by the theorem.

Now we shall go outside of polynomial algebra and consider also infinite series
of operators. The Taylor series

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) + . . .

can be written symbolically as

Ef =
(

1 + hD +
(hD)2

2!
+

(hD)3

3!
+ . . .

)

f.

We can here treat hD like an algebraic indeterminate, and consider the series inside
the parenthesis (without the operand) as a formal power series34

For a formal power series the concepts of convergence and divergence do not
exist. When the operator series acts on a function f , and is evaluated at a point c, we
obtain an ordinary numerical series, related to the linear functional Ef(c) = f(c+h).
We know that this Taylor series may converge or diverge, depending on f , c, and h.

Roughly speaking, the last part of Sec. 3.1.5 tells that, with some care,“analytic
functions” of one indeterminate can be handled with the same rules as analytic func-
tions of one complex variable.

Theorem 3.3.6.

ehD = E = 1 + ∆, e−hD = E−1 = 1 −∇,
2 sinh 1

2hD = ehD/2 − e−hD/2 = δ,

(1 + ∆)θ = (ehD)θ = eθhD, (θ ∈ R).

Proof. The first formula follows from the previous discussion. The second and the
third formulas are obtained in a similar way. (Recall the definition of δ.) The last

34We now abandon the bold-type notation for indeterminates and formal power series used in
Sec. 3.1.5 for the function ehD , which is defined by this series. The reader is advised to take a look
again at the last part of Sec. 3.1.5.
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formula follows from the first formula together with Lemma 3.1.9 (in Sec. 3.1.3).
It follows from the power series expansion that

(ehD)θf(x) = eθhDf(x) = f(x+ θh),

when it converges. Since E = ehD it is natural to define

Eθf(x) = f(x+ θh),

and we extend this definition also to such values of θ that the power series for
eθhDf(x) is divergent. Note that, e.g., the formula Eθ2Eθ1f(x) = Eθ2+θ1f(x),
follows from this definition.

When one works with operators or functionals it is advisable to avoid notations
like ∆xn, Deαx, where the variables appear in the operands. For two important
functions we therefore set

Fα : Fα(x) = eαx; fn : fn(x) = xn. (3.3.13)

Let P be any of the operators mentioned above. When applied to Fα it acts like a
scalar that we shall call the scalar of the operator 35 and denote it by sc(P ),

PFα = sc(P )Fα.

We may also write sc(P ;hα) if it is desirable to emphasize its dependence on hα.
(We normalize the operators so that this is true, e.g., we work with hD instead of
D.) Note that

sc(βP + γQ) = βsc(P ) + γsc(Q), (β, γ ∈ C), sc(PQ) = sc(P )sc(Q),

For our most common operators we obtain

(Eθ) = eθhα; sc(∇) = sc(1 − E−1) = 1 − e−hα; (3.3.14)

sc(∆) = sc(E − 1) = ehα − 1; (3.3.15)

sc(δ) = sc(E1/2 − E−1/2) = ehα/2 − e−hα/2.

Let Qh be one of the operators hD, ∆, δ, ∇. It follows from the last formulas that

sc(Qh) ∼ hα, (h→ 0); |sc(Qh)| ≤ |hα|e|hα|

The main reason for grouping these operators together is that each of them has
the important property (3.3.5), i.e. Qk

hf(c) = hkf (k)(ζ), where ζ lies in the smallest
interval that contains all the arguments used in the computation of Qk

hf(c). Hence,

f ∈ Pk ⇒ Qn
hf = 0, ∀n ≥ k. (3.3.16)

This property 36 makes each of these four operators well suited to be the indetermi-
nate in a formal power series that, hopefully, will be able to generate a sequence of

35In applied Fourier analysis this scalar is, for α = iω, often called the symbol of the operator.
36The operators E and µ do not possess this property.
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approximations, L1, L2, L3 . . ., to a given linear operator L. Ln is the nth partial
sum of a formal power series for L. Then

f ∈ Pk ⇒ Lnf = Lkf, ∀n ≥ k. (3.3.17)

We shall see in the next theorem that, for expansion into powers of Qh,

lim
n→∞

Lnf(x) = Lf(x)

if f is a polynomial. This is not quite self-evident, because it is not true for all
functions f , and we have seen in Sec. 3.1.5 Sec. 3.1.3 that it can happen that an
expansion converges to a “wrong result”. We shall see more examples of that later.
Convergence does not necessarily imply validity.

Suppose that z is a complex variable, and that φ(z) is analytic at the origin,
i.e. φ(z) is equal to its Maclaurin series, (say)

φ(z) = a0 + a1z + a2z
2 + . . . ,

if |z| < ρ for some ρ > 0. For multivalued functions we always refer to the principal
branch. The operator function φ(Qh) is usually defined by the formal power series,

φ(Qh) = a0 + a1Qh + a2Q
2
h + . . . ,

where Qh is treated like an algebraic indeterminate.

Table 3.3.1. Bickley’s table of relations between difference operators

E ∆ δ ∇ hD

E E 1 + ∆ 1 + 1
2
δ2 + δ

q

1 + 1
4
δ2

1

1 −∇
ehD

∆ E − 1 ∆ δ
q

1 + 1
4
δ2 + 1

2
δ2 ∇

1 −∇
ehD − 1

δ E1/2 − E−1/2 ∆(1 + ∆)−1/2 δ ∇(1 −∇)−1/2 2 sinh 1
2
hD

∇ 1 − E−1 ∆

1 + ∆
δ
q

1 + 1
4
δ2 − 1

2
δ2 ∇ 1 − e−hD

hD ln E ln(1 + ∆) 2 sinh−1 1
2
δ − ln(1 −∇) hD

µ 1
2
(E1/2 + E−1/2)

1 + 1
2
∆

(1 + ∆)1/2

q

1 + 1
4
δ2

1 − 1
2
∇

(1 −∇)1/2
cosh 1

2
hD

The operators E, hD, ∆, δ, ∇ and µ are related to each others. See Table 3.3.1
that is adapted from an article by the eminent blind British mathematician W. G.
Bickley (1948). Some of these formulas follow almost directly from the definitions,
others are derived in this section, and the rest are left for Problem 5e. We find the
value sc(·) for each of these operators by substituting α for D in the last column of
the table. (Why?)
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Example 3.3.4. Express E in terms of ∇.

The definition of ∇ reads in operator form E−1 = 1 −∇. This can be looked
upon as a formal power series (with only two non-vanishing terms) for the reciprocal
of E with ∇ as the indeterminate. By the rules for formal power series mentioned
in Sec. 3.1.5, we obtain uniquely

E = (E−1)−1 = (1 −∇)−1 = 1 + ∇ + ∇2 + . . . .

We find in the table an equivalent expression containing a fraction line. Suppose
that we have proved the last column of the table. So, sc(∇) = 1 − e−hα, hence

sc((1 −∇)−1) = (e−hα)−1 = ehα = sc(E).

Example 3.3.5.
Suppose that we have proved the first and the last columns of Bickley’s table

(except for the equation hD = lnE). We shall prove one of the formulas in the
second column, namely the equation δ = ∆(1 + ∆)−1/2. By the first column, the
right hand side is equal to (E − 1)E−1/2 = E1/2 − E−1/2 = δ, Q.E.D.

We shall also compute sc(∆(1 + ∆)−1/2). Since sc(∆) = ehα − 1 we obtain

sc(∆(1 + ∆)−1/2) = (ehα − 1)(ehα)−1/2 = ehα/2 − e−hα/2

= 2 sinh 1
2hα = sc(δ).

By the aid of Bickley’s table, we are in a position to transform L into the form
φ(Qh)Rh. (A sum of several such expressions with different indeterminates can also
be treated.)

• Qh is the one of the four operators, hD, ∆, δ, ∇, which we have chosen to be
the “indeterminate”.

Lf ≃ φ(Qh)f = (a0 + a1Qh + a2Q
2
h + . . .)f. (3.3.18)

The coefficients aj are the same as the Maclaurin coefficients of φ(z), z ∈ C
if φ(z) is analytic at the origin. They can be determined by the techniques
described in Sec. 3.1.4 and Sec. 3.1.5. The meaning of the relation ≃ will
hopefully be clear from the following theorem.

• Rh is, e.g., µδ or Ek, k integer, or more generally any linear operator with
the properties that RhFα = sc(Rh)Fα, and that the values of Rhf(xn) on the
grid xn = x0 + nh, n integer, are determined by the values of f on the same
grid.

Theorem 3.3.7. Recall the notation Qh for either of the operators ∆, δ, ∇, hD,
and the notations Fα(x) = eαx, fn(x) = xn. Note that

Fα(x) =

∞
∑

n=0

αn

n!
fn (x). (3.3.19)



80 Chapter 3. Series, Operators and Continued Fractions

Also recall the scalar of an operator and its properties, e.g.,

LFα = sc(L)Fα, Qj
hFα = (sc(Qh))jFα;

for the operators under consideration the scalar depends on hα.
Assumptions:

(i) A formal power series equation L =
∑∞

j=0 ajQ
j
h has been derived.37 Further-

more, |sc(Qh)| < ρ, where ρ is the convergence radius of the series
∑

ajz
j, z ∈ C,

and

sc(L) =
∞
∑

j=0

aj(sc(Qh))j . (3.3.20)

(ii)

L
∂n

∂αn
Fα(x) =

∂n

∂αn
(LFα)(x)

at α = 0, or equivalently,

L

∫

C

Fα(x) dα

αn+1
=

∫

C

(LFα)(x) dα

αn+1
. (3.3.21)

where C is any circle with the origin as center.

(iii) The domain of x is a bounded interval I1 in R.

Then

LFα =
(

∞
∑

j=0

ajQ
j
h

)

Fα, if |sc(Qh)| < ρ, (3.3.22)

Lf(x) =

k−1
∑

j=0

ajQ
j
hf(x), if f ∈ Pk, (3.3.23)

for any positive integer k.
A strict error bound for (3.3.23), if f /∈ Pk, is obtained in Peano’s Theo-

rem 3.3.8.
An asymptotic error estimate (as h → 0 for fixed k) is given by the first

neglected non-vanishing term arQ
r
hf(x) ∼ ar(hD)rf(x), r ≥ k, if f ∈ Cr[I], where

the interval I must contain all the points used in the evaluation of Qr
hf(x).

Proof. By Assumption 1,

LFα = sc(L)Fα = lim
J→∞

J−1
∑

j=0

ajsc(Q
j
h)Fα = lim

J→∞

J−1
∑

j=0

ajQ
j
hFα = lim

J→∞

(

J−1
∑

j=0

ajQ
j
h

)

Fα,

37To simplify the writing, the operator Rh is temporarily neglected. See one of the comments
below.
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hence LFα = (
∑∞

j=0Q
j
h)Fα. This proves the first part of the theorem.

By (3.3.19), Cauchy’s formula (3.2.9) and Assumption 2,

2πi

n!
Lfn(x) = L

∫

C

Fα(x) dα

αn+1
=

∫

C

(LFα)(x) dα

αn+1

=

∫

C

J−1
∑

j=0

ajQ
j
hFα(x) dα

αn+1
+

∫

C

∞
∑

j=J

ajsc(Qh)jFα(x) dα

αn+1
.

Let ǫ be any positive number. Choose J so that the modulus of the last term
becomes ǫθn2π/n!, where |θn| < 1. This is possible, since |sc(Qh)| < ρ; see As-
sumption (i). Hence, for every x ∈ I1,

Lfn(x) − ǫθn =
n!

2πi

J−1
∑

j=0

ajQ
j
h

∫

C

Fα(x) dα

αn+1
=

J−1
∑

j=0

ajQ
j
hfn(x) =

k−1
∑

j=0

ajQ
j
hfn(x).

The last step holds if J ≥ k > n, because, by (3.3.16), Qj
hfn = 0 for j > n. It follows

that
∣

∣Lfn(x) −∑k−1
j=0 ajQ

j
hfn(x)

∣

∣ < ǫ for every ǫ > 0, hence Lfn =
∑k−1

j=0 ajQ
j
hfn.

If f ∈ Pk, f is a linear combination of fn, n = 0 : k − 1. Hence Lf =
∑k−1

j=0 ajQ
j
hf if f ∈ Pk. This proves the second part of the theorem.

The error bound is derived in Sec. 3.3.1. Recall the important formula (3.3.5)
that expresses the kth difference as the value of the k’th derivative in a point located
in an interval that contains all the points used in the in the computation of the k’th
difference. i.e. the ratio of the error estimate ar(hD)rf(x) to the true truncation
error tends to 1, as h→ 0.

Remark 3.3.1. This theorem is concerned with series of powers of the four opera-
tors collectively denoted Qh. One may try to use operator techniques also to find a
formula involving, e.g., an infinite expansion into powers of the operator E. Then
one should try afterwards to find sufficient conditions for the validity of the result.
This procedure will be illustrated in connection with Euler–Maclaurin’s formula in
Sec. 3.4.4.

Sometimes, operator techniques which are not covered by this theorem can,
after appropriate restrictions, be justified (or even replaced) by transform methods,
e.g., z-transforms, Laplace or Fourier transforms.

The operator Rh that was introduced just before the theorem, was neglected in
the proof, in order to simplify the writing. We now have to multiply the operands
by Rh in the proof and in the results. This changes practically nothing for Fα,
since RhFα = sc(Rh)Fα. In (3.3.23) there is only a trivial change, because the
polynomials f and Rhf may not have the same degree. For example, if Rh = µδ
and f ∈ Pk then Rhf ∈ Pk−1. The verification of the assumptions typically offers
no difficulties.

It follows from the linearity of (3.3.22) that it is satisfied also if Fα is replaced
by a linear combination of exponential functions Fα with different α, provided that
|sc(Qh)| < ρ for all the occurring α. With some care, one can let the linear combi-
nation be an infinite series or an integral.
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There are two things to note in connection with the asymptotic error estimates.
First, the step size should be small enough; this means in practice that, in the
beginning, the magnitude of the differences should decrease rapidly, as their order
increases. When the order of the differences becomes large, it often happens that
the moduli of the differences also become increasing. This can be due to two causes:
semi-convergence (see the next comment) and/or rounding errors.

The rounding errors of the data may have so large effects on the high order
differences38 that the error estimation does not make sense. One should then use a
smaller value of the order k, where the rounding errors have a smaller influence. An
advantage with the use of a difference scheme is that it is relatively easy to choose
the order k adaptively, and sometimes also the step size h.

This comment is of particular importance for numerical differentiation. Nu-
merical illustrations and further comments are given below in Example 3.3.6 and
Problem 6b, and in several other places.

The sequence of approximations to Lf may converge or diverge, depending
on f and h. It is also often semiconvergent, recall Sec. 3.2.6, but in practice the
rounding errors mentioned in the previous comment, have often, though not always,
taken over already, when the truncation error passes its minimum. See Problem 6b.

Example 3.3.6. The Backwards Differentiation Formula.
By Theorem 3.3.6, e−hD = 1−∇. We look upon this as a formal power series;

the indeterminate is Qh = ∇. By Example 3.1.11,

L = hD = − ln(1 −∇) = ∇ +
1

2
∇2 +

1

3
∇3 + . . . (3.3.24)

Verification of the assumptions of Theorem 3.3.7: 39

(i) sc(∇) = 1 − e−hα; the convergence radius is ρ = 1.

sc(L) = sc(hD) = hα;

∞
∑

j=1

sc(∇)j/j = − ln(1 − (1 − e−hα)) = hα.

The convergence condition |sc(∇)| < 1 reads hα > − ln 2 = −0.69 if α is real,
|hω| < π/3 if α = iω.

(ii) For α = 0, D
∂n

∂αn
(eαx) = Dxn = nxn−1. By Leibniz’ rule:

∂n

∂αn
(αeαx) = 0xn + nxn−1.

By the theorem, we now obtain a formula for numerical differentiation that is exact
for all f ∈ Pk.

hf ′(x) =
(

∇ +
1

2
∇2 +

1

3
∇3 + . . .+

1

k − 1
∇k−1

)

f(x) (3.3.25)

38Recall Example 3.3.2
39Recall the definition of the scalar sc(·), after (3.3.13).
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By Theorem 3.3.4, this is the unique formula of this type that uses the values of f(x)
at the k points xn : −h : xn−k+1. The same approximation can be derived in many
other ways, perhaps with a different appearance; see Chapter 4. This derivation has
several advantages; the same expansion yields approximation formulas for every
k, and if f ∈ Ck, f /∈ Pk, the first neglected term, i.e. 1

k∇k
hf(xn), provides an

asymptotic error estimate, if f (k)(xn) 6= 0.

We now apply this formula to the table in Example 3.3.2, where f(x) = tanx,
h = 0.01, k = 6,

0.01f ′(1.35) ≈ 0.1996 +
0.0163

2
+

0.0019

3
+

0.0001

4
− 0.0004

5
,

i.e. we obtain a sequence of approximate results,

f ′(1.35) ≈ 19.96, 20.78, 20.84, 20.84, 20.83.

The correct value to 3D is (cos 1.35)−2 = 20.849. Note that the last result is worse
than the next to last. Recall the last comments to the theorem. In this case this is
due to the rounding errors of the data. Upper bounds for their effect of the sequence
of approximate values of f ′(1.35) is, by Example 3.3.3, shown in the series

10−2
(

1 +
2

2
+

4

3
+

8

4
+

16

5
+ . . .

)

.

A larger version of this problem was run on a computer with the machine unit
2−53 ≈ 10−16; f(x) = tanx, x = 1.35 : −0.01 : 1.06. In the beginning the error
decreases rapidly, but after 18 terms the rounding errors take over, and the error
then grows almost exponentially (with constant sign). The eighteenth term and its
rounding error have almost the same modulus (but opposite sign). The smallest
error equals 5 10−10, and is obtained after 18 terms; after 29 terms the actual error
has grown to 2 10−6. Such a large number of terms is seldom used in practice, unless
a very high accuracy is demanded. See also Problem 6b, a computer exercise that
offers both similar and different experiences.

Equation (3.3.24)—or its variable step size variant in Chapter 4—is called the
Backwards Differentiation Formula. It is the basis of the important BDF
method for the numerical integration of ordinary differential equations.

Coefficients for Backwards differentiation formulas for higher derivatives, are
obtained from the equations

(hD/∇)k = (− ln(1 −∇)/∇)k.

The following formulas were computed by means of the matrix representation of a
truncated power series:











hD/∇
(hD/∇)2

(hD/∇)3

(hD/∇)4

(hD/∇)5











=













1 1/2 1/3 1/4 1/5
1 1 11/12 5/6 137/180
1 3/2 7/4 15/8 29/15
1 2 17/6 7/2 967/240
1 5/2 25/6 35/6 1069/144













·











1
∇
∇2

∇3

∇4











. (3.3.26)
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The rows of the matrix are the first rows taken from the matrix representation of
each of the expansions (hD/∇)k, k = 1 : 5.

When the effect of the irregular errors of the data on a term becomes larger
in magnitude than the term itself, the term should, of course, be neglected; it does
more harm than good. This happens relatively early for the derivatives of high
order; see Problem 6. When these formulas are to be used inside a program (rather
than during an interactive post-processing of results of an automatic computation),
some rules for automatic truncation have to be designed; an interesting kind of
detail in scientific computing.

The forwards differentiation formula, which is analogously based on the oper-
ator series,

hD = ln(1 + ∆) = ∆ − 1

2
∆2 +

1

3
∆3 ± . . . (3.3.27)

is sometimes useful too. We obtain the coefficients for derivatives of higher order
by inserting minus signs in the second and fourth columns of the matrix in (3.3.26).

A grid (or a table) may be too sparse to be useful for numerical differentiation
and for the computation of other linear functionals. For example, we saw above that
the successive backward differences of eiωx increase exponentially if |ωh| > π/3. In
such a case the grid, where the values are given, gives insufficient information about
the function. One also says that “the grid does not resolve the function”. This is
often indicated by a strong variation in the higher differences. However, even this
indication can sometimes be absent. An extreme example is, f(x) = sin(πx/h),
on the grid xj = jh, j = 0,±1,±2, . . .. All the values, all the higher differences,
and thus the estimates of f ′(x) at all grid points are zero, but the correct values of
f ′(xj) are certainly not zero. So, this is an example where the expansion (trivially)
converges, but it is not valid! (Recall the discussion of a Maclaurin expansion for a
non-analytic function at the end of Sec. 3.1.3. Now a similar trouble can occur also
for an analytic function.)

A less trivial example is given by the functions

f(x) =

20
∑

n=1

an sin(2πnx), g(x) =

10
∑

n=1

(an + a10+n) sin(2πnx).

f(x) = g(x) on the grid, hence they have the same difference scheme, but f ′(x) 6=
g′(x) on the grid, and typically f(x) 6= g(x) between the grid points.

3.3.3 The Peano Theorem

One can often, by a combination of theoretical and numerical evidence, rely on
asymptotic error estimates. Since there are exceptions, it is interesting that there
are two general methods for deriving strict error bounds. We call one of them the
norms and distance formula. It is not restricted to polynomial approximation,
and it is typically easy to use, but it requires some advanced concepts and it often
overestimates the error. We therefore postpone the presentation of that method to
a later chapter.
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We shall now present another method, due to Peano40. Consider a linear
functional L̃, e.g., L̃f =

∑p
j=1 bjf(xj), suggested for the approximate computation

of another linear functional L, e.g., Lf =
∫ 1

0

√
xf(x)dx. Suppose that it is exact,

when it is applied to any polynomial of degree less than k: In other words, L̃f = Lf ,
for all f ∈ Pk. The remainder is then itself a linear functional, R = L− L̃, with the
special property that

Rf = 0 if f ∈ Pk.

Next theorem gives a representation for such functionals, which provides a universal
device for deriving error bounds for approximations of the type that we are con-
cerned with. Let f ∈ Cn[a, b]. In order to make the discussion less abstract we
confine it to functionals of the following form, 0 ≤ m < n,

Rf =

∫ b

a

φ(x)f(x)dx +

p
∑

j=1

(

bj,0f(xj) + bj,1f
′(xj) + . . .+ bj,mf

(m)(xj)
)

, (3.3.28)

where the function φ is integrable, and the points xj lie in the bounded real interval
[a, b], and bj,m 6= 0 for at least one value of j. Moreover, we assume that

Rp = 0 for all p ∈ Pk. (3.3.29)

We define the function41

t+ = max(t, 0); tj+ =
(

t+
)j

; t0+ =
1 + sign t

2
; (3.3.30)

The function t0+ is often denoted H(t) an is known as the Heaviside42 unit step

function. The function sign is defined in Definition def3.1.sign. Note that tj+ ∈
Cj−1, (j ≥ 1). The Peano kernel K(u) of the functional R is defined by the
equation,

K(u) =
1

(k − 1)!
Rx(x− u)k−1

+ , x ∈ [a, b], u ∈ (−∞,∞). (3.3.31)

The subscript in Rx indicates that R acts on the variable x (not u).
The function K(u) vanishes outside [a, b], because:

• if u > b then u > x, hence (x− u)k−1
+ = 0 and K(u) = 0,

• if u < a then x > u. It follows that (x− u)k−1
+ = (x− u)k−1 ∈ Pk,

hence K(u) = 0, by (3.3.31) and (3.3.29).

If φ(x) is a polynomial then K(u) becomes a piecewise polynomial; the points
xj are the joints of the pieces. In this caseK ∈ Ck−m−2; the order of differentiability
may be lower, if φ has singularities.

We are now in a position to prove an important theorem.

40Giuseppe Peano (1858-1932), Italian mathematician and logician.
41We use the neutral notation t here for the variable, to avoid to tie up the function too closely

with the variables x and u which play a special role in the following.
42Oliver Heaviside (1850–1925) English physicist.
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Theorem 3.3.8. Peano’s Remainder Theorem.
Suppose that Rp = 0 for all p ∈ Pk. Then 43 , for all f ∈ Ck[a, b],

Rf =

∫ ∞

−∞
f (k)(u)K(u)du. (3.3.32)

The definition and some basic properties of the Peano kernel K(u) were given above.

Proof. By Taylor’s formula,

f(x) =

k−1
∑

j=1

f (j)(a)

j!
(x− a)j +

∫ x

a

f (k)(u)

(k − 1)!
(x− u)k−1du.

This follows from putting n = k, z = x − a, t = (u − a)/(x − u) into (3.1.5).
We rewrite the last term as

∫∞
a f (k)(u)(x − u)k−1

+ du. Then apply the functional
R = Rx to both sides. Since we can allow the interchange of the functional R with
the integral, for the class of functionals that we are working with, this yields

Rf = 0 +R

∫ ∞

a

f (k)(u)(x− u)k−1
+

(k − 1)!
du =

∫ ∞

a

f (k)(u)Rx(x− u)k−1
+

(k − 1)!
du,

The theorem then follows from (3.3.31).

Corollary 3.3.9.
Suppose that Rp = 0 for all p ∈ Pk. Then

Rx(x− a)k = k!

∫ ∞

−∞
K(u)du. (3.3.33)

For any f ∈ Ck[a, b], Rf = f(k)(ξ)
k! Rx((x − a)k), holds for some ξ ∈ (a, b), if and

only if K(u) does not change its sign.
If K(u) changes its sign, the best possible error bound reads

|Rf | ≤ sup
u∈[a,b]

|f (k)(u)|
∫ ∞

−∞
|K(u)|du;

a formula with f (k)(ξ) is not generally true in this case.

Proof. First suppose that K(u) does not change sign. Then, by (3.3.32) and the
mean value theorem of Integral Calculus, Rf = f (k)(ξ)

∫∞
−∞K(u)du, ξ ∈ [a, b]. For

f(x) = (x− a)k this yields (3.3.33). The “if” part of the corollary follows from the
combination of these formulas for Rf and R(x− a)k.

If K(u) changes its sign, the “best possible bound” is approached by a se-
quence of functions f chosen so that (the continuous functions) f (k)(u) approach
(the discontinuous function) sign K(u). The “only if” part follows.

43The definition of f(k)(u) for u /∈ [a, b] is arbitrary.
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Example 3.3.7.
The remainder of the trapezoidal rule (one step of length h) reads

Rf =

∫ h

0

f(x)dx − h

2
(f(h) + f(0)).

We know that Rp = 0 for all p ∈ P2. The Peano kernel is zero for u /∈ [0, h], while
for u ∈ [0, h],

K(u) =

∫ h

0

(x−u)+dx−
h

2
((h−u)+ +0)) =

(h− u)2

2
− h(h− u)

2
=

−u(h− u)

2
< 0

We also compute

Rx2

2!
=

∫ h

0

x2

2
dx− h · h2

2 · 2 =
h3

6
− h3

4
= −h

3

12
.

Since the Peano kernel does not change sign, we conclude that

Rf = −h
3

12
f ′′(ξ), ξ ∈ (0, h).

Example 3.3.8. Peano kernels for difference operators.

Let Rf = ∆3f(a), and set xi = a+ ih, i = 0 : 3. Note that Rp = 0 for p ∈ P3.
Then

Rf = f(x3) − 3f(x2) + 3f(x1) − f(x0),

2K(u) = (x3 − u)2+ − 3(x2 − u)2+ + 3(x1 − u)2+ − (x0 − u)2+,

i.e.

2K(u) =



















0, if u > x3;
(x3 − u)2, if x2 ≤ u ≤ x3;
(x3 − u)2 − 3(x2 − u)2, if x1 ≤ u ≤ x2;
(x3 − u)2 − 3(x2 − u)2 + 3(x1 − u)2 ≡ (u− x0)

2, if x0 ≤ u ≤ x1;
(x3 − u)2 − 3(x2 − u)2 + 3(x1 − u)2 − (x0 − u)2 ≡ 0, if u < x0.

For the simplification of the last two lines we used that ∆3
u(x0 −u)2 ≡ 0. Note that

K(u) is a piecewise polynomial in P3 and that K ′′(u) is discontinuous at u = xi,
i = 0 : 3.

It can be shown (numerically or analytically) that K(u) > 0 in the interval
(u0, u3). This is no surprise, for, by (3.3.5 ), ∆nf(x) = hnf (n)(ξ) for any integer n,
and, by the above corollary, this could not be generally true if K(u) changes its sign.
These calculations can be generalized to ∆kf(a) for an arbitrary integer k. This
example will be generalized in Sec. 4.2.5 to divided differences of non-equidistant
data.

In general it is rather laborious to determine a Peano kernel. Sometimes one
can show that the kernel is piecewise a polynomial, that it has a symmetry, and
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that has a simple form in the intervals near the boundaries. All this can simplify
the computation, and might have been used in these examples.

It is usually much easier to compute R((x − a)k), and an approximate error
estimate is often given by

Rf ∼ f (k)(a)

k!
R
(

(x− a)k
)

, f (k)(a) 6= 0. (3.3.34)

For example, suppose that x ∈ [a, b], where b− a is of the order of magnitude of a
step size parameter h, and that f is analytic in [a, b]. By Taylor’s formula,

f(x) = p(x) +
f (k)(a)

k!
(x− a)k +

f (k+1)(a)

(k + 1)!
(x− a)k+1 + . . . , f (k)(a) 6= 0,

where p ∈ Pk, hence Rp = 0. Most of the common functionals can be applied term
by term. Then

Rf = 0 +
f (k)(a)

n!
Rx(x − a)k +

f (k+1)(a)

(k + 1)!
Rx(x− a)k+1 + . . . .

Assume that, for some c, Rx(x − a)k = O(hk+c), for k = 1, 2, 3, . . .. (This is often
the case.) Then (3.3.34) becomes an asymptotic error estimate as h → 0. It
was mentioned above that for formulas derived by operator methods, an asymptotic
error estimate is directly available anyway, but if a formula is derived by other means
(see Chapter 4) this error estimate is important.

Asymptotic error estimates are frequently used in computing, because they
are often much easier to to derive and apply than strict error bounds. The question
is, however, how to know (or feel), that “the computation is in the asymptotic
regime”, where an asymptotic estimate is practically reliable. Much can be said
about this central question of Applied Mathematics. Let us her just mention that
a difference scheme displays well the quantitative properties of a function needed
for the judgment.

If Rp = 0 for p ∈ Pk, then a fortiori Rp = 0 for p ∈ Pk−i, i = 0 : k. We may
thus obtain a Peano kernel for each i, which is temporarily denoted by Kk−i(u).
They are obtained by integration by parts,

Rkf =

∫ ∞

−∞
Kk(u)f (k)(u) du =

∫ ∞

−∞
Kk−1(u)f

(k−1)(u) du (3.3.35)

=

∫

Kk−2(u)f
(k−2)(u) du . . . , (3.3.36)

where Kk−i = (−D)iKk, i = 1, 2, . . ., as long as Kk−i is integrable. The lower
order kernels are useful, e.g., if the actual function f is not as smooth as the usual
remainder formula requires.

For the trapezoidal rule we obtained in Example 3.3.7

K1(u) =
h

2
u0

+ +
h

2
− u+

h

2
(u− h)0+.



3.3. Difference Operators and Operator Expansions 89

A second integration by parts can only be performed within the framework of Dirac’s
delta functions (distributions); K0 is not integrable. A reader, who is familiar with
these generalized functions, may enjoy the following formula:

Rf =

∫ ∞

−∞
K0(u)f(u)du ≡

∫ ∞

−∞

(

−h
2
δ(u) + 1 − h

2
δ(u− h)

)

f(u)du.

This is for one step of the trapezoidal rule, but many functionals can be expressed
analogously.

3.3.4 Approximation Formulas by Operator Methods

We shall now demonstrate how operator methods are very useful for deriving ap-
proximation formulas. For example, in order to find interpolation formulas we
consider the operator expansion

f(b− γh) = E−γf(b) = (1 −∇)γf(b) =
∞
∑

j=0

(

γ

j

)

(−∇)jf(b).

The verification of the assumptions of Theorem 3.3.7 offers no difficulties, and we
omit the details. Truncate the expansion before (−∇)k. By the theorem we obtain,
for every γ, an approximation formula for f(b − γh) that uses the function values
f(b − jh) for j = 0 : k − 1; it is exact if f ∈ Pk, and is unique in the sense of
Theorem 3.3.4; We also obtain an asymptotic error estimate if f /∈ Pk, namely the
first neglected term of the expansion, i.e.

(

γ

k

)

(−∇)kf(b) ∼
(

γ

k

)

(−h)kf (k)(b)

Note that the binomial coefficients are polynomials in the variable γ, and hence also
in the variable x = b− γh.

It follows that the approximation formula yields a unique polynomial PB ∈
Pk, that solves the interpolation problem: PB(b−hj) = f(b−hj), j = 0 : k−1;
(B stands for Backward). If we set x = b− γh, we obtain

PB(x) = E−γf(b) = (1 −∇)γf(a) =
k−1
∑

j=0

(

γ

j

)

(−∇)jf(b) (3.3.37)

= f(b− γh) +O(hkf (k)).

