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Chapter 11

Nonlinear Systems and

Optimization

11.1 Systems of Nonlinear Equations

11.1.1 Introduction

Many problems can be written in the generic form

fi(x1, x2, . . . , xn) = 0, i = 1 : n. (11.1.1)

where fi are given functions of n variables. In this section we consider the numerical
solution of such systems, where at least one function depends nonlinearly on at least
one of the variables. Such a system is called a nonlinear system of equations, and
can be written more compactly as

f(x) = 0, f : Rn → Rn. (11.1.2)

Even more generally, if f is an operator acting on some function space (11.1.1) is
functional equation. Applications where nonlinear systems arise include initial
and boundary value problems for nonlinear differential equations, and nonlinear
integral equations.

The problem of finding all solutions of equation (11.1.1) in some subregion
B ⊂ Rn can be a very difficult problem. Note that in Rn there is no efficient
method like the bisection method (see Chapter 5) that can be used as a global
method to get initial approximations. In general we must therefore be content with
finding local solutions, to which reasonable good initial approximations are known.

A nonlinear optimization problem is a problem of the form

min
x
φ(x), x ∈ Rn, (11.1.3)

where the objective function φ is a nonlinear mapping Rn → R. Most numerical
methods try to find a local minimum of φ(x), i.e., a point x∗ such that φ(x∗) ≤
φ(y) for all y in a neighborhood of x∗. If the objective function φ is continuously
differentiable at a point x then any local minimum point x of φ must satisfy

g(x) = ∇φ(x) = 0, (11.1.4)

1
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where g(x) is the gradient vector. This shows the close relationship between solving
optimization problems and nonlinear systems of equations.

Optimization problems are encountered in many applications such as opera-
tions research, control theory, chemical engineering, and all kinds of curve fitting
or more general mathematical model fitting. The optimization problem (11.1.3) is
said to be unconstrained. In this chapter we consider mainly methods for uncon-
strained optimization. Methods for linear programming problems will be discussed
in Section 11.4.

If in (11.1.1) there are m > n equation we have an overdetermined nonlinear
system. A least squares solution can then be defined to be a solution to

min
x∈Rn

φ(x), φ(x) = 1
2‖f(x)‖2

2, (11.1.5)

which is a nonlinear least squares problem. Note that this is an (unconstrained)
optimization problem, where the objective function φ has a special form. Methods
for this problem are described in Section 11.2.

Frequently the solution to the optimization problem (11.1.3) is restricted to
lie in a region B ⊂ Rn. This region is often defined by inequality and equality
constraints of the form

ci(x) = 0, i = 1 : m1, ci(x) ≥ 0, i = m1 + 1 : m. (11.1.6)

There may also be constraints of the form li ≤ ci(x) ≤ ui. In the simplest case the
constraint functions ci(x) are linear. Any point x, which satisfies the constraints,
is said to be a feasible point and the set B is called the feasible region. An
important special case is linear programming problems, where both φ(x) and the
constraints (11.1.6) are linear. This problem has been extensively studied and very
efficient methods exist for their solution; see Section 11.4

11.1.2 Generalized Linear Methods

In Chapter 5 we developed methods for solving a single nonlinear equation f(x) = 0,
f : R → R. A simple way to extend these methods for solving a nonlinear system
(11.1.1) is as follows.

Given approximations x
(k)
1 , . . . , x

(k)
n , we use the ith equation to solve for a new

approaimation for xi,

fi

(

x
(k)
1 , . . . , xi, . . . , x

(k)
n

)

= 0, i = 1 : n, (11.1.7)

and take the result as x
(k+1)
i . (Note that this assumes that the fi depends on

the variable xi.) We repeat this for k = 0, 1, 2, . . ., where x(0) is some initial
approximation. The resulting method is called the nonlinear Jacobi method.
Since (11.1.7) is a nonlinear equation in one unknown, the methods developed in
Chapter 5 can be used to solve it.

An obvious variation is to use the most recent approximations for the other
components and instead of (11.1.7) solve

fi

(

x
(k+1)
1 , . . . , x

(k+1)
i−1 , xi, . . . , x

(k)
n

)

= 0, i = 1 : n. (11.1.8)
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This gives the nonlinear Gauss–Seidel method. Note that in this method the
orderings of equations and variables are important. This method can be generalized
in an obvious manner to give the nonlinear SOR method. A great many variations
are possible corresponding to which method is used to solve the secondary one-
dimensional problem. In this way methods are obtained, which can be called Jacobi-
Newton, Gauss–Seidel–Secant, etc. For a further discussion of such methods we refer
to Ortega and Rheinboldt, [29, , Section7.4].

11.1.3 Fixed Point Iteration

In this section we generalize the theory of fixed-point iteration developed in Sec-
tion 5.2 for a single nonlinear equation. Rewriting the system (11.1.1) in the form

xi = gi(x1, x2, . . . , xn), i = 1 : n,

suggests an iterative method where, for k = 0, 1, 2, . . ., we compute

x
(k+1)
i = gi

(

x
(k)
1 , x

(k)
2 , . . . , x(k)

n

)

, i = 1 : n, (11.1.9)

Using vector notations this can be written

x(k+1) = g
(
x(k)

)
, k = 0, 1, 2, . . . , (11.1.10)

which is known as a fixed point iteration. Clearly, if g is continuous and
limk→∞ x(k) = x∗, then x∗ = g(x∗) and x∗ solves the system x = g(x). (Recall
that a vector sequence is said to converge to a limit x∗ if limk→∞ ‖x(k) − x∗‖ = 0
for some norm ‖ · ‖, see Section 6.2.5).

Example 11.1.1.

The nonlinear system

x2 − 2x− y + 1 = 0

x2 + y2 − 1 = 0

defines the intersection between a circle and a parabola. The two real roots are
(1, 0) and (0, 1). Taking x0 = 0.9 and y0 = 0.2 and using the following fixed point
iteration

xk+1 = (yk − 1)/(xk − 2), yk+1 = 1 − x2
k/(yk + 1),

we obtain the results

k xk yk

1 0.72727273 0.32500000
2 0.53035714 0.60081085
3 0.27162323 0.82428986
4 0.10166194 0.95955731
5 0.02130426 0.99472577
6 0.00266550 0.99977246
7 0.00011392 0.99999645
8 0.00000178 0.99999999
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Note that although we started close to the root (1, 0) the sequence converges to the
other real root (0, 1). (See also Problem 1.)

We will now derive sufficient conditions for the convergence of the fixed point
iteration (11.1.10). We first need a definition.

Definition 11.1.1.

A function f(x) : Rn → Rn, is said to Lipschitz continuous in an open
set D ∈ Rn if there exists a constant L such that

‖f(x) − f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ D.

The constant L is called a Lipschitz constant. If L < 1 then f is called a
contraction.

The following important theorem generalizes Theorem 5.2.2. It not only pro-
vides a solid basis for iterative numerical techniques, but also is an important tool
in theoretical analysis. Note that, the existence of a fixed point is not assumed a
priori.