Due to the uniqueness; see the corollary of Theorem 3.3.4, the approximation to
f ′(b) obtained by the first k − 1 terms in Example 3.2.4 for xn = b is exactly the
derivative P ′

B(b).
Similarly, the interpolation polynomial PF ∈ Pk that uses forward differences

based on the values of f at a, a+ h, . . . , a+ (k − 1)h, reads, if we set x = a+ θh,

PF (x) = Eθf(a) = (1 + ∆)θf(a)

k−1
∑

j=0

(

θ

j

)

∆jf(a) (3.3.38)

= f(a+ θh) +O(hkf (k)).
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These formulas are known as Newton’s interpolation formulas for constant
step size, backwards and forwards. The generalization to variable step size will be
found in Sec. 4.2.1.

There exists a similar expansion for central differences. Set

φ0(θ) = 1, φ1(θ) = θ, φj(θ) =
θ

j

(

θ + 1
2j − 1

j − 1

)

, (j > 1). (3.3.39)

φj is an even function if j is even, and an odd function if j is odd. It can be shown
that δjφk(θ) = φk−j(θ), and δjφk(0) = δj,k, (Kronecker’s delta). The functions φk

have thus an analogous relation to the operator δ as, e.g., the functions θj/j! and
(

θ
j

)

have to the operators D and ∆, respectively. We obtain the following expansion,
analogous to Taylor’s formula and Newton’s forward interpolation formula. The
proof is left for Problem 4(b). Then

Eθf(a) =

k−1
∑

j=0

φj(θ)δ
jf(a) = f(a+ θh) +O(hkf (k)). (3.3.40)

The direct practical importance of this formula is small, since δjf(a) cannot be
expressed as a linear combination of the given data when j is odd. There are several
formulas, where this drawback has been eliminated by various transformations.
They were much in use before the computer age; each formula had its own group
of fans. We shall derive only one of them, by a short break-neck application of the
formal power series techniques.44 Note that

Eθ = eθhD = cosh θhD + sinh θhD,

δ2 = ehD − 2 + e−hD, ehD − e−hD = 2µδ,

cosh θhD = 1
2 (Eθ + E−θ) =

∞
∑

j=0

φ2j(θ)δ
2j ,

sinh θhD =
1

θ

d(cosh θhD)

d(hD)
=

∞
∑

j=0

φ2j(θ)
1

θ

dδ2j

dδ2
dδ2

d(hD)

=
∞
∑

j=0

φ2j(θ)
jδ2(j−1)

θ
(ehD − e−hD) =

∞
∑

j=0

φ2j(θ)
2j

θ
µδ2j−1.

Hence,

f(x0 + θh) = f0 + θµδf0 +
θ2

2!
δ2f0 +

∞
∑

j=2

φ2j(θ)
(2j

θ
µδ2j−1f0 + δ2jf0

)

. (3.3.41)

This is known as Stirling’s interpolation formula. 45 The first three terms have
been taken out from the sum, in order to show their simplicity and their resemblance

44Differentiation of a formal power series with respect to an indeterminate has a purely algebraic
definition. See the last part of Sec. 3.1.5.

45James Stirling (1692–1770), British mathematician, perhaps most famous for his amazing
approximation to n!.
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to Taylor’s formula. They yield the most practical formula for quadratic interpola-
tion; it is easily remembered and worth to be remembered. An approximate error
bound for this quadratic interpolation reads |0.016δ3f | if |θ| < 1.

Note that

φ2j(θ) = θ2(θ2 − 1)(θ2 − 4) · · · (θ2 − (j − 1)2)/(2j)!.

The expansion yields a true interpolation formula if it is truncated after an even
power of δ. For k = 1 you see that f0+θµδf0 is not a formula for linear interpolation;
it uses three data points instead of two. It is similar for all odd values of k.

Strict error bounds can be found by means of Peano’s theorem, but the re-
mainder terms given in Sec. 4.2.1 for Newton’s general interpolation formula (that
does not require equidistant data) typically give the answer easier. Both are typi-
cally of the form ck+1f

(k+1)(ξ) and require a bound for a derivative of high order.
The assessment of such a bound typically costs much more work than performing
interpolation in one point.

A more practical approach is to estimate a bound for this derivative by means
of a bound for the differences of the same order. (Recall the important formula in
(3.3.5).) This is not a rigorous bound, but it typically yields a quite reliable error
estimate, in particular if you put a moderate safety factor on the top of it. There
is much more to be said about the choice of step size and order; we shall return to
this kind of questions in later chapters.

You can make error estimates during the run; it can happen sooner or later
that it does not decrease, when you increase the order. You may just as well stop
there, and accept the most recent value as the result. This event is most likely due
to the influence of irregular errors, e.g. rounding errors, but it can also indicate
that the interpolation process is semi-convergent only.

The attainable accuracy of polynomial interpolation applied to a table with
n equidistant values of an analytic function, depends strongly on θ; the results are
much poorer near the boundaries of the data set than near the center. This question
will be illuminated in Sec. 4.8 by means of complex analysis.

Example 3.3.9.
The continuation of the difference scheme of a polynomial is a classical ap-

plication of a difference scheme for obtaining a smooth extrapolation of a function
outside its original domain. Given the values yn−i = f(xn − ih) for i = 1 : k and
the backward differences, ∇jyn−1, j = 1 : k − 1. Recall that ∇k−1y is a constant
for y ∈ Pk. Consider the algorithm

∇k−1yn = ∇k−1yn−1;

for j = k − 1 : −1 : 1,

∇j−1yn = ∇j−1yn−1 + ∇jyn; (3.3.42)

end

yn = ∇0yn;

It is left for Problem 7a to show that the result yn is the value at x = xn of the
interpolation polynomial which is determined by yn−i, i = 1 : k. This is a kind
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of inverse use of a difference scheme; there are additions from right to left along a
diagonal, instead of subtractions from left to right.

This algorithm, which needs additions only, was used long ago for the pro-
duction of mathematical tables, e.g., for logarithms. Suppose that one knows, e.g.,
by means of a series expansion, a relatively complicated polynomial approxima-
tion to (say) f(x) = lnx, that is accurate enough in (say) the interval [a, b], and
that this has been used for the computation of k very accurate values y0 = f(a),
y1 = f(a+ h), . . . yk−1, needed for starting the difference scheme. The algorithm is
then used for n = k, k + 1, k + 2, . . . , (b − a)/h. k − 1 additions only are needed
for each value yn. Some analysis must have been needed for the choice of the step
h to make the tables useful with (say) linear interpolation, and for the choice of
k to make the basic polynomial approximation accurate enough over a substantial
number of steps. The precision used was higher, when the table was produced than
when it was used. When x = b was reached, a new approximating polynomial was
needed for continuing the computation over an other interval; at least a new value
of ∇k−1yn.

This procedure was the basis of the unfinished Difference Engine project of
the great 19th century British computer pioneer Charles Babbage. He abandoned
it after a while in order to spend more time on his huge “Analytic Engine” project,
which was also unfinished, but he documented a lot of ideas, where he was (say)
100 years ahead of his time. “Difference engines” based on Babbage’s ideas were,
however, constructed in Babbage’s own time, by the Swedish inventors Scheutz
(father and son) 1834 and by Wiberg 1876, and they were applied, among other
things, to the automatic calculation and printing of tables of logarithms. See, e.g.,
Goldstine [21].

The algorithm in (3.3.42) can be generalized to the case of non-equidistant
with the use of divided differences; see Sec. 4.2.1.

We now derive some central difference formulas for numerical differentiation.
From the definition and from Bickley’s table (Table 3.2.1)

δ ≡ E1/2 − E−1/2 = 2 sinh
(1

2
hD
)

. (3.3.43)

We may therefore put x = 1
2hD, sinhx = 1

2δ into the following expansion (see
Problem 3.1.7),

x = sinhx− 1

2

sinh3 x

3
+

1 · 3
2 · 4

sinh5 x

5
− 1 · 3 · 5

2 · 4 · 6
sinh7 x

7
± . . . ,

with the result

hD = 2arcsinh
δ

2
= δ − δ3

24
+

3δ5

640
− 5δ7

7, 168
+

35δ9

294, 912
− 63δ11

2, 883, 584
± . . . . (3.3.44)

The verification of the assumptions of Theorem 3.3.7 follows the pattern of Exam-
ple 3.3.6, and we omit the details. Since arcsinhz, z ∈ C has the same singularities
as its derivative (1 + z2)−1/2, namely z = ±i, it follows that the expansion in
(3.3.44), if sc(δ/2) is substituted for δ/2, converges if sc(δ/2) < 1, hence ρ = 2.
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By squaring the above relation, we obtain

(hD)2 = δ2 − δ4

12
+
δ6

90
− δ8

560
+

δ10

3, 150
− δ12

16, 632
± . . . ,

f ′′(x0) ≈
(

1 − δ2

12
+
δ4

90
− δ6

560
+

δ8

3, 150
− δ10

16, 632
± . . .

)

δ2f0
h2

. (3.3.45)

By Theorem 3.3.7 (3.3.45) holds for all polynomials. Since the first neglected non-
vanishing term of (3.3.45) when applied to f , is (asymptotically) cδ12f ′′(x0), the
formula for f ′′(x) is exact if f ′′ ∈ P12, i.e. if f ∈ P14, although only 13 values of
f(x) are used. We thus gain one degree and, in the application to other functions
than polynomials, one order of accuracy, compared to what we may have expected
by counting unknowns and equations only; see Theorem 3.3.4. This is typical for a
problem that has a symmetry with respect to the hull of the data points.

Suppose that the values f(x) are given on the grid x = x0 + nh, n integer.
Since (3.3.44) contains odd powers of δ, it cannot be used to compute f ′

n on the
same grid. as pointed out in the beginning of Sec. 3.3.2. This difficulty can be
overcome by means of another formula given in Bickley’s table, namely

µ =
√

1 + δ2/4. (3.3.46)

This is derived as follows. The formulas

µ = cosh
hD

2
,

δ

2
= sinh

hD

2

follow rather directly from the definitions; the details are left for Problem 5a. The
formula (coshhD)2 − (sinhhD)2 = 1 holds also for formal power series. Hence

µ2 − 1

4
δ2 = 1, or µ2 = 1 +

1

4
δ2,

from which the relation (3.3.46) follows.
If we now multiply the right hand side of equation (3.3.44) by the expansion

1 = µ
(

1 +
1

4
δ2
)−1/2

= µ
(

1 − δ2

8
+

3δ4

128
− 5δ6

1, 024
+

35δ8

32, 768
+ . . .

)

. (3.3.47)

we obtain

hD =
(

1 − δ2

6
+
δ4

30
− δ6

140
± . . .

)

µδ. (3.3.48)

This leads to a useful central difference formula for the first derivative (where we
have used more terms than we displayed in the above derivation).

f ′(x0) =
(

1 − δ2

6
+
δ4

30
− δ6

140
+

δ8

630
− δ10

2772
± . . .

)f1 − f−1

2h
. (3.3.49)

If you truncate the operator expansion in (3.3.49) after the δ2k term, you obtain
exactly the derivative of the interpolation polynomial of degree 2k+1 for f(x) that
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is determined by the 2k + 2 values fi, i = ±1,±2, . . . ,±(k + 1). Note that all
the neglected terms in the expansion vanish when f(x) is any polynomial of degree
2k + 2, independent of the value of f0. (Check the statements first for k = 0; you
will recognize a familiar property of the parabola.) So, although we search for a
formula that is exact in P2k+2, we actually find a formula that is exact in P2k+3.

By the multiplication of the expansions in (3.3.45 ) and (3.3.48), we obtain
the following formulas, which have applications in other sections

(hD)3 =
(

1 − 1

4
δ2 +

7

120
δ4 + . . .

)

µδ3

(hD)5 =
(

1 − 1

3
δ2 + . . .

)

µδ5 (3.3.50)

(hD)7 = µδ7 + . . .

Another valuable feature typical for δ2-expansions, i.e. for expansions in powers of
δ2, is the rapid convergence. It was mentioned earlier that ρ = 2, hence ρ2 = 4,
(while ρ = 1 for the backwards differentiation formula). The error constants of the
differentiation formulas obtained by (3.3.45) and (3.3.49) are thus relatively small.

All this is typical for the symmetric approximation formulas which are based
on central differences; see, e.g., the above formula for f ′′(x0), or the next example.
In view of this, can we forget the forward and backward difference formulas alto-
gether? Well, this is not quite the case, since one must often deal with data that
are unsymmetric with respect to the point where the result is needed. For exam-
ple, given f−1, f0, f1, how would you compute f ′(x1)? Asymmetry is also typical
for the application to initial value problems for differential equations; see Volume
III. In such applications methods based on symmetric rules for differentiation or
integration have sometimes inferior properties of numerical stability.

When a problem has a symmetry around some point x0, you are advised to
try to derive a δ2-expansion. The first step is to express the relevant operator in
the form Φ(δ2), where the function Φ is analytic at the origin.

To find a δ2-expansion for Φ(δ2) is algebraically the same thing as expanding
Φ(z) into powers of a complex variable z. So, the methods for the manipulation of
power series mentioned in Sec. 3.2.2 and Problem 3.1.8 are available, and so is the
Cauchy–FFT method (Sec. 3.1.4). For suitably chosen r,N you evaluate

Φ(re2πik/N ), k = 0 : N − 1,

and obtain the coefficients of the δ2-expansion by the FFT! You can therefore derive
a long expansion, and later truncate it as needed. You also obtain error estimates
for all these truncated expansions for free.

Suppose that you have found a truncated δ2-expansion, (say)

A(δ2) ≡ a1 + a2δ
2 + a3δ

4 + . . .+ ak+1δ
2k,

but you want instead an equivalent symmetric expression of the form

B(E) ≡ b1 + b2(E + E−1) + b3(E
2 + E−2) + . . .+ bk+1(E

k + E−k).
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Note that δ2 = E − 2 +E−1. The transformation A(δ2) 7→ B(E) can be performed
in several ways. Since it is linear it can be expressed by a matrix multiplication of
the form b = Mk+1a, where a, b are column vectors for the coefficients, and Mk+1

is the k + 1× k + 1 upper triangular submatrix in the northwest corner of a matrix
M that turns out to be

M =





















1 −2 6 −20 70 −252 924 −3432
1 −4 15 −56 210 −792 3003

1 −6 28 −120 495 −2002
1 −8 45 −220 1001

1 −10 66 −364
1 −12 91

1 −14
1





















. (3.3.51)

Note that the matrix elements are binomial coefficients that can be generated
recursively (Sec. 3.1.2). It is therefore easy to extend the matrix; this 8 × 8 matrix
is sufficient for a δ2-expansion up to the term a8δ

14.
The operator D−1 is defined by the relation (D−1f)(x) =

∫ x
f(t) dt. The

lower limit is not fixed, so D−1f contains an arbitrary integration constant. Note
that DD−1f = f , while D−1Df = f + C, where C is the integration constant. A

difference expression like D−1f(b) − D−1f(a) =
∫ b

a
f(t) dt is uniquely defined. So

is also δD−1f , but D−1δf has an integration constant.
A right-hand inverse can be defined also for the operators ∆,∇, δ. For exam-

ple, (∇−1u)n =
∑j=n

uj has an arbitrary summation constant but, e.g., ∇∇−1 = 1,
and ∆∇−1 = E∇∇−1 = E are uniquely defined.

One can make the inverses unique by restricting the class of sequences (or
functions). For example, if we require that

∑∞
j=0 uj is convergent, and make the

convention that (∆−1u)n → 0 as n→ ∞, then ∆−1un = −∑∞
j=n uj ; notice the mi-

nus sign. Also notice that this is consistent with the following formal computation:

(1 + E + E2 + . . .)un = (1 − E)−1un = −∆−1un.

We recommend, however, some extra care with infinite expansions into powers of
operators like E that is not covered by Theorem 3.3.7, but the finite expansion

1 + E + E2 + . . .+ En−1 = (En − 1)(E − 1)−1 (3.3.52)

is valid.
In Chapter 5 we will use operator methods together with the Cauchy–FFT

method for finding the Newton–Cotes’ formulas for symmetric numerical integra-
tion.

Operator techniques can also be extended to functions of several variables.
The basic relation is again the operator form of Taylor’s formula, which in the case
of two variables reads,

u(x0 + h, y0 + k) = exp

(

h
∂

∂x
+ k

∂

∂y

)

u(x0, y0)

= exp

(

h
∂

∂x

)

exp

(

k
∂

∂y

)

u(x0, y0). (3.3.53)
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3.3.5 Single Linear Difference Equations

Historically, the term difference equation was probably first used in connection
with an equation of the form

b0∆
kyn + b1∆

k−1yn + . . . bk−1∆yn + bkyn = 0, n = 0, 1, 2, . . .

which reminds of a linear homogeneous differential equation. It follows, however,
from the discussion after (3.3.1) and (3.3.3) that this equation can also be written
in the form

yn+k + a1yn+k−1 + . . .+ akyn = 0, (3.3.54)

and nowadays this is what one usually means by a single homogeneous linear differ-
ence equation of kth order with constant coefficients; a difference equation without
differences. More generally, if we let the coefficients ai depend on n; we have a
linear difference equation with variable coefficients. If we replace the zero on the
right hand side with some known quantity rn, we have a nonhomogeneous linear
difference equation.

These types of equations are the main topic of this section. The coefficients
and the unknown are real or complex numbers. We shall occasionally see examples
of more general types of difference equations, e.g., a nonlinear difference equation
F (yn+k, yn+k−1, . . . , yn) = 0), and we shall, in Volume III, deal with first order
systems of difference equations, i.e. yn+1 = Anyn + rn, where rn, yn, etc. are
vectors while An is a square matrix. Finally, partial difference equations where you
have two (or more) subscripts in the unknown, occur often as numerical methods
for partial differential equations, but they have many other important applications
too.

A difference equation can be viewed as a recurrence relation. With given val-
ues of y0, y1, . . . , yk−1, called the initial values or the seed of the recurrence,
we can successively compute yk, yk+1, yk+2, . . .; we see that the general solution
of a k’th order difference equation contains k arbitrary constants, just like the gen-
eral solution of the k’th order differential equation. There are other important
similarities between difference and differential equations, for example the following
superposition result.

Lemma 3.3.10. The general solution of a nonhomogeneous linear difference equa-
tion (also with variable coefficients) is the sum of one particular solution of it, and
the general solution of the corresponding homogeneous difference equation.

In practical computing, the recursive computation of the solution of a differ-
ence equations is most common. It was mentioned at the end of Sec. 3.2.3 that
many important functions, e.g., Bessel functions and orthogonal polynomials, sat-
isfy second order linear difference equations with variable coefficients, (although this
terminology was not used there). Other important applications are the multistep
methods for ordinary differential equations.
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In such an application you are usually interested in the solution for one par-
ticular initial condition, but due to rounding errors in the initial values you obtain
another solution. It is therefore of interest to know the behaviour of the solutions
of the corresponding homogeneous difference equation. The questions are:

• Can we use a recurrence to find the wanted solution accurately?

• How shall we use a recurrence, forward or backward?

Forward recurrence is the type we described above. In backward recurrence we
choose some large integer N , and give (almost) arbitrary values of yN+i, i = 0 : k−1
as seed, and compute yn for n = N − 1 : −1 : 0.

We have seen this already in Example 1.3.3 (and in Problem 10a of Sec. 1.3)
for an inhomogeneous first order recurrence relation. It was there found that the
forward recurrence was useless, while backward recurrence, with a rather naturally
chosen seed, gave satisfactory results; (see Example 1.3.4 and Problem 10b).

It is often like this, though not always. In Problem 9 of Sec. 1.3 it is the
other way around: the forward recurrence is useful, and the backward recurrence is
useless.

Sometimes boundary values are prescribed for a difference equation instead
of initial values, (say) p values at the beginning and q = k−p values at the end, e.g.,
the values of y0, y1,. . . , yp−1, and yN−q, . . . ,N−1 , yN are given. Then the difference
equation can be treated as a linear system with N−k unknown. This also holds for
a difference equation with variable coefficients and for an inhomogeneous difference
equation. From the point of view of numerical stability, such a treatment can be
better than either recurrence. The amount of work is somewhat larger, not very
much though, for the matrix is a band matrix. We have sees in Example 1.3.2
that for a fixed number of bands the amount of work to solve such a linear system
is proportional to the number of unknown. An important particular case is when
k = 2, p = q = 1; the linear system is then tridiagonal. An algorithm for such linear
systems is described in Example 1.3.2.

Another similarity for differential and difference equations, is that the general
solution of a linear equation with constant coefficients has a simple closed form.
Although, in most cases, the real world problems have variable coefficients (or are
nonlinear), one can often formulate a class of model problems with constant coeffi-
cients, with similar features. The analysis of such model problems can give hints,
e.g., whether forward or backward recurrence should be used, or other questions re-
lated to the design and the analysis of the numerical stability of a numerical method
for a more complicated problem.

We shall therefore now study how to solve a single homogeneous linear differ-
ence equation with constant coefficients (3.3.54), i.e.

yn+k + a1yn+k−1 + . . .+ akyn = 0.

It is satisfied by the sequence {yj}, where yj = cuj, (u 6= 0, c 6= 0), if and only if
un+k + a1u

n+k−1 + . . .+ aku
n = 0, that is when

φ(u) ≡ uk + a1u
k−1 + . . .+ ak = 0. (3.3.55)
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Equation (3.3.55) is called the characteristic equation of (3.3.54); φ(u) is called
the characteristic polynomial.

Theorem 3.3.11.
If the characteristic equation has k different roots, u1, . . . , uk, then the general

solution of equation (3.3.54) is given by the sequences {yn}, where

yn = c1u
n
1 + c2u

n
2 + · · · + cku

n
k , (3.3.56)

where c1, c2, . . . , ck are arbitrary constants.

Proof. That {yn} satisfies equation (3.3.54) follows from the previous comments
and from the fact that the equation is linear. The parameters c1, c2, . . . , ck can
be adjusted to arbitrary initial conditions y0, y1, . . . , yk−1 by solving the system of
equations









1 1 · · · 1
u1 u2 · · · uk
...

...
...

uk−1
1 uk−1

2 · · · uk−1
k

















c1
c2
...
ck









=









y0
y1
...

yk−1









.

The matrix is a Vandermonde matrix and its determinant is thus equal to the
product of all differences (ui − uj), i ≥ j, 1 < i ≤ k, which is nonzero; see the proof
of Theorem 3.3.4.

Example 3.3.10.
Consider the difference equation yn+2−5yn+1+6yn = 0 with initial conditions

y0 = 0, y1 = 1. Forward recurrence yields y2 = 5, y3 = 19, y4 = 65, . . . .
The characteristic equation u2 − 5u+ 6 = 0 has roots u1 = 3, u2 = 2. Hence,

the general solution is yn = c13
n + c22

n. The initial conditions give the system of
equations

c1 + c2 = 0, 3c1 + 2c2 = 1,

with solution c1 = 1, c2 = −1, hence yn = 3n − 2n.
As a check we find y2 = 5, y3 = 19 in agreement with the results found by

using forward recurrence.

Example 3.3.11.
Consider the difference equation

Tn+1(x) − 2xTn(x) + Tn−1(x) = 0, n ≥ 1, −1 < x < 1,

with initial conditions T0(x) = 1, T1(x) = x. We obtain T2(x) = 2x2 − 1, T3(x) =
4x3−3x, T4(x) = 8x4−8x2+1, . . . . By induction, Tn(x) is an nth degree polynomial
in x.

We can obtain a simple formula for Tn(x) by solving the difference equation.
The characteristic equation is u2 − 2xu+ 1 = 0, with roots u = x± i

√
1 − x2. Set
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x = cosφ, 0 < x < π. Then u = cosφ± i sinφ, and thus

u1 = eiφ, u2 = e−iφ, u1 6= u2.

The general solution is Tn(x) = c1e
inφ + c2e

−inφ, and the initial conditions give

c1 + c2 = 1, c1e
iφ + c2e

−iφ = cosφ,

with solution c1 = c2 = 1/2. Hence, Tn(x) = cos(nφ), x = cosφ.
These polynomials are thus identical to the important Chebyshev polynomials

that were introduced in (3.2.19), and were there in fact denoted by Tn(x).
We excluded the cases x = 1 and x = −1, i.e. φ = 0 and φ = π, respectively.

For the particular initial values of this example, there are no difficulties; the solution
Tn(x) = cosnφ depends continuously on φ, and as φ → 0 or phi → π, Tn(x) =
cosnφ converges to 1 ∀n or (−1)n ∀n, respectively.

When we ask for the general solution of the difference equation, the matters
are a little more complicated, because the characteristic equation has in these cases
a double root; u = 1 for x = 1, u = −1 for x = −1. Although they are thus covered
by the next theorem, we shall look at them directly, because they are easy to solve,
and they give a good preparation for the general case.

If x = 1, the difference equation reads Tn+1 − 2Tn + Tn−1 = 0, i.e. ∆2Tn = 0.
We know from before (see, e.g., Theorem 3.3.4) that this is satisfied iff Tn = an+ b.
The solution is no longer built up by exponentials; a linear term is there too.

If x = −1, the difference equation reads Tn+1 + 2Tn + Tn−1 = 0. Set Tn =
(−1)nVn. The difference equation becomes, after division by (−1)n+1, Vn+1−2Vn +
Vn−1 = 0, with the general solution, Vn = an+ b, hence Tn = (−1)n(an+ b).

Theorem 3.3.12.
When ui is an mi-fold root of the characteristic equation, then the difference

equation (12.3.3) is satisfied by the sequence {yn}, where

yn = Pi(n)un
i ,

and Pi is an arbitrary polynomial in Pmi
. The general solution of the difference

equation is a linear combination of solutions of this form using all the distinct roots
of the characteristic equation.

Proof. We can write the polynomial P ∈ Pmi
in the form

Pi(n) = b1 + b2n+ b3n(n− 1) + · · · + bmi
n(n− 1) · · · (n−mi + 2).

Thus it is sufficient to show that equation (3.3.54) is satisfied when

yn = n(n− 1) · · · (n− p+ 1)un
i = (up∂p(un)/∂up)u=ui

, p = 1 : mi − 1. (3.3.57)

Substitute this in the left-hand side of equation (3.3.54):

up ∂
p

∂up

(

un+k + a1u
n+k−1 + · · · + aku

n
)

= up ∂
p

∂up

(

φ(u)un
)

= up
(

φ(p)(u)un +

(

p

1

)

φ(p−1)(u)nun−1 + · · · +
(

p

p

)

φ(u)
∂p

∂up
(un)

)

.



100 Chapter 3. Series, Operators and Continued Fractions

The last manipulation was made using Leibniz’s rule.
Now φ and all the derivatives of φ which occur in the above expression are 0

for u = ui, since ui is an mi-fold root. Thus the sequences {yn} in equation (3.3.57)
satisfy the difference equation. We obtain a solution with

∑

mi = k parameters
by the linear combination of such solutions derived from the different roots of the
characteristic equation.

It can be shown (see, e.g., Henrici [23, p. 214]) that these solutions are linearly
independent. (This also follows from a different proof given in Chapter. 13, where a
difference equation of higher order is transformed to a system of first order difference
equations. This transformation also leads to other ways of handling inhomogeneous
difference equations than those which are presented in this section.)

Note that the double root cases discussed in the previous example are com-
pletely in accordance with this theorem. We take one more example.

Example 3.3.12.
Consider the difference equation yn+3 − 3yn+2 + 4yn = 0. The characteristic

equation is u3 − 3u2 + 4 = 0 with roots u1 = −1, u2 = u3 = 2. Hence, the general
solution reads

yn = c1(−1)n + (c2 + c3n)2n.

For a nonhomogeneous linear difference equation of order k, one can often
find a particular solution by the use of an “Ansatz” with undetermined coefficients;
thereafter, by Lemma 3.3.10 one can get the general solution by adding the general
solution of the homogeneous difference equation.

Example 3.3.13.
Consider the difference equation yn+1−2yn = an, with initial condition y0 = 1.

Try the “Ansatz” yn = can. One gets

can+1 − 2can = an, c = 1/(a− 2), a 6= 2.

Thus the general solution is yn = an/(a − 2) + c12
n. By the initial condition,

c1 = 1 − 1/(a− 2), hence

yn =
an − 2n

a− 2
+ 2n. (3.3.58)

When a → 2, l’Hospital’s rule gives yn = 2n + n2n−1. Notice how the “Ansatz”
must be modified when a is a root of the characteristic equation.

The general rule when the right hand side is of the form P (n)an (or a sum of
such terms), where P is a polynomial, is that the contribution of this term to yn is
Q(n)an, where Q is a polynomial. If a does not satisfy the characteristic equation
then deg Q = deg P ; if a is a single or a double root of the characteristic equation,
then deg Q = deg P + 1 or deg Q = deg P + 2, respectively, etc. The coefficients
of Q are determined by the insertion of yn = Q(n)an on the left hand side of the
equation and matching the coefficients with the right hand side.
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Another way to find a particular solution is based on the calculus of operators.
Suppose that an inhomogeneous difference equation is given in the form ψ(Q)yn =
bn, where Q is one of the operators ∆, δ and ∇, or an operator easily derived from
these, e.g., 1

6δ
2, see Problem 24(d).

In Sec. 3.1.5 ψ(Q)−1 was defined by the formal power series with the same
coefficients as the Maclaurin series for the function 1/ψ(z), z ∈ C, ψ(0) 6= 0. In
simple cases, e.g., if ψ(Q) = a0 + a1Q, these coefficients are usually easily found.
Then ψ(Q)−1bn is a particular solution of the difference equation ψ(Q)yn = bn;
the truncated expansions approximate this. Note that if Q = δ or ∇, the infinite
expansion demands that bn is defined also if n < 0.

Note that a similar technique, with the operator D, can also be applied to lin-
ear differential equations. Today this technique has to a large extent been replaced
by the Laplace transform,46 that yields essentially the same algebraic calculations
as operator calculus.

In some branches of applied mathematics it is popular to treat nonhomoge-
neous difference equations by means of a generating function, also called the
z-transform, since both the definition and the practical computations are anal-
ogous to the Laplace transform. The z-transform of the sequence y = {yn}∞0 is

Y (z) =

∞
∑

n=0

ynz
−n. (3.3.59)

Note that the sequence {Ey} = {yn+1} has the z-transform zY (z) − y0, {E2y} =
{yn+2} has the z-transform z2Y (z) − y0z − y1, etc.

If Y (z) is available in analytic form, it can often be brought to a sum of func-
tions, whose inverse z-transforms are known, by means of various analytic tech-
niques, notably expansion into partial fractions, e.g., if Y (z) is a rational function.
On the other hand, if numerical values of Y (z) have been computed for complex
values of z on some circle in C by means of an algorithm, then yn can be determined
by an obvious modification of the Cauchy–FFT method described in Sec. 3.1.3 (for
expansions into negative powers of z). More information about the z-transform can
be found in Strang [44, Sec. 6.3].

We are now in a position to exemplify in more detail the use of linear difference
equations to studies of numerical stability, of the type mentioned above.

Theorem 3.3.13.
Necessary and sufficient for boundedness (stability) of all solutions of the dif-

ference equation (3.3.54) for all positive n is the following root condition: (We
shall say either that a difference equation or that a characteristic polynomial satisfies
the root condition; the meaning is the same.)

i. All roots of characteristic equation (3.3.55) should be located inside or on the
unit circle |z| ≤ 1;

ii. The roots on the unit circle should be simple.

46The Laplace transform is traditionally used for similar problems for linear differential equa-
tions, e.g., in electrical engineering.
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Proof. Follows directly from Theorem 3.3.12.

This root condition corresponds to cases, where it is the absolute error that
matters. It is basic in the theory of linear multistep methods for ordinary differential
equations. Computer Graphics and an algebraic criterion due to Schur are useful
for investigations of the root condition in particular if the recurrence relation under
investigation contains parameters.

There are important applications of single linear difference equations to the
study of the stability of numerical methods. When a recurrence is used one is
usually interested in the solution for one particular initial condition, but a rounding
error in an initial value produces a different solution, and it is therefore of interest to
know the behaviour of other solutions of the corresponding homogeneous difference
equation. We have seen this already in Sec. 1.3.3 for an inhomogeneous first order
recurrence relation, but it is even more important for recurrence relations of higher
order.

The following example is based on a study by J. Todd47 in 1950 (see [46]).