Theorem 11.1.2. The Contraction Mapping Theorem.
Let T : E → F , where E = F = Rn, be an iteration function, and Sr = {u |

‖u− u0‖ < r} be a ball of radius r around a given starting point u0 ∈ Rn. Assume
that T is a contraction mapping in Sr, i.e.,

u, v ∈ Sr ⇒ ‖T (u)− T (v)‖ ≤ L‖u− v‖, (11.1.11)

where L < 1. Then if
‖u0 − T (u0)‖ ≤ (1 − L)r (11.1.12)

the equation u = T (u) has a unique solution u∗ in the closure Sr = {u| ‖u− u0‖ ≤
r}. This solution can be obtained by the convergent iteration process uk+1 = T (uk),
k = 0, 1, . . ., and we have the error estimate

‖uk − u∗‖ ≤ ‖uk − uk−1‖
L

1 − L
≤ ‖u1 − u0‖

Lk

1 − L
. (11.1.13)

Proof. We first prove the uniqueness. If there were two solutions u′ and u′′, we
would get u′ − u′′ = T (u′) − T (u′′) so that

‖u′ − u′′‖ = ‖T (u′) − T (u′′)‖ ≤ L‖u′ − u′′‖.

Since L < 1, it follows that ‖u′ − u′′‖ = 0, i.e., u′ = u′′.
By (11.1.12) we have ‖u1−u0‖ = ‖T (u0)−u0‖ ≤ (1−L)r, and hence u1 ∈ Sr.

We now use induction to prove that un ∈ Sr for n < j, and that

‖uj − uj−1‖ ≤ Lj−1(1 − L)r, ‖uj − u0‖ ≤ (1 − Lj)r.
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We already know that these estimates are true for j = 1. Using the triangle in-
equality and (11.1.11) we get

‖uj+1 − uj‖ = ‖T (uj) − T (uj−1)‖ ≤ L‖uj − uj−1‖ ≤ Lj(1 − L)r,

‖uj+1 − u0‖ ≤ ‖uj+1 − uj‖ + ‖uj − u0‖ ≤ Lj(1 − L)r + (1 − Lj)r

= (1 − Lj+1)r.

This proves the induction step, and it follows that the sequence {uk}∞k=0 stays in
Sr. We also have for p > 0

‖uj+p − uj‖ ≤ ‖uj+p − uj+p−1‖ + · · · + ‖uj+1 − uj‖
≤ (Lj+p−1 + . . .+ Lj)(1 − L)r ≤ Lj(1 − Lp)r ≤ Ljr,

and hence limj→∞ ‖uj+p − uj‖ = 0. The sequence {uk}∞k=0 therefore is a Cauchy
sequence, and since Rn is complete has a limit u∗. Since uj ∈ Sr for all j it follows
that u∗ ∈ Sr.

Finally, by (11.1.11) T is continuous, and it follows that limk→∞ T (uk) =
T (u∗) = u∗. The demonstration of the error estimates (11.1.13) is left as exercises
to the reader.

Theorem 11.1.2 holds also in a more general setting, where T : Sr → B, and
B is a Banach space1 The proof goes through with obvious modifications. In this
form the theorem can be used, e.g., to prove existence and uniqueness for initial
value problems for ordinary differential equations, see Section 13.2.1.

The Lipschitz constant L is a measure of the rate of convergence; at every
iteration the upper bound for the norm of the error is multiplied by a factor equal
to L. The existence of a Lipschitz condition is somewhat more general than a
differentiability condition, which we now consider.

Definition 11.1.3.

The function fi(x), Rn → R, is said to be continuously differentiable at a
point x if the gradient vector

∇φ(x) =
( ∂fi

∂x1
, . . . ,

∂fi

∂xn

)T

∈ Rn (11.1.14)

exists and is continuous. The vector valued function f(x), Rn → Rn, is said to
be differentiable at the point x if each component fi(x) is differentiable at x. The
matrix

J(x) =






∇f1(x)T

...
∇fn(x)T




 =






∂f1

∂x1
. . . ∂f1

∂xn

...
...

∂fn

∂x1
. . . ∂fn

∂xn




 ∈ Rn×n, (11.1.15)

is called the Jacobian of f .

1A Banach space is a normed vector space which is complete, i.e., every Cauchy sequence
converges to a point in B, see Dieudeonné [11, ].
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The following theorem shows how a Lipschitz constant for f(x) can be ex-
pressed in terms of the derivative f ′(x).

Lemma 11.1.4.

Let function f(x), Rn → Rn, be differentiable in a convex set D ⊂ Rn. Then
L = max

y∈D
‖f ′(y)‖ is a Lipschitz constant for f .

Proof. Let 0 ≤ t ≤ 1 and consider the function g(t) = f(a + t(x − a)), a, x ∈ D.
By the chain rule g′(t) = f ′

(
a+ t(x− a)

)
(x− a) and

f(x) − f(a) = g(1) − g(0) =

∫ 1

0

g′(t)dt =

∫ 1

0

f ′
(
a+ t(x− a)

)
(x− a)dt.

Since D is convex the whole line segment between the points a and x belongs to D.
Applying the triangle inequality (remember that an integral is the limit of a sum)
we obtain

‖f(x) − f(a)‖ <
∫ 1

0

‖f ′(a+ t(x− a))‖ ‖x− a‖dt ≤ max
y∈D

‖f ′(y)‖ ‖x− a‖.

11.1.4 Newton-Type Methods

Newton’s method for solving a single nonlinear equation f(x) = 0 can be derived
by using Taylor’s formula to get a linear approximation for f at a point. To get
a quadratically convergent method for a system of nonlinear equations we must
similarly use derivative information of f(x).

Let xk be the current approximation2 and assume that fi(x) is twice differen-
tiable at xk. Then by Taylor’s formula

fi(x) = fi(xk) + (∇fi(xk))T (x− xk) +O(‖x− xk‖2), i = 1 : n.

Using the Jacobian matrix (11.1.15) the nonlinear system f(x) = 0 can be written

f(x) = f(xk) + J(xk)(x− xk) +O(‖x − xk‖2) = 0.

Neglecting higher order terms we get the linear system

J(xk)(x − xk) = −f(xk). (11.1.16)

If J(xk) is nonsingular then (11.1.16) has a unique solution xk+1, which can be
expected to be a better approximation. The resulting iterative algorithm can be
written

xk+1 = xk −
(
J(xk)

)−1
f(xk). (11.1.17)

2In the following we use vector notations so that xk will denote the kth approximation and not
the kth component of x.
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which is Newton’s method. Note that, in general the inverse Jacobian matrix
should not be computed. Instead the linear system (11.1.16) is solved, e.g., by
Gaussian elimination. If n is very large and J(xk) sparse it may be preferable to
use one of the iterative methods given in Chapter 11. Note that in this case xk can
be used as an initial approximation.

The following example illustrates the quadratic convergence of Newton’s method
for simple roots.

Example 11.1.2.

The nonlinear system

x2 + y2 − 4x = 0
y2 + 2x− 2 = 0

has a solution close to x0 = 0.5, y0 = 1. The Jacobian matrix is

J(x, y) =

(
2x− 4 2y

2 2y

)

,

and Newton’s method becomes
(
xk+1

yk+1

)

=

(
xk

yk

)

− J(xk, yk)−1

(
x2

k + y2
k − 4xn

y2
k + 2xk − 2

)

.

We get the results:

k xk yk

1 0.35 1.15
2 0.35424528301887 1.13652584085316
3 0.35424868893322 1.13644297217273
4 0.35424868893541 1.13644296914943

All digits are correct in the last iteration. The quadratic convergence is obvious;
the number of correct digits approximately doubles in each iteration.

It is useful to have a precise measure of the asymptotic rate of convergence
for a vector sequence converging to a limit point.

Definition 11.1.5.

A convergent sequence {xk} with limk→∞{xk} = x∗, and xk 6= x∗, is said to
have order of convergence equal to p (p ≥ 1), if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖p

= C, (11.1.18)

where |C| < 1 for p = 1 and |C| < ∞, p > 1. C is called the asymptotic

error constant. The sequence has exact convergence order p if (11.1.18) holds
with C 6= 0. We say the convergence is superlinear if C = 0 for some p ≥ 1.
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Note that for finite dimensional vector sequences, the order of convergence p
does not depend on the choice of norm, and that the definitions agree with those
introduced for scalar sequences, see Def. 5.2.1. (More detailed discussions of con-
vergence rates is found in Dennis and Schnabel [10, pp. 19–21], and Chapter 9 of
Ortega and Rheinboldt [29].)

In order to analyze the convergence of Newton’s method we need to study how
well the linear model (11.1.16) approximates the equation f(x) = 0. The result we
need is given in the lemma below.

Lemma 11.1.6.

Assume that the Jacobian matrix satisfies the Lipschitz condition

‖J(x) − J(y)‖ ≤ γ‖x− y‖, ∀x, y ∈ D,

where D ⊂ Rn is a convex set. Then for all x, y ∈ D it holds that

‖f(x) − f(y) − J(y)(x− y)‖ ≤ γ

2
‖x− y‖2.

Proof. The function g(t) = f(y + t(x − y)), x, y ∈ D is differentiable for all
0 ≤ t ≤ 1, and by the chain rule g′(t) = J(y + t(x − y))(x− y). It follows that

‖g′(t) − g′(0)‖ = ‖
(
J(y + t(x− y)) − J(y)

)
(x− y)‖ ≤ γt‖x− y‖2. (11.1.19)

Since the line segment between x and y belongs to D

f(x) − f(y) − J(y)(x − y) = g(1) − g(0) − g′(0) =

∫ 1

0

(
g′(t) − g′(0)

)
dt.

Taking norms and using (11.1.19) it follows that

‖f(x) − f(y) − J(y)(x− y)‖ ≤
∫ 1

0

‖g′(t) − g′(0)‖dt ≤ γ‖x− y‖2

∫ 1

0

tdt.

The following famous theorem gives rigorous conditions for the quadratic con-
vergence of Newton’s method. It also shows that Newton’s method in general
converges provided that x0 is chosen sufficiently close to a solution x∗.

Theorem 11.1.7. (Newton–Kantorovich Theorem)
Let f : Rn → Rn be continuously differentiable in an open convex set C ∈ Rn,

and Let the Jacobean matrix of f(x) be J(x). Assume that f(x∗) = 0, for x∗ ∈ Rn.
Let positive constants r, β > 0 be given such that Sr(x

∗) = {x| ‖x− x∗‖ < r} ⊆ C,
and

(a) ‖J(x) − J(y)‖ ≤ γ‖x− y‖, ∀ x, y ∈ Sr(x
∗),
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(b) J(x∗)−1 exists and satisfies ‖J(x∗)−1‖ ≤ β.

Then there exists an ǫ > 0 such that for all x0 ∈ Sǫ(x
∗) the sequence generated by

xk+1 = xk − J
(
xk

)−1
f(xk), k = 0, 1, . . .

is well defined, limn→∞ = x∗, and satisfies

‖xk+1 − x∗‖ ≤ βγ‖xk − x∗‖2.

Proof. We choose ǫ = min{r, 1/(2βγ)}. Then by (a) and (b) it follows that

‖J(x∗)−1(J(x0) − J(x∗))‖ ≤ βγ‖x0 − x∗‖ ≤ βγǫ ≤ 1/2.

By Corollary 6.6.1 and (b) we have ‖J(x0)
−1‖ ≤ ‖J(x∗)−1‖/(1 − 1/2) = 2β. It

follows that x1 is well defined and

x1 − x∗ = x0 − x∗ − J(x0)
−1

(
f(x0) − f(x∗)

)

= J(x0)
−1 (f(x∗) − f(x0) − J(x0)(x

∗ − x0)) .

Taking norms we get

‖x1 − x∗‖ ≤ ‖J
(
x0

)−1‖ ‖f(x∗) − f(x0) − J(x0)(x
∗ − x0)‖

≤ 2βγ/2‖x0 − x∗‖2,

which proves quadratic convergence.

We remark that a result by Kantorovich shows quadratic convergence under
weaker conditions. In particular, it is not necessary to assume the existence of a
solution , or the nonsingularity of J(x) at the solution. For a discussion and proof
of these results we refer to Ortega and Rheinboldt [29, ,Ch. 12.6].

Each step of Newton’s method requires the evaluation of the n2 entries of the
Jacobian matrix J(xk), and to solve the resulting linear system n3/3 arithmetic
operations are needed. This may be a time consuming task if n is large. In many
situations it might be preferable to reevaluate J(xk) only occasionally using the
same Jacobian in m > 1 steps,

J(xp)(xk+1 − xk) = −f(xk), k = p : p+m− 1. (11.1.20)

Once we have computed the LU factorization of J(xp) the linear system can be
solved in n2 arithmetic operations. The motivation for this approach is that if either
the iterates or the Jacobian matrix are not changing too rapidly J(xp) is a good
approximation to J(xk). (These assumptions do not usually hold far away from
the solution, and may cause divergence in cases where the unmodified algorithm
converges.)

The modified Newton method can be written as a fixed point iteration with

g(x) = x− J(xp)
−1f(x), g′(x) = I − J(xp)

−1J(x).
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We have, using assumptions from Theorem 11.1.7

‖g′(x)‖ ≤ ‖J(xp)
−1‖ ‖J(xp) − J(x)‖ ≤ βγ‖xp − x‖.

Since g′ 6= 0 the modified Newton method will only have linear rate of convergence.
Also, far away from the solution the modified method may diverge in cases where
Newton’s method converges.

Example 11.1.3.

Consider the nonlinear system in Example 11.1.2. Using the modified Newton
method with fixed Jacobian matrix evaluated at x1 = 0.35 and y1 = 1.15

J(x1, y1) =

(
2x1 − 4 2y1

2 2y1

)

=

(
−3.3 2.3
2.0 2.3

)

.

we obtain the result

k xk yk

1 0.35 1.15
2 0.35424528301887 1.13652584085316
3 0.35424868347696 1.13644394786146
4 0.35424868892666 1.13644298069439
5 0.35424868893540 1.13644296928555
6 0.35424868893541 1.13644296915104

11.1.5 Numerical Differentiation

It has been stated at several places in this book that numerical differentiation should
be avoided, when the function values are subject to irregular errors, like errors of
measurement or rounding errors. Nowadays, when a typical value of the machine
constant u is 2−53 ≈ 10−16, the harmful effect of rounding errors in the context of
numerical differentiation, however, should not be exaggerated. We shall see that
the accuracy of the first and second derivatives is satisfactory for most purposes, if
the step size is chosen appropriately.