Example 3.3.14.
Consider the initial-value problem

y′′(x) = −y, y(0) = 0, y′(0) = 1, (3.3.60)

with the exact solution y(x) = sinx. To compute an approximate solution yk =
y(xk) at equidistant points xk = kh, where h is a step length, we approximate the
second derivative according to (3.3.45),

h2y′′k = δ2yk +
δ4yk

12
+
δ6yk

90
+ . . . . (3.3.61)

We first use the first term only; the second term shows that the truncation error of
this approximation of y′′k is asymptotically h2y(4)/12. We then obtain the difference
equation h−2δ2yk = −yk or, in other words,

yk+2 = (2 − h2)yk+1 − yk, y0 = 0, (3.3.62)

where a suitable value of y1 is to be assigned. In the third column of Table 3.3.2 we
show the results obtained using this recursion formula with h = 0.1 and y1 = sin 0.1.
All computations in this example were carried out using IEEE double precision.We
obtain about 3 digits accuracy at the end of the interval x = 1.5.

Since the algorithm was based on a second order accurate approximation of
y′′ one may expect that the solution of the differential equation is also second order
accurate. This turns out to be correct in this case, e.g., if we divide the step size
by 2, the errors will be divided by 4, approximately. We shall, however; see that
we cannot always draw conclusions of this kind; we also have to take the numerical
stability into account.

47John Todd, Irish-American numerical analyst that was one of the first studies of the numerical
stability of an algorithm for the approximate solution of ordinary differential equations.
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Table 3.3.2. Integrating y′′ = −y, y(0) = 0, y′(0) = 1; the letters U and
S in the headlines of the last two columns refer to “Unstable” and “Stable’.

xk sin xk 2nd order 4th order U 4th order S

0.1 0.0998334166 0.0998334 0.0998334166 0.0998334166

0.2 0.1986693308 0.1986685 0.1986693307 0.1986693303

0.3 0.2955202067 0.2955169 0.2955202067 0.2955202050

0.4 0.3894183423 0.3894101 0.3894183688 0.3894183382

0.5 0.4794255386 0.4794093 0.4794126947 0.4794255305

0.6 0.5646424734 0.5646143 0.5643841035 0.5646424593

0.7 0.6442176872 0.6441732 0.6403394433 0.6442176650

0.8 0.7173560909 0.7172903 0.6627719932 0.7173560580

0.9 0.7833269096 0.7832346 0.0254286676 0.7833268635

1.0 0.8414709848 0.8413465 −9.654611899 0.8414709226

1.1 0.8912073601 0.8910450 −144.4011267 0.8912072789

1.2 0.9320390860 0.9318329 −2010.123761 0.9320389830

1.3 0.9635581854 0.9633026 −27834.59620 0.9635580577

1.4 0.9854497300 0.9851393 −385277.6258 0.9854495749

1.5 0.9974949866 0.9971245 −5332730.260 0.9974948015

In the hope to obtain a more accurate solution, we shall now use one more
term in the expansion (3.3.61); the third term then shows that the truncation error
of this approximation is asymptotically h4y(6)/90. The difference equation now
reads

δ2yk − 1

12
δ4yk = −h2yk (3.3.63)

or,

yk+2 = 16yk+1 − (30 − 12h2)yk + 16yk−1 − yk−2, k ≥ 2, y0 = 0, (3.3.64)

where starting values for y1, y2, and y3 need to be assigned. We choose the correct
values of the solution rounded to double precision. The results from this recursion
are shown in the fourth column of Table 3.3.2. We see that disaster has struck—the
recursion is severely unstable! Already for x = 0.6 the results are less accurate than
the second order scheme. For x ≥ 0.9 the errors dominate completely.

We shall now look at these difference equations from the point of view of the
root condition. The characteristic equation for (3.3.62) reads u2−(2−h2)u+1 = 0,
and since |2 − h2| < 2, direct computation shows that it has simple roots of unit
modulus. The root condition is satisfied. By Example 3.3.11, the solution of (3.3.62)
is yn = Tn(1 − h2/2).

For (3.3.64) the characteristic equation reads u4−16u3+(30−12h2)u2−16u+
1 = 0. We see immediately that the root condition cannot be satisfied. Since the
sum of the roots equals 16, it is impossible that all roots are inside or on the unit
circle. In fact, the largest root equals 13.94. So, a tiny error at x = 0.1 has been
multiplied by 13.9414 ≈ 1016 at the end.
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A stable fourth order accurate method can easily be constructed. Using the
differential equation we replace the term δ4yk in (3.3.63) by h2δ2y′′k = −h2δ2yk.
This leads to the recursion formula48

yk+1 =

(

2 − h2

1 + h2/12

)

yk − yk−1, y0 = 0. (3.3.65)

This difference equation satisfies the root condition if h2 < 6 (see Problem 23(a)).
It requires y0, y1 ≈ y(h) as seed. The results using this recursion formula with
h = 0.1 and y1 = sin 0.1, are shown in the fifth column of Table 3.3.2. The error
at the end is about 2·10−7, which is much better than 3.7·10−4, obtained with the
2nd-order method.

Remark 3.3.2. If the solution of the original problem is itself strongly decreasing
or strongly increasing, one should consider the location of the characteristic roots
with respect to a circle in the complex plane that corresponds to the interesting
solution. For example, if the interesting root is 0.8 then a root equal to −0.9 causes
oscillations that may eventually become disturbing, if one is interested in relative
accuracy also in a long run, even if the oscillating solution is small in the beginning.

Many problems contain homogeneous or nonhomogeneous linear difference
equations with variable coefficients, for which the solutions are not known in a
simple closed form.

We now confine the discussion to the cases where the original problems are
to compute a particular solution of a second order difference equation with variable
coefficients; several interesting problems of this type were mentioned above, and
we formulated the questions: can we use a recurrence to find the wanted solution
accurately, and how shall we use a recurrence, forwards or backwards. Typically the
original problem contains some parameter, and one usually wants to make a study
for an interval of parameter values.

Such questions are sometimes studied with frozen coefficients, i.e. the model
problems are in the class of difference equations with constant coefficients in the
range of the actual coefficients of the original problem; if one of the types of re-
currence is satisfactory (i.e. numerically stable in some sense) for all model prob-
lems, one would like to conclude that they are satisfactory also for the original
problem, but the conclusion is not always valid without further restrictions on the
coefficients—see a counterexample in Problem 23c.

The technique with frozen coefficients provides just a hint that should always
be checked by numerical experiments on the original problem. It is beyond the scope
of this text to discuss what restrictions are needed. If the coefficients of the original
problem are slowly varying, however, there is a good chance that the numerical tests
will confirm the hint—but again: how slowly is “slowly”? A warning against the use
of one of the types of recurrence may also be a valuable result of a study, although
it is negative.

48This is a special case of Numerov’s method (cf. Problem 3.4.28). It can be traced back at
least to B. Numerov 1924.
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The following lemma exemplifies a type of tool that may be useful in such cases.
The proof is left for Problem 22a. Another useful tool is presented in Problem 24a
and applied in Problem 24b.

Lemma 3.3.14. Suppose that the wanted sequence y∗n satisfies a difference equation
(with constant coefficients),

αyn+1 + βyn − γyn−1 = 0, (α > γ > 0, β > 0),

and that y∗n is known to be positive for all sufficiently large n. Then the characteristic
roots can be written 0 < u1 < 1, u2 < 0 and |u2| > u1. Then y∗n is unique apart
from a positive factor c; y∗n = cun

1 , c > 0.
A solution ȳn, called the trial solution that is approximately of this form can be

computed for n = N : −1 : 0 by backward recurrence starting with the “seed”yN+1 =
0 yN = 1. If an accurate value of y∗0 is given, the wanted solution is

y∗n = ȳny
∗
0/ȳ0,

with a relative error approximately proportional to (u2/u1)
n−N . (neglecting a pos-

sible error in y∗0).
49

The forward recurrence is not recommended for finding y∗n in this case, since
the positive term c1u

n
1 will eventually be drowned by the oscillating term c2u

n
2 that

will be introduced by the rounding errors. The proof is left for Problem 24c. Even
if y0 (in the use of the forward recurrence) has no rounding errors, such errors
committed at later stages will yield similar contributions to the numerical results.

Example 3.3.15.
The ”original problem” is to compute the parabolic cylinder function U(a, x)

which satisfies the difference equation

(a+ 1
2 )U(a+ 1, x) + xU(a, x) − U(a− 1, x) = 0,

see Handbook [1, Ch. 19]; in particular Example 19.28.1.
To be more precise, we consider the case x = 5. Given U(3, 5) = 5.2847 10−6

(obtained from a table in [1, p. 710], we want to determine U(a, 5) for integer values
of a, a > 3, as long as |U(a, 5)| > 10−15. We guess (a priori) that the discussion
can be restricted to the interval (say) a = [3, 15]. The above lemma then gives the
hint of a backward recurrence, for a = a′ − 1 : −1 : 3 for some appropriate a′ (see
below), in order to obtain a trial solution Ūa with the seed Ūa′ = 1, Ūa′+1 = 0.
Then the wanted solution becomes, by the Lemma, (with changed notation),

U(a, 5) = ŪaU(3, 5)/Ū3.

The positive characteristic root of the frozen difference equation varies from 0.174
to 0.14 for a = 5 : 15; while the modulus of the negative root is between 6.4 and

49If y∗

n is defined by some other condition, one can proceed analogously.
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3.3 times as large. This motivates a choice of a′ ≈ 4 + (−9− log 5.3)/ ln 0.174 ≈ 17
for the backward recursion; it seems advisable to choose a′ (say) 4 units larger than
the value where U becomes negligible.
Forward recurrence with correctly rounded starting values U(3, 5) = 5.2847 10−6,
U(4, 5) = 9.172 10−7, gives oscillating (absolute) errors of relatively slowly decreas-
ing amplitude, approximately 10−11, that gradually drowns the exponentially de-
creasing true solution; the estimate of U(a, 5) itself became negative for a = 10,
and then the results oscillated with approximate amplitude 10−11, while the correct
results decrease from the order of 10−11 to 10−15 as a = 10 : 15. The details are
left for Problem 23b.

It is conceivable that this procedure can be used for all x in some interval
around 5, but we refrain from presenting the properties of the parabolic cylinder
function needed for determining the interval.

If the problem is nonlinear, one can instead solve the original problem with
two seeds, (say) y′N , y

′′
N , and study how the results deviate. The seeds should be so

close that a linearization like f(y′n)−f(y′′n) ≈ rn(y′n−y′′n) is acceptable, but y′n −y′′n
should be well above the rounding error level. A more recent and general treatment
of these matters is found in [17, Chapter 6].

Review Questions

1. Give expressions for the shift operator Ek in terms of ∆,∇, and hD, and
expressions for the central difference operator δ2 in terms of E and hD.

2. Derive the best upper bound for the error of ∆ny0, if we only know that the
absolute value of the error of yi, i = 0, . . . , n does not exceed ǫ.

3. There is a theorem (and a corollary) about existence and uniqueness of approx-
imation formulas of a certain type that are exact for polynomials of certain
class. Formulate these results, and sketch the proofs.

4. What bound can be given for the k’th difference of a function in terms of a
bound for the k’th derivative of the same function?

5. Formulate the basic theorem concerning the use of operator expansions for
deriving approximation formulas for linear operators.

6. Formulate Peano’s Remainder Theorem, and compute the Peano kernel for a
given symmetric functional (with at most four subintervals).

7. Express polynomial interpolation formulas in terms of forward and backward
difference operators.

8. Give Stirling’s interpolation formula for quadratic interpolation with approx-
imate bounds for truncation error and irregular error.

9. Derive central difference formulas for f ′(x0) and f ′′(x0) that are exact for
f ∈ P4. They should only use function values at xj , j = 0,±1,±2, . . . , as
many as needed. Give asymptotic error estimates.

10. Derive the formula for the general solution of the difference equation yn+k +
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a1yn+k−1 + . . .+ akyn = 0, when the characteristic equation has simple roots
only. What is the general solution, when the characteristic equation has mul-
tiple roots?

11. What is the general solution of the difference equation ∆kyn = an+ b?

Problems and Computer Exercises

1. (a) Show that

(1 + ∆)(1 −∇) = 1, ∆ −∇ = ∆∇ = δ2 = E − 2 + E−1,

δ2yn = yn+1 − 2yn + yn−1.

(b) Let ∆pyn,∇pym, δ
pyk all denote the same quantity. How are n,m, k con-

nected? Along which lines in the difference scheme are the subscripts constant?

(c) Given the values of yn, ∇yn, . . . , ∇kyn, for a particular value of n. Find
a recurrence relation for computing yn, yn−1, . . . , yn−k, by simple additions
only. On the way you obtain the full difference scheme of this sequence.

(d) Repeated summation by parts. Show that if u1 = uN = v1 = vN = 0, then

N−1
∑

n=1

un∆2vn−1 = −
N−1
∑

n=1

∆un∆vn =

N−1
∑

n=1

vn∆2un−1.

(e) Show that if ∆kvn → 0, as n→ ∞, then
∑∞

n=m ∆kvn = −∆k−1vm.

(f) Show that (µδ3 + 2µδ)f0 = f2 − f−2

(g) Prove, e.g., by means of summation by parts, that
∑∞

n=0 unz
n, |z| =

1, z 6= 1, is convergent if un → 0 monotonically. Formulate similar results for
real cosine and sine series.

2. (a) Prove, e.g., by induction, the following two formulas:

∆j
x

(

x

k

)

=

(

x

k − j

)

, j ≤ k,

where ∆x means differencing with respect to x, with h = 1.

∆jx−1 =
(−h)jj!

x(x + h) · · · (x + jh)
.

Find the analogous expression for ∇jx−1.

(b) What formulas with derivatives instead of differences are these formulas
analogous to?

(c) Show the following formulas, if x, a are integers:

x−1
∑

n=a

(

n

k − 1

)

=

(

x

k

)

−
(

a

k

)

,
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∞
∑

n=x

1

n(n+ 1) · · · (n+ j)
=

1

j
· 1

x(x+ 1) · · · (x+ j − 1)
.

Modify these results for non-integer x; x− a is still an integer.

(d) Suppose that b 6= 0,−1,−2, . . ., and set

c0(a, b) = 1, cn(a, b) =
a(a+ 1) . . . (a+ n− 1)

b(b + 1) . . . (b+ n− 1)
, n = 1, 2, 3, . . .

Show, e.g., by induction that (−∆)kcn(a, b) = ck(b − a, b)cn(a, b + k), hence
(−∆)nc0(a, b) = cn(b − a, b).

(e) Compute for a = e, b = π (say), cn(a, b), n = 1 : 100. How do you avoid
overflow? Compute ∆nc0(a, b), both numerically by the difference scheme,
and according to the formula in (d). Compare the results and formulate your
experiences. Do the same with a = e, b = π2.
Do the same with ∆jx−1 for various values of x, j and h.

3. Set

Yord = (yn−k, yn−k+1, . . . , yn−1, yn),

Ydif = (∇kyn, ∇k−1yn, . . . ,∇yn, yn).

Note that the results of this problem also hold if the yj are column vectors.

(a) Find a matrix P , such that Ydif = YordP . Show that

Yord = YdifP hence P−1 = P.

How do you generate this matrix by means of a simple recurrence relation?

Hint: P is related to the Pascal matrix, but do not forget the minus signs in
this triangular matrix. Compare Problem 3 of Sec. 1.2.

(b) Suppose that
∑k

j=0 αjE
−j and

∑k
j=0 aj∇j represent the same operator.

Set α = (αk, αk−1, . . . , α0)
T , and a = (ak, ak−1, . . . , a0)

T , i.e. Yord · α ≡
Ydif · a. Show that Pa = α, Pα = a.

(c) The matrix P depends on the integer k. Is it true that the matrix which
is obtained for a certain k is a submatrix of the matrix you obtain for a larger
value of k?

(d) Compare this method of performing the mapping Yord 7→ Ydif with the or-
dinary construction of a difference scheme. Consider the number of arithmetic
operations, the kind of arithmetic operations, rounding errors, convenience of
programming in a language with matrix operations as primary operations etc.
Compare in the same way this method of performing the inverse mapping with
the algorithm in Problem 1c.

4. (a) Set f(x) = tanx. Compute by the use of the table of tanx (in Ex-
ample 3.3.2), and the interpolation and differentiation formulas given in the
above examples (almost) as accurately as possible

f ′(1.35), f(1.322), f ′(1.325), f ′′(1.32).
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Estimate the influence of rounding errors of the function values and estimate
the truncation errors.

(b) Write a program for computing a difference scheme. Use it for computing
the difference scheme for more accurate values of tanx, x = 1.30 : 0.01 : 1.35,
and calculate improved values of the functionals in (a). Compare the error
estimates with the true errors.

(c) Verify the assumptions of Theorem 3.3.7 for one of the three interpolation
formulas in Sec. 3.3.4.

(d) It is rather easy to find the values at θ = 0 of the first two derivatives
of Stirling’s interpolation formula. You find thus explicit expressions for the
coefficients in the formulas for f ′(x0) and f ′′(x0) in (3.3.49) and (3.3.45),
respectively. Check numerically a few coefficients in these equations, and
explain why they are reciprocals of integers. Also note that each coefficient in
(3.3.49) has a simple relation to the corresponding coefficient in (3.3.45).

5. (a) Study Bickley’s table (Table 3.2.1), and derive some of the formulas, in
particular the expressions for δ and µ in terms of hD, and vice versa.

(b) Show that h−kδk −Dk has an expansion into even powers of h, when k is
even. Find an analogous result for h−kµδk −Dk when k is odd.

6. (a) Compute
f ′(10)/12, f (3)(10)/720, f5(10)/30240,

by means of (3.3.26), given values of f(x) for integer values of x. (This is
asked for, e.g., in applications of Euler–Maclaurin’s formula, Sec. 3.4.4.) Do
this for f(x) = x−3/2. Compare with the correct derivatives. Then do the
same also for f(x) = (x3 + 1)−1/2.

(b) Study the backwards differentiation formula, see Example 3.3.6, on a com-
puter. Compute f ′(1) for f(x) = 1/x, for h = 0.02 and h = 0.03, and compare
with the exact result. Make a semi-logarithmic plot of the total error after n
terms, n = 1 : 29. Study also the sign of the error. For each case, try to find
out whether the achievable accuracy is set by the rounding errors or by the
semi-convergence of the series.

Hint: A formula mentioned in Problem 2(a) can be helpful. Also note that
this problem is both similar and very different from the function tan(x) that
was studied in Example 3.3.6.

(c) Set xi = x0 + ih, t = (x− x2)/h. Show that

y(x) = y2 + t∆y2 +
t(t− 1)

2
∆2y2 +

t(t− 1)(t− 2)

6
∆3y1

equals the interpolation polynomial in P4 determined by the values (xi, yi),
i = 1 : 4. (Note that ∆3y1 is used instead of ∆3y2 which is located outside
the scheme. Is this OK?)

7. (a) Show the validity of the algorithm in (3.3.42).

(b) A well known formula reads

P (D)(eαtu(t)) = eαtP (D + α)u(t),
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where P is an arbitrary polynomial. Prove this, as well as the following
analogous formulas:

P (E)(anun) = anP (aE)un,

P (∆/h)
(

(1 + αh)nun

)

= (1 + αh)nP ((1 + αh)∆/h+ α)un.

Can you find a more beautiful or more practical variant?

8. Find the Peano kernel K(u) for the functional ∆2f(x0). Compute
∫

R
K(u) du

both by direct integration of K(u), and by computing ∆2f(x0) for a suitably
chosen function f .

9. Set yj = y(tj), y
′
j = y′(tj). The following relations are of great interest in the

numerical integration of the differential equations y′ = f(y):

(a) The implicit Adams formula:

yn+1 − yn = h
(

a0y
′
n+1 + a1∇y′n+1 + a2∇2y′n+1 + · · ·

)

.

Show that ∇ = − ln(1 − ∇)
∑

ai∇i, and find a recurrence relation for the
coefficients. The coefficients ai, i = 0 : 6, read as follows. Check a few of
them.

ai = 1, −1

2
, − 1

12
, − 1

24
, − 19

720
, − 3

160
, − 863

60480
.

Alternatively, derive the coefficients by means of the matrix representation, of
a truncated power series.

(b) The explicit Adams formula:

yn+1 − yn = h
(

b0y
′
n + b1∇y′n + b2∇2y′n + · · ·

)

.

Show that
∑

bi∇iE−1 =
∑

ai∇i, and show that

bn − bn−1 = an, (n ≥ 1).

The coefficients bi, i = 0 : 6, read as follows. Check a few of them.

bi = 1,
1

2
,

5

12
,

3

8
,

251

720
,

95

288
,

19087

60480
.

(c) Apply the the second order explicit Adams formula, i.e.

yn+1 − yn = h(y′n + 1
2∇y′n),

to the differential equation y′ = −y2, with initial condition y(0) = 1 and step
size h = 0.1. Two initial values are needed for the recurrence; y0 = y(0) = 1,
of course, and we choose50 y1 = 0.9090. Then compute y′0 = −y2

0 , y
′
1 = −y2

1 .
Then the explicit Adams formula yields y2, and so on. Compute a few steps,
and compare with the exact solution.51

50There are several ways of obtaining y1 ≈ y(h), e.g., by one step of Runge’s 2nd order method,
see Sec. 1.4.3, or by a series expansion, like in Example 3.1.1.

51For an implicit Adams formula it is necessary, in this example, to solve a quadratic equation
in each step.
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10. Let yj = y0 + jh. Find the asymptotic behavior as h→ 0 of

(5(y1 − y0) + (y2 − y1))/(2h) − y′0 − 2y′1.

Comment: This is of interest in the analysis of cubic spline interpolation in
Sec. 4.4.4.

11. It sometimes happens that the values of some function f(x) can be computed
by some very time-consuming algorithm only, and that one therefore com-
putes it much sparser than is needed for the application of the results. It was
common in the pre-computer age to compute sparse tables that needed inter-
polation by polynomials of a high degree; then one needed a simple procedure
for subtabulation, i.e. to obtain a denser table for some section of the table.
Today a similar situation may occur in connection with the graphical output
of the results of (say) a numerical solution of a differential equation.
Define the operators ∇ and ∇k by the equations

∇f(x) = f(x) − f(x− h), ∇kf(x) = f(x) − f(x− kh), (k < 1),

and set

∇r
k =

∞
∑

s=r

crs(k)∇s.

(a) In order to compute the coefficients crs, r ≤ s ≤ m, you are advised to
use a subroutine for finding the coefficients in the product of two polynomials,
truncate the result, and apply the subroutine m− 1 times.

(b) Given
fn ∇fn ∇2fn ∇3fn ∇4fn

1 0.181269 0.032858 0.005956 0.001080

Compute for k = 1
2 , fn = f(xn), ∇j

kfn for j = 1 : 4. Compute f(xn − h) and

f(xn − 2h), by means of both {∇jfn} and {∇j
kfn} and compare the results.

How big difference of the results did you expect, and how big difference do
you obtain?

12. Solve the following difference equations. A solution in complex form should
be transformed to real form. As a check, compute (say) y2 both by recurrence
and by your closed form expression.

(a) yn+2 − 2yn+1 − 3yn = 0, y0 = 0, y1 = 1;

(b) yn+2 − 4yn+1 + 5yn = 0, y0 = 0, y1 = 2;

(c) There exist problems with two-point boundary conditions for difference
equations, as for differential equations. yn+2 − 2yn+1 − 3yn = 0, y0 = 0,
y10 = 1;

(d) yn+2 + 2yn+1 + yn = 0, y0 = 1, y1 = 0;

(e) yn+1 − yn = 2n, y0 = 0;

(f) yn+2 − 2yn+1 − 3yn = 1 + cos πn
3 , y0 = y1 = 0;

Hint: The right hand side is ℜ(1 + an), where a = eπi/3.
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(g) yn+1 − yn = n, y0 = 0;

(h) yn+1 − 2yn = n2n, y0 = 0;

13. (a) Prove Lemma 3.3.10.

(b) Consider the difference equation yn+2 − 5yn+1 + 6yn = 2n + 3(−1)n.
Determine a particular solution of the form yn = an+ b+ c(−1)n.

(c) Solve also the difference equation yn+2 − 6yn+1 + 5yn = 2n+ 3(−1)n.
Why and how must you change the form of the particular solution?

14. (a) Show that the difference equation
∑k

i=0 bi∆
iyn = 0 has the characteristic

equation:
∑k

i=0 bi(u− 1)i = 0.

(b) Solve the difference equation ∆2yn−3∆yn+2yn = 0, with initial condition
∆y0 = 1.

(c) Find the characteristic equation for the equation
∑k

i=0 bi∇iyn = 0?

15. The influence of wrong boundary slopes for cubic spline interpolation (with
equidistant data)—see Sec. 4.4—is governed by the difference equation

en+1 + 4en + en−1 = 0, 0 < n < m,

e0, em given. Show that en ≈ une0 + um−nem, u =
√

3 − 2 ≈ −0.27. More
precisely

∣

∣en − (une0 + um−nem)
∣

∣ ≤ 2|u3m/2|
1 − |u|m max(|e0|, |em|).

Generalize the simpler of these results to other difference and differential equa-
tions.

16. The Fibonacci sequence is defined by the recurrence relation

yn = yn−1 + yn−2, y0 = 0, y1 = 1.

(a) Calculate limn→∞ yn+1/yn.

(b) The error of the secant method (see Sec. 6.2.2) satisfies approximately the
difference equation ǫn = Cǫn−1ǫn−2. Solve this difference equation. Determine
p, such that ǫn+1/ǫ

p
n tends to a finite nonzero limit as n→ ∞. Calculate this

limit.

17. For several algorithms using the “divide and conquer strategy”, such as the
Fast Fourier Transform and some sorting methods, one can find that the work
W (n) for the application of them to data of size n satisfies a recurrence relation
of the form:

W (n) = 2W (n/2) + kn,

where k is a constant. Find W (n).

18. When the recursion

xn+2 = (32xn+1 − 20xn)/3, x0 = 3, x1 = 2,
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was solved numerically in low precision (23 bits mantissa), one obtained for
xi, i = 2 : 12 the (rounded) values

1.33, 0.89, 0.59, 0.40, 0.26, 0.18, 0.11, 0.03, −0.46, −5.05, −50.80.

Explain the difference from the exact values xn = 3(2/3)n.

19. (a) k,N are given integers 0 ≤ k <≤ N . A ”discrete Green’s function”
Gn,k, 0 ≤ n ≤ N for the central difference operator −∆∇ together with the
boundary conditions given below, is defined as the solution un = Gn,k of the
difference equation with boundary conditions, a

−∆∇un = δn,k, u0 = uN = 0;

(δn,k is Kronecker’s delta). Derive a fairly simple expression for Gn,k.

(b) Find (by computer) the inverse of the tridiagonal matrix

A =













2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2













.

What is the relation between Problems (a) and (b)? Find a formula for the
elements of A−1. Express the solution of the inhomogeneous difference equa-
tion −∆∇un = bn, u0 = uN = 0, both in terms of the Green function Gn,k

and in terms of A−1 (for general N).

(c) Try to find an analogous formula52 for the solution of an inhomoge-
neous boundary value problem for the differential equation −u′′ = f(x),
u(0) = u(1) = 0.

20. (a) Demonstrate the formula

∞
∑

0

(−x)ncn
n!

= e−x
∞
∑

0

xn(−∆)nc0
n!

. (3.3.66)

Hint: Use the relation e−xE = e−x(1+∆) = e−xe−x∆.

(b) For completely monotonic sequences {cn} and {(−∆)nc0} are typically
positive and decreasing sequences. For such sequences, the left hand side be-
comes extremely ill-conditioned for large x, (say) x = 100, while the graph of
the terms on the right hand side (if exactly computed) are bell-shaped, almost
like the normal probability density with mean x and standard deviation

√
x.

We have called such a sum a bell sum. Such positive sums can be computed
with little effort and no trouble with rounding errors, if their coefficients are
accurate.

52In a differential equation, analogous to Problem 21(a), the Kronecker delta is to be replaced
by the Dirac delta function. Also note that the inverse of the differential operator here can be
described as an integral operator with the Green’s function as the “kernel”.
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Compute the left hand side of (3.3.66), for cn = 1/(n+ 1), x = 10 : 10 : 100,
and compute the right hand side, both with numerically computed differences
and with exact differences; the latter are found in Problem 2a. (In this par-
ticular case you can also find the exact sum.)

Suppose that the higher differences {(−∆)nc0} have been computed recur-
sively from rounded values of cn. Explain why one may fear that the right
hand side of (3.3.66) does not provide much better results than the left hand
side.

(c) Use (3.3.66) to derive the second expansion for erf(x) in Problem 11 of
Sec. 3.2 from the first expansion.

Hint: Use one of the results of Problem 2 a.

(d) If cn = cn(a, b) is defined as in Problem 2d, then the left hand side be-
comes the Maclaurin expansion of the Kummer function M(a, b,−x); see the
Hanbook [1, Ch. 13]; Show that

M(a, b,−x) = e−xM(b− a, b, x)

by means of the results of Problems 23a and 2d.

21. (a) The difference equation yn + 5yn−1 = n−1 was discussed in Sec. 1.3.3. It
can also be written thus: (6+∆)yn−1 = n−1. The expansion of (6+∆)−1n−1

into powers of ∆/6 provides a particular solution of the difference equation.
Compute this numerically for a few values of n. Try to prove the convergence,
with or without the expression in Problem 2b. Is this the same as the partic-

ular solution In =
∫ 1

0
xn(x+ 5)−1dx that was studied in Example 1.2.1?

Hint: What happens as n→ ∞? Can more than one solution of this difference
equation be bounded as n→ ∞?

(b) Make a similar study to the difference equation related to the integral in
Problem 6 of Sec.1.2. Why does the argument suggested by the hint of (a)
not work in this case? Try another proof.

22. (a) Prove Lemma 3.3.14. How is the conclusion to be changed, if we do not
suppose that γ < α, though the coefficients are still positive? Show that a
backward recurrence is still to be recommended.

(b) Work out on a computer the numerical details of Example 3.3.15, and
compare with the Handbook [1, Example 19.28.1]. (Some deviations are to be
expected, since Miller used other rounding rules.) Try to detect the oscillating
component by computing the difference scheme of the the computed U(a, 5),
and estimate roughly the error of the computed values.

23. (a) For which constant real a does the difference equation

yn+1 − 2ayn + yn−1 = 0

satisfy the root condition?
For which values of the real constant a does there exist a solution, such that
limn→∞ yn = 0 ? For these values of a, how do you construct a solution
yn = y∗n by a recurrence and normalization, so that this condition as well as
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the condition y∗0 + 2
∑∞

m=1 y
∗
2m = 1 are satisfied. Is y∗n unique? Give also an

explicit expression for y∗n.
For the other real values of a, show that y∗n does not exist, but that for any
given y0, y1 a solution can be accurately constructed by forward recurrence.
Give an explicit expression for this solution in terms of Chebyshev polynomials
(of the first and the second kind). Is it true that backward recurrence is also
stable, though more complicated than forward recurrence?

(b) The Bessel function Jk(z) satisfies the difference equation,

Jk+1(z) − (2k/z)Jk(z) + Jk−1(z) = 0, k = 1, 2, 3, . . . ,

and the identities,

J0(z) + 2J2(z) + 2J4(z) + 2J6(z) + . . . = 1;

J0(z) − 2J2(z) + 2J4(z) − 2J6(z) + . . . = cos z;

see Abramowitz and Stegun [1], 9.1.27, 9.1.46 and 9.1.47.
Show how one of the identities can be used for normalizing the trial se-
quence obtained by a backwards recurrence. Under what condition does Prob-
lem 26(a) give the hint to use the backwards recurrence for this difference
equation?
Study the section on Bessel functions of integer order in Numerical Recipes.
Apply this technique for z = 10, 1, 0.1 (say). The asymptotic formula (see
[1, 9.3.1])

Jk(z) ∼ 1√
2πk

( ez

2k

)k

, k ≫ 1, z fixed.

may be useful for your decision where to start the backward recurrence. Use
at least two starting points, and subtract the results (after normalization).

Comment: The above difference equation for Jk(z) is also satisfied by a func-
tion denoted Yk(z),

Yk(z) ∼ −2√
2πk

( ez

2k

)−k

, (k ≫ 1).

How do these two solutions disturb each other, when forward or backward
recurrence is used?
(c) A counterexample to the technique with frozen coefficients. Consider the
difference equation yn+1 − (−1)nyn + yn−1 = 0. The technique with frozen
coefficients leads to the consideration of the difference equations

zn+1 − 2azn + zn−1 = 0, a ∈ [−0.5, 0.5];

all of them have only bounded solutions. Find by numerical experiment that,
nevertheless, there seems to exist unbounded solutions yn of the first difference
equation.