With the multilinear mapping formalism, the general case of vector valued
dependent and independent variables becomes almost as simple as the scalar case.
Let η be a small positive number. By Taylor’s formula,

g′(x0)v =
g(x0 + ηv) − g(x0 − ηv)

2η
+RT , RT ≈ −η

2g′′′(x0)v
3

6
, (11.1.21)

where, as above, we use v3 as an abbreviation for the list (v, v, v) of vector ar-
guments. The Jacobian g′(x0) is obtained by the application of this to v = ej ,
j = 1 : k. If the Jacobian has a band structure, then it can be computed by means
of fewer vectors v; see Problem 3. First note that, if g is quadratic, there is no
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truncation error, and η can be chosen rather large, so the rounding error causes no
trouble either.

Suppose that the rounding error of g(x) is (approximately) bounded by ǫ‖g‖/η.
(The norms here are defined on a neighborhood of x0.) The total error is therefore
(approximately) bounded by

B(η) = ‖g‖ ǫ
η

+ ‖g′′′‖‖v‖3 η
2

6
.

Set ‖g‖/‖g′′′‖ = ξ3, and note that ξ measures a local length scale of the variation
of the function g, (if we interpret x as a length). A good choice of η is found by
straightforward optimization:

min
η
B(η) = (3ǫ)2/3‖g‖‖v‖/(2ξ), η‖v‖ = (3ǫ)1/3ξ. (11.1.22)

For ǫ = 10−16, we should choose η‖v‖ = 7·10−6ξ. The error estimate becomes
2.5·10−11‖g‖‖v‖/ξ. In many applications this accuracy is higher than necessary. If
uncentered differences are used instead of centered differences, the error becomes
O(ǫ1/2) with optimal choice of η, while the amount of computation may be reduced
by almost 50%; see Problem 1.

It may be a little cumbersome to estimate ξ by its definition, but since we
need a very rough estimate only, we can replace it by some simpler measure of
the length scale of g(x), e.g. a rough estimate of (say) 1

2‖g‖/‖g′‖.3 Then the

error estimate simplifies to (3ǫ)2/3‖g′‖‖v‖ ≈ 5·10−11‖g′‖‖v‖ for ǫ = 10−16. This is
usually an overestimate, though not always. Recall that if g is quadratic, there is
no truncation error.

The result of a similar study of the directional second derivative reads

f ′′(x0)v
2 =

f(x0 + ηv) − 2f(x0) + f(x0 − ηv)

η2
+RT , (11.1.23)

RT ≈ −η
2f iv(x0)v

4

12
,

B(η) = ‖f‖ 4ǫ

η2
+

‖f iv‖ ‖v‖4η2

12
,

ξ = (‖f‖/‖f iv|)1/4 ≈ (
1

3
‖f‖/‖f ′′‖)1/2,

min
η
B(η) = 2(ǫ/3)1/2‖f‖ ‖v‖2/ξ2 ≈ ǫ1/2‖f ′′‖‖v‖2, η‖v‖ = (48ǫ)1/4ξ.

Note that:

• if g is a cubic function, there is no truncation error, and η‖v‖ can be chosen
independent of ǫ. Otherwise, for ǫ = 10−16, we should choose η‖v‖ ≈ 3·10−4ξ.
The simplified error estimate becomes 2·10−8‖f ′′‖‖v‖2;

3The factor 1

2
is a safety factor. So is the factor 1

3
in the equation for ξ in the group (11.1.23).
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• if f ′(x) is available, we can obtain f ′′(x0)v
2 more accurately by setting g(x) =

f ′(x)v into (11.1.21), since the value of η can then usually be chosen smaller;

• if f(x) is a quadratic form, then f ′′(x) is a constant bilinear operator and
f ′′(x)v2 = f(v). If f is a non-homogeneous quadratic function, its affine part
must be subtracted from the right hand side;

• in order to compute f ′′(x0)(u, v), it is sufficient to have a subroutine for
f ′′(x0)v

2, since the following formula can be used. It is easily derived by the
bilinearity and symmetry of f ′′(x0).

f ′′(x0)(u, v) =
1

4

(
f ′′(x0)(u + v)2 − f ′′(x0)(u − v)2

)
(11.1.24)

11.1.6 Derivative Free Methods

In many applications the Jacobian matrix is not available or too expensive to evalu-
ate. Then we can use the discretized Newton method, where each of the deriva-
tive elements in J(xk) is discretized separately by a difference quotient. There are
many different variations depending on the choice of discretization. A frequently
used approximation for the jth column of J(x) is the forward difference quotient

∂f(x)

∂xj
≈ ∆jf(x) ≡ f(x+ hjej) − f(x)

hj
, j = 1 : n,

where ej denotes the jth unit vector and hj > 0 is a suitable scalar. If the resulting
approximation is denoted by J(x,D), then we can write

J(x,D) =
(
f(x+ h1e1) − f(x), . . . , f(x+ hnen) − f(x)

)
D−1,

where D = diag(h1, h2, . . . , hn) is a nonsingular diagonal matrix. This shows that
J(xk, d) is nonsingular if and only if the vectors

f(xk + hjej) − f(xk), j = 1 : n,

are linearly independent.
It is important that the step sizes hj are chosen carefully. If hj is chosen too

large then the derivative approximation will have a large truncation error; if it is
chosen too small then roundoff errors may be dominate (cf. numerical differentia-
tion). As a rule of thumb one should choose hj so that f(x) and f(x+ hjej) have
roughly the first half digits in common, i.e.,

|hj | ‖∆jf(x)‖ ≈ u1/2‖f(x)‖.

In the discretized Newton method the vector function f(x) needs to be eval-
uated at n+ 1 points, including the point xk. Hence it requires n2 + n component
function evaluations per iteration. Methods which only only require (n2 + 3n)/2
component function evaluations have been proposed by Brown (1966) and Brent
(1973). Brent’s method requires the computation of difference quotients

f(x+ hjqk) − f(x)

hj
, j = 1 : n, k = j : n,
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where Q = (q1, . . . , qn) is a certain orthogonal matrix determined by the method.
Note that because of common subexpressions, in some applications a component
function evaluation may be almost as expensive as a vector function evaluation. In
such cases the original Newton method is still to be preferred. For a discussion of
these methods see Moré and Cosnard [27, ].

If the function f(x) is complicated to evaluate even the above method may be
too expensive. In the methods above we obtain the next approximation xk+1 by a
step along the direction hk, computed by solving the linear system

Bkhk = −f(xk), (11.1.25)

where Bk is an approximation to the Jacobian J(xk). The class of quasi-Newton

methods can be viewed as a generalization of the secant method to functions of
more than one variable. The approximate Jacobian Bk+1 is required to satisfy the
secant equation

Bk+1sk = yk (11.1.26)

where sk and yk are the vectors

sk = xk+1 − xk, yk = f(xk+1) − f(xk).

This means that Bk+1 correctly imitates the Jacobian along the direction of change
sk. Of course many matrices satisfy this condition.

In the very successful Broyden’s method it is further required that the
difference Bk+1 −Bk has minimal Frobenius norm. It is left as an exercise to verify
that these conditions lead to

Bk+1 = Bk +
(yk − Bksk)sT

k

sT
k sk

. (11.1.27)

This is generally referred to as Broyden’s “good” updating formula. Note that
Bk+1 − Bk is a matrix of rank one, and that Bk+1p = Bkp for all vectors p such
that pT (xk+1 −xk) = 0. (To generate an initial approximation B1 we can use finite
differences along the coordinate directions.)