Comment: A theoretical proof of this is found by noting that the mapping
(y2n, y2n+1) 7→ (y2n+2, y2n+3) is represented by a matrix that is independent
of n and has an eigenvalue that is less than −1.
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24. Let {bn}∞−∞ be a given sequence, and consider the difference equation,

yn−1 + 4yn + yn+1 = bn,

which can also be written in the form (6 + δ2)yn = bn.

(a) Show that the difference equation has at most one solution that is bounded
for −∞ < n < +∞. Find a particular solution in the form of an expansion
into powers of the operator δ2/6. (This is hopefully bounded.)

(b) Apply it numerically to the sequence bn = (1+n2h2)−1, for a few values of
the step size h, e.g., h = 0.1, 0.2, 0.5, 1. Study for n = 0 the rate of decrease (?)
of the terms in the expansion. Terminate when you estimate that the error is
(say) 10−6. Check how well the difference equation is satisfied by the result.

(c) Study theoretically bounds for the terms when bn = exp(iωhn) ω ∈ R.
Does the expansion converge? Compare your conclusions with numerical ex-
periments. Extend to the case when bn = B(nh), where B(t) can be repre-
sented by an absolutely convergent Fourier integral, B(t) =

∫∞
−∞ eiωtβ(ω)dω.

Note that B(t) = (1+ t2)−1 if β(ω) = 1
2e

−|ω|. Compare the theoretical results
with the experimental results in (b).

(d) Put Q = δ2/6. Show that ỹn ≡ (1 − Q + Q2 + . . . ± Qk−1)bn/6 satisfies
the difference equation (1 +Q)(ỹn − yn) = Qkbn/6.

Comment: This procedure is worthwhile if the sequence bn is so smooth that
(say) 2 or 3 terms give satisfactory accuracy.

3.4 Acceleration of Convergence

3.4.1 Introduction

If a sequence {sn}∞0 converges slowly towards a limit s, but has a sort of regular
behavior when n is large, it can under certain conditions be transformed into another
infinite sequence {s′n}, that converges much faster to the same limit. Here s′n
usually depends on the first n elements of the original sequence only. This is called
convergence acceleration. Such a sequence transformation may be iterated, to
yield a sequence of infinite sequences, {s′′n}, {s′′′n } etc., hopefully with improved
convergence towards the same limit s. For an infinite series convergence acceleration
means the convergence acceleration of its sequence of partial sums. Some algorithms
are most easily discussed in terms of sequences, others in terms of series.

Several transformations, linear as well as nonlinear, have been suggested and
are successful, under various conditions. Some of them, like Aitken, repeated av-
erages, and Euler’s transformation, are most successful on oscillating sequences
(alternating series or series in a complex variable). Others, like variants of Aitken
acceleration, Euler–Maclaurin and Richardson, work primarily on monotonic se-
quences (series with positive terms). Some techniques for convergence acceleration
transform a power series into a sequence of rational functions, e.g., continued frac-
tions, Padé approximation, and the ǫ-algorithm
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Convergence acceleration cannot be applied to “arbitrary sequences”; some
sort of conditions are necessary that restrict the variation of the future elements of
the sequence, i.e. the elements which are not computed numerically. In this section,
these conditions are of a rather general type, in terms of monotonicity, analytic-
ity or asymptotic behavior of simple and usual types. For the class of completely
monotonic functions and some related classes of analytic functions the techniques
of convergence acceleration can be put on a relatively solid theoretical basis.

Definition 3.4.1.
A function u(s) is completely monotonic for s ≥ a, s ∈ R, iff

u(s) ≥ 0, (−1)(j)f (j)(s) ≥ 0, s ≥ a ∀ j ≥ 0 (integer), ∀ s ≥ a, (real).

Nevertheless some of these techniques may even sometimes be successfully ap-
plied to semi-convergent sequences. Several of them can also use a limited number
of coefficients of a power series for the computation of values of an analytic con-
tinuation of a function, outside the circle of convergence of the series that defined
it.

In addition to the “general purpose” techniques to be discussed in this chapter,
there are other techniques of convergence acceleration based on the use of more
specific knowledge about a problem. For example, Poisson summation formula

∞
∑

n=−∞
f(n) =

∞
∑

j=−∞
f̂(j), f̂(ω) =

∫ ∞

−∞
f(ω)e−2πiωx dx; (3.4.1)

(f̂ is the Fourier transform of f). This can be amazingly successful to a certain class
of series

∑

a(n), namely if a(x) has a rapidly decreasing Fourier Transform. The
Poisson formula is also an invaluable tool for the design and analysis of numerical
methods for several problems; see Theorem 3.4.4.

Irregular errors are very disturbing when these techniques are used. They
sometimes set the limit for the reachable accuracy. For the sake of simplicity we
therefore use IEEE double precision, in most examples.

3.4.2 Comparison Series and Aitken Acceleration

Suppose that the terms in the series
∑∞

j=1 aj behave, for large j, like the terms of

a series
∑∞

j=1 bj , i.e. limj→∞ aj/bj = 1. Then if the sum s =
∑∞

j=1 bj is known one
can write

∞
∑

j=1

aj = s+
∞
∑

j=1

(aj − bj),

where the series on the right hand side converges more quickly than the given series.
We call this making use of a simple comparison problem. The same idea is used
in many other contexts—for example, in the computation of integrals where the
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integrand has a singularity. Usual comparison series are

∞
∑

j=1

n−2 = π2/6,

∞
∑

j=1

n−4 = π4/90, etc.

A general expression for
∑∞

j=1 n
−2r, is given by (3.4.27). No simple closed form is

known for
∑∞

j=1 n
−3.

Example 3.4.1.
The term aj = (j4 + 1)−1/2 behaves, for large j, like bj = j−2, whose sum is

π2/6. Thus

∞
∑

j=1

aj = π2/6 +

∞
∑

j=1

(

(j4 + 1)−1/2 − j−2)
)

= 1.64493− 0.30119 = 1.3437.

Five terms on the right hand side are sufficient for four-place accuracy in the final
result. Using the series on the left hand side, one would not get four-place accuracy
until after 20,000 terms.

This technique is unusually successful in this example. The reader is advised
to find out that and why it is less successful for aj = (j4 + j3 + 1)−1/2.

An important comparison sequence is a geometric sequence

yn = a+ bkn,

for which

∇sn = yn − yn−1 = bkn−1(k − 1).

It this is fitted to the three most recently computed terms of a given sequence,
yn = sn for (say) n = j, j − 1, j − 2, then ∇yj = ∇sj , ∇yj−1 = ∇sj−1, and

k = ∇sj/∇sj−1.

Hence

bkj =
∇sj

1 − 1/k
=

∇sj

1 −∇sj−1/∇sj
=

(∇sj)
2

∇2sj
.

This yields a comparison sequence for each j. Suppose that |k| < 1. Then the
comparison sequence has the s′j = limn→∞ yn = a = yj − bkj , i.e.

s ≈ s′j = sj −
(∇sj)

2

∇2sj
. (3.4.2)

This is called Aitken acceleration53 and is the most popular nonlinear accelera-
tion methods.

53Alexander Craig Aitken (1895–1967), Scotch mathematician born in New Zealand.
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If {sn} is exactly a geometric sequence, i.e. if sn − a = k(sn−1 − a) ∀ n,
then s′j = s ∀j. Otherwise it can be shown (Henrici [24, ]) that under the
assumptions

lim
j→∞

sj = s, and lim
sj+1 − sj

sj − sj−1
= k∗, |k∗| < 1, (3.4.3)

the sequence {s′j} converges faster than does the sequence {sj}. The above as-
sumptions can often be verified for sequences arising from iterative processes and
for many other applications.

If you want the sum of slowly convergent series, it may seem strange to com-
pute the sequence of partial sums, and then compute the first and second differences
of rounded values of this sequence in order to apply Aitken acceleration. The a-
version of Aitken acceleration works on the terms aj of an infinite series instead of
on its partial sums sj .

Clearly we have aj = ∇sj , j = 1 : N . The a-version of Aitken acceleration
thus reads s′j = sj − a2

j/∇aj , j = 1 : N . We want to determine a′j so that

j
∑

k=1

a′k = s′j , j = 1 : N.

Then
a′1 = 0, a′j = aj −∇(a2

j/∇aj), j = 2 : N,

and s′N = sN − a2
N/∇aN (show this). We may expect that this a-version of Aitken

acceleration handles rounding errors better.
The condition |k∗| < 1 is a sufficient condition only. In practice, Aitken

acceleration seems most efficient if k∗ = −1. Indeed, it often converges even if
k∗ < −1; see Problem 7. It is much less successful if k∗ ≈ 1, e.g., for slowly
convergent series with positive terms.

The Aitken acceleration process can often be iterated, to yield sequences,
{s′′n}∞0 , {s′′′n }∞0 , etc., defined by the formulas

s′′j = s′j −
(∇s′j)2
∇2s′j

, s
′′′

j = s′′j −
(∇s′′j )2

∇2s′′j
. . . (3.4.4)

Example 3.4.2.
By (3.1.10), it follows for x = 1 that

1 − 1/3 + 1/5 − 1/7 + 1/9 − . . . = arctan 1 = π/4 ≈ 0.7853981634.

This series converges very slowly. Even after 500 terms there still occur changes
in the third decimal. Consider the partial sums sj =

∑j
n0

(−1)j(2n + 1)−1, with
n0 = 5, and compute the iterated Aitken sequences as indicated above.

The (sufficient) theoretical condition mentioned above is not satisfied, since
∇sn/∇sn−1 → −1 as n → ∞. Nevertheless, we shall see that the Aitken acceler-
ation works well, and that the iterated accelerations converge rapidly. One gains
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two digits for every pair of terms, in spite of the slow convergence of the original
series. The results in the table below were obtained using IEEE double precision.
The errors of s′j , s

′′
j , . . . are denoted e′j, e

′′
j , . . ..

j sj ej e′j e′′j e′′′j

5 0.744012 −4.1387e−2

6 0.820935 3.5536e−2

7 0.754268 −3.1130e−2 −1.7783e−4

8 0.813092 2.7693e−2 1.1979e−4

9 0.760460 −2.4938e−2 −8.4457e−5 −1.3332e−6

10 0.808079 2.2681e−2 6.1741e−5 7.5041e−7

11 0.764601 −2.0797e−2 −4.6484e−5 −4.4772e−7 −1.0289e−8

Example 3.4.3.
Set an = e−

√
n+1, n ≥ 0. As before, we denote by sn the partial sums of

∑

an, s = lim sn = 1.67040681796634, and use the same notations as above. Note
that

∇sn/∇sn−1 = an/an−1 ≈ 1 − 1
2n

−1/2, (n≫ 1],

so this series is slowly convergent. Computations with plain and iterated Aitken in
IEEE double precision gave the results below:

j e2j e
(j)
2j

0 −1.304 −1.304
1 −0.882 −4.10e−1
2 −0.640 −1.08e−1
3 −0.483 −3.32e−2
2 −0.374 −4.41e−3
5 −0.295 −7.97e−4
6 −0.237 −1.29e−4
7 −0.192 −1.06e−5
8 −0.158 −1.13e−5

The sequence {e(j)2j } is monotonic until j = 8. After this |e(j)2j | is mildly

fluctuating around 10−5 (at least until j = 24), and the differences ∇s(j)2j = ∇e(j)2j

are sometimes several powers of 10 smaller than the actual errors and are misleading
as error estimates. The rounding errors have taken over, and it is almost no use to
compute more terms.

It is possible to use more terms for obtaining higher accuracy by applying
iterated Aitken acceleration to a thinned sequence e.g., s4, s8, s12, . . ., Prob-
lem 4. Note the thinning is performed on a sequence that converges to the limit
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to be computed, e.g., the partial sums of a series. Only in so-called bell sums (see
Problem 30) we shall do a completely different kind of thinning, namely a thinning
of the terms of a series.

The convergence ratios of the thinned sequence are much smaller; for the series
of the previous example they become approximately

(

1 − 1
2n

−1/2
)4

≈ 1 − 2n−1/2, n≫ 1.

The most important point is, though, that the rounding errors become more slowly
amplified, so that terms far beyond the eighth number of the un-thinned sequence
can be used in the acceleration, resulting in a much improved final accuracy.

How to realize the thinning depends on the sequence; a different thinning will
be used in the next example.

Example 3.4.4.
We shall compute,

s =

∞
∑

n=1

n−3/2 = 2.612375348685488.

If all partial sums are used in Aitken acceleration, it turns out that the error |e(j)2j |
is decreasing until j = 5, when it is 0.07, and it remains on approximately this level
for a long time.

j 0 1 2 3 4 5
E2j+1 −1.61 −0.94 −4.92e−1 −2.49e−1 −1.25e−1 −6.25e−2

E
(j)
2j+1 −1.61 −1.85 −5.06e−2 −2.37e−4 −2.25e−7 2.25e−10

A much better result is obtained by means of thinning, but since the conver-
gence is much slower here than in the previous case, we shall try “geometric” thin-
ning rather than the “arithmetic” thinning used above, i.e. we now set Sm = s2m .
Then

∇Sm =
2m

∑

1+2m−1

an, Sj = S0 +

j
∑

m=1

∇Sm, Ej = Sj − s.

(If maximal accuracy is wanted, it may be advisable to use the ”divide and con-
quer technique” for computing these sums; see Problem 2.3.5, but it has not been
used here.) By the approximation of the sums by integrals one can show that
∇Sm/∇Sm−1 ≈ 2−1/2, m ≫ 1. The table above shows the errors of the first
thinned sequence and the results after iterated Aitken acceleration. The last result
has used 1024 terms of the original series, but since

sn − s = −
∞
∑

j=n

j−3/2 ≈ −
∫ ∞

n

t−3/2 dt = −2

3
n−1/2, (3.4.5)
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1020 terms would have been needed for obtaining this accuracy without convergence
acceleration.

For sequences such that

sn − s = c0n
−p + c1n

−p−1 +O(n−p−2), p > 0,

where s, c0, c1 are unknown, the following variant of Aitken acceleration, (Bjørstad
et al. [3]) is more successful:

s′n = sn − p+ 1

p

∆sn∇sn

∆sn −∇sn
. (3.4.6)

It turns out that s′n is two powers of n more accurate than sn, s′n − s = O(n−p−2);
see Problem 12. More generally, suppose that there exists a longer (unknown)
asymptotic expansion of the form

sn = s+ n−p(c0 + c1n
−1 + c2n

−2 + . . .), n→ ∞. (3.4.7)

This is a rather common case. Then we can extend this to an to an iterative variant,
where p is to be increased by 2 in each iteration; i = 0, 1, 2, . . . is a superscript, i.e.

si+1
n = si

n − p+ 2i+ 1

p+ 2i

∆si
n∇si

n

∆si
n −∇si

n

. (3.4.8)

If p is also unknown, it can be estimated by means of the equation,

1

p+ 1
= −∆

∆sn

∆sn −∇sn
+O(n−2). (3.4.9)

Example 3.4.5.
We consider the same series as in the previous example, i.e. s =

∑

n−3/2. We
use (3.4.8) without thinning. Here p = −1/2, see Problem 13. As usual, the errors
are denoted ej = sj − s, ei

2j = si
2j − s. In the right column of the table below, we

show the errors from a computation with 12 terms of the original series,

j e2j ej
2j

0 −1.612 −1.612
1 −1.066 −8.217e−3
2 −0.852 −4.617e−5
3 −0.730 +2.528e−7
4 −0.649 −1.122e−9
5 −0.590 −0.634e−11
6 −0.544 −1.322e−9

From this point the errors were around 10−10 or a little below. The rounding
errors have taken over, and the differences are, as in Example 3.3.4, misleading
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for error estimation. If needed, higher accuracy can be obtained by “arithmetic
thinning” with more terms.

In this computation only 12 terms were used. In the previous example a less
accurate result was obtained by means of 1024 terms of the same series, but we must
appreciate that the technique of Example 3.3.5 did not require the existence of an
asymptotic expansion for sn and may therefore have a wider range of application.

There are not yet so many theoretical results that give justice to the practically
observed efficiency of iterated Aitken accelerations for oscillating sequences. One
reason for this can be that the transformation (3.4.2), which the algorithms are
based on, is nonlinear). For methods of convergence acceleration that are based
on linear transformations, theoretical estimates of convergence rates and errors are
closer to the practical performance of the methods.

In a generalization of Aitken acceleration one considers a transformation that
is exact for sequences satisfying

a0(sn − a) + · · · + ak(sn−k − a) = 0, ∀ n. (3.4.10)

Shanks considered the sequence transformation

ek(sn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

sn sn+1 · · · sn+k

sn+1 sn+2 · · · sn+k+1

...
... · · ·

...
sn+k sn+k+1 · · · sn+2k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆2sn · · · ∆2sn+k−1

... · · ·
...

∆2sn+k−1 · · · ∆2sn+2k−2

∣

∣

∣

∣

∣

∣

∣

, k = 1, 2, 3, . . . (3.4.11)

For k = 1 Shanks’ transformation reduces to Aitken’s ∆2 process. It can be proved
that ek(sn) = a if and only if sn satisfies (3.4.10). The determinants in the def-
inition of ek(sn) have a very special structure and are called Hankel determi-
nants54. Such determinants satisfy a recurrence relationship, which can be used
for implementing the transformation. An elegant recursive procedure to compute
ek(sn) directly, the epsilon algorithm, will be discussed further in Sec. sec3.5.3 in
connection with continued fraction and Padé approximants.

3.4.3 Euler’s Transformation

In 1755 Euler gave the first version of what is now called Euler’s transformation.
Let

S =

∞
∑

j=0

(−1)juj , (3.4.12)

54Named after the German mathematician Hermann Hankel (1839–1873).
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be an alternating series (uj ≥ 0). Then Euler showed that

S =
∞
∑

k=0

1

2k
∆kuk, (3.4.13)

Often it is better to apply Euler’s transformation to the tail of a series.
We shall now apply another method of acceleration based on repeated av-

eraging of the partial sums. Consider again the same series as in Example 3.4.2,
i.e.. ∞

∑

j=0

(−1)j(2j + 1)−1 = 1 − 1

3
+

1

5
− 1

7
+

1

9
− . . . =

π

4
. (3.4.14)

Let SN be the sum of the first N terms. The columns to the right of the SN -column
in the scheme given in Table 3.4.1 are formed by building averages.

Each number in a column is the mean of the two numbers which stand to the
left and upper left of the number itself. In other words, each number is the mean
of its “west” and “northwest” neighbor. The row index of M tells how many terms
are used from the original series, while the column index -1 equals the number of
repeated averagings. Only the digits which are different from those in the previous
column are written out.

Table 3.4.1. Summation by repeated averaging.

N SN M2 M3 M4 M5 M6 M7

6 0.744 012
7 0.820 935 782 474
8 0.754 268 787 602 5038
9 0.813 092 783 680 5641 340
10 0.760 460 786 776 5228 434 387
11 0.808 079 784 270 5523 376 405 396
12 0.764 601 786 340 5305 414 395 400 398

Notice that the values in each column oscillate. In general, for an alternating
series, it follows from the next theorem together with (3.2.4) that if the absolute
value of the jth term, considered as a function of j, has a kth derivative which
approaches zero monotonically for j > N0, then every other value in column Mk+1

is larger than the sum, and every other is smaller. The above premise is satisfied
here, since if f(j) = (2j + 1)−1 then f (k)(j) = ck(2j + 1)−1−k, which approaches
zero monotonically.

If round-off is ignored, it follows from column M6 that 0.785396 ≤ π/4 ≤
0.785400. To take account of round-off error, we set π/4 = 0.785398± 3 ·10−6. The
actual error is only 1.6 10−7. In Example3.4.2 iterated Aitken accelerations gave
about one decimal digit more with the same data.

It is evident how the above method can be applied to any alternating series.
The diagonal elements are equivalent to the results from using Euler’s transforma-
tion.
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Euler’s transformation and the averaging method, can be generalized for the
convergence acceleration of a general complex power series

S(z) =

∞
∑

j=1

ujz
j−1. (3.4.15)

The alternating series obtained for z = −1. Other applications include Fourier
series. They can be brought to this form, with z = eiφ, −π ≤ φ ≤ π; see Problem 14
and Example 3.4.7. The irregular errors of the coefficients play a big role if |φ| ≪ π,
and it is important to reduce their effects by means of a variant of the thinning
technique, described (for Aitken acceleration) in the previous section. Another
interesting application is the analytic continuation of the power series outside its
circle of convergence; see Example 3.4.8.

Theorem 3.4.2.
The tail of the power series in (3.4.15) can formally be transformed into the

expansion, (z 6= 1).

S(z) −
n
∑

j=1

ujz
j−1 =

∞
∑

j=n+1

ujz
j−1 =

zn

1 − z

∞
∑

s=0

P sun+1, P =
z

1 − z
∆. (3.4.16)

Set N = n+ k − 1, and set

Mn,1 =
n
∑

j=1

ujz
j−1; MN,k = Mn,1 +

zn

1 − z

k−2
∑

s=0

P sun+1; n = N −k+1. (3.4.17)

These quantities can be computed by the following recurrence formula that yields
several estimates based on N terms from the original series.55 This is called the
generalized Euler transformation.

MN,k =
MN,k−1 − zMN−1,k−1

1 − z
, k = 2 : N. (3.4.18)

For z = −1, this is the repeated average algorithm described above, and P = − 1
2∆.

Assume that |z| ≤ 1, that
∑

ujz
j−1 converges, and that ∆suN → 0, s = 0 : k

as N → ∞. Then MN,k → S(z), as N → ∞. If, moreover, ∆k−1uj has a constant
sign for j ≥ N − k + 2, then the following strict error bounds are obtained:

|MN,k − S(z)| ≤ |z(MN,k −MN−1,k−1)| = |MN,k −MN,k−1|, (k ≥ 2). (3.4.19)

Proof. We first note that, as N → ∞, P suN → 0, s = 0 : k, and hence, by
(3.4.17), limMN,k = limMN,0 = S(z).

55See Algorithm 3.3.1 for an adaptive choice of a kind of optimal output.
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Euler’s transformation can be formally derived by operators as follows:

S(z) −Mn,1 = zn
∞
∑

i=0

(zE)iun+1 =
zn

1 − zE
un+1

=
zn

1 − z − z∆
un+1 =

zn

1 − z

∞
∑

s=0

P sun+1.

In order to derive (3.4.18), note that this relation can equivalently be written thus,

MN,k −MN,k−1 = z(MN,k −MN−1,k−1), (3.4.20)

MN,k−1 −MN−1,k−1 = (1 − z)(MN,k −MN−1,k−1). (3.4.21)

Remembering that n = N − k + 1, we obtain, by (3.4.17),

MN,k −MN−1,k−1 =
zN−k+1

1 − z
P k−2uN−k+2, (3.4.22)

and it can be shown (Problem 17) that

MN,k−1 −MN−1,k−1 = znP k−2un+1 = zN−k+1P k−2uN−k+2. (3.4.23)

By (3.4.22) and (3.4.23), we now obtain (3.4.21) and hence also the equivalent
equations (3.4.20) and (3.4.18).

Now substitute j for N into (3.4.23), and add the p equations obtained for
j = N + 1, . . ., N + p. We obtain:

MN+p,k−1 −MN,k−1 =

N+p
∑

j=N+1

zj−k+1P k−2uj−k+2.

Then substitute k + 1 for k, and N + 1 + i for j. Let p → ∞, while k is fixed. It
follows that

S(z) −MN,k =

∞
∑

j=N+1

zj−kP k−1uj−k+1 =
zN−k+1 · zk−1

(1 − z)k−1

∞
∑

i=0

zi∆k−1uN−k+2+i,

(3.4.24)
hence

|S(z) −MN,k| ≤
∣

∣(z/(1 − z))k−1zN−k+1
∣

∣

∞
∑

i=0

∣

∣∆k−1uN−k+2+i

∣

∣ .

We now use the assumption that ∆k−1uj has constant sign for j ≥ N − k + 2.

Since
∑∞

i=0 ∆k−1uN−k+2+i = −∆k−2uN−k+2, it follows that

|S(z) −MN,k| ≤
∣

∣

∣

∣

zN−k+1 z
k−1∆k−2uN−k+2

(1 − z)k−1

∣

∣

∣

∣

=

∣

∣

∣

∣

z · zN−k+1

1 − z
P k−2uN−k+2

∣

∣

∣

∣

.
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Now, by (3.4.22), |S(z)−MN,k| ≤ |z| · |MN,k −MN−1,k−1|. This is the first part of
(3.4.19). The second part then follows from (3.4.20).

Comments: Note that the elements MN,k become rational functions of z for fixed
N , k. If the term un, as a function of n, belongs to Pk, then the classical Euler
transformation (for n = 0) yields the exact value of S(z) after k terms, if |z| < 1.
This follows from (3.4.16), because

∑

ujz
j is convergent, and P sun+1 = 0 for s ≥ k.

In this particular case, S(z) = Q(z)(1 − z)−k, where Q is a polynomial; in fact the
Euler transformation gives S(z) correctly for all z 6= 1.

The advantage of the recurrence formula (3.4.18), instead of a more direct use
of (3.4.16), is that it provides a whole lower triangular matrix of estimates, so that
one can, by means of a simple test, decide when to stop. This yields a result with
strict error bound, if ∆k−1uj has a constant sign (for all j with a given k), and
if the effect of rounding errors is evidently smaller than Tol. If these conditions
are not satisfied, there is a small risk that the algorithm may terminate if the error
estimate is incidentally small, e.g., near a sign change of ∆k−1uj .

The irregular errors of the initial data are propagated to the results. In the
long run, they are multiplied by approximately |z/(1 − z)| from a column to the
next—this is less than one if ℜz < 1/2—but in the beginning this growth factor can
be as large as (1+ |z|)/|1− z|. It plays no role for alternating series; its importance
when |1 − z| is smaller will be commented in Example 3.4.7.

The following algorithm is mainly based on the above theorem, but the pos-
sibility for the irregular errors to become dominant has been taken into account
(somewhat) in the third alternative of the termination criterion.

Algorithm 3.4.1 The Generalized Euler Transformation

This algorithm is based on Theorem 3.4.2, with a tolerance named Tol, and a
termination criterion based on (3.4.19), by the computation and inspection of the
elements of M in a certain order, until it finds a pair of neighboring elements that
satisfies the criterion.
The classical Euler transformation would only consider the diagonal elements MNN ,
N = 1, 2, ... and the termination would have been based on |MNN −MN−1,N−1|.
The strategy used in this algorithm is superior for an important class of series.

function [sum,errest,N,kk] = euler(z,u,Tol)

%

% EULER applies the generalized Euler transform to a power

% series with terms u(j)z^j. The elements of M are inspected

% in a certain order, until a pair of neighboring elements

% are found that satisfies a termination criterion.

% Input are .....

%

Nmax = length(u);

errest = Inf; olderrest = errest;

N = 1; kk = 2; M(1,1) = u(1);
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while (errest > Tol) & (N < Nmax) & (errest <= olderrest)

N = N+1; olderrest = errest;

M(N,1) = M(N-1,1)+ u(N)*z^(N-1); % New partial sum

for k = 2:N,

M(N,k) = (M(N,k-1) - z*M(N-1,k-1))/(1-z);

temp = abs(M(N,k) - M(N,k-1))/2;

if temp < errest,

kk = k; errest = temp;

end

end

end

sum = (M(N,kk) + M(N,kk-1))/2;

An oscillatory behavior of the values |MN,k −MN,k−1 in the same row, indi-
cates that the irregular errors have become dominant. The smallest error estimates
may then become unreliable.
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Figure 3.4.1. Logarithms of the actual errors and the error estimates for
MN,k in a more extensive computation for the alternating series in (3.4.14) with
completely monotonic terms. The tolerance is here set above the level, where the
irregular errors become important; for a smaller tolerance parts of the lowest curves
may become less smooth in some parts.

The above algorithm gives a strict error bound if, in the notation used in the
theorem, ∆k−1ui has a constant sign for i ≥ N − k + 2 (in addition to the other
conditions of the theorem). We recall that a sequence, for which this condition is
satisfied for every k, is called completely monotonic; see Definition 3.2.6.

It may seem difficult to check if this condition is satisfied. It turns out that
many sequences that can be formed from sequences like {n−α}, {e−αn} by simple
operations and combinations, belong to this class. The generalized Euler transfor-
mation yields a sequence that converges at least as fast as a geometric series. The
convergence ratio depends on z; it is less than one in absolute value for any complex
z, except for z > 1 on the real axis. So, the generalized Euler transformation often
provides an analytic continuation of a power series outside its circle of convergence.
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For alternating series, with completely monotonic terms, i.e. for z = −1, the
convergence ratio typically becomes 1

3 . This is in good agreement with Figure 3.4.1.
Note that the minimum points for the errors lie almost on a straight line in Fig-
ure 3.5.1, and that the optimal value of k/N is approximately 2

3 , if N ≫ 1, and if
there are no irregular errors.

Example 3.4.6.
A program, essentially the same as Algorithm 3.4.3, is applied to the series

∞
∑

j=1

(−1)jj−1 = 1 − 1

2
+

1

3
− 1

4
+

1

5
− . . . = ln 2 = 0.69314 71805 599453.

with Tol= 10−6, It stops when N = 12, kk = 9. The errors ek = MN,k − ln 2 and
the differences 1

2∇kMN,k along the last row of M read:

k 1 2 3 . . . 9 10 11 12

ek −3.99e-2 1.73e-3 −1.64e-4 . . . −4.51e-7 5.35e-7 −9.44e-7 2.75e-6
∇/2 2.03e-2 −9.47e-4 . . . −4.93e-7 4.93e-7 −7.40e-7 1.85e-6

Note that |errest| = 4.93 10−7 and sum−ln 2 = 1
2 (e9+e8) = 4.2 10−8. Almost

full accuracy is obtained for Tol = 10−16, maxN = 40. The results are N = 32,
kk = 22, errest = 10−16, |error| = 2 10−16. Note that errest < |error|; this can
happen when we ask for such a high accuracy that the rounding errors are not
negligible.

Example 3.4.7. Application to Fourier series.
Consider a complex power series

S(z) =
∞
∑

n=1

unz
n−1, z = eiφ.

A Fourier series that is originally of the form
∑∞

−∞ or in trigonometric form, can
easily be brought to this form; see Problem 14. As we shall see, the results can often
be improved considerably by the application of thinning. Let thin be a positive
integer. The thinned form of S(z) reads

S(z) =

∞
∑

p=1

u∗pz
thin·(p−1), u∗p =

thin
∑

j=1

uj+thin·(p−1) z
j−1.

For example, if z = eiπ/3 and thin =3, the series becomes an alternating series,
perhaps with complex coefficients. It does not matter in the numerical work that
u∗p depends on z.

We consider the case S(z) = − ln(1 − z)/z =
∑

zn−1/n, which is typical for
a power series with completely monotonic terms. (The rates of convergence are the
same for almost all series of this class.) Numerical computation, essentially by the
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above algorithm, gave the following results. The coefficients uj are computed in
IEEE double precision. We make the rounding errors during the computations less
important by subtracting the first row of partial sums by its last element; it is, of
course, added again to the final result.56 The first table shows, for various φ, the
most accurate result that can be obtained without thinning. These limits are due
to the rounding errors; we can make the pure truncation error arbitrarily small by
choosing N large enough.

φ π 2π/3 π/2 π/3 π/4 π/6 π/8 π/12 π/180

|error| 2e-16 8e-16 1e-14 6e-12 1e-9 7e-8 5e-7 3e-5 2e-1

N 30 33 36 36 36 36 40 40 100

kk 21 22 20 21 20 14 13 10 (3)

Note that a rather good accuracy is obtained also for φ = π/8 and φ = π/12,
where the algorithm is “unstable”, since | z

1−z | > 1. In this kind of computations
“instability” does not mean that the algorithm is hopeless, but it shows the impor-
tance of a good termination criterion. The question is to navigate safely between
Scylla and Charybdis. For a small value like φ = π/180, the sum is approximately
4.1 + 1.5i. The smallest error with 100 terms (or less) is 0.02; it is obtained for
k = 3. Also note that kk/N increases with φ.

By thinning, much better results are obtained for φ ≪ π, in particular for
φ = π/180. This series that has “essentially positive” terms originally can become
“essentially alternating” by thinning. We present the errors obtained for four values
of the parameter thin, with different amount of work. Compare |error|, kk, etc.
with appropriate values in the table above. We see that, by thinning, it is possible
to calculate the Fourier series very accurately also for small values of φ.

thin 80 120 90 15
thin · φ π 2π/3 π/2 π/12
|error| 2e-14 1e-14 3e-13 3e-5
N 28 31 33 41
kk 20 22 18 10

total no. terms 5040 3720 2970 615

Roughly speaking, the optimal convergence rate of the Euler Transformation
depends on z in the same way for all power series with completely monotonic coef-
ficients; independently of the rate of convergence of the original series. The above
tables from a particular example can therefore—with some safety margin—be used
as a guide for the application of the Euler transformation with thinning to any series
of this class.

Say that you want the sum of a series
∑

unz
n for z = eiφ, φ = π/12, with

relative |error| < 10−10. You see in the first table that |error| = 6 10−12 for
φ = π/3 = 4π/12 without thinning. The safety margin is hopefully large enough.
Therefore, try Thin = 4. We make two tests with completely monotonic terms:

56Tricks like this can often be applied in linear computations with a slowly varying sequence of
numbers. See, e.g., the discussion of rounding errors in Richardson extrapolation in Sec. 3.3.5.
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un = n−1 and un = exp(−√
n). Tol = 10−10 is hopefully large enough to make

the irregular errors relatively negligible. In both tests the actual |error| turns out
to be 4 10−11, and the total number of terms is 4 · 32 = 128. The values of errest
are 6 10−11 and 7 10−11; both slightly overestimate the actual errors and are still
smaller than Tol.

Example 3.4.8. Application to a divergent power series, (analytic continuation).
Consider a complex power series

S(z) =

∞
∑

n=1

unz
n−1, |z| > 1.

As in the previous example we study in detail the case of un = 1/n. It was mentioned
above that the generalized Euler transformation theoretically converges in the z-
plane, cut along the interval [1,∞]. The limit is −z−1 ln(1 − z), a single-valued
function in this region. For various z outside the unit circle, we shall see that
rounding causes bigger problems here than for Fourier series. The error estimate
of Algorithm 3.3.1, usually underestimated the error, sometimes by a factor of ten.
The table reports some results from experiments without thinning.

z −2 −4 −10 −100 −1000 2i 8i 1 + i 2 + i
|error| 2e-12 2e-8 4e-5 3e-3 5e-2 8e-11 1e-3 1e-7 2e-2
N 38 41 43 50 51 40 39 38 39
kk 32 34 39 50 51 28 34 22 24

Thinning can be applied also in this application, but here not only the ar-
gument φ is increased (this is good), but also |z| (this is bad). Nevertheless, for
z = 1 + i, the error becomes 10−7, 3 10−9, 10−9, 4 10−8, for thin = 1, 2, 3, 4,
respectively. For z = 2 + i, however, thinning improved the error only from 0.02 to
0.01. All this is for IEEE double precision.

We shall encounter other methods for alternating series and complex power
series, which are even more efficient than the generalized Euler transformation; see
the epsilon algorithm in Sec. 3.5.3.

3.4.4 Euler–Maclaurin’s Formula

In the summation of series with essentially positive terms the tail of the sum can
be approximated by an integral by means of the trapezoidal rule.

As an example, consider the sum S =
∑∞

j=1 j
−2. The sum of the first nine

terms is, to four decimal places, 1.5398. It immediately occurs to one to compare
the tail of the series with the integral of x−2 from 10 to ∞. We approximate the
integral according to the trapezoidal rule; see Sec. 1.2

∫ ∞

10

x−2 dx ≈ T1 + T2 + T3 + . . . =
1

2
(10−2 + 11−2) +

1

2
(11−2 + 12−2) + . . .
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=
∞
∑

j=10

j−2 − 1

2
10−2.

Hence it follows that
∞
∑

j=1

j−2 ≈ 1.5398 + [−x−1]∞10 + 0.0050 = 1.5398 + 0.1050 = 1.6448.

The correct answer is π2/6 = 1.64493406684823. We would have needed about
10,000 terms to get the same accuracy by direct addition of the terms!

The above procedure is not a coincidental trick, but a very useful method. A
further systematic development of the idea leads to the important Euler–Maclaurin
summation formula. We first derive this heuristically by operator techniques and
exemplify its use, including a somewhat paradoxical example that shows that a
strict treatment with the consideration of the remainder term is necessary for very
practical reasons. Since this formula has several other applications, e.g., in numer-
ical integration, we formulate it more generally than needed for the summation of
infinite series.

Consider to begin with a rectangle sum on the finite interval [a, b], with n steps
of equal length h, a+ nh = b; with the operator notation introduced in Sec. 3.2.2.

h

n−1
∑

i=0

f(a+ ih) = h

n−1
∑

i=0

Eif(a) = h
En − 1

E − 1
f(a) =

(En − 1)

D

hD

ehD − 1
f(a).

We apply, to the second factor, the expansion derived in Example 3.1.5, with the
Bernoulli numbers Bν . (Recall that a+ nh = b, Enf(a) = f(b), etc.)

h
n−1
∑

i=0

f(a+ ih) =
(En − 1)

D

(

1 +
∞
∑

ν=1

Bν(hD)ν

ν!

)

f(a) (3.4.25)

=

∫ b

a

f(x) dx+
k
∑

ν=1

hνBν

ν!

(

f (ν−1)(b) − f (ν−1)(a)
)

+Rk+1.

Here Rk+1 is a remainder term that will be discussed thoroughly in Theorem 3.4.4.
Set h = 1, and assume that f(b), f ′(b), . . . tend to zero as b → ∞. Recall that
B1 = − 1

2 , B2j+1 = 0 for j > 0, and set k = 2r+1. This yields Euler–Maclaurin’s
summation formula57

∞
∑

i=0

f(a+ i) =

∫ ∞

a

f(x) dx+
f(a)

2
−

r
∑

j=1

B2jf
(2j−1)(a)

(2j)!
+R2r+2 (3.4.26)

=

∫ ∞

a

f(x) dx+
f(a)

2
− f ′(a)

12
+
f (3)(a)

720
− . . .

57Leonhard Euler (1707–1783), incredibly prolific Swiss mathematician. He gave fundamental
contributions to many branches of mathematics and to the mechanics of rigid and deformable
bodies as well as to fluid mechanics. Colin Maclaurin (1698–1764), British mathematician. They
apparently discovered the summation formula independently; see Goldstine [21, p. 84]. Euler’s
publication came 1738.
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in a form suitable for the convergence acceleration of series of essentially positive
terms. We tabulate a few coefficients related to the Bernoulli and the Euler numbers.

Table 3.4.2. Bernoulli and Euler numbers; B1 = −1/2, E1 = 1.

2j 0 2 4 6 8 10 12

B2j 1
1

6
−

1

30

1

42
−

1

30

5

66
−

691

2730
B2j

(2j)!
1

1

12
−

1

720

1

30240
−

1

1209600

1

47900160
B2j

2j(2j − 1)
1

1

12
−

1

360

1

1260
−

1

1680

1

1188
−

691

360360

E2j 1 −1 5 −61 1385 −50521 2702765

There are some obscure points in this operator derivation, but we shall consider
it as a heuristic calculation only and shall not try to legitimate the various steps of
it. With an appropriate interpretation, a more general version of this formula will
be proved by other means in Theorem 3.4.4. A general remainder term is obtained
there, if you let b→ ∞ in (3.4.32). You do not need it often, because the following
much simpler error bound is usually applicable—but there are exceptions.

The Euler–Maclaurin expansion (on the right hand side) is typically semi-
convergent only. Nevertheless a few terms of the expansion often gives startlingly
high accuracy with simple calculations. For example, if f(x) is completely mono-
tonic, i.e. if

(−1)jf (j)(x) ≥ 0, x ≥ a, j ≥ 0,

then the partial sums oscillate strictly around the true result; the first neglected
term is then a strict error bound. (This statement also follows from the theorem
below.)

Before we prove the theorem we shall exemplify how the summation formula
is used in practice.

Example 3.4.9.
We return to the case of computing S =

∑∞
j=1 j

−2. and treat it with more

precision and accuracy. With f(x) = x−2, a = 10, we find
∫∞

a f(x)dx = a−1,
f ′(a) = −2a−3, f ′′′(a) = −24a−5, . . .. By (3.4.26), (r = 2),

∞
∑

x=1

x−2 =

9
∑

x=1

x−2 +

∞
∑

i=0

(10 + i)−2

= 1.53976 7731+ 0.1 + 0.005 + 0.00016 6667− 0.00000 0333 +R6

= 1.64493 4065+R6.

Since f(x) = x−2 is completely monotonic (see Definition 3.2.6), the first neglected
term is a strict error bound; it is less than 720 10−7/30240 < 3 · 10−9. (The actual
error is approximately 2 · 10−9.)
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Although the Euler–Maclaurin expansion, in this example; seems to converge
rapidly, it is in fact, only semi-convergent for any a > 0, and this is rather typical.
We have namely f (2r−1)(a) = −(2r)!a−2r−1, and, by Example 3.1.5, B2r/(2r)! ≈
(−1)r+12(2π)−2r.The ratio of two successive terms is thus −(2r + 2)(2r + 1)/(2πa)2,
hence the modulus of terms increase when 2r + 1 > 2πa.

The “rule” that one should terminate a semi-convergent expansion at the term
of smallest magnitude, is in general no good for Euler–Maclaurin applications, since
the high order derivatives (on the right hand side) are typically much more difficult
to obtain than a few more terms in the expansion on the left hand side. Typically,
you first choose r, r ≤ 3, depending on how tedious the differentiations are, and
then you choose a in order to meet the accuracy requirements.

In this example we were lucky to have access to simple closed expressions for
the derivatives and the integral of f . In other cases, one may use the possibilities
for the numerical integration on an infinite interval mentioned in Chapter 5. In
Problem 20 (a) you find two formulas that result from the substitution of the for-
mulas (3.3.50) that express higher derivatives in terms of central differences into
the Euler–Maclaurin expansion.

An expansion of f(x) into negative powers of x is often useful both for the
integral and for the derivatives.

Example 3.4.10.
We consider f(x) = (x3 + 1)−1/2, for which the expansion

f(x) = x−3/2(1 + x−3)−1/2 = x−1.5 − 1

2
x−4.5 +

3

8
x−7.5 − . . .

was derived and applied in Example 3.1.6. It was found that
∫∞
10 f(x)dx = 0.632410375,

correctly rounded, and that f ′′′(10) = −4.13 · 10−4 with less than 1% error. The
f ′′′(10) term in the Euler–Maclaurin expansion is thus −5.73 10−7, with absolute
error less than 6 · 10−9. Inserting this into Euler–Maclaurin’s summation formula,
together with the numerical values of

∑9
n=0 f(n) and 1

2f(10)− 1
12f

′(10), we obtain
∑∞

n=0 f(n) = 3.7941 1570± 10−8. The reader is advised to work out the details as
an exercise.

Example 3.4.11.
Let f(x) = e−x2

, a = 0. Since all derivatives of odd order vanish at a = 0,

then the expansion (3.4.26) may give the impression that
∑∞

j=0 e
−j2

=
∫∞
0
e−x2

dx+
0.5 = 1.386 2269, but the sum (that is easily computed without any convergence
acceleration) is actually 1.386 3186, hence the remainder R2r+2 cannot tend to zero
as r → ∞. The infinite Euler–Maclaurin expansion, where all terms but two are
zero, is convergent but is not valid. Recall the distinction between the convergence
and the validity of an infinite expansion, made in Sec. 3.1.2.

In this case f(x) is not completely monotonic; for example, f ′′(x) changes sign
at x = 1. With appropriate choice of r, the general error bound (3.4.32) will tell that



3.4. Acceleration of Convergence 135

the error is very small, but it cannot be used for proving that it is zero—because
this is not true.

The mysteries of these examples have hopefully raised the appetite for a more
substantial theory, including an error bound for the Euler–Maclaurin formula. We
first need some tools that are interesting in their own right.

The Bernoulli polynomial Bn(t) is an nth degree polynomial defined by the
symbolic relation Bn(t) = (B + t)n, where the exponents of B become subscripts
after the expansion according to the binomial theorem. The Bernoulli numbers Bj

were defined in Example 3.1.5. Their recurrence relation (3.1.16) can be written in
the form

n−1
∑

j=0

(

n

j

)

Bj = 0, n ≥ 2,

or “symbolically” (B + 1)n = Bn = Bn, (for the computation of Bn−1), n 6= 1,
hence B0(t) = 1, B1(t) = t+B1 = t− 1/2 and

Bn(1) = Bn(0) = Bn, n ≥ 2,

The Bernoulli function B̂n(t) is a piecewise polynomial defined for t ∈ R by the
equation B̂n(t) = Bn(t− ⌊t⌋).58 (Note that B̂n(t) = Bn(t) if 0 ≤ t < 1.)

Lemma 3.4.3.

(a) B̂′
n+1(t)/(n+ 1)! = B̂n(t)/n!, (n > 0),

B̂n(0) = Bn. (For n = 1 this is the limit from the right.)

∫ 1

0

Bn(t)

n!
dt =

{

1, if n = 0;
0, otherwise.

(b) The piecewise polynomials B̂p(t) are periodic; B̂p(t + 1) = B̂p(t). B̂1(t) is

continuous, except when t is an integer. For n ≥ 2, B̂n ∈ Cn−2(−∞,∞).

(c) The Bernoulli functions have the following (modified) Fourier expansions,
(r ≥ 1),

B̂2r−1(t)

(2r − 1)!
= (−1)r2

∞
∑

n=1

sin 2nπt

(2nπ)2r−1
,

B̂2r(t)

(2r)!
= (−1)r−12

∞
∑

n=1

cos 2nπt

(2nπ)2r
.

Note that B̂n(t) is an even (odd) function, when n is (even odd).

(d) |B̂2r(t)| ≤ |B2r|.
58The function ⌊t⌋ is the floor function defined as the largest integer ≤ t, i.e., the interger part

of t. In many older and current works the symbol [t] is used instead, but this should be avoided.
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Proof. Statement (a) follows directly from the symbolic binomial expansion of the
Bernoulli polynomials.

The demonstration of statement (b) is left for a problem. The reader is advised
to draw the graphs of a few low order Bernoulli functions.

The Fourier expansion for B̂1(t) follows from the Fourier coefficient formulas
(3.2.7), (modified for the period 1 instead of 2π). The expansions for B̂p(t), are then
obtained by repeated integrations, term by term, with the use of (a). Statement
(d) then follows from the Fourier expansion, because B̂2r(0) = B2r.

Remark 3.4.1. For t = 0 we obtain an interesting classical formula, together with
a useful asymptotic approximation that was obtained in a different way in Sec. 3.1.2.

∞
∑

n=1

1

n2r
=

|B2r|(2π)2r

2(2r)!
;

|B2r|
(2r)!

∼ 2

(2π)2r
. (3.4.27)

Also note, how the rate of decrease of the Fourier coefficients is related to the type
of singularity of the Bernoulli function at the integer points. (It does not help that
the functions are smooth in the interval [0, 1].)

The Bernoulli polynomials have a generating function that is elegantly ob-
tained by means of the following “symbolic” calculation.

∞
∑

0

Bn(y)xn

n!
=

∞
∑

0

(B + y)nxn

n!
= e(B+y)x = eBxeyx =

xeyx

ex − 1
. (3.4.28)

If the series is interpreted as a power series in the complex variable x, the conver-
gence radius is 2π.

Theorem 3.4.4. The Euler–Maclaurin Formula.
Set xi = a+ ih, xn = b, suppose that f ∈ C2r+2(a, b), and let T̂ (a : h : b)f be

the trapezoidal sum

T̂ (a : h : b)f =

n
∑

i=1

h

2

(

f(xi−1)+ f(xi)
)

= h

( n−1
∑

i=0

f(xi)+ 1
2 (f(b)− f(a))

)

. (3.4.29)

Then

T̂ (a : h : b)f −
∫ b

a

f(x) dx =
h2

12

(

f ′(b) − f ′(a)
)

− h4

720

(

f ′′′(b) − f ′′′(a)
)

(3.4.30)

+ . . . +
B2rh

2r

(2r)!

(

f (2r−1)(b) − f (2r−1)(a)
)

+R2r+2(a, h, b)f.

The remainder R2r+2(a, h, b)f is O(h2r+2). It is represented by an integral with
a kernel of constant sign in (3.4.31). An upper bound for the remainder is given
in (3.4.32). The estimation of the remainder is very simple in certain important
particular cases:
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• If f (2r+2)(x) does not change sign in the interval [a, b] then R2r+2(a, h, b)f
has the same sign as the first neglected59 term.

• If f (2r+2)(x) and f (2r)(x) have the same constant sign in [a, b], then the value
of the left hand side of (3.4.30) lies between the values of the partial sum of
the expansion displayed in (3.4.30) and the partial sum with one term less.60.

In the limit, as b→ ∞, these statements still hold—also for the summation formula
(3.4.26)—provided that the left hand side of (3.4.30) and the derivatives f (ν)(b)
(ν = 1 : 2r + 1) tend to zero, if it is also assumed that

∫ ∞

a

|f (2r+2)(x)| dx <∞.

Proof. To begin with we consider a single term of the trapezoidal sum, and set
x = xi−1 + ht, t ∈ [0, 1], f(x) = F (t). Suppose that F ∈ Cp[0, 1], where p is an
even number.

We shall apply repeated integration by parts, Lemma 3.2.7, to the integral
∫ 1

0
F (t) dt =

∫ 1

0
F (t)B0(t) dt. Use statement (a) of Lemma 3.4.3 in the equivalent

form,
∫

Bj(t)/j! dt = (Bj+1(t)/(j + 1)!
Consider the first line of the expansion in the next equation. Recall that

Bν = 0 if ν is odd and ν > 1. Since Bj+1(1) = Bj+1(0) = Bj+1, j will thus be odd
in all non-zero terms, except for j = 0. Then, with no loss of generality, we assume
that p is even.

∫ 1

0

F (t) dt =

p−1
∑

j=0

(−1)jF (j)(t)
Bj+1(t)

(j + 1)!

∣

∣

∣

∣

1

t=0

+ (−1)p

∫ 1

0

F (p)(t)
Bp(t)

p!
dt

=
F (1) + F (0)

2
+

p−1
∑

j=1

−Bj+1

(j + 1)!

(

F (j)(1) − F (j)(0)
)

+

∫ 1

0

F (p)(t)
Bp(t)

p!
dt

=
F (1) + F (0)

2
−

p−3
∑

j=1

Bj+1

(j + 1)!

(

F (j)(1) − F (j)(0)
)

−
∫ 1

0

F (p)(t)
Bp −Bp(t)

p!
dt.

The upper limit of the sum is reduced to p− 3, since the last term (with j = p− 1)
has been moved under the integral sign, and all values of j are odd. Set j + 1 = 2k
and p = 2r + 2. Then k is an integer that runs from 1 to r. Hence

p−3
∑

j=1

Bj+1

(j + 1)!
(F (j)(1) − F (j)(0)) =

r
∑

k=1

B2k

(2k)!
(F (2k−1)(1) − F (2k−1)(0)).

59If r = 0 all terms of the expansion are “neglected”.
60Formally this makes sense for r ≥ 2 only, but if we interpret f(−1) as “the empty symbol”, it

makes sense also for r = 1. If f is completely monotonic the statement holds for every r ≥ 1. This
is easy to apply, because simple criteria for complete monotonicity etc. are given in Sec. 3.3.6
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Now set F (t) = f(xi−1 +ht), t ∈ [0, 1]. Then F (2k−1)(t) = h2k−1f (2k−1)(xi−1 +ht),

and make abbreviations like fi = f(xi), f
(j)
i = f (j)(xi) etc..

∫ xi

xi−1

f(x) dx = h

∫ 1

0

F (t) dt =
h(fi−1 + fi)

2
−

r
∑

k=1

B2kh
2k

(2k)!
(f

(2k−1)
i − f

(2k−1)
i−1 ) −R,

where R is the local remainder that is now an integral over [xi−1, xi]. Adding these
equations, for i = 1 : n, yields a result equivalent to (3.4.30), namely

∫ b

a

f(x) dx = T̂ (a : h : b)f −
r
∑

k=1

B2kh
2k

(2k)!
f (2k−1)(x)

∣

∣

∣

∣

b

x=a

−R2r+2(a, h, b)f,

R2r+2(a, h, b)f = h2r+2

∫ b

a

(

B2r+2 − B̂2r+2((x − a)/h))
)f (2r+2)(x)

(2r + 2)!
dx. (3.4.31)

By Lemma 3.4.3, |B̂2r+2(t)| ≤ |B2r+2|, hence the kernel B2r+2 − B̂2r+2((x − a)/h)
has the same sign as B2r+2. Suppose that f (2r+2)(x) does not change sign on (a, b).
Then

sign f (2r+2)(x) = sign
(

f (2r+1)(b) − f (2r+1)(a)
)

,

hence R2r+2(a, h, b)f has the same sign as the first neglected term.
The second statement about “simple estimation of the remainder” then follows from
Theorem 3.1.3, since the Bernoulli numbers (with even subscripts) have alternating
signs.

If signf (2r+2)(x) is not constant, then we note instead that

|B2r+2 − B̂2r+2((x − a)/h)| ≤ |2B2r+2|,

and hence

|R2r+2(a, h, b)f | ≤ h2r+2 |2B2r+2|
(2r + 2)!

∫ b

a

|f (2r+2)(x)|dx

≈ 2
( h

2π

)2r+2
∫ b

a

|f (2r+2)(x)|dx. (3.4.32)

If
∫∞

a
|f (2r+2)(x)|dx <∞ this holds also in the limit as b→ ∞.

Note that there are (at least) three parameters here that can be involved in
different natural limit processes: For example, one of the parameters can tend to its
limit, while the two others are kept fixed. The remainder formula (3.4.32) contains
all you need for settling various questions about convergence.

• b → ∞; natural when Euler–Maclaurin’s formula is used as a summation
formula, or for deriving an approximation formula valid when b is large.

• h → 0; natural when Euler–Maclaurin’s formula is used in connection with
numerical integration. You see how the values of derivatives of f at the
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endpoints a, b can highly improve the estimate of the integral of f , obtained by
the trapezoidal rule with constant step size. Euler–Maclaurin’s formula is also
useful for the design and analysis of other methods for numerical integration;
see Romberg’s method Sec. 5.3.2.

• r → ∞; limr→∞R2r+2(a, h, b)f = 0 can be satisfied only if f(z) is an entire
function, such that |fn)(a)| = o((2π/h)n) as n → ∞. Fortunately, this type
of convergence is rarely needed in practice. With appropriate choice of b and
h, the expansion is typically rapidly semi-convergent. Since the derivatives of
are typically more expensive to compute than the values of f , one frequently
reduces h (in integration) or increases b (in summation or integration over
an infinite interval), and truncates the expansion several terms before one
has reached the smallest term that is otherwise the standard procedure with
alternating semi-convergent expansion.

Variations of the Euler–Maclaurin summation formula, with finite differences
instead of derivatives in the expansion, are given in Problem 20, where you also find
a more general form of the formula, and two more variations of it.

Euler–Maclaurin’s formula can also be used for finding an algebraic expression
for a finite sum; see Problem 32 or, as in the following example, for finding an
expansion that determines the asymptotic behavior of a sequence or a function.

Example 3.4.12. An expansion that generalizes Stirling’s formula.
We shall use Euler–Maclaurin formula for f(x) = lnx, a = m > 0, h = 1,

b = n ≥ m. We obtain

T̂ (m : 1 : n)f =

n
∑

i=m+1

ln i− 1
2 lnn+ 1

2 lnm = ln(n!) − 1
2 lnn− ln(m!) + 1

2 lnm,

f (2k−1)(x) = (2k − 2)!x1−2k,

∫ n

m

f(x) dx = n lnn− n−m lnm+m.

Note that T̂ (m : 1 : n)f and
∫ n

m f(x) dx are unbounded as n → ∞, but their
difference is bounded. Putting these expressions into (3.4.30), and separating the
terms containing n from the terms containing m gives

ln(n!) − (n+ 1
2 ) lnn+ n−

r
∑

k=1

B2k

2k(2k − 1)n2k−1
(3.4.33)

= ln(m!) − (m+ 1
2 ) lnm+m−

r
∑

k=1

B2k

2k(2k − 1)m2k−1
−R2r+2(m : 1 : n).

By (3.4.32), after a translation of the variable of integration,

|R2r+2(m : 1 : n)| ≤
∫ n

m

|2B2r+2|
(2r + 2)x2r+2

dx

≤ |2B2r+2|
(2r + 2)(2r + 1)|m2r+1| ≈

(2r)!

π|2πm|2r+1
. (3.4.34)
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Now let n→ ∞ with fixed r, m. First, note that the integral in the error bound con-
verges. Next, in most texts of calculus Stirling’s formula is derived in the following
form:

n! ∼
√

2πnn+
1
2 e−n (n→ ∞). (3.4.35)

If you take the natural logarithm of this, it follows that the left hand side of (3.4.33)
tends to 1

2 ln(2π)61 , and hence

ln(m!) = (m+ 1
2 ) lnm−m+ 1

2 ln(2π) +

r
∑

k=1

B2k

2k(2k − 1)m2k−1
+R, (3.4.36)

where a bound for R is given by (3.4.34). The numerical values of the coefficients
are found in Table 3.4.4.

Almost the same derivation works also for f(x) = ln(x + z), m = 0, where z
is a complex number, not on the negative real axis. A few basic facts about the
Gamma function are needed; see details in Henrici [26, Sec. 11.11, Example 3].

The result is that you just replace the integer m by the complex number z in
the expansion (3.4.36). According to the Handbook [1, 6.1.42] R is to be multiplied
by K(z) = upper boundu≥0|z2/(u2 + z2)|. For z real and positive, K(z) = 1, and
since f ′(x) = (z + x)−1 is completely monotonic, it follows from Theorem 3.4.4
that, in this case, R is less in absolute value than the first term neglected and has
the same sign.

It is customary to write ln Γ(z + 1) instead of ln(z!). The gamma function
is one of the most important transcendental functions; see, e.g., the Handbook [1,
6.5] and Lebedev[30].

This formula (withm = z) is useful for the practical computation of ln Γ(z+1).
Its semi-convergence is best if ℜz is large and positive. If this condition is not
satisfied, the situation can easily be improved by means of logarithmic forms of the

• reflection formula: Γ(z)Γ(1 − z) = π/ sinπz,

• recurrence formula: Γ(z + 1) = zΓ(z).

By simple applications of these formulas the computation of ln Γ(z + 1) for
an arbitrary z ∈ C is reduced to the computation of the function for a number z′,
such that |z′| ≥ 17, ℜz′ > 1

2 , for which the total error, if r = 5, becomes typically
less than 10−14. See Problem 24.

Remark 3.4.2. As you may have noted, we write “the Euler–Maclaurin formula”
mainly for (3.4.30) that is used in general theoretical discussions, or if other applica-
tions than the summation of an infinite series are the primary issue. The term “the

61You may ask why we refer to (3.4.35). Why not? Well, it is not necessary, because it is easy
to prove that the left hand side of (3.4.33) increases with n and is bounded; it thus tends to some
limit C (say). The proof that C = ln

√
2π exactly is harder, without the Wallis product idea

(from 1655) that is probably used in your calculus text, or something equally ingenious or exotic.
However, if you compute the right hand side of (3.4.33) for m = 17, r = 5 (say), and estimate the
remainder, you will obtain C to a fabulous guaranteed accuracy, in negligible computer time after
a rather short programming time. And you may then replace 1

2
ln 2π by your own C in (3.4.36),

if you like.
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Euler–Maclaurin summation formula” is mainly used in connection with (3.4.26),
i.e. when the summation of an infinite series is the issue. “The Euler–Maclaurin
expansion” denotes both the right hand side of (3.4.30), except for the remainder,
and for the corresponding terms of (3.4.26). These distinctions are convenient for
us, but they are neither important nor in general use.

Although, in this section, the main emphasis is on the application of the Euler–
Maclaurin formula to the computation of sums and limits, we shall comment a little
on its possibilities for other applications.

• It shows that the global truncation error of the trapezoidal rule for
∫ b

a
f(x) dx

with step size h, has an expansion into powers of h2. Note that although the
expansion contains derivatives at the boundary points only, the remainder
requires that |f (2r+2)| is integrable in the interval [a, b]. The Euler–Maclaurin
formula is thus the theoretical basis for the application of repeated Richard-
son extrapolation to the results of the trapezoidal rule, known as Romberg’s
method; see Sec5.3.2. Note that the validity depends on the differentiability
properties of f .

• The Euler–Maclaurin formula can be used for highly accurate numerical in-
tegration when the values of some derivatives of f are known at x = a and
x = b. More about this in Chapter 5.

• Theorem 3.3.3 shows that the trapezoidal rule is second order accurate, unless
f ′(a) = f ′(b), but there exist interesting exceptions. Suppose that the function
f is infinitely differentiable for x ∈ R, and that f has [a, b] as an interval of
periodicity, i.e. f(x + b − a) = f(x), ∀x ∈ R. Then f (k)(b) = f (k)(a), for
k = 0, 1, 2, . . ., hence every term in the Euler–Maclaurin expansion is zero for
the integral over the whole period [a, b]. One could be led to believe that the
trapezoidal rule gives the exact value of the integral, but this is usually not
the case; for most periodic functions f , limr→∞R2r+2f 6= 0; the expansion
converges, of course, though not necessarily to the correct result.

We shall illuminate these amazing properties of the trapezoidal rule from
different points of view in several places in this book, e.g. in Sec. 5.3. See also
applications to the so-called bell sums in Problem 30.

3.4.5 Repeated Richardson Extrapolation

Let F (h) denote the value of a certain quantity obtained with step length h. In
many calculations one wants to know the limiting value of F (h) as the step length
approaches zero. However, the work to compute F (h) often increases sharply as
h → 0. In addition, the effects of round-off errors often set a practical bound for
how small h can be chosen.

Often, one has some knowledge of how the truncation error F (h) − F (0) be-
haves when h→ 0. If

F (h) = a0 + a1h
p + O(hr), h→ 0, r > p,
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where a0 = F (0) is the quantity we are trying to compute and a1 is unknown, then
a0 and a1 can be estimated if we compute F for two step lengths, h and qh, q > 1:

F (h) = a0 + a1h
p +O(hr),

F (qh) = a0 + a1(qh)
p +O(hr),

from which eliminating a1 we get

F (0) = a0 = F (h) +
F (h) − F (qh)

qp − 1
+O(hr). (3.4.37)

This formula is called Richardson extrapolation, or the deferred approach to
the limit.62 Examples of this were mentioned in Chapter 1—the application of the
above process to the trapezoidal rule for numerical integration (where p = 2, q = 2),
and for differential equations—p = 1, q = 2 for Euler’s method, p = 2, q = 2 for
Runge’s 2nd order method.

The term (F (h) − F (qh))/(qp − 1) is called the Richardson correction. It is
used in in (3.4.37) for improving the result. Sometimes, however, it is used only for
estimating the error. This can make sense, e.g., if the values of F are afflicted by
other errors, usually irregular, suspected to be comparable in size to the correction.
If the irregular errors are negligible, this error estimate is asymptotically correct.
More often, the Richardson correction is used as error estimate for the improved (or
extrapolated) value F (h) + (F (h) − F (qh))/(qp − 1), but this is typically a strong
overestimate; the error estimate is O(hp), while the error is O(hr), (r > p).

Suppose that a more complete expansion of F (h) in powers of h, is known to
exist,

F (h) = a0 + a1h
p1 + a2h

p2 + a3h
p3 + . . . , 0 < p1 < p2 < p3 < . . . , (3.4.38)

where the exponents are typically known, while the coefficients are unknown. Then
one can repeat the use of Richardson extrapolation in a way described below. This
process is, in many numerical problems—especially in the numerical treatment of
integral and differential equations—one of the simplest ways to get results which
have tolerable truncation errors. The application of this process becomes especially
simple when the step lengths form a geometric series H,H/q,H/q2, . . ., where q > 1
and H is the basic step length.

Theorem 3.4.5. Suppose that an expansion of the form of (3.4.38), where 0 <
p1 < p2 < p3 < . . ., holds for F (h), and set F1(h) = F (h),

Fk+1(h) =
qpkFk(h) − Fk(qh)

qpk − 1
= Fk(h) +

Fk(h) − Fk(qh)

qpk − 1
, (3.4.39)

62The idea of a deferred approach to the limit is sometimes used also in the experimental
sciences—for example, when some quantity is to be measured in complete vacuum (difficult or
expensive to produce). It can then be more practical to measure the quantity for several different
values of the pressure. Expansions analogous to equation (3.4.38) can sometimes be motivated by
the kinetic theory of gases.
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for k = 1 : (n− 1), where q > 1. Then Fn(h) has an expansion of the form

Fn(h) = a0 + a(n)
n hpn + a

(n)
n+1h

pn+1 + . . . ; a(n)
ν =

n−1
∏

k=1

qpk − qpν

qpk − 1
aν . (3.4.40)

Note that a
(n)
ν = 0 for ν < n.