It can be shown that Broyden’s modification of Newton’s method has super-
linear convergence.

Theorem 11.1.8.

Let f(x) = 0, f : Rn → Rn, be sufficiently smooth, and let x∗ be a regular
zero point of f . Let

xk+1 = xk −B−1
k f(xk)

be the Newton type method where Bk is updated according to Broyden’s formula
(11.1.27). If x0 is sufficiently close to x∗, and B0 sufficiently close to f ′(x0), then
the sequence {xk} is defined and converges superlinearly to x∗, i.e.,

‖xk+1 − x∗‖
‖xk − x∗‖ → 0, n→ ∞.
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Proof. See Dennis and Moré [9].

We can compute Bk+1 from (11.1.27) in only 2n2 operations and no extra
function evaluations. To solve (11.1.25) for the Newton direction still seems to
require O(n3) operations. However, assume that a QR decomposition Bk = QkRk

was computed in the previous step. Then we can write

Bk+1 = Qk(Rk + ukv
T
k ), uk = QT

k (yk −Bksk), vT
k = sT

k /s
T
k sk.

We will show below that the QR decomposition of Rk + ukv
T
k = Q̄kR̄k+1 can be

computed in O(n2) operation. Then we have

Bk+1 = Qk+1Rk+1, Qk+1 = QkQ̄k.

We start by determining a sequence of Givens rotationsGj,j+1, j = n−1, . . . , 1
such that

GT
1,2 . . . G

T
n−1,nuk = αe1, α = ±‖uk‖2.

Note that these transformations zero the last n− 1 components of uk from bottom
up. (For details on how to compute Gj,j+1 see Section 7.4.2.) The same transfor-
mations are now applied to the Rk, and we form

H̄ = GT
1,2 . . . G

T
n−1,n(Rk + ukv

T
k ) = H + αe1v

T
k .

It is easily verified that in the product H = GT
1,2 . . . G

T
n−1,nRk the Givens rotations

will introduce extra nonzero elements only in positions (j, j + 1), j = 1 : n, so that
H becomes an upper Hessenberg matrix of the form

H =






× × × ×
× × × ×
0 × × ×
0 0 × ×




 , n = 4.

The addition of αe1v
T
k only modifies the first row of H , and hence also H̄ is an

upper Hessenberg matrix. We now determine a sequence of Givens rotations Ḡj,j+1

so that Ḡj,j+1 zeros the element h̄j+1,j , j = 1 : n− 1. Then

ḠT
n−1,n . . . Ḡ

T
1,2H̄ = R̄k+1

is the updated triangular factor. The orthogonal factor equals the product

Q̄k = Gn−1,n . . .G1,2Ḡ1,2 . . . Ḡn−1,n.

The work needed for this update is as follows: Computing uk takes n2 flops.
Computing H̄ and Rk takes 4n2 flops and accumulating the product of Gj,j+1 and
Ḡj,j+1 takes 8n2 flops, for a total of 13n2 flops. It is possible to do a similar cheap
update of the LU decomposition, but this may lead to stability problems.

If the Jacobian f ′(x) is sparse the advantages of Broyden’s method is lost,
since the update in general is not sparse. One possibility is then to keep the LU
factors of the most recently computed sparse Jacobian and save several Broyden
updates as pairs of vectors yk −Bksk and sk.
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11.1.7 Modifications for Global Convergence

We showed above that under certain regularity assumptions Newton’s method is
convergent from a sufficiently good initial approximation, i.e., under these assump-
tions Newton’s method is locally convergent. However, Newton’s method is not
in general globally convergent, i.e., it does not converge from an arbitrary start-
ing point. Far away from the root Newton’s method may not behave well, e.g., it
is not uncommon that the Jacobian matrix is illconditioned or even singular. This
is a serious drawback since it is much more difficult to find a good starting point in
Rn than in R!

We now discuss techniques to modify Newton’s method, which attempt to
ensure global convergence, i.e., convergence from a large set of starting approx-
imations. As mentioned in the introduction the solution of the nonlinear system
f(x) also solves the minimization problem

min
x
φ(x), φ(x) =

1

2
‖f(x)‖2

2 =
1

2
f(x)T f(x). (11.1.28)

We seek modifications which will make ‖f(x)‖2
2 decrease at each step. We call d a

descent direction for φ(x) if φ(x + αd) < φ(x), for all sufficiently small α > 0.
This will be the case if if the directional derivative is negative, i.e.

∇φ(x)T d = f(x)TJ(x)d < 0.

The steepest-descent direction

−g = −∇φ(x) = −J(x)T f(x)

is the direction in which φ(x) decreases most rapidly, see Section 11.3.2.
Assuming that J(x) is nonsingular, the Newton direction h = −J(x)−1f(x) is

also a descent direction if f(x) 6= 0 since

∇φ(x)T h = −f(x)TJ(x)J(x)−1f(x) = −‖f(x)‖2
2 < 0.

In the damped Newton method we take

xk+1 = xk + αkhk, J(xk)hk = −f(xk). (11.1.29)

where the step length αk is computed by a line search. Ideally αk should be chosen
to be minimize the scalar function

ψ(α) = φ‖f(xk + αhk)‖2
2.

Algorithms for solving such an one-dimensional minimization are discussed in Sec-
tion 6.7. In practice this problem need not be solved accurately. It is only neces-
sary to ensure that the reduction ‖f(xk)‖2

2 −‖f(xk+1)‖2
2 is sufficiently large. In the

Armijo-Goldstein criterion αk is taken to be the largest number in the sequence
1, 1

2 ,
1
4 , . . . for which

ψ(0) − ψ(αk) ≥ 1

2
αkψ(0)



16 Chapter 11. Nonlinear Systems and Optimization

is satisfied. Close to a simple zero x∗ this criterion will automatically chose αk = 1.
It then becomes identical to Newton’s method and convergence becomes quadratic.
Another common choice is to require that αk satisfies the two conditions

ψ(αk) ≤ ψ(0) + µαkψ
′(0), |ψ′(αk)| ≤ η|ψ′(0)|

where typically µ = 0.001 and η = 0.9. The first condition ensures a sufficient
decrease in ‖f(x)‖2

2 and the second that the gradient is decreased by a significant
amount.

The addition of line searches to the Newton iteration greatly increases the
range of nonlinear equations that can successfully be solved. However, if the Jaco-
bian J(xk) is nearly singular, then hk determined by (11.1.29) will be large and the
linear model

f(xk + αkhk) ≈ f(xk) + αkJ(xk)hk

inadequate. In this case the Newton direction tends to be very inefficient.
The idea in trust region methods is to avoid using a linear model outside

its range of validity, see also Section 11.2.3. Here one takes xk+1 = xk + dk, where
dk solves the constrained linear least squares problem

min
dk

‖f(xk) + J(xk)dk‖2
2, subject to ‖dk‖2 ≤ ∆k,

where ∆k is a parameter, which is updated recursively. If the constraint is binding
this problem can be solved by introducing a Lagrange parameter λ and minimizing

min
dk

‖f(xk) + J(xk)dk‖2
2 + λ‖dk‖2

2. (11.1.30)

Here λ is determined by the secular equation ‖dk(λ)‖2 = ∆k. Note that the
problem (11.1.30) is equivalent to the linear least squares problem

min
dk

∥
∥
∥
∥

(
f(xk)

0

)

+

(
J(xk)
λ1/2I

)

dk

∥
∥
∥
∥

2

2

,

where the matrix always has full column rank for λ > 0.
A typical rule for updating ∆k+1 is to first calculate the ratio ρk of ‖f(xk)‖2

2−
‖f(xk+dk)‖2

2 to the reduction ‖f(xk)‖2
2−‖f(xk)+J(xk)dk‖2

2 predicted by the linear
model. Then we take

∆k+1 =







1
2‖dk‖, if ρk ≤ 0.1;
∆k, if 0.1 < ρk ≤ 0.7;
max{2‖dk‖,∆k}, if ρk > 0.7.