Proof. Set temporarily Fk(h) = a0 + a
(k)
1 hp1 + a

(k)
2 hp2 + . . . + a

(k)
ν hpν + . . .. Put

this expansion into the first expression on the right hand side of (3.4.39), and,
substituting k+ 1 for k, put it into the left hand side. By matching the coefficients
for hpν we obtain

a(k+1)
ν = a(k)

ν (qpk − qpν )/(q(pk) − 1).

By (3.4.38), the expansion holds for k = 1, with a
(1)
ν = aν . The recursion formula

then yields the product formula for a
(n)
ν . Note that a

(ν+1)
ν = 0, hence a

(n)
ν = 0, ∀ν <

n.

The product formula is for theoretical purpose. The recurrence formula is for
practical use. If an expansion of the form of (3.4.38) is known to exist, the above
theorem gives a way to compute increasingly better estimates of a0. The leading

term of Fn(h) − a0 is a
(n)
n hpn , the exponent of h increases with n. A moment’s

reflection on equation (3.4.39) will convince the reader that (using the notation of
the theorem) Fk+1(h) is determined by the k + 1 values

F1(H), F1(H/q), . . . , F1(H/q
k).

With some changes in notation we obtain the following algorithm.

Algorithm 3.4.2 Repeated Richardson extrapolation

For m = 1 : N , set Tm,1 = F (H/qm−1), and compute, for m = 2 : N, k = 1 : m−1,

Tm,k+1 =
qpkTm,k − Tm−1,k

qpk − 1
= Tm,k +

Tm,k − Tm−1,k

qpk − 1
, (3.4.41)

where the second expression usually is preferred,

The computations can be set up in a scheme, where an extrapolated value in
the scheme is obtained by using the quantity to its left and the correction diagonally
above. (In a computer the results are simply stored in a lower triangular matrix.)
According to the argument above, one continues the process, until two values in the
same row agree to the desired accuracy, i.e.

|Tm,k − Tm,k−1| < Tol− CU,

where Tol is the permissible error, and CU is an upper bound of the irregular error,
(see below). (Tol should, of course, be chosen larger than CU .) If no other error
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Table 3.4.3. Scheme for repeated Richardson extrapolation

∆

qp1 − 1

∆

qp2 − 1

∆

qp3 − 1
T11

T21 T22

T31 T32 T33

T41 T42 T43 T44

estimate is available, mink |Tm,k−Tm,k−1|+CU is usually chosen as error estimate,
even though it is typically a strong overestimate.

Typically k = m, and Tmm is accepted as the numerical result, but this is not
always the case. For instance, if H has been chosen so large that the use of the basic
asymptotic expansion is doubtful, then the uppermost diagonal of the extrapolation
scheme contains nonsense and should be ignored, except for its element in the first
column. Such a case is detected by inspection of the difference quotients in a
column. If for some k, where Tk+2,k has been computed and the modulus of the
relative irregular error of Tk+2,k−Tk+1,k is less than (say) 20%, and, most important,
the difference quotient (Tk+1,k −Tk,k)/(Tk+2,k −Tk+1,k) is is very different from its
theoretical value qpk , then the uppermost diagonal is to be ignored (except for its
first element). In such a case, one says that H is outside the asymptotic regime.

In this discussion a bound for the inherited irregular error is needed. We shall
now derive such a bound. Fortunately, it turns out that the numerical stability of
the Richardson scheme is typically very satisfactory, (although the total error bound
for Tmk will never be smaller than the largest irregular error in the first column).

Denote by ǫ1 the the column vector with the irregular errors of the initial
data. We neglect the rounding errors committed during the computations.63 Then
the inherited errors satisfy the same linear recursion formula as the Tm,k, i.e.

ǫm,k+1 =
qpkǫm,k − ǫm−1,k

qpk − 1
.

Denote the k’th column of errors by ǫk, and set ‖ǫk‖∞ = maxm |ǫm,k|. Then

‖ǫk+1‖∞ ≤ qpk + 1

qpk − 1
‖ǫk‖∞.

Hence, for every k, ‖ǫk+1‖∞ ≤= CU , where ‖ǫ1‖∞ = U and C is the infinite
product

C =

∞
∏

k=1

qpk + 1

qpk − 1
=

∞
∏

k=1

1 + q−pk

1 − q−pk

that converges as fast as
∑

q−pk ; the multiplication of ten factors are thus more
than enough for obtaining a sufficiently accurate value of C.

63They are usually for various reasons of less importance. One can also make them smaller by
subtracting a suitable constant from all initial data. This is applicable to all linear methods of
convergence acceleration.
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Example 3.4.13.
The most common special case is an expansion where pk = 2k,

F (h) = a0 + a1h
2 + a2h

4 + a3h
6 + . . . (3.4.42)

this type. The headings of the columns of Table 3.4.3 then become ∆/3,∆/15,
∆/63, . . . . In this case we find that C = 5

3 · 7
15 · · · < 2 (after less than 10 factors).

For (systems of) ordinary differential equations there exist some general the-
orems, according to which the form of the asymptotic expansion (3.4.38) of the
global error can be found.

• For Numerov’s method for ordinary differential equations, discussed in Exam-
ple 3.3.14 and Problem 28, one can show that we have the same exponents in
the expansion for the global error, but a1 = 0. (and the first heading disap-
pears). We thus have the same product as above, except that the first factor
disappears, hence C < 2 · 3

5 = 1.2.

• For Euler’s method for ordinary differential equations, presented in Sec. 1.4.2,
pk = k; the headings are ∆/1,∆/3,∆/7,∆/15, . . .. Hence C = 3 · 5

3 · 9
7 · · · =

8.25.

• For Runge’s 2nd order method, presented in Sec. 1.4.3, the exponents are the
same, but a1 = 0 (and the first heading disappears). We thus have the same
product as for Euler’s method, except that the first factor disappears, hence
C = 8.25/3 = 2.75.

In the special case that pj = j ·p, j = 1, 2, 3, . . . in (3.4.38), i.e. for expansions
of the form

F (h) = a0 + a1h
p + a2h

2p + a3h
3p + . . . , (3.4.43)

it is not necessary that the step sizes form a geometric progression. We can choose
any increasing sequence of integers q1 = 1, q2, . . . , qk, set hi = H/qi, and use an
algorithm that looks very similar to repeated Richardson extrapolation. In cases
where both are applicable, i.e. if pk = p · k, qi = qi, they are identical, otherwise
they have different areas of application.

Note that the expansion (3.4.43) is a usual power series in the variable x = hp,
which can be approximated by a polynomial in x. Suppose that k + 1 values
F (H), F (H/q2), . . ., F (H/qk) are known. Then by the corollary to Theorem 3.2.1,
a polynomial Q ∈ Pk is uniquely determined by the interpolation conditions

Q(xi) = F (H/qi), xi = (H/qi)
p, i = 1 : k.

Our problem is to find Q(0). Many interpolation formulas can be used for this
extrapolation. Neville’s algorithm, which is derived in Sec. 4.2.3, is particularly
convenient in this situation. After a change of notation, (4.2.27) yields the following
recursion.
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Algorithm 3.4.3 Neville’s algorithm

For m = 1 : N , set Tm,1 = F (H/qm), where 1 = q1 < q2 < q3 . . ., is any increasing
sequence of integers, and compute, for m = 2 : N , k = 1 : m− 1,

Tm,k+1 = Tm,k +
Tm,k − Tm−1,k

(qm/qm−k)p − 1
=

(qm/qm−k)pTm,k − Tm−1,k

(qm/qm−k)p − 1
. (3.4.44)

The computations can be set up in a triangle matrix as for repeated Richardson
extrapolations.

Example 3.4.14. Computation of π by means of regular polygons.
The ancient Greeks computed approximate values of the circumference of

the unit circle, 2π, by inscribing a regular polygon and computing its perimeter.
Archimedes considered the inscribed 96-sided regular polygon, whose perimeter is
6.28206 = 2 · 3.14103. In general, a regular n-sided polygon inscribed (circum-
scribed) in a circle with radius 1 has circumference 2cn, where cn = n sin(π/n). If
we put h = 1/n, then

c(h) = c1/h =
1

h
sinπh = π − π3

3!
h2 +

π5

5!
h4 − π7

7!
h6 + . . . ,

so c(h) satisfy the assumptions for repeated Richardson extrapolation with pk = 2k.
In order to use this with q = 2, we first derive a recursion formula that leads from
cn to c2n. Using the trigonometric formula cos 2x = 1 − 2 sin2 x, we have

c2n = 2n sin
π

2n
= n

√

2
(

1 − cos
π

n

)

= n

√

2 − 2
√

1 − (cn/n)2

= 2cn

/

√

2 + 2
√

1 − (cn/n)2

(Derive this! The last transformation is made to avoid cancellation and consequen-
tial round-off errors.)

Taking n1 = 6, gives a6 = 6/2 = 3, and b6 = 6/
√

3 = 3.4641 . . .. The following
table gives cnm

for n1 = 6, m = 1 : 5, computed using IEEE double precision using
this recursion

m nm cnm

1 6 3.00000000000000

2 12 3.10582854123025

3 24 3.13262861328124

4 48 3.13935020304687

5 96 3.14103195089051
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From this we can deduce that 3.1410 < π < 3.1427, or the famous, slightly
weaker, rational lower and upper bounds of Archimedes 3 10

71 < π < 3 1
7 . A correctly

rounded value of π to twenty digits reads

π = 3.14159 26535 89793 23846

and correct digits in the table are shown in boldface. The next table gives the
Richardson scheme using the above values of cn.

3.14110472164033

3.14156197063157 3.14159245389765

3.14159073296874 3.14159265045789 3.14159265357789

3.14159253350506 3.14159265354081 3.14159265358975 3.14159265358979

The errors in successive columns decay as 4−2k, 4−3k, 4−4k, and the final number
is correct to all 14 decimals shown. Hence the accuracy used in computing values
in the previous table, which could be thought excessive, has been put to good use!
Note that no trigonometric functions were used, only the square root.64

Example 3.4.15. Application to numerical differentiation.

Bickley’s table for difference operators, i.e. Table 3.3.1 in Sec. 3.3.2, we know
that

δ

h
=

2 sinh(hD/2)

h
= D + a2h

2D3 + a4h
4D5 + . . . ,

µ = cosh(hD/2) = 1 + b2h
2D2 + b4h

4D4 + . . . ,

where the values of the coefficients are now unimportant to us. Hence

f ′(x) − f(x+ h) − f(x− h)

2h
= Df(x) − µδf(x)

h
and f ′′(x) − δ2f(x)

h2

have expansions into even powers of h. Repeated Richardson extrapolation can thus
be used with step sizes H , H/2, H/4, . . . and headings ∆/3, ∆/15, ∆/63, . . .. For
numerical examples, see problems of this section.

Richardson extrapolation can be applied in the same way to the computation
of higher derivatives. Because of the division by hk in the difference approxima-
tion of f (k), irregular errors in the values of f(x) are of much greater importance
in numerical differentiation than in interpolation and integration. It is therefore
important to use high order approximations in numerical differentiation, so that
larger values of h can be used.

64An extension of this example was used as a test problem for Mulprec, a package for (in
principle) arbitrarily high precision floating point arithmetic in Matlab. For instance, π was
obtained to 203 decimal places with 22 polygons and 21 Richardson extrapolations in less than
half a minute. The extrapolations took a small fraction of this time. Nevertheless they increased
the number of correct decimals from approximately 15 to 203.
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Suppose that the irregular errors of the values of f are bounded in magnitude
by erb, these errors are propagated to µδf(x), δ2f(x),. . . with bounds equal to
erb/h, 4erb/h2, . . .. As mentioned earlier, the Richardson scheme (in the version
used here) is no rascal; it multiplies the latter bounds by a factor less than 2.

Review Questions

1. (a) Aitken acceleration is based on fitting three successive terms of a given
sequence {sn} to a certain comparison series. Which?

(b) Give sufficent conditions for the accelerated sequence {s′j} to converge
faster than {sn}.
(c) Aitken acceleration is sometimes applied to a thinned sequence. Why can
this give a higher accuracy in the computed limit?

2. (a) State the original version of Euler’s transformation for summation of an
alternating series S =

∑∞
j=0(−1)juj, uj ≥ 0.

(b) State the modified Euler’s transformation for this case and discuss suitable
termination criteria. What is the main advantage of the modified algorithm
over the classical version?

3. (a) What pieces of information appear in the Euler–Maclaurin formula? Give
the generating function for the coefficients. What do you know about the
remainder term?

(b) Give at least three important uses of the Euler–Maclaurin formula.

4. The Bernoulli polynomial Bn(t) have a key role in the proof of the Euler–
Maclaurin formula. They are defined by the symbolic relation Bn(t) = (B +
t)n. How is this relation to interpreted?

5. (a) Suppose that an expansion of F (h)

F (h) = a0 + a1h
p1 + a2h

p2 + a3h
p3 + . . . 0 < p1 < p2 < p3 < . . . ,

is known to exist. Describe how F (0) = a0 can be computed by repeated
Richardson extrapolation from known values of F (h), h = H,H/q,H/q2, . . . ,
for some q > 1.

(b) Discuss the choice of q in the procedure in (a). What is the most common
case? Give some applications of repeated Richardsonm extrapolation.

Problems and Computer Exercises

1. (a) Compute
∑∞

n=1
1

(n+1)3 to eight decimal places by using
∑∞

n=N
1

n(n+1)(n+2) ,

for a suitable N , as a comparison series. Estimate roughly how many terms
you would have to add without and with the comparison series.

Hint: You find the exact sum of this comparison series in Problem 3.3.2.



Problems and Computer Exercises 149

(b) Compute the sum also by Euler–Maclaurin’s formula or one of its variants
in Problem 20(a).

2. Study, or write yourself, programs for some of the following methods: 65

• iterated Aitken acceleration

• modified iterated Aitken, according to (3.4.8) or an a-version.

• generalized Euler transformation

• one of the central difference variants of Euler–Maclaurin’s formula, given
in Problem 20(a)

The programs are needed in two slightly different versions.

Version i: For studies of the convergence rate, for a series (sequence) where
one knows a sufficiently accurate value exa of the sum (the limit). The risk of
drowning in figures becomes smaller, if you make graphical output, e.g. like
Figure 3.4.1.

Version ii: For a run controlled by a tolerance, like in Algorithm 3.3.1, appro-
priately modified for the various algorithms. Print also i and, if appropriate,
jj. If exa is known, it should be subtracted from the result, because it is of
interest to compare errest with the actual error.

Comment: If you do not know exa, find a sufficiently good exa by a couple of
runs with very small tolerances, before you study the convergence rates (for
larger tolerances).

3. The formula for Aitken acceleration is sometimes given in the forms

sn − (∆sn)2

∆2sn
or sn − ∆sn∇sn

∆sn −∇sn
.

Show that these are equivalent to s′n+2 or s′n+1, respectively, in the notations
of (3.4.2). Also note that the second formula is limp→∞ s′n (not s′n+1) in the
notation of (3.4.6).

4. (a) Try iterated Aitken with thinning for
∑∞

1 e−
√

n, according to the sugges-
tions after Example 3.4.3.

(b) Study the effect of small random perturbations to the terms.

5. Oscillatory series of the form
∑∞

n=1 cnz
n. Suggested examples:

cn = e−
√

n, 1/(1 + n2), 1/n, 1/(2n− 1),

n/(n2 + n+ 1) , 1/
√
n, 1/ ln(n+ 1),

where z = −1, −0.9, ei3π/4, i, eiπ/4, eiπ/16, for the appropriate algorithms
mentioned in Problem 2 above. Apply thinning. Try also classical Euler
transformation on some of the cases.

Study how the convergence ratio depends on z, and compare with theoretical
results. Compare the various methods with each others.

65We have Matlab in mind, or some other language with complex arithmetic and graphical
output.
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6. Essentially positive series. of the form
∑∞

n=1 cnz
n, where

cn = e−
√

n, 1/(1 + n2), 1/(5 + 2n+ n2)), (n · ln(n+ 1))−2,

1/
√

n3 + n, n−4/3, 1/((n+ 1)(ln(n+ 1))2);

z = 1, 0.99, 0.9, 0.7, eiπ/16, eiπ/4, i. Use appropriate algorithms from Prob-
lem 2.
Try also Euler–Maclaurin’s summation formula, or one of its variants, if you
can handle the integral with good accuracy. Also try to find a good compari-
son series; it is not always possible.

Study the convergence rate. Try also thinning to the first two methods.

7. Divergent series. Apply, if possible, Aitken acceleration and the generalized
Euler transformation to the following divergent series

∑∞
1 cnz

n. Compare the
numerical results with the results obtained by analytic continuation, using the
analytic expression for the sum as a function of z.

(a) cn = 1, z = −1; (b) cn = n, z = −1;

(c) cn is an arbitrary polynomial in n; (d) cn = 1, z = i;

(e) cn = 1, z = 2; (f) cn = 1, z = −2.

8. Let yn be the Fibonacci sequence defined, in Problem 3.3.16 by the recurrence
relation,

yn = yn−1 + yn−2, y0 = 0, y1 = 1.

Show that the sequence {yn+1/yn}∞0 satisfies the sufficient condition for Aitken
acceleration, given in the text. Compute a few terms, compute the limit by
Aitken acceleration(s), and compare with the exact result.

9. When the current through a galvanometer changes suddenly, its indicator
begins to oscillate toward a new stationary value s. The relation between the
successive turning points v0, v1, v2, . . . is vn − s ≈ A · (−k)n, 0 < k < 1.
Determine from the following series of measurements, Aitken extrapolated
values v′2, v

′
3, v

′
4 which are all approximations to s:

v0 = 659, v1 = 236, v2 = 463, v3 = 340, v4 = 406.

10. (a) Show that the a-version of Aitken acceleration can be iterated, for i = 0 :
N − 2,

a
(i+1)
i+1 = 0, a

(i+1)
j = a

(i)
j −∇

(

(a
(i)
j )2/∇a(i)

j

)

, j = i+ 2 : N,

s
(i+1)
N = s

(i)
N − (a

(i)
N )2/∇a(i)

N .

(Note that a
(0)
j = aj , s

(0)
j = sj.) We thus obtain N estimates of the sum s.

We cannot be sure that the last estimate s
(N−1)
N is the best, due to irregular

errors in the terms and during the computations. Accept instead, e.g., the
average of a few estimates that are close to each other, or do you have a
better suggestion? This also gives you a (not quite reliable) error estimate.
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(b) Although we may expect that the a-version of Aitken acceleration handles
rounding errors better than the s-version, the rounding errors may set a limit
for the accuracy of the result. It is easy to combine thinning with this version.
How?

(c) Study or write yourself a program for the a-version, and apply it on one
or two problems, where you have used the s-version earlier. Also use thinning
on a problem, where it is needed. We have here considered N as given. Can
you suggest a better termination criterion, or a process for continuing the
computation, if the accuracy obtained is disappointing?

11. A function g(t) has the form

g(t) = c− kt+

∞
∑

n=1

ane
−λnt,

where c, k, an and 0 < λ1 < λ2 < . . . < λn are unknown constants and g(t) is
known numerically for tν = νh, ν = 0, 1, 2, 3, 4.

Find out how to eliminate c, in such a way that a sufficient condition for
estimating kh by Aitken acceleration is satisfied. Apply this to the following
data, where h = 0.1, gν = g(tν).

g0 = 2.14789, g1 = 1.82207, g2 = 1.59763, g3 = 1.40680, g4 = 1.22784.

Then, estimate also c.

12. Suppose that the sequence {sn} satisfies the condition sn − s = c0n
−p +

c1n
−p−1 +O(n−p−2), p > 0, n→ ∞, and set

s′n = sn − p+ 1

p

∆sn∇sn

∆sn −∇sn
,

It was stated without proof in Sec. 3.3.2 that s′n − s = O(n−p−2).

(a) Design an a-version of this modified Aitken acceleration, or look up in [3].

(b) Since the difference expressions are symmetrical about n one can conjec-
ture that this result would follow from a continuous analogue with deriva-
tives instead of differences. It has been shown [3] that this conjecture is
true, but we shall not prove that. Our (easier) problem is just the continu-
ous analogue: suppose that a function s(t) satisfies the condition s(t) − s =
c0t

−p + c1t
−p−1 +O(t−p−2), p > 0, t→ ∞, and set

y(t) = s(t) − p+ 1

p

s′(t)2

s′′(t)
.

Show that y(t)−s = O(t−p−2). Formulate and prove the continuous analogue
to (3.4.9).

13. (a) Consider as in Example 3.4.5, the sum
∑

n−3/2. Show that the partial
sum sn has an asymptotic expansion of the form needed in that example, with
p = −1/2.
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Hint: Apply Euler–Maclaurin’s formula (theoretically).

(b) Suppose that
∑

an is convergent, and that an = a(n). a(z) is analytic
function at z = ∞ (for example a rational function), multiplied by some power
of z− c. Show that such a function has an expansion like (3.4.7), and that the
same holds for a product of such functions.

14. Rewriting a Fourier series for convergence acceleration.

Consider a real function with the Fourier expansion F (φ) =
∑∞

n=−∞ cne
inφ.

(a) Show that

F (φ) = c0 + 2ℜ
∞
∑

n=1

cnz
n, z = eiφ.

Hint: Show that c−n = c̄n.

(b) Set cn = an − ibn, where an, bn are real. Show that

∞
∑

n=0

(an cosnφ+ bn sinnφ) = ℜ
∞
∑

n=0

cnz
n.

(c) How would you rewrite the Chebyshev series
∑∞

n=0 Tn(x)/(1 + n2)?

(d) Consider also how to handle a complex function F (φ).

15. Compute and plot

F (x) =

∞
∑

n=0

Tn(x)/(1 + n2), x ∈ [−1, 1].

Find out experimentally or theoretically how F ′(x) behaves near x = 1 and
x = −1.

16. Compute to (say) 6 decimal places the double sum

S =

∞
∑

m=1

∞
∑

n=1

(−1)m+n

(m2 + n2)
=

∞
∑

n=1

(−1)mf(m),

where

f(m) =

∞
∑

n=1

(−1)n(m2 + n2)−1.

Compute, to begin with, f(m) for m = 1 : 10, by the generalized Euler
transformation. Do you need more values of f(m)?

Comment: There exists an explicit formula for f(m) in this case, but you can
solve this problem easily without using that.

17. We use the notation of Sec. 3.4.3 (the generalized Euler transformation). As-
sume that N ≥ k ≥ 1, and set n = N − k + 1. A sum is equal to zero, if the
upper index is smaller than the lower index.

(a) Prove (3.4.23) that was given without proof in the text, i.e.

MN,k−1 −MN−1,k−1 = znP k−2un+1, (k ≥ 2).
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Hint: By subscript transformations in the definition of MN,k, prove that

MN,k−1 −MN−1,k−1 = un+1z
n +

zn

1 − z

k−3
∑

s=0

(zE − 1)P sun+1.

Next, show that zE−1 = (1−z)(P−1), and use this to simplify the expression.

(b) Derive the formulas

Mk−1,k =
1

1 − z

k−2
∑

s=0

P su1; MN,k = Mk−1,k +
n−1
∑

j=0

zjP k−1uj+1.

Comment: The first formula gives the partial sums of the classical Euler trans-
formation. The second formula relates the k’th column to the partial sums of
the power series with the coefficients P k−1uj+1.

18. (a) If uj = aj, z = eiφ, φ ∈ [0, π], for which real values of a ∈ [0, 1] does the
series on the right of (3.4.16) converge faster than the series on the left?

(b) Find how the classical Euler transformation works if applied to the series

∑

zn, |z| = 1, z 6= 1.

Compare how it works on
∑

unz
n, for un = an, z = z1, and for un = 1,

z = az1.

Consider similar questions for other convergence acceleration methods, that
are primarily invented for oscillating sequences.

19. Compute
∑∞

k=1 k
1/2/(k2 + 1) with an error of less than 10−6. Sum the first

ten terms directly. Then expand the summand in negative powers of k and
use Euler–Maclaurin’s summation formula. Or try a central difference variant
of Euler–Maclaurin’s summation formula given in the next problem; then you
do not have to compute derivatives.

20. Variations on the Euler–Maclaurin Theme

Set xi = a+ ih, also for non-integer subscripts, and xn = b.

Two variants with central differences instead of derivatives are interesting
alternatives, if the derivatives needed in the Euler–Maclaurin Formula are
hard to compute. Check a few of the coefficients on the right hand side of the
formula

∞
∑

j=1

B2j(hD)2j−1

(2j)!
≈ µδ

12
− 11µδ3

720
+

191µδ5

60480
− 2497µδ7

3628800
+ . . . . (3.4.45)

Use the expansion for computing the sum given in the previous problem. This
formula is given by Fröberg [19, p. 220], who attributes it to Gauss.
Compare the size of its coefficients with the corresponding coefficients of the
Euler–Maclaurin Formula.

Suppose that h = 1, and that the terms of the given series can be evaluated
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also for non-integer arguments. Then another variant is to compute the central
differences for (say) h = 1/2 in order to approximate each derivative needed
more accurately by means of (3.3.50). This leads to the formula66

∞
∑

j=1

B2jD
2j−1

(2j)!
∼ µδ

6
− 7µδ3

180
+

71µδ5

7560
− 521µδ7

226800
+ · · · . (3.4.46)

(h = 1/2 for the central differences; h = 1 in the series.) Convince yourself
of the reliability of the formula, either by deriving it or by testing it for (say)
f(x) = e0.1 x.
Show that the rounding errors of the function values cause almost no trouble
in the numerical evaluation of these difference corrections.

21. (a) Derive formally in a similar way the following formula for an alternating
series. Set xi, h = 1, b = ∞, and assume that limx→∞ f(x) = 0.

∞
∑

i=0

(−1)if(a+i) = 1
2f(a)−1

4
f ′(a)+

1

48
f ′′′(a)−· · ·− (22r − 1)B2r

(2j)!
f (2r−1)(a)−. . . .

(3.4.47)
Of course, the integral of f is not needed in this case67 Compare it with some
of the other methods for alternating series on an example of your own choice.

(b) Derive, e.g. by operators (without the remainder R), the following more
general form of the Euler–Maclaurin Formula ([1, 23.1.32]).

m−1
∑

k=0

hf(a+ kh+ ωh) =

∫ b

a

f(t)d t+

p
∑

j=1

hj

j!
Bj(ω)(f (j−1)(b) − f (j−1)(a)) +R,

R = −h
p

p!

∫ 1

0

B̂p(ω − t)
m−1
∑

k=0

f (p)(a+ kh+ th) dt.

If you use this formula for deriving the midpoint variant in (c), you will find
a quite different expression for the coefficients; nevertheless it is the same
formula. Tell how this is explained in the Handbook by [1, 23.1.10], i.e. by
the “Multiplication Theorem”68

Bn(mx) = mn−1
m−1
∑

k=0

Bn(x+ k/m), n = 0, 1, 2, . . . , m = 1, 2, 3, . . .

22. Prove statement (b) of the Lemma 3.4.3. (concerning the periodicity and the
regularity of the Bernoulli functions).

66The formula is probably very old, but we have not found it in the literature.
67Note that the right hand side yields a finite value if f is a constant or, more generally, if f

is a polynomial, although the series on the left hand side diverges. The same happens to other
summation methods; see comments in the last example of Sec. 3.3.2.

68That formula and the remainder R are derived in Nörlund [33], p. 21 and p. 30, respectively.
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23. Euler’s constant is defined by γ = limN→∞ F (N), where

F (N) = 1 +
1

2
+

1

3
+ . . .+

1

N − 1
+

1

2N
− lnN.

(a) Use the Euler–Maclaurin formula with f(x) = x−1, h = 1, to show that,
for any integer N

γ = F (N) +
1

12
N−2 − 6

720
N−4 +

120

30240
N−6 − · · · ,

where every other partial sum is larger than γ, and every other is smaller.

(b) Compute γ to seven decimal places, usingN = 10,
∑10

n=1 n
−1 = 2.92896825,

ln 10 = 2.30258509.

(c) Show how repeated Richardson extrapolation can be used to compute γ
from the following values:

N 1 2 4 8

F (N) 0.5 0.55685 0.57204 0.57592

(d) Extend (c) to a computation, where a larger number of values of F (N)
have been computed as accurately as possible, and so that the final accuracy
of γ is limited by the effects of rounding errors. Check the result by looking
up in an accurate table of mathematical constants, e.g., in [1].

(e) Set

S(r) =

r
∑

m=1

r
∑

n=1

(m2 + n2)−1.

By a continuous analog, with a double integral instead of a double sum, you
may conjecture that S(R) ∼ a lnR + b as R → ∞. You may even suggest a
value of the parameter a. Investigate the conjecture, by computing S(R) for
a suitable sequence of values of R. If you find support for it, try to estimate
a and b.

24. A digression about the Gamma function.

(a) The Handbook [1, 6.1.40] gives an expansion for ln Γ(z) that agrees with
formula (3.4.36) for ln z! (if we substitute z for m), except that the handbook
writes (z − 1

2 ) ln z, where we have (m + 1
2 ) lnm. Explain concisely and com-

pletely that there is no contradiction here.

(b) An asymptotic expansion for computing ln Γ(z+1), z ∈ C is derived in Ex-
ample 3.4.12. If r terms are used in the asymptotic expansion, the remainder
reads:

K(z)
(2r)!

π|2πz|2r+1
K(z) = sup

u≥0

|z2|
|u2 + z2| .

Set z = x + iy. Show the following more useful bound for K(z), valid for
x > 0,

K(z) ≤
{

1, if x ≥ |y|;
1
2 (x/|y| + |y|/x), otherwise.
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Find a uniform upper bound for the remainder if r = 5, x ≥ 1
2 , |z| ≥ 17.

(c) Write a program, e.g., in Matlab, for the computation of ln Γ(z+1). Use the
reflection and recurrence formulas to transform the input value z, to another
z = x+ iy that satisfies x ≥ 1

2 , |z| ≥ 17, for which this asymptotic expansion
is to be used with r = 5.
Test the program, e.g., by computing the following quantities, and compare
with their exact values, e.g.,

n!, Γ(n+ 1/2)/
√
π, n = 0, 1, 2, 3, 10, 20.

∣

∣Γ(1
2 + iy)

∣

∣

2
=

π

cosh(πy)
, y = ±10,±20.

If the original input value has a small modulus, there is some cancellation,
when when the output from the asymptotic expansion is transformed to
ln(1 + zinput), resulting in a loss of (say) 1 or 2 decimal digits.

(d) It is often much better to work with ln Γ(z) than with Γ(z). For example,
one can avoid exponent overflow in the calculation of a binomial coefficient or
a value of the beta function, B(z, w) = Γ(z)Γ(w)/Γ(z + w), where (say) the
denominator can become too big, even if the final result is of a normal order
of magnitude.
Another context where the logarithms are much preferable is in connection
with interpolation, numerical differentiation etc.; for |z| ≫ 1 ln Γ(z) is locally
approximated by a polynomial much better than Γ(z). The following is an
example (for a hand held calculator).
Given 10! = 3628800; compute Γ(x) for x = 11 : 15. Compute Γ′(13) by using
either repeated Richardson extrapolation or the central difference expansion,
in two ways:

• Use the values of ln Γ(x), (and multiply the logarithmic derivative by
Γ(13)).

• Use directly the values of Γ(x).

The first alternative requires a few more operations. Were they worthwhile?

25. (a) Show that
(

2n

n

)

∼ 22n

√
πn

, n→ ∞,

and give an asymptotic estimate of the relative error of this approximation.
Check the approximation as well as the error estimate for n = 5 and n = 10.

(b) Random errors in a difference scheme. We know from Example 3.3.3 that
if the items yj of a difference scheme are afflicted with errors less than ǫ in
absolute value, then the inherited error of ∆nyj is at most 2nǫ in absolute
value. If we consider the errors as independent random variables, uniformly
distributed in the interval [−ǫ, ǫ], show that the error of ∆nyj has the variance
(

2n
n

)

1
3ǫ

2, hence the standard deviation is approximately 2nǫ(9πn)−1/4, if n≫
1. Check the result on a particular case by a Monte Carlo study.
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Hint: It is known from Probability theory that the variance of
∑n

j=0 ajǫj is

equal to σ2
∑n

j=0 a
2
j , and that a random variable, uniformly distributed in

the interval [−ǫ, ǫ], has the variance σ2 = ǫ2/3. Finally use (3.1.20) with
p = q = n.

26. (a) The following table of values of a function f(x) is given:

x 0.6 0.8 0.9 1.0 1.1 1.2 1.4

f(x) 1.820365 1.501258 1.327313 1.143957 0.951849 0.752084 0.335920

Compute using repeated Richardson extrapolation f ′(1.0) and f ′′(1.0).

27. Compute an approximation to π using Richardson extrapolation with Neville’s
algorithm, based on three simple polygons, with n = 2, 3 and 6 sides, not in
geometric progression. A 2-sided polygon can be interpreted as a diameter
described up and down. Its “circumference” is thus equal to 4. Show that this
gives even a little better than the result (3.14103) obtained for the 96-sided
polygon without extrapolations.

28. Numerov’s method with Richardson extrapolations69

(a) Show that the formula

h−2(yn+1 − 2yn + yn−1) = y′′n + a(y′′n+1 − 2y′′n + y′′n−1)

is exact for polynomials of as high degree as possible, if a = 1/12. Show
that the error has an expansion into even powers of h, and determine the first
(typically non-vanishing) term of this expansion.

(b) This formula can be applied to the differential equation, y′′ = p(x)y, with
given initial values y(0), y′(0). Show that this yields the recurrence relation

yn+1 =
(2 + 10

12pnh
2)yn − (1 − 1

12pn−1h
2)yn−1

1 − 1
12pn+1h2

.

Comment: If h is small, information about p(t) is lost by outshifting in the
factors 1 − 1

12pn−1h
2 etc. (It is possible to rewrite the formulas in order

to reduce the loss of information.) In the application below this causes no
trouble with the step sizes suggested, in IEEE double precision. If you must
use single precision, however, the outshifting may set a limit to the accuracy
in the repeated Richardson extrapolation.

(c) Apply this method, together with two Richardson extrapolations in (d),
to the problem of Example 3.1.1, i.e. y′′ = −xy with initial values y(0) = 1,
y′(0) = 0, this time over the interval 0 ≤ x ≤ 4.8. Denote the numerical
solution by y(x;h), i.e. yn = y(xn;h).
Compute the seeds y1 = y(h, h) by the Taylor expansion in Example 3.1.1.
The error of y(0.2, 0, 2 should be less than 10−10, since we expect that the
(global) errors after two Richardson extrapolations can be of that order of
magnitude.

69See also Example 3.3.14.
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Compute y(x;h), x = 0 : h : 4.8, for h = 0.05, h = 0.1, h = 0.2. Store these
data in a 100 × 3 matrix (where you must put zeros into some places). Plot
y(x; 0.05) versus x for x = 0 : 0.05 : 4.8.

(d) You proved in (a) that the local error has an expansion containing even
powers of h only. It can be shown that the same is true for the global error
too. Assume (without proof) that

y(x, h) = y(x) + c1(x)h
4 + c2(x)h

6 + c3(x)h
8 +O(h10).

Perform the adequate repeated Richardson extrapolations to your stored re-
sults. Make semi-logarithmic plots of (the modulus of) the 4th order Richard-
son corrections for x = 0 : 0.1 : 4.8, obtained by means of y(x; 0.05) and
y(x; 0.1). Plot in the same fashion the 6th order corrections for x = 0 : 0.2 :
4.8, obtained in the second Richardson extrapolation. The 6th order correc-
tions are used as error estimates for the results from both these Richardson
extrapolations.70

(e) Express, e.g., by the aid of the Handbook [1, 10.4], the solution of this
initial value problem in terms of Airy functions71

y(x) =
Ai(−x) + Bi(−x)/

√
3

2 · 0.3550280539
.

Check a few of your results of the repeated Richardson extrapolation by means
of [1, Table 10.11] that, unfortunately, gives only 8 decimal places.

Comment: Your results should be more accurate than that. If they are not,
the reason can be that the rounding errors have a large influence, but that is
not the most probable reason in this case, if IEEE double precision is used.
Experience shows that it is hard to avoid programming blunders in this prob-
lem. So do not consider the theory or the rounding errors as the primary
suspects. Programming errors do not always yield results that are obviously
crazy; sometimes the results look reasonable, although the accuracy is much
lower than it should be.

29. (a) Determine the Bernoulli polynomials B2(x) and B3(x), and find the values
and the derivatives at 0 and 1. Factorize the polynomial B3(x). Draw the
graphs of a few periods of B̂i(x), i = 1, 2, 3..

(b) In an old “Cours d’Analyse”, we found a “symbolic” formula, essentially

h
n−1
∑

j=0

g′(a+ jh) = g(b+ hB) − g(a+ hB). (3.4.48)

The expansion of the right hand side into powers of hB, has been followed
by the replacement of the powers of B by Bernoulli numbers, the resulting

70Although the 6th order correction yields an 8th order accurate result, it is hard to obtain an
error estimate of that order without extra assumptions or extra computation.

71Airy functions are special functions (related to Bessel functions) with many applications to
Mathematical Physics, e.g., the theory of diffraction of radio waves around the earth’s surface.
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expansion is not necessarily convergent, even if the first power series converges
for any complex value of hB.
Show that the second expansion is equivalent to the Euler–Maclaurin formula,
and that it is to be interpreted according to Theorem 3.4.4.

(c) If g is a polynomial, the expansion is finite. Show the following important
formulas, and check them with known results for k = 1 : 3.

n−1
∑

j=0

jk−1 =
(B + n)k −Bk

k
=
Bk(n) −Bk

k
. (3.4.49)

Also find that (3.4.48) makes sense for g(x) = eαx, with the “symbolic” in-
terpretation of the power series for eBx, if you accept the formula e(B+α)x =
eBxeαx.

30. We have called
∑

an a bell sum if an as a function of n has a bell-shaped
graph, and you must add many terms to get the desired accuracy. Under
certain conditions you can get an accurate result by adding (say) every tenth
term, and multiply this sum by 10, because both sums can be interpreted
as trapezoidal approximations to the same integral, with different step size.
Inspired by Euler–Maclaurin’s formula, we may hope to be able to obtain high
accuracy using an integer stepsize h that is (say) one quarter of the half-width
of “the bell”. In other words, we do not have to compute and add more than
every hth term.
We shall study a class of series

S(t) =

∞
∑

n=0

cnt
n/n!, t≫ 1, (3.4.50)

where cn > 0, log cn is rather slowly varying for n large; (say that) ∆p log cn =
O(n−p). Let c(·) be a smooth function such that c(n) = cn. We consider S(t)
as an approximation to the integral

∫ ∞

0

c(n)tn/Γ(n+ 1)dn,

with a smooth and bell shaped integrand, almost like the normal frequency
function, with standard deviation σ ≈ k

√
t. .

(a) For p = 1 : 5, t = 4p, plot y =
√

2πte−ttn/n! versus x = n/t, 0 ≤ x ≤ 3;
all 5 curves on the same picture.

(b) For p = 1 : 5, t = 4p, plot y = ln(e−ttn/n!) versus x = (n − t)/
√
t,

max(0, t− 8
√
t) ≤ n ≤ t+ 8

√
t; all 5 curves on the same picture. Give bounds

for the error committed if you neglect the terms of the series e−t
∑∞

0 tn/n!,
which are cut out in your picture.

(c) With the same notation as in (b), use Stirling’s asymptotic expansion to
show theoretically that

e−ttn

n!
=
e−x2/2

(

1 +O(1/
√
t)
)

√
2πt

, (3.4.51)
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for t → ∞, where the O(1/
√
t)-term depends on x. Compare this with the

plots.

Comment: If you are familiar with Probability, you recognize that this is
related to the normal approximation to the Poisson distribution. It is well
known that the mean is t, and the standard deviation is

√
t.

If you are familiar with Mathematical Physics, you see the resemblance to the
saddle point method, if you interpret the sum of terms like the left hand side
(from n = 0 to ∞) as an approximation to an integral with stepsize ∆n = 1,
i.e.

e−t

∫ ∞

0

tn/Γ(n+ 1)dn ∼
∫ ∞

−∞
exp(−x2/2)/

√
2πdx = 1, (t → ∞).

(Note that dx = dn/
√
t.) A crude approximation for (3.4.50) is S(t) ≈ c(t)et.

We aim, however, at higher accuracy than is common when these approx-
imations are used in Probability and Mathematical Physics, We think, for
example, of situations where the result is to be used in a calculation where
cancellation causes many digits to be lost and a decent relative accuracy is
needed in what will be left.

(d) Test these ideas by making numerical experiments with the series

e−t
∑

n∈N
tn/n!,

where N = {round(t− 8
√
t) : h : round(t + 8

√
t)}, for some integers h in the

neighborhood of suitable fractions of
√
t, inspired by the outcome of the ex-

periments. Do this for t =1000, 500, 200, 100, 50, 30. Compare with the exact
result, and see how the trapezoidal error depends on h, and try to formulate
an error estimate that can be reasonably reliable, in cases where the answer
is not known. How large must t be, in order that it should be permissible to
choose h > 1 if you want (say) 6 correct decimals?

(e) Compute, with an error estimate, e−t
∑∞

n=1 t
n/(n ·n!), with 6 correct dec-

imals for the values of t mentioned in (d). You can also check your result with
tables and formulas in the Handbook [1, Ch. 5].

31. If you have a good program for generating primes, denote the nth prime by
pn, and try convergence acceleration to series like

∑ (−1)n

pn
,
∑ 1

p2
n

,

or what have you? Due to the irregularity of the sequence of primes, you
cannot expect the spectacular accuracy of the previous examples, but it can be
fun to see how these methods work, e.g., in combination with some comparison
series derived from asymptotic results about primes. The simplest one reads
pn ∼ n lnn, (n → ∞), which is equivalent to the classical prime number
theorem.
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32. A summation formula based on the Euler numbers

(a) The Euler numbers En were introduced by (3.1.19). The first values read
E0 = 1, E2 = −1, E4 = 5, E6 = −61. They are all integers (Problem 3.1.7c).
En = 0 for odd n, and the sign is alternating for even n. Their generating
function reads

1

cosh z
=

∞
∑

j=0

Ejz
j

j!
.

(a) Show, e.g., by means of operators the following expansion

∞
∑

k=m

(−1)k−mf(k) ≈
q
∑

p=0

E2pf
(2p)(m− 1

2 )

22p+1(2p)!
(3.4.52)

Comment: No discussion of convergence etc. is needed; the expansion behaves
much like the Euler–Maclaurin expansion, and so does the error estimation;
see, e.g., [16].
The coefficient of f (2p)(m − 1

2 ) is approximately 2(−1)p/π2p+1 when p ≫
1, e.g., for p = 3 the approximation yields −6.622 · 10−4, while the exact
coefficient is 61/92160 ≈ 6.619 · 10−4.

(b) Apply (3.4.52) for explaining the following curious observation, reported
by Borwein et al. [6].

50
∑

k=1

4(−1)k

2k − 1
= 3.12159465259 . . .

(π = 3.14159265359 . . .).

Note that only three digits disagree. There are several variations on this
theme. Borwein et al. actually displayed the case with 40 decimal places
based on 50,000 terms. Make “an educated guess” concerning how few digits
disagreed.

3.5 Continued Fractions and Padé Approximants

3.5.1 Continued Fractions

Some functions cannot be well approximated by a power series, but can well be
approximated by a quotient of power series. In order to study such approximations
we first introduce algebraic continued fractions. Let r be a number and set

r = b0 +
a1

b1 +
a2

b2 +
a3

b3+

. . . = b0 +
a1

b1+

a2

b2+

a3

b3+
. . . , (3.5.1)
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where the second expression is a convenient compact notation. If the number of
terms is infinite, r is called an infinite continued fraction. The terminating fraction

rn =
pn

qn
= b0 +

a1

b1+

a2

b2+
· · · an

bn
(3.5.2)

is called the nth approximant of the continued fraction. This can be evaluated
backwards in n divisions using the recurrence: Set r = y0, where

yn = bn, yi−1 = bi−1 + ai/yi, i = n : −1 : 1, (3.5.3)

It can happen that in an intermediate step the denominator yi becomes zero and
yi−1 = ∞. This does no harm if you proceed in the next step when you divide by
yi−1 the result is set equal to 0. If it happens in the last step, the result is ∞.72

A drawback of evaluating an infinite continued fraction expansion by the back-
wards recursion (3.5.3) is that you have decide where to stop in advance. The
following theorem shows how forwards (or top down) evaluation can be achieved.

Theorem 3.5.1.
Consider the continued fraction (3.5.1). For n ≥ 1, rn = pn/qn, where pn, qn

satisfies the recursion formula

pn = bnpn−1 + anpn−2, p−1 = 1, p0 = b0, (3.5.4)

qn = bnqn−1 + anqn−2, q−1 = 0, q0 = 1. (3.5.5)

Another useful formula reads

pnqn−1 − pn−1qn = (−1)n−1a1a2 · · · an. (3.5.6)

Proof. We prove the recursion formulas by induction. First, for n = 1, we obtain

p1

q1
=
b1p0 + a1p−1

b1q0 + a1q−1
=
b1b0 + a1

b1 + 0
= b0 +

a1

b1
= r1.

Next, assume that the formulas are valid up to pn−1, qn−1, for every continued
fraction. Note that pn/qn can be obtained from pn−1/qn−1, by the substitution of
bn−1 + an/bn for bn−1. Hence

pn

qn
=

(bn−1 + an/bn)pn−2 + an−1pn−3

(bn−1 + an/bn)qn−2 + an−1qn−3
=
bn(bn−1pn−2 + an−1pn−3) + anpn−2

bn(bn−1qn−2 + an−1qn−3) + anqn−2

=
bnpn−1 + anpn−2

bnqn−1 + anqn−2
.

This shows that the formulas are valid also for pn, qn. The proof of equation (3.5.6)
is left for Problem 2.

72Note that this works automatically in IEEE arithmetic, because of the rules of infinite arith-
metic; see Sec. 2.2.3!
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Note that since the denominators and numerators of the approximants satisfy a
three term recurrence relation they can be evaluated by Clenshaw’s algorithm. It is
sometimes convenient to write the recursion formulas in matrix form; see Problem 2.

If we substitute anx for an in (3.5.4)–(3.5.5) then pn(x) and qn(x) become
polynomials in x of degree n and n− 1, respectively.

Example 3.5.1.
Consider the following finite continued fraction

r(x) = 7 − 3

x− 2−
1

x− 7+

10

x− 2−
2

x− 3
.

The algorithm in Theorem 3.5.1 can be used to convert this to rational function
form

r(x) =
(((7x − 101)x+ 540)x− 1204)x+ 958

(((x − 14)x+ 72)x− 151)x+ 112
.

As indicated, the numerator and denominator can then be evaluated by Horner’s
rule. The backwards evaluation of the continued fraction form requires fewer oper-
ations than of the rational form. However, there at the four points x = 1, 2, 3, 4 a
division by zero occurs even though r(x) is well defined at these points. However, in
IEEE arithmetic the continued fraction evaluates correctly at these points because
of the rules of infinite arithmetic! Indeed the continued fraction form can be shown
to have smaller errors for x ∈ [0, 4] and to be immune to overflow; see Higham [27,
§ 27.1].

In practice the forward recursion for evaluating a continued fraction often
generates very large or very small values for the numerators and denominators.
There is a risk of overflow or underflow with these formulas. We are usually not
interested in the pn, qn themselves, but in the ratios only. Then we can normalize
pn and qn by multiplying them by the same factor after they have been computed.
If we shall go on and compute pn+1, qn+1, however, we have to multiply pn−1, qn−1

by the same factor also! One must also be careful about the numerical stability of
these recurrence relations.

The formula

a1

b1+

a2

b2+

a3

b3+
· · · =

k1a1

k1b1+

k1k2a2

k2b2+

k2k3a3

k3b3+
· · · , (3.5.7)

where the ki are any non-zero numbers, is known as an equivalence transforma-
tion. The proof of (3.5.7) is left for Problem 5. .

By the following division algorithm, a rational function can be expressed as a
continued fraction that can be evaluated by relatively few arithmetic operations; see
Cheney [12, p. ]. Let R0, R1 be polynomials, and set R = R0/R1. The degree of
a polynomial Rj is denoted by dj . By successive divisions (of Rj−1 by Rj) we obtain
quotients Qj and remainders Rj+1 as follows. For j = 1, 2, . . . , until dj+1 = 0,

Rj−1 = RjQj +Rj+1, dj+1 < dj , (3.5.8)
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hence

R =
R0

R1
= Q1 +

1

R1/R2
= . . . = Q1 +

1

Q2+

1

Q3+
. . .

1

Qk
. (3.5.9)

By means of an equivalence transformation; see (3.5.7), this fraction can be trans-
formed into a slightly more economic form, where the polynomials in the denomi-
nators have leading coefficient unity, while the numerators are in general different
from 1.

Example 3.5.2. Best Rational Approximations to a Real Number.
Every positive number x can be expanded into a continued fraction with in-

teger coefficients of the form,

x = b0 +
1

b1+

1

b2+

1

b3+
· · · . (3.5.10)

Set x0 = x, p−1 = 1, q−1 = 0. For n = 0, 1, 2, . . . we construct a sequence of
numbers,

xn = bn +
1

bn+1+

1

bn+2+

1

bn+3+
· · · .

Evidently bn = ⌊xn⌋, the integer part of xn, and xn+1 = 1/(xn − bn). Compute pn,
qn, according to the recursion formulas of Theorem 3.5.1, which can be written in
vector form,

(pn, qn) = (pn−2, qn−2) + bn(pn−1, qn−1),

(since an = 1). See Figure 4.3.1. Stop when |x − pn/qn| < Tol or n > nmax. The
details are left for Problem 1.

The above algorithm has been used several times in the previous sections,
where some coefficients, known to be rational, has been computed in floating point.
It is also useful for finding near commensurabilities between events with different
periods;73 see Problem 1c

The German mathematician Felix Klein [28]74 gave the following illuminating
description of the sequence {(pn, qn)} obtained by this algorithm (adapted to our
notation):

“Imagine pegs or needles affixed at all the integral points (pn, qn), and
wrap a tightly drawn string about the sets of pegs to the right and to
the left of the ray, p = xq. Then the vertices of the two convex string-
polygons which bound our two point sets will be precisely the points
(pn, qn) . . ., the left polygon having the even convergents, the right one
the odd.”

Klein also points out that “such a ray makes a cut in the set of integral points”
and thus makes Dedekind’s definition of irrational numbers very concrete. This

73One of the convergents for log 2/ log 3 reads 12/19. This is in a way basic for Western Music,
where 13 quints make 7 octaves, i.e. (3/2)12 ≈ 27.

74Felix Christian Klein (1849–1925). He was born 25/4 1849 and delighted in pointing out that
each of the day 52, month 22, and year 432 was the square of a prime.
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Figure 3.5.1. Illustration to Example 3.3.2. The dashed line is {(p, q) :
xq = p} for x = 1

2 (
√

5 + 1).

construction; see Figure 3.5.1, illustrates in a concrete way that the successive
convergents are closer to x than any numbers with smaller denominators, and that
the errors alternate in sign. We omit the details of the proof that this description
is correct.

Note that, since aj = 1, ∀j, equation (3.5.6) reads pnqn−1−pn−1qn = (−1)n−1.
This implies that the triangle with vertices at the points (0, 0), (qn, pn), (qn−1, pn−1)
has the smallest possible area, among triangles with integer coordinates, and hence
there can be no integer points inside or on the sides of this triangle.

Theorem 3.5.2. (Seidel)75

Let all bn be positive in the continued fraction

b0 +
1

b1+

1

b2+

1

b3+
· · · .

Then this converges if and only if the series
∑

bn diverges.

Proof. See Cheney [12, p. 184].

Figure 3.5.1 corresponds to the example, (see also Problem 3),

x = 1 +
1

1+

1

1+

1

1+
· · · (3.5.11)

75Philipp Ludwig von Seidel (1821–1896) German mathematician and astronomer. In 1846 he
submitted his habilitation dissertation entitled “Untersuchungen über die Konvergenz and Diver-
genz der Kettenbrüche
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From Theorem 3.5.2 it follows that this continued fraction is convergent. Then,
note that x = 1+1/x, x > 0, hence x = (

√
5+1)/2. Note also that, by (3.5.6) with

aj = 1,

∣

∣

∣x− pn

qn

∣

∣

∣ ≤
∣

∣

∣

pn+1

qn+1
− pn

qn

∣

∣

∣ =
|pn+1qn − pnqn+1|

qn+1qn
=

1

qn+1qn
<

1

q2n
. (3.5.12)

Comment: If we know or guess that a result x of a computation is a rational
number with a reasonably sized denominator, although it was practical to compute
it in floating point arithmetic (afflicted by errors of various types), we have a good
chance to reconstruct the exact result by applying the above algorithm as a post-
processing.

If we just know that the exact x is rational, without any bounds for the number
of digits in the denominator and numerator, we must be conservative in claiming
that the last fraction that came out of the above algorithm is the exact value of
x, even if |x − pn/qn| is very small. In fact, the fraction may depend on Tol that
is to be chosen with respect to the expected order of magnitude of the error of x.
If Tol has been chosen smaller than the error of x, it may, e.g., happen that the
last fraction obtained at the termination is wrong, while the correct fraction (with
smaller numerator and denominator) may have appeared earlier in the sequence (or
it may not be there at all).

So a certain judgment is needed at the application of this algorithm. The
smaller the denominator and numerator are, the more likely it is that the fraction
is correct. In a serious context, it is advisable to check the result(s) by using exact
arithmetic. If x is the root of an equation (or a component of the solution of a system
of equations), it is typically much easier to check afterwards that a suggested result
is correct than to perform the whole solution process in exact arithmetic.

Continued fractions have also important applications in Analysis; some of the
best algorithms for the numerical computation of important analytic functions are
based on continued fractions. We shall not give complete proofs but refer to classical
books of Perron [35], Wall [47] and Henrici [25, 26].

A continued fraction is said to be equivalent to a given series, iff the sequence
of convergents is equal to the sequence of partial sums. There is typically an infinite
number of such equivalent fractions. The construction of the continued fraction is
particularly simple if we require that the denominators qn = 1, ∀n ≥ 1. For a power
series we shall thus have

pn = c0 + c1x+ c2x
2 + . . . cnx

n, n ≥ 1.

We must assume that cj 6= 0 ∀j ≥ 1.
We shall determine the the elements an, bn by means of the recursion formulas

of Theorem 3.5.1 (for n ≥ 2) with initial conditions. We thus obtain the following
equations,

pn = bnpn−1 + anpn−2; p0 = b0, p1 = b0b1 + a1,

1 = bn + an; b1 = 1.
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The solution reads b0 = p0 = c0, b1 = 1, a1 = p1 − p0 = c1x, and for n ≥ 2,

an = (pn − pn−1)/(pn−2 − pn−1) = −xcn/cn−1;

bn = 1 − an = 1 + xcn/cn−1;

c0 + c1x+ . . .+ cnx
n . . . = c0 +

xc1
1−

xc2/c1
1 + xc2/c1−

. . .
xcn/cn−1

1 + xcn/cn−1−
. . .

Of course, an equivalent continued fraction gives by itself no convergence ac-
celeration, just because it is equivalent. We shall therefore leave the subject of con-
tinued fractions equivalent to a series, after showing two instances of the numerous
pretty formulas that can be obtained by this construction.

For
f(x) = ex = 1 + x+ x2/2! + x3/3! + . . .

and

f(x) =
arctan

√
x√

x
= 1 − x/3 + x2/5 − x3/7 + . . . ,

we obtain for x = −1 and x = 1, respectively, after simple equivalence transforma-
tions,

e−1 = 1 − 1

1+

1

1 + y
=

1

2 + y
⇒ e = 2 + y, where y =

2

2+

3

3+

4

4+

5

5+
. . . ;

π

4
=

1

1+

1

2+

9

2+

25

2+

49

2+
. . . .

There exist, however, other methods to make a correspondence between a
power series and a continued fraction. Some of them lead to a considerable con-
vergence acceleration that often makes continued fractions very efficient for the
numerical computation of functions. We shall return to such methods in Sec. 3.5.2.

Gauss developed a continued fraction for the ratio of two hypergeometric func-
tions (see (3.1.13))

F (a, b+ 1, c+ 1; z)

F (a, b, c; z)
=

1

1+

a1z

1+

a2z

1+

a3z

1+
. . . , (3.5.13)

a2n+1 =
(a+ n)(c− b+ n)

(c+ 2n)(c+ 2n+ 1)
, a2n =

(b+ n)(c− a+ n)

(c+ 2n− 1)(c+ 2n)
. (3.5.14)

If in (3.5.13) we set b = 0, then F (a, b, c; z) = 1, and we obtain a continued fraction
for F (a, b+1, c+1; z). From this many continued fractions for elementary functions
can be derived, such as

ln(1 + z) =
z

1+

z

2+

z

3+

22z

4+

22z

5+

32z

6+
. . . . (3.5.15)

1

2
ln

(

1 + z

1 − z

)

=
z

1−
z2

3−
22z2

5−
32z2

7−
42z2

9− · · · (3.5.16)
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(3.5.17)

arctan z =
z

1+

z2

3+

22z2

5+

32z2

7+

42z2

9+
. . . (3.5.18)

tan z =
z

1−
z2

3−
z2

5−
z2

7− . . . (3.5.19)

tanh z =
e2z − 1

e2z + 1
=

z

1+

z2

3+

z2

5+

z2

7+
. . . . (3.5.20)

These expansions can be used also for complex values of z. In fact the fraction
for the logarithm can be used in the whole complex plane except in the intervals
(−∞,−1] and [1,∞). For arctan z, there are similar branch cuts on the imaginary
axis. The convergence is slow, when z is near a cut. For an elementary function
like these, a program can use some properties of the functions for moving z to a
domain, where the continued fraction converges rapidly.

The expansion for tan z is valid everywhere, except in the poles. In all these
cases the region of convergence as well as the speed of convergence is considerably
larger than for the power series expansions. For example, the 6’th convergent for
tanπ/4 is almost correct to 11 decimal places.

Example 3.5.3.
Consider the continued fraction for ln(1 + z) and set z = 1. The successive

approximations to ln 2 = 0.69314 71806 are:

1/1 2/3 7/10 36/52 208/300 1572/2268 12876/18576

1.000000 0.66667 0.700000 0.692308 0.69333 0.693122 0.693152

Note that the fraction give alternatively upper and lower bounds for ln 2. It can be
shown that this is the case when the elements of the continued fraction are positive.
To get the accuracy of the last approximation above would require as many as
50,000 terms of the series ln 2 = ln(1 + 1) = 1 − 1/2 + 1/3 − 1/4 + · · ·.

Example 3.5.4.
A collection of formulas concerning the important incomplete Gamma function

is found in the Handbook [1, 6.5]. For the sake of simplicity we assume that x > 0,
although the formulas can be used also in an appropriately cut complex plane. The
parameter a may be complex in Γ(a, x).76

Γ(a, x) =

∫ ∞

x

ta−1e−t dt, Γ(a, 0) = Γ(a),

γ(a, x) = Γ(a) − Γ(a, x) =

∫ x

0

ta−1e−t dt, ℜa > 0,

Γ(a, x) = e−xxa
( 1

x+

1 − a

1+

1

x+

2 − a

1+

2

x+
· · ·
)

, (3.5.21)

76There are plenty of other notations for this function.
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γ(a, x) = e−xxaΓ(a)
∞
∑

n=0

xn

Γ(a+ 1 + n)
.

We mention these functions, because they have many applications. Several
other important functions can, by simple transformations, be brought to particular
cases of this function, e.g., the normal probability function, the chi-square proba-
bility function, the exponential integral, and the Poisson distribution.

Continued fractions like these can often be derived by a theorem of Stieltjes77,
which relates continued fractions to orthogonal polynomials that satisfy a recurrence
relation of the same type as the one given above. Another method of derivation is
the Padé approximation, studied in the next section, that yields a rational function.
Both techniques can be looked upon as a convergence acceleration of an expansion
into powers of z or z−1.

3.5.2 Padé Approximants.

The Padé78 approximants are a particular type of rational approximations to a
function f(z) defined by a power series, The idea is to match the coefficients in the
given series as far as possible with a rational approximation P (x)/Q(x). Consider
the example (Baker [2])

f(x) =

(

1 + 2x

1 + x

)1/2

= 1 +
1

2
x− 5

8
x2 +

13

16
x3 − . . . .

The first three coefficients are matched by the rational approximation

f11(x) =
1 + 7x/4

1 + 5x/4
= 1 +

1

2
x− 5

8
x2 +

25

32
x3 − . . . .

Note that f11(x) has the value 1.4 for x = ∞, which agrees well with the limit
√

2
for f(x). This is in contrast to the behavior of the Taylor series for f(x), which
does not converge for x ≥ 1/2.

We now give a general definition of Padé approximants.

Definition 3.5.3.
The (m,n) Padé approximant associated with

f(z) =
∞
∑

i=0

ciz
i. (3.5.22)

77Thomas Jan Stieltjes (1856–1894), mathematician born in the Netherlands. On recommenda-
tions from his friend and colleague Charles Hermite in Paris he became docent 1886 and professor
1889 at the university in Toulouse, France.

78Henri Eugène Padé (1863–1953) a French mathematician, wrote his thesis under Charles Her-
mite’s supervision.
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is, if it exists, defined to be a rational function

fm,n(z) =
Pm,n(z)

Qm,n(z)
≡
∑m

j=0 pjz
j

∑n
j=0 qjz

j
, q0 = 1, (3.5.23)

that satisfies
rm,n(z) = f(z) − fm,n(z) = Rzm+n+1 +O(zm+n+2), z → 0. (3.5.24)

The Padé approximants to ez are important because of their relation to meth-
ods for solving differential equations. Padé arranged the approximants fm,n(z),
m,n = 0, 1, 2,. . . . in a semi-infinite table. The following is part of the Padé table
for the exponential function f(z) = ez.

1

1

1 + z

1

1 + z + 1
2z

2

1

1

1 − z

1 + 1
2z

1 − 1
2z

1 + 2
3z + 1

6z
2

1 − 1
3z

1

1 − z + 1
2z

2

1 + 1
3z

1 − 2
3z + 1

6z
2

1 + 1
2z + 1

12z
2

1 − 1
2z + 1

12z
2

The Padé approximants for ez were given explicitly by Padé (1892) in his
thesis. They are

Pm,n(z) =

m
∑

j=0

(m+ n− j)!m!

(m+ n)! (m− j)!

zj

j!
, (3.5.25)

Qm,n(z) =

n
∑

j=0

(m+ n− j)!n!

(m+ n)! (n− j)!

(−z)j

j!
, (3.5.26)

with the error

rm,n(z) = ez − Pm,n(z)

Qm,n(z)
= (−1)n m!n!

(m+ n)!(m+ n+ 1)!
zm+n+1 +O(zm+n+2).

(3.5.27)
Note that Pm,n(z) = Qm,n(−z), which reflects the property that e−z = 1/ez. In-
deed, the nominator and denominator polynomials can be shown to approximate
ez/2 and e−z/2, respectively.

There are several reasons for preferring the diagonal Padé approximants (m =
n). For these

pj =
(2m− j)!m!

(2m)! (m− j)!j!
, qj = (−1)jpj, j = 0 : m. (3.5.28)

The coefficients satisfy the recursion

p0 = 1, pj+1 =
(m− j)pj

(2m− j)(j + 1)
, j = 0 : m− 1. (3.5.29)
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For the diagonal Padé approximants the error Rm,n(z) satisfy |Rm,n(z)| < 1,
for ℜz < 0. This is an important property in applications to solving differential
equations.79 To evaluate a diagonal Padé approximant of even degree we write

P2m,2m(z) = p2mz
2m + · · · + p2z

2 + p0

+ z(p2m−1z
2m−2 + · · · + p3z

2 + p1) = u(z) + v(z).

and evaluate u(z) and v(z) separately. Then Q2m(z) = u(z) − v(z). A similar
splitting can be used for an odd degree.

It was remarked in Sec. 2.2.4 that in order to compute the exponential function
a range reduction should first be performed. If an integer k is determined such that

z∗ = z − k ln 2, |z∗| ∈ [0, ln 2] (3.5.30)

then exp(z) = exp(z∗) · 2k. Hence only an approximation of exp(z) for |z| ∈ [0, ln 2]
is needed; see Problem 5.

We now consider how to determine the Padé approximants in the general case.