The trust region is made smaller if the model is unsuccessful and is increased if a
substantial reduction in the objective function is found. A difference to line search
methods is that if ∆k+1 < ∆k we set xk+1 = xk.

A related idea is used in Powell’s hybrid method, where a linear combi-
nation of the steepest descent and the Newton (or the quasi-Newton) direction is
used. Powell takes

xk+1 = xk + βkdk + (1 − βk)hk, 0 ≤ βk ≤ 1,
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where hk is the Newton direction in (11.1.29), and

dk = −µkgk, gk = J(xk)T f(xk), µk = ‖gk‖2
2

/
‖J(xk)gk‖2

2.

The choice of βk is monitored by a parameter ∆k, which equals the maximum
allowed step size. The algorithm also includes a prescription for updating ∆k.
Powell chooses xk+1 as follows:

i. If ‖hk‖2 ≤ ∆k then xk+1 = xk + hk.

ii. If ‖gk‖2 ≤ ∆k ≤ ‖hk‖2, choose βk ∈ (0, 1] so that ‖xk+1 − xk‖2 = ∆k.

iii. Otherwise set xk+1 = xk + ∆kgk/‖gk‖2.

The convergence is monitored by ‖f(xk)‖2. When convergence is slow, ∆k

can be decreased, giving a bias towards steepest descent. When convergence is fast,
∆k is increased, giving a bias towards the Newton direction.

Global methods for nonlinear systems may introduce other problems not in-
herent in the basic Newton method. The modification introduced may lead to slower
convergence and even lead to convergence to a point where the equations are not
satisfied.

11.1.8 Numerical Continuation Methods

When it is hard to solve the system f(x) = 0, or to find an initial approximation,
continuation, embedding or homotopy methods are useful tools. Their use to solve
nonlinear systems of equations goes back at least as far as Lahaye [1934]. Briefly,
the idea is to find a simpler system g(x) = 0, for which the solution x = x0 can be
obtained without difficulty, and define a convex embedding (or homotopy)

H(x, t) = tf(x) + (1 − t)g(x), (11.1.31)

so that
H(x, 0) = g(x), H(x, 1) = f(x).

If the functions f(x) and g(x) are sufficiently smooth then a solution curve x(t)
exists, which satisfies the conditions x(0) = x0, and x(1) = x∗. One now attempts
to trace the solution curve x(t) of (11.1.31) by computing x(tj) for an increasing
sequence of values of t, 0 = t0 < t1 < . . . < tp = 1 by solving the nonlinear systems

H(x, tj+1) = 0, j = 0 : p− 1, (11.1.32)

by some appropriate method. The starting approximations can be obtained from
previous results, e.g.,

x0(tj+1) = x(tj),

or, if j ≥ 1, by linear interpolation

x0(tj+1) = x(tj) +
tj+1 − tj
tj − tj−1

(
x(tj) − x(tj−1)

)
.
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This technique can be used in connection with any of the methods previously men-
tioned. For example, Newton’s method can be used to solve (11.1.32)

xk+1 = xk −
(
∂H(xk, tj+1)

∂x

)−1

H(xk, tj+1).

The step size should be adjusted automatically to approximately minimize the total
number of iterations. A simpler strategy is to choose the number of increments M
and take a constant step ∆t = 1/M . If m is sufficiently large, then the iterative
process will generally converge. However, the method may fail when turning points
of the curve with respect of parameter t are encountered. In this case the embedding
family has to be changed, or some other special measure must be taken. Poor
performance can also occur because t is not well suited for parametrization. Often
the arclength s of the curve provides a better parametrization

Embedding has important applications to the nonlinear systems encountered
when finite-difference or finite-element methods are applied to nonlinear boundary-
value problems; see Chapter 14. It is also an important tool in nonlinear optimiza-
tion, e.g., in interior point methods. Often a better choice than (11.1.31) can be
made for the embedding, where the systems for tj 6= 1 also contribute to the insight
into the questions which originally lead to the system. In elasticity, a technique
called incremental loading is used, because t = 1 may correspond to an unloaded
structure for which the solution is known, while t = 0 correspond to the actual
loading. The technique is also called the continuation method.

If the equation H(x, t) = 0 is differentiated we obtain

∂H

∂x
· dx
dt

+
∂H

∂t
= 0.

This gives the differential equation

dx

dt
= F (x, t), F (x, t) = −

(∂H

∂x

)−1 ∂H

∂t
.

Sometimes it is recommended to use a numerical method to integrate this differ-
ential equation with initial value x(1) = x1 to obtain the solution curve x(s), and
in particular x(1) = x∗. However, to use a general purpose method for solving the
differential equation is an unnaturally complicated approach. One should instead
numerically integrate (11.1.32) very coarsely and then locally use a Newton-type it-
erative method for solving (11.1.31) as a corrector. This has the advantage that one
takes advantage of the fact that the solution curve consists of solutions of (11.1.32),
and uses the resulting strong contractive properties of Newton’s method. Such pre-
dictor corrector continuation methods have been very successful, see Allgower and
Georg [1, ]. The following algorithm uses Euler’s method for integration as a
predictor step and Newton’s method as a corrector:

Algorithm 11.1.1 Euler-Newton Method
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Assume that g(x0) = 0. Let t0 = 0, and h0 > 0 be an initial step length.

x := x0; t1 = t0 + h0;

for j = 1, 2, . . . ,

xj := xj−1 + hj−1F (xj−1, tj−1); Euler step

repeat

xj := xj − (H ′(xj , tj))
−1H(xj , tj); Newton step

until convergence

if tj ≡ 1 then stop

else tj+1 = tj + hj ; hj > 0; new steplength

end

Note the possibility of using the same Jacobian in several successive steps. The
convergence properties of the Euler-Newton Method and other predictor-corrector
methods are discussed in Allgower and Georg [1, ].

Review Questions

1. Describe the nonlinear Gauss–Seidel method.

2. Describe Newton’s method for solving a nonlinear system of equations.

3. In order to get global convergence Newton’s method has to be modified. Two differ-
ent approaches are much used. Describe the main features of these modifications.

4. For large n the main cost of an iteration step in Newton’s method is the evaluation
and factorizing of the matrix of first derivatives. Describe some ways to reduce this
cost.

5. Define what is meant by the completeness of a space, a Banach space, a Lipschitz
constant and a contraction. Formulate the Contraction Mapping Theorem. You
don’t need to work out the full proof, but tell where in the proof the completeness
is needed.

6. Give the essential features of the assumptions needed in the theorem in the text which
is concerned with the convergence of Newton’s method for a nonlinear system. What
is the order of convergence for simple roots?