Theorem 3.5.4.
Let f(z) be a function defined by the power series (3.5.22). The coefficients qj

j = 1 : n, of the denominator of the Padé approximant fm,n(z) are determined by
the linear system,

n
∑

j=1

ci−jqj + ci = 0, i = m+ 1 : m+ n, (3.5.31)

where we set ci = 0 for i < 0, provided that this linear system has a unique solution.
Further, the coefficients of the numerator are

k
∑

j=0

ci−jqj = pi, i = 0 : m, k = min(i, n), (3.5.32)

and the error constant R in (3.5.24) reads

R =
k
∑

j=0

ci−jqj , i = m+ n+ 1.

Proof. Insert (3.5.22) and (3.5.24) into (3.5.23) and multiply both sides by the
denominator:

(

∞
∑

l=0

clz
l +Rzm+n+1 +O(zm+n+2)

)

n
∑

j=0

qjz
j =

m
∑

i=0

piz
i.

79Diagonal Padé approximants are used also for the evaluation of the matrix exponential eA,
A ∈ Rn×n; see Chapter 9.
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Match the coefficients of zi, i = 0 : m+ n+ 1, and remember that q0 = 1:

n
∑

j=0

ci−jqj =

{

pi, if 0 ≤ i ≤ m;
0, if m+ 1 ≤ i ≤ m+ n;
R, if i = m+ n+ 1.

The statements follow from this.

Note that fm,n uses cl for l = 0 : m+ n only; R uses cm+n+1 also. So, if cl is
given for l = 0 : r then fm,n is defined for m+ n ≤ r, m ≥ 0, n ≥ 0.

There is an ”if” in the theorem. There are in fact simple exceptional situations,
where the linear system (3.5.31) is singular. The system can be written in more
detail as













cm−n+1 cm−n+2 · · · cm

cm−n+2 cm−n+3 · · · cm+1

...
... · · ·

...

cm cm+1 · · · cm+n−1





















qn
qn−1

...
q1









= −









cm+1

cm+2

...
cm+n









where ci = 0, i < 0. Note the system matrix has constant elements along the
anti-diagonals. Such matrices are called Hankel matrices. It can be shown that
singular cases occur in square blocks of the Padé table, where all the approximants
are equal. This property, investigated by Padé, is known as the block structure of
the Padé table. A Padé table where all the approximants are different is called
normal. Otherwise it is called non-normal.

We shall indicate, how such singular situations can often be avoided by a more
reasonable formulation of the request. These matters are discussed more thoroughly,
e.g., in Cheney [12, Chap. 5].

Example 3.5.5.
Let for f(z) = cos z = 1 − 1

2z
2 and try to find

f1,1(z) = (p0 + p1z)/(q0 + q1z), q0 = 1.

The coefficient matching according to the theorem, yields the equations,

p0 = q0 = 1, p1 = q1, −1

2
q0 = 0.

The last equation contradicts the condition that q0 = 1. This single contradictory
equation is in this case the “system” (3.5.31).

If this equation is ignored, we obtain f1,1(z) = (1 + q1z)/(1 + q1z) = 1, with
error ≈ 1

2z
2, in spite that we asked for an error that is O(zm+n+1) = O(z3). If we

instead allow that q0 = 0, then p0 = 0, and we obtain the same final result, since
f1,1(z) = q1z/(q1z) = 1.

In a sense, this singular case corresponds to a rather stupid request: we ask
to approximate the even function cos z by a rational function where the numerator
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and the denominator end with odd powers of z. One should, of course, ask for the
approximation by a rational function of z2. What would you do, if f(z) is an odd
function?

Imagine a case where fm−1,n−1(z) happens to be a more accurate approxima-
tion to f(z) than usual, say that fm−1,n−1(z) − f(z) = O(zm+n+1). (For instance,
let f(z) be the ratio of two polynomials of degree m − 1 and n − 1, respectively.)
Let b be an arbitrary number, and choose

Qm,n(z) = (z + b)Qm−1,n−1(z),

Pm,n(z) = (z + b)Pm−1,n−1(z).

Then

fm,n(z) = Pm,n(z)/Qm,n(z)

= Pm−1,n−1(z)/Qm−1,n−1(z) = fm−1,n−1(z),

which is an O(zm+n+1)-accurate approximation to f(z). Hence our request for this
accuracy is satisfied by more than one pair of polynomials, Pm,n(z), Qm,n(z), since
b is arbitrary. This is impossible, unless the system (3.5.31) (that determines Qm,n)
is singular.

This illustrates another type of situations where the singular case occurs.
Numerically, a similar situation occurs in a natural way, when one wants to approx-
imate f(z) by fm,n(z), although already fm−1,n−1(z) would represent f(z) as well
as possible with the limited precision of the computer. In this case we must expect
the system (3.5.31) to be very close to a singular system. A reasonable procedure
for handling this is to compute the Padé approximants for a sequence of increasing
values of m, n, to estimate the condition numbers and to stop when it approaches
the reciprocal of the machine unit. This illustrates a fact of some generality. Un-
necessary numerical trouble can be avoided by means of a well designed termination
criterion.

For f(z) = − ln(1 − z), we have cl = 1/l, l > 0. When m = n the matrix of
the system (3.5.31) turns out to be the notorious Hilbert matrix (with permuted
columns), for which the condition number grows exponentially; see Example 2.4.7.
(The elements of the usual Hilbert matrix are aij = 1/(i+ j − 1).)

Example 3.5.6.
The Padé approximations fm,n(z) and the corresponding error terms were

computed by a program using the formulas of Theorem 3.5.4 for f(z) = ez, with
0 ≤ m ≤ 4, n = 4 − m. In the Padé table these will be on the fourth diagonal,
perpendicularly to the main diagonal. The input was the Malaurin coefficients of
f4,0. The results were first obtained in floating point arithmetic, but they were
then converted into rational form by the algorithm described in Example 3.5.2.
The coefficients pi of the numerators Pm,4−m and qj of the denominators Qm,4−m

are given in Table 3.5.1. For m = n = 4 the program found that the error term is
−4 · 10−8z9, while the error term of the Maclaurin expansion f8,0 is 3 · 10−6z9.

When m = n = 10 the program gave warnings about divisions by zero, and
it estimated the condition number of the linear system (3.5.31) to be 1022. The
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Table 3.5.1. The Coefficients pi and qj of Padé approximations for ez.

m\i 0 1 2 3 4

0 1 0 0 0 0

1 1 1/4 0 0 0

2 1 1/2 1/12 0 0

3 1 3/4 1/4 1/24 0

4 1 1 1/2 1/6 1/24

m\j 0 1 2 3 4

0 1 −1 1/2 −1/6 1/24

1 1 −3/4 1/4 −1/24 0

2 1 −1/2 1/12 0 0

3 1 −1/4 0 0 0

4 1 0 0 0 0

reciprocal of this number is a measure of how close the matrix of the system is
to a singular matrix, (see Theorem 7.5.3). The computed coefficients of the Padé
approximant had large errors. Nevertheless e was computed with full machine
accuracy (for z = 1), and the error term was estimated to be less than 10−25z21.

Example 3.5.7.
To evaluate ln(1 + x) one can use the relation

ln(1 + x) = ln

(

1 + z

1 − z

)

, z =
x/2

1 + x/2
,

and use the continued fraction expansion given in (3.5.3). The convergents of this
continued fraction are odd functions and Padé approximants. The first few are

s00 = 2z, s01 =
3

3 − z2
, s11 = 2z

15 + 4z2

3(5 − 3z2)
,

s12 =
105 − 55z2

105 − 90z2 + 9z4
, s22 = 2z

945 − 735z2 + 64z4

15(63− 70z2 + 15z4)
.

Here the diagonal approximants smm are most interest. For example, the approx-
imation s22 matches the Taylor series up to the term z8 and the error is approx-
imately equal to the term z10/11. Note that the denominators are the Legendre
polynomials in 1/z,

3.5.3 The Epsilon Algorithm.

We shall here briefly introduce the important ǫ-algorithm and indicate the connec-
tions between Padé approximation, Aitken acceleration, linear difference equations
and this algorithm.

If n is large, the heavy part of the computation of a Padé approximant

fm,n(z) = Pm,n(z)/Qm,n(z)

of f(z) in (3.5.22) is the solution of the linear system (3.5.31). We see that if m or
n is decreased by 1, most of the equations of the system will be the same. There
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are therefore relations between the polynomials Qm,n(z) for adjacent values of m,n,
which have been subject to intensive research that has resulted in several interesting
algorithms. See, e.g., the monographs of Brezinski [8, 9] and the literature cited
there.

Here we are primarily interested in the use of Padé approximants as a conver-
gence accelerator in the numerical computation of values of f(z) for (say) z = eiφ, in
particular for z = ±1. A natural question is whether it is possible to omit the calcu-
lation of the coefficients pj , qj , and find a recurrence relation that gives the function
values directly. A very elegant solution to this problem, called the ǫ-algorithm, was
found in 1956 by P. Wynn [48], after complicated calculations. We shall present the
algorithm, but we refer to the original paper of Wynn for the proof.

A two-dimensional array of numbers ǫ
(p)
k is computed by the recurrence rela-

tion,

ǫ
(p)
k+1 = ǫ

(p+1)
k−1 +

1

ǫ
(p+1)
k − ǫ

(p)
k

, (3.5.33)

which involves quantities in a rhombus

ǫ
(p)
k

ǫ
(p+1)
k−1 ǫ

(p)
k+1

ǫ
(p+1)
k

If the following boundary conditions are used:

ǫ
(p)
−1 = 0,

ǫ
(p)
0 = fp,0(z) =

p
∑

j=0

cjz
j , (3.5.34)

ǫ
(−n)
2n = f0,n(z) =

1
∑n

j=0 djzj
,

this yields for even subscripts

ǫ
(p)
2n = fp+n,n(z), (3.5.35)

The values of ǫ
(p)
2n+1 with odd subscripts are auxiliary quantities only. The polyno-

mials f0,n(z) are obtained from the Taylor expansion of 1/f(z). Several procedures
for obtaining this were given in Sec. 3.1.

It seems easier to program the ǫ-algorithm it after a slight change of notation.

We introduce an r× 2r matrix A = [aij ], aij = ǫ
(p)
k , where k = j − 2, p = i− j + 1.

Conversely, i = k + p+ 1, j = k + 2. The ǫ-algorithm, together with the boundary
conditions now takes the form:

for i = 1 : r

ai,1 = 0; ai,2 = fi−1,0(z); ai,2i = f0,i−1(z);

for j = 2 : 2 ∗ i− 2

ai,j+1 = ai−1,j−1 + 1/(aij − ai−1,j).
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end

end

Results:
fm,n(z) = am+n+1,2n+2, (m,n ≥ 0, m+ n+ 1 ≤ r).

The above program sketch must be improved for practical use, e.g., something
should be done about the risk for a division by zero.

An extension of the Aitken acceleration, due to Shanks [39] 1955, uses a com-
parison series with terms of the form

cj =

p
∑

ν=1

α′
νk

j
ν , j ≥ 0, kν 6= 0. (3.5.36)

Here α′
ν and kν are 2p parameters, to be determined, in principle, by means of cj ,

j = 0 : 2p− 1. The parameters may be complex. The power series becomes

S(z) =

∞
∑

j=0

cjz
j =

p
∑

ν=1

α′
ν

∞
∑

j=0

kj
νz

j =

p
∑

ν=1

α′
ν

1 − kνz
.

This is a rational function of z, and the “Ansatz” of Shanks is thus related to
Padé approximation, but note that the poles at k−1

ν should be simple and that
m < n for S(z), because S(z) → 0, as z → ∞. Recall that the calculations for the
Padé approximation determines the coefficients of S(z) without calculating the 2n
parameters α′

ν and kν . It can happen that m becomes larger than n, and if α′
ν and

kν are afterwards determined, by the expansion of S(z) into partial fractions, it can
turn out that some of the kν are multiple poles.

This suggests a generalization of the Shanks approach but how? If we consider
the coefficients qj , j = 1 : n, occurring in (3.5.31) as known quantities then (3.5.31)
can be interpreted as a linear difference equation80 . The general solution of this is
given by (3.5.36), if the zeros of the polynomial

Q(x) := 1 +
n
∑

j=1

qjx
j

are simple, but if multiple roots are allowed, the general solution reads,

cl =
∑

ν

pν(l)kn
ν ,

where kν runs through the different zeros ofQ(x), and pν is an arbitrary polynomial,
the degree of which equals the multiplicity −1 of the zero kν .

Essentially the same mathematical relations occur in several areas of numerical
analysis, such as interpolation and approximation by a sum of exponentials, and in
the design of quadrature rules with free nodes (see Sec. 5.2). For an application of
the ǫ-algorithm to numerical quadrature, see Sec. 5.3.3.

80This can also be expressed in terms of the z-transform; see § 3.2.3.
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3.5.4 The QD Algorithm.

Given the continued fraction

c(z) =
a1

1+

a2z

1+

a3z

1+
, (3.5.37)

we denote the nth approximant by

wn(z) = Pn(z)/Qn(z), n = 1, 2, . . . . (3.5.38)

This corresponds to the finite continued fraction obtained by setting an+1 = 0.
The sequence of numerators {Pn} and denominators {Qn} in (3.5.38) satisfy the
recurrence relations:

P0 = 0, P1 = 1, Pn = zanPn−2 + Pn−1,

Q0 = Q1 = 1, Qn = zanQn−2 +Qn−1, n ≥ 2,

Hence both Pn and Qn are polynomials in z of degree [(n− 1)/2] and [n/2], respec-
tively. It can be shown that the polynomials Pn and Qn have no common zero for
n = 1, 2, . . . , and for all z.

In the special case that all ai > 0, the continued fraction

c(z) =
a1

1+

a2z

1+

a3z

1+
, (3.5.39)

is called a Stieltjes fraction.81

From the initial conditions and recurrence relations it follows that Qn(0) = 1,
n = 0, 1, 2, . . . . Hence the rational function wn(z) is analytic at z = 0 and thus can
be expanded in a Taylor series

Pn(z)

Qn(z)
= c

(n)
0 + c

(n)
1 z + c

(n)
2 z2 + · · · (3.5.40)

that converges for z sufficiently small. The coefficients c
(n)
k in (3.5.40) can be shown

to be independent of n for k < n. We denote by ck := c
(n+1)
k the ultimate value of

c
(n)
k for increasing values n and let

f(z) = c0 + c1z + c2z
2 + · · · , (3.5.41)

be the formal power series formed with these coefficients. Then the power series
f(z) and the fraction c(z) are said to correspond to each other. Note that the
formal power series f(z) corresponding to a given fraction c(z) converges for any
z 6= 0.

We now consider the converse problem: Given a (formal) power series f(z),
find a continued fraction c(z) of the form (3.5.50) corresponding to it. Note that we
do not require that the formal power series corresponding to the continued fraction
converges, merely that the nth approximant wn of the continued fraction satisfies

f(z)− wn(z) = O(zn).

81The theory of such fractions was first expounded by Stieltjes in a famous memoir, which
appeared in 1894, the year of his death.
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Example 3.5.8.
For |z| < 1,

arctan z = z − 1
3z

3 + 1
5z

5 − 1
7z

7 + · · · .

The corresponding partial numerators and the corresponding continued fractions
are

a2k =
(2k − 1)2

(4k − 3)(4k − 1)
, a2k+1 =

(2k)2

(4k − 1)(4k + 1)
.

The fraction converges for all z such that z2 is not real and z2 ≤ 1. After an
equivalence transformation we obtain

arctan z =
z

1+

z2

3+

4z2

5+

9z2

7+

16z2

9+
(3.5.42)

The convergents of the corresponding continued fractions are equal to Padé approx-
imants.

The qd algorithm82, can be used to compute such a continued fraction, if it
exists.

For arbitrary integers n and k ≥ 0, we define the Hankel matrices

H
(n)
k =













cn cn+1 · · · cn+k−1

cn+1 cn+2 · · · cn+k

... · · · · · ·
...

cn+k−1 cn+k−2 · · · cn+2k−2













∈ Rk×k, (3.5.43)

where we set ck = 0 for k < 0. Further, we define the Hankel determinants

H
(n)
k = det

(

H
(n)
k

)

, k = 1, 2, . . . . (3.5.44)

associated with the formal power series (3.5.41).

Theorem 3.5.5. Henrici [26, Theorem 12.4c]
Given a formal power series (3.5.41), there exists at most one corresponding

continued fraction. It exists precisely one such fraction if and and only if the Hankel

determinants (3.5.44) satisfy H
(n)
k 6= 0 for n = 0, 1 and k = 1, 2, . . . .

The Hankel determinants satisfy the following important identity called Ja-
cobi’s identity:

For all integers n and k ≥ 1

(H
(n)
k )2 −H

(n−1)
k H

(n+1)
k +H

(n−1)
k+1 H

(n+1)
k−1 = 0. (3.5.45)

82The qd algorithm was originally given by the Swiss mathematician Heinz Rutishauser [38]
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If the determinants H
(n)
k are arranged in a triangular array

1

1 H
(0)
1 = c0

1 H
(1)
1 = c1 H

(0)
2

1 H
(2)
1 = c2 H

(1)
2 H

(0)
3

1 H
(3)
1 = c3 H

(2)
2 H

(1)
3 H

(0)
4

then Jacobi’s identity links together the entries in a star like configuration. Since
the two first columns are trivial (3.5.45) may be used to calculate the Hankel de-
terminants recursively from left to right.

The quotient-difference scheme, or qd scheme is a scheme

q
(0)
1

0 e
(0)
1

q
(1)
1 q

(0)
2

0 e
(1)
1 e

(0)
2

q
(2)
1 q

(1)
2 q

(0)
3

0 e
(2)
1 e

(1)
2

q
(3)
1 q

(2)
2 q

(1)
3

0 e
(3)
1 e

(2)
2

... q
(3)
2

...
...

...

,

where the quantities are connected by the two rhombus rules

e(n)
m = q(n+1)

m − q(n)
m + e

(n+1)
m−1 ; m = 1, 2, . . . , n = 0, 1, 2, . . . , (3.5.46)

q
(n)
m+1 =

e
(n+1)
m

e
(n)
m

q(n+1)
m ; m = 1, 2, . . . , n = 0, 1, 2, . . . , (3.5.47)

The qd scheme associated with the formal power series (3.5.41) is obtained by taking
the entries in the second column to be

q
(n)
1 = cn+1/cn, n = 0, 1, 2, . . . , (3.5.48)

The remaining elements in the qd scheme can then be generated column by column

using the rhombus rules. If the columns q
(n)
m+1, m = 1, 2, . . . exist, then the continued

fraction corresponding to f is given by

c =
c0
1−

q
(0)
1 z

1−
e
(0)
1 z

1−
q
(0)
2 z

1−
e
(0)
2 z

1− − · · · , (3.5.49)
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Example 3.5.9.
For the power series c(z) = 0!+1!z+2!z2 +3!z3 + · · ·, the following qd scheme

is obtained:

1

0 1

2 2

0 1 2

3 3 3

0 1 2 3

4 4 4

0 1 2 3

Hence the corresponding continued fraction is

c(z) =
1

1+

z

1+

z

1+

2z

1+

2z

1+

3z

1+
.

It is sometimes convenient to consider continued fractions in z−1

c(z) =
a1

1+

a2z
−1

1+

a3z
−1

1+
, (3.5.50)

that corresponds to the formal series

p = c0 + c1z
−1 + c2z

−2 + · · · .

Review Questions

1. Define a continued fraction. Show how the convergents can be evaluated either
backwards or forwards.

2. Show how any positive number can be expanded into a continued fraction with
integer elements. In what sense are the convergents the best approximations?
How accurate are they?

3. The denominators or numerators of the approximants of a continued fraction
can be evaluated by Clenshaw’s algorithm. Why is that?

4. What is the Padé table? Describe how the Padé approximants can be com-
puted, if they exist. Tell something about singular and almost singular situa-
tions that can be encountered, and how to avoid them.

5. Describe the ǫ-algorithm, and tell something about its background and its
efficiency.
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6. Describe the qd algorithm. What can it be used for?

Problems and Computer Exercises

1. (a) Write a program for the algorithm of Example 3.5.2. Apply it to find a
few coefficients of the continued fractions for

1
2 (
√

5 + 1),
√

2, e, π, log 2/ log 3, 2j/12

for a few integers j, 1 ≤ j ≤ 11.

(b) Check the accuracy of the convergents. What happens when you apply
your program to a rational number, e.g., 729/768 ?

(c) The metonic cycle used for calendrical purposes by the Greeks consists
of 235 lunar month, which nearly equal 19 solar years. Show, using the al-
gorithm in Example 3.5.2, that 235/19 is the sixth convergent of the ratio
365.2495/29.53059 of the Lunar phase synodic) period and solar period

2. A matrix formalism for continued fractions.

(a) We use the same notations as in Sec. 3.4.1, but we set, with no loss of
generality, b0 = 0. Set

P (n) =

(

pn−1 pn

qn−1 qn

)

, A(n) =

(

0 an

1 bn

)

.

Show that P (0) = I,

P (n) = P (n− 1)A(n), P (n) = A(1)A(2) · · ·A(n− 1)A(n), n ≥ 1.

Comment: This does not minimize the number of arithmetic operations but, in
a matrix-oriented programming language, it often gives very simple programs.

(b) Write a program for this with some termination criterion, and test it on a
few cases, e.g.,

1 +
1

1+

1

1+

1

1+
. . . ; 2 +

1

3+

1

2+

1

3+

1

2+

1

3+
. . . ; 2 +

2

2+

3

3+

4

4+
. . . .

As a post-processing, apply in the first two cases, e.g., Aitken acceleration in
order to obtain a very high accuracy. Does the result look familiar in the last
case? See Problem 3 concerning the exact results in the two other cases.

(c) Write a version of the program with some strategy for scaling P (n) in
order to eliminate the risk of overflow and underflow.

Hint: Note that the convergents xn = pn/qn are unchanged if you multiply
the P (n) by arbitrary scalars.

(d) Use this matrix form for working out a short proof of (3.5.6).

Hint: What is the determinant of a matrix product?
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3. (a) Explain that x = 1 + 1/x for the continued fraction in (3.5.11)?

(b) Compute the periodic continued fraction

2 +
1

3+

1

2+

1

3+

1

2+

1

3+
. . .

exactly (by paper and pencil). (The convergence is assured by Seidel’s Theo-
rem 3.5.2.)

(c) Suggest a generalization of (a) and (b), where you can always obtain a
quadratic equation with a positive root.

(d) Show that

1√
x2 − 1

=
1

x−
1
2

x− y
where y =

1
4

x−
1
4

x−
1
4

x− · · · .

4. (a) Prove the equivalence transformation (3.5.7). Show that the errors of the
convergents have alternating signs, if the elements of the continued fraction
are positive.

(b) Show how to bring a general continued fraction to the special form of
equation (3.5.10).

5. Let Pm,m(z)/Qm,m(z) be the diagonal Padé approximants of the exponential
function. Show that the coefficients for Pm,m(z) satisfy the recursion

p0 = 1, pj+1 =
m− j

(2m− j)(j + 1)
pj , j = 0 : m− 1. (3.5.51)

(b) Show that for m = 6 we have

P6,6(z) = 1 +
1

2
z +

5

44
z2 +

1

66
z3 +

1

792
z4 +

1

15840
z5 +

1

665280
z6.

and Q6,6(z) = P6,6(−z). How many operations are needed to evaluate this
approximation for a given z?

(c) Use the error estimate in (3.5.27), neglecting higher order terms, to com-
pute a bound for the relative error of the approximation in (b) when |z| ∈
[0, ln 2]. What degree of the diagonal Padé approximant is needed for the rel-
ative error is required to be of the oder of the unit roundoff 2−53 = 1.11 ·10−16

in IEEE double precision?

6. (a) Write a program for computing a Padé approximant and its error term.
Apply it (perhaps after a transformation), for various values of m, n to, e.g.,
ez, arctan z, tan z. (Note that two of these examples are odd functions.)
Use the algorithm of Example 3.5.2 for expressing the coefficients as rational
numbers. For how large m,n can you (in these examples) use your program
without severe trouble with rounding errors.

(b) (b) Try to determine for which other functions the Padé table has a similar
symmetry as shown in the text for the exponential function ez.
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7. (a) Show that there is at most one rational function R(z), where the degrees
of the numerator and denominator do not exceed, respectively, m and n, such
that

f(z) −R(z) = O(zm+n+1), as z → 0,

even if the system (3.5.31) is singular. (Note, however, that Pm and Qn are
not uniquely determined, if the system is singular; they have common factors.)

(b) Is it true that if f(z) is a rational function of degrees m′, n′, then

fm,n(z) = f(z), ∀ m ≥ m′, n ≥ n′?

8. Write a program for evaluation the incomplete gamma function. Use the
continued fraction (3.5.21) for x greater than about a + 1. For x less than
about a+ 1 use the power series for γ(a, x).

9. Check that the program sketch for the ǫ-algorithm is equivalent with the

scheme with the quantities ǫ
(p)
k given earlier in the text. How do you obtain

the boundary values?

Notes and References

Much work on approximations to special functions, e.g., Gauss hypergeometric func-
tion and the Kummer function, was done around the end of World War II. This
work culminated with the publication by the US Department of Commerce of the
classical Handbook of Mathematical Functions edited by Milton Abramowitz and
Irene A. Stegun [1, ]. Chapters 13 and 15 in this handbook contain many
useful formulas and tables. Sections 15.1, 15.4, and Table 13.6, show how many
other important functions, elementary as well as advanced special functions, can be
expressed in terms of these functions. Tables and formulas in this handbook can be
useful in preliminary surveys before turning to computer programs.

The basic properties of these functions are derived in Lebedev’s monograph on
Special Functions [30]. Lebedev’s compact book will often be referred to, because
it provides a good background to the applications of advanced Analysis, that lacks
complete proofs in our book. For example, the chapter on the gamma function con-
tains numerous instances of the use of series expansions and analytic continuation
that are efficient as well as instructive, important and beautiful. Codes and other
interesting information concerning the evaluation of special functions are also found
in a modern classic, Numerical Recipes [36, Chapter 5–6].

The idea of using Cauchy’s formula and FFT for numerical differentiation
seems to have been first suggested by Lyness and Moler [32].

A rigorous theory of semi-convergent series was developed by Stieltjes and
Poincaré in 1886.

More information about the classical methods for polynomial interpolation of
equidistant data is found in, e.g., Fröberg [20] and Steffensen [42], in particular
§ 18 about “the calculus of symbols”. For the history of these matters see, e.g.,
Goldstine [21].
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More complete presentation of extrapolation methods is given in the mono-
graph by Claude and Redivo-Zaglia [11], and more recently Sidi [40]. The historical
development of the field is nicely surveyed by Brezinski [10].

Convergence acceleraton methods (due to Lindelöf, Plana and others) that
transform an infinite series to an integral in the complex plane, can, with appro-
priate numerical procedures for computing the integral, compete with the methods
mentioned in Sec. 3.4. They have the additional property to be applicable to some
ill-conditioned series; see Dahlquist [16].

The theory of continued fractions started to develop in the 17th century. The
main contributors were Euler, Lambert and Lagrange; see Brezinski [9]. The ba-
sic algorithmic aspects of what we today call Padé approximants were established
by Frobenius [18]. Padé [34] gave a systematic study of these approximants and
introduced the table named after him. The analytic theory of continued fractions
has earlier origins and contributors include Chebyshev, A. A. Markov and Stielt-
jes. Modern related developments are the epsilon algorithm of P. Wynn and the
quotient-difference algorithm of Rutishauser.

An easy to read introduction to continued fractions and Padé approximations
is Baker [2]. Their use in numerical computations is surveyed in Blanche [4]. More
recent developments of Padé approximations is found in Gragg [22]. Continued
fractions of special functions are found in Abramowitz and Stegun [1]. Codes and
further references are given in Numerical Recipes, Press et al. [36, Chapters 5 and
6]. The following example contains a different type of continued fraction. More
information about arithmetic continued fractions, from a computational point of
view is found in Riesel [37].
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acceleration
Aitken, 150

acceleration of convergence, 116–161
Adams formula

explicit, 110
implicit, 110

Aitken acceleration, 117–123, 150
a-version, 119
iterated, 119

algorithm
Euler’s transformation, 127

aliasing, 63
alternating series, 6
Ansatz, 100
asymptotic series, 60

band matrix, 97
bell sum, 54, 56, 65, 113, 159
Bernoulli

function, 135
numbers, 12–13, 28
polynomial, 135

Bernstein’s approximation theorem, 47
Bessel function, 65, 66, 115

modified, 57
Bickley’s table, 78
boundary value problem, 64
boundary values)

for difference equation, 97

Cauchy product, 8
Cauchy–FFT method, 38–43
characteristic equation (polynomial)

of difference equation, 98
Chebyshev

expansion, 46
points, 45

polynomial, 44–49
minimax property, 45

series, 44–49
Clenshaw’s algorithm, 48, 64
completely monotonic

function, 117, 133
sequence, 52

continued fractions, 161–169
convergence

acceleration of, 116–161
convergence acceleration, 116–148

problems, 148
convolution, 8
cubic spline interpolation, 112
cut (in the complex plane), 37

difference
checks, 69
equation

linear, 96–101
nonhomogeneous, 100

of product, 72
operator, 67–101

backward, 68
forward, 67

scheme, 68
differential equation, 2
differentiation

algorithmic, 18
automatic, 18
numerical, 92
symbolic, 18

differentiation formula
forwards, 84
higher derivatives, 84
backwards, 82

Discrete Fourier Transform (DFT), 40
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divergent series, 58–61

epsilon algorithm, 123, 174–176
equivalence transformation, 163
error estimate

asymptotic, 84
error function, 56, 65
Euler

numbers, 13
transformation, 58

generalized, 125
Euler’s

function, 58
method, 145
transformation, 123–131

exponential integral, 169

FFT, 40, 112
Fibonacci sequence, 112, 150
Fourier series, 36–38
frozen coefficients, 104, 115
function

completely monotonic, 117
of bounded variation, 38

functionals, 75

Gamma function, 53, 140, 155
incomplete, 168, 169

Gauss’ hypergeometric function, 10,
167

generating function, 101
geometric series, 9

comparison with, 3
Green’s function, 113

Hankel
determinant, 178
determinants, 123
matrix, 172, 177–180

Hilbert matrix, 173

ill-conditioned series, 52–58
integration by parts, 60

repeated, 8
interpolation formula, 89
irregular errors, 70

J. C. P. Miller formula, 29
Jacobi’s identity, 178

Kummer’s
identity, 65

Kummer’s hypergeometric function, 11

Lagrange’s
remainder term, 8

Laurent series, 36–38
Lin–Segel’s balancing procedure, 50
linear functional, 74
linear operator, 74

matrix
nilpotent, 19
semicirculant, 19
shift, 19
Toeplitz, 19

matrix representation
of truncated expansion, 84
of truncated power series, 19

maximum modulus, 8, 39
minimax property, 45
multi-valued functions, 37

Neville’s algorithm, 141–148
normal probability function, 169
Numerov’s method, 104, 145, 157

operator
averaging, 73
calculus of, 72–96
central difference, 73
commutative, 74
differentiation, 73
expansions, 67–101
linear, 74

Padé
approximation, 169–173

of exponential function, 170, 173
table, 169–173

Pascal matrix, 108
Peano kernel, 84
perturbation

expansion, 49–51
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regular, 49
singular, 50

Poisson
distribution, 55, 160, 169
summation formula, 117

power series, 7–26
composite function, 17, 22
division., 12
inverse function, 22
reversion, 22

qd algorithm, 177–180
qd scheme, 179

recurrence
backward, 97
forward, 97

recurrence relation
three term, 48

remainder term
in series, 6
Lagrange’s, 8

repeated averaging, 124
resolve

grid, 84
Richardson extrapolation, 141–148

repeated , 141
Riemann–Lebesgue theorem, 38
Romberg’s method, 141
root condition, 101
Runge’s 2nd order method, 145

scalar of operator, 77
Scylla and Charybdis, 40, 42
secant method, 112
seed, 96
semicirculant matrix, 19
semiconvergent series, 58
sequence

completely monotonic, 52
series

alternating, 6
asymptotic, 60
convergence acceleration, 116–161
divergent, 58–61
geometric, 9

ill-conditioned, 52–58
semiconvergent, 58, 65
Taylor, 7
with positive terms, 58

shift matrix, 19
shift operator, 67
Stirling’s formula, 53, 139
subtabulation, 111
summation algorithms, 116–161
summation by parts, 72

repeated, 107
superposition principle, 69

tail of a series, 3
Taylor series, 7

symbolic form of, 76
termination criterion, 3
thinned sequence, 121
thinning, 121, 129–131

geometric, 121
three term recurrence relation, 48
Toeplitz matrix, 19

method, 19
translation operator, 67
trapezoidal error, 141
tridiagonal, 97

Vandermonde matrix, 75

z-transform, 101