7. Describe the essential features of numerical continuation methods for solving a non-
linear system f(x) = 0. How is a suitable convex embedding constructed?

Problems

1. The fixed point iteration in Example 11.1.1 can be written uk+1 = φ(uk), where
u = (x, y)T . Compute ‖φ(u∗)‖∞ for the two roots u∗ = (1, 0)T and (0, 1)T , and use
the result to explain the observed convergence behavior.
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2. Consider the system of equations

x2
1 − x2 + α = 0,

−x1 + x2
2 + α = 0.

Show that for α = 1, 1/4, and 0 there is no solution, one solution, and two solutions,
respectively.

3. (a) Describe graphically in the (x, y)-plane nonlinear Gauss–Seidel applied to the
system f(x, y) = 0, g(x, y) = 0. Consider all four combinations of orderings for the
variables and the equations.

(b) Do the same thing for nonlinear Jacobi. Consider both orderings of the equations.

4. The system of equations

x = 1 + h2(ey
√

x + 3x2)

y = 0.5 + h2 tan(ex + y2),

can, for small values of h, be solved by fixed point iteration. Write a program which
uses this method to solve the system for h = 0, 0.01, . . . , 0.10. For h = 0 take x0 = 1,
y0 = 0.5, else use the solution for the previous value of h. The iterations should be
broken off when the changes in x and y are less than 0.1h4.

5. For each of the roots of the system in Example 11.1.1,

x2 − 2x− y + 1 = 0
x2 + y2 − 1 = 0

determine whether or not the following iterations are locally convergent:

(a) xk+1 = (1 − y2
k)1/2, yk+1 = (xk − 1)2.

(b) xk+1 = y
1/2

k + 1, yk+1 = (1 − x2
k).

6. Apply two iterations of Newton’s method to the equations of Problem 5, using the
initial approximations x0 = 0.1, and y0 = 1.1.

7. If some of the equations in the system f(x) = 0 are linear, Newton’s method will
take this into account. Show that if (say) fi(x) is linear, then the Newton iterates
xk, k ≥ 1, will satisfy fi(xk) = 0.

Figure 11.1.1. A rotating double pendulum.

8. A double pendulum rotates with angular velocity ω around a vertical axis (like a
centrifugal regulator). At equilibrium the two pendulums make the angles x1 and x2
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to the vertical axis, see Fig. 11.1.1. It can be shown that the angles are determined
by the equations

tanx1 − k(2 sin x1 + sin x2) = 0,

tanx2 − 2k(sin x1 + sin x2) = 0.

where k = lω2/(2g).

(a) Solve by Newton’s method the system for k = 0.3, with initial guesses x1 = 0.18,
x2 = 0.25. How many iterations are needed to obtain four correct decimals?

(b) Determine the solutions with four correct decimals and plot the results for

k = 0.30, 0.31, . . . , 0.35, 0.4, 0.5, . . . , 0.9, 1, 2, 3, 4, 5, 10, 15, 20,∞.

Use the result obtained for the previous k as initial guess for the new k. Record also
how many iterations are needed for each value of k.

(c) Verify that the Jacobian is singular for x1 = x2 = 0, when k = 1−1/
√

2 ≈ 0.2929.
A somewhat sloppy theory suggests that

x1 ≈ x2 ≈
q

k − (1 − 1/
√

2), 0 ≤ k − (1 − 1/
√

2) ≪ 1.

Do your results support this theory?

9. Describe how to apply the Newton idea to the solution of the steady state of a Matrix
Riccati equation, i.e., to the solution of a matrix equation of the form,

A+BX +XC +XDX = 0,

where A,B,C,D are rectangular matrices of appropriate size. Assume that an al-
gorithm for equations of the form PX + XQ = R is given. Under what condition
does such a linear equation have a unique solution? You don’t need to discuss how
to find the first approximation.

10. (a) Derive the formula for minB(η) and the optimal choice of η for the uncen-

tered difference approximation to g′(x)v, also the simplified error estimate (for
ξ = 1

2
‖g‖/‖g′‖).

(b) Work out the details of the study of the directional second derivative.

11. Investigate, for various functions f , g, the ratio of values of B(η), obtained with the
optimal η and with the value of η derived from he simplified estimate of ξ. Take, for
example, g(x) = eαx, g(x) = x−k.

12. Suppose that x ∈ R
n, where n is divisible by 3, and that the Jacobian is a square

tridiagonal matrix.

(a) Design an algorithm, where all the elements of the Jacobian are found by four
evaluations of g(x), when the uncentered difference approximation is used.

(b) You may obtain the elements packed in three vectors. How do you unpack them
into an n×n matrix? How many function evaluations do you need with the centered
difference approximation?

(c) Generalize to the case of an arbitrary banded Jacobian.

Comment: This idea was first published by Curtis, Powell, and Reid [6]
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11.2 Nonlinear Least Squares Problems

11.2.1 Introduction

In this section we discuss the numerical solution of nonlinear least squares problem.
Let f : Rn → Rm, m ≥ n, and consider the problem

min
x∈Rn

φ(x), φ(x) = 1
2‖f(x)‖2

2 = 1
2f(x)T f(x). (11.2.1)

This is a special case of the general optimization problem in Rn studied in Sec-
tion 11.3. We will in the following mainly emphasize those aspects of the problem
(11.2.1), which derive from the special form of φ(x). (Note that the nonlinear system
f(x) = 0 is equivalent to (11.2.1) with m = n.)

Fitting data to a mathematical model is an important source of nonlinear least
squares problems. Here one attempts to fit given data (yi, ti), i = 1 : m to a model
function y = h(x, t). If we let ri(x) represent the error in the model prediction for
the i:th observation,

ri(x) = yi − h(x, ti), i = 1, . . . ,m,

we want to minimize some norm of the vector r(x). The choice of the least squares
measure is justified here, as for the linear case, by statistical considerations. If the
observations have equal weight, this leads to the minimization problem in (11.2.1)
with f(x) = r(x).

Example 11.2.1.

Exponential fitting problems occur frequently–e.g., the parameter vector x in
the expression

y(t, x) = x1 + x2e
x4t + x3e

x5t

is to be determined to give the best fit to m observed points (ti, yi), i = 1 : m,
where m > 5. Here y(t, x) is linear the parameters x4, x5. but nonlinear in x4, x5.
Hence this problem cannot be handled by the methods in Chapter 7. Special meth-
ods for problems which are nonlinear only in some of the parameters are given in
Section 11.2.5.

The standard methods for the nonlinear least squares problem require deriva-
tive information about the component functions of f(x). We assume here that
f(x) is twice continuously differentiable. It is easily shown that the gradient of
φ(x) = 1

2f
T (x)f(x) is

g(x) = ∇φ(x) = J(x)T f(x), (11.2.2)

where

J(x)ij =
∂fi(x)

∂xj
∈ Rm×n, i = 1 : m, j = 1 : n.

is the Jacobian matrix of f(x). The Hessian matrix is

H(x) = ∇2φ(x) = J(x)TJ(x) +Q(x), Q(x) =

m∑

i=1

fi(x)Gi(x), (11.2.3)
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where Gi(x) ∈ Rn×n, is the Hessian matrix of fi(x) with elements

Gi(x)jk =
∂2fi(x)

∂xj∂xk
, i = 1 : m, j, k = 1 : n. (11.2.4)

The special forms of the gradient g(x) and Hessian H(x) can be exploited by meth-
ods for the nonlinear least squares problem.

A necessary condition for x∗ to be a local minimum of φ(x) is that x∗ is a
stationary point, i.e., satisfies

g(x∗) = J(x∗)T f(x∗) = 0. (11.2.5)

A necessary condition for a stationary point x∗ to be a local minimum of φ(x) is
that the Hessian matrix H(x) is positive definite at x∗.

There are basically two different ways to view problem (11.2.1). One could
think of this problem as arising from an overdetermined system of nonlinear equa-
tions f(x) = 0. It is then natural to approximate f(x) by a linear model around a
given point xk

f̃(x) = f(xk) + J(xk)(x− xk), (11.2.6)

and use the solution pk to the linear least squares problem

min
p

‖f(xk) + J(xk)p‖2. (11.2.7)

to derive an new (hopefully improved) improved approximate solution xk+1 =
xk + pk. This approach, which only uses first order derivative information about
f(x), leads to a class of methods called Gauss–Newton type methods. These
methods, which in general only have linear rate of convergence, will be discussed in
Section 11.2.2.

In the second approach (11.2.1) is viewed as a special case of unconstrained
optimization in Rn. A quadratic model at a point xk is used,

φ̃c(x) = φ(xk) + g(xk)T (x− xk) +
1

2
(x− xk)TH(xk)(x − xk), (11.2.8)

where the gradient and Hessian of φ(x) = 1
2f

T (x)f(x) are given by (11.2.2) and

(11.2.3). The minimizer of φ̃c(x) is given by xk+1 = xk + pk, where

pk = −H(xk)−1J(xk)T f(xk). (11.2.9)

This method is equivalent to Newton’s method applied to (11.2.1), which usually is
locally quadratically convergent.

The Gauss–Newton method can be thought of as arising from neglecting the
second derivative term

Q(x) =

m∑

i=1

fi(x)Gi(x),

in the Hessian H(xk). Note that Q(xk) will be small close to the solution x∗ if
either the residual norm ‖f(x∗)‖ is small or if f(x) is only mildly nonlinear. The
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behavior of the Gauss–Newton method can then be expected to be similar to that
of Newton’s method. In particular for a consistent problem where f(x∗) = 0 the
local convergence will be the same for both methods. However, for moderate to
large residual problems the local convergence rate for the Gauss–Newton method
can be much inferior to that of Newton’s method.

The cost of computing and storing the mn2 second derivatives (11.2.4) in
Q(x) can be prohibitively high. Note, however, that for curve fitting problems the
function values fi(x) = yi − h(x, ti) and the derivatives ∂2fi(x)/∂xj∂xk, can be
obtained from the single function h(x, t). If h(x, t) is composed of, e.g., simple ex-
ponential and trigonometric functions then the Hessian can sometimes be computed
cheaply. Another case when it may be feasible to store approximations to all Gi(x),
i = 1 : m, is when every function fi(x) only depends on a small subset of the n
variables. Then both the Jacobian J(x) and the Hessian matrices Gi(x) will be
sparse and special methods, such as those discussed in Section 6.5 may be applied.

11.2.2 Gauss–Newton-Type Methods

The Gauss–Newton method for problem (11.2.1) is based on a sequence of linear
approximations of f(x) of the form (11.2.6). If xk denotes the current approximation
then the Gauss–Newton step dk is a solution to the linear least squares problem

min
dk

‖f(xk) + J(xk)dk‖2, dk ∈ Rn. (11.2.10)

and the new approximation is xk+1 = xk + dk. The solution dk is unique if
rank(J(xk)) = n. Since J(xk) may be ill-conditioned or singular, dk should be
computed by a stable method using, e.g., the QR- or SVD-decomposition of J(xk).

The Gauss–Newton step dk = −J(xk)†f(xk) has the following important prop-
erties:

(i) dk is invariant under linear transformations of the independent variable x, i.e.,
if x̃ = Sx, S nonsingular, then d̃k = Sdk.

(ii) if J(xk)T f(xk) 6= 0 then dk is a descent direction for φ(x) = 1
2f

T (x)f(x),

The first property is easily verified. To prove the second property we note that

dT
k g(xk) = −f(xk)TJ†(xk)TJ(xk)T f(xk) = −‖PJk

f(xk)‖2
2, (11.2.11)

where PJk
= J(xk)J†(xk) = P 2

Jk
is the orthogonal projection onto the range space

of J(xk). Further if J(xk)T f(xk) 6= 0 then f(xk) is not in the nullspace of J(xk)T

and it follows that PJk
f(xk) 6= 0. This proves (ii).

The Gauss–Newton method can fail at an intermediate point where the Jaco-
bian is rank deficient or illconditioned. Formally we can take dk to be the minimum
norm solution

dk = −J(xk)†f(xk).

In practice it is necessary to include some strategy to estimate the numerical rank
of J(xk), cf. Section 7.3.2 and 7.6.2. That the assigned rank can have a decisive
influence is illustrated by the following example:
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Example 11.2.2. (Gill, Murray and Wright [16, p. 136])
Let J = J(xk) and f(xk) be defined by

J =

(
1 0
0 ǫ

)

, f =

(
f1
f2

)

,

where ǫ ≪ 1 and f1 and f2 are of order unity. If J is considered to be of rank
two then the search direction dk = s1, whereas if the assigned rank is one dk = s2,
where

s1 = −
(

f1
f2/ǫ

)

, s2 = −
(
f1
0

)

.

Clearly the two directions s1 and s2 are almost orthogonal and s1 is almost orthog-
onal to the gradient vector JT f .

Usually it is preferable to underestimate the rank except when φ(x) is ac-
tually close to an ill-conditioned quadratic function. One could also switch to a
search direction along the negative gradient −gk = −J(xk)T f(xk), or use a linear
combination

dk − µkgk, µk = ‖gk‖2
2

/
‖J(xk)gk‖2

2.

as in Powell’s method.

The Gauss–Newton method as described above has several advantages. It
solves linear problems in just one iteration and has fast convergence on small residual
and mildly nonlinear problems. However, it may not be locally convergent on
problems that are very nonlinear or have large residuals.

To analyze the rate of convergence of Gauss–Newton type methods let J†(x)
denote the pseudoinverse of J(x), and assume that rank(J(x)) = n. Then I =
J†(x)J(x), and (11.2.3) can be written in the form

H(x) = J(x)T (I − γK(x))J(x), K(x) = J†(x)TGw(x)J†(x). (11.2.12)

where γ = ‖f(x)‖2 6= 0, and

Gw(x) =

m∑

i=1

wiGi(x), w(x) = − 1

γ
f(x). (11.2.13)

The matrix K(x) is symmetric, and has a geometric interpretation. It is called the
normal curvature matrix of the n-dimensional surface z = f(x) in Rm, with
respect to the unit normal vector w(x). The quantities ρi = 1/κi, where

κ1 ≥ κ2 ≥ . . . ≥ κn.

are the eigenvalues of K(x), are called the principal radii of curvature of the
surface.

The Hessian matrix H(x∗) is positive definite and x∗ a local minimum if and
only if uTH(x∗)u > 0, for all u ∈ Rn 6= 0. If rank(J(x∗)) = n, it follows that
u 6= 0 ⇒ J(x∗)u 6= 0, and hence H(x∗) is positive definite when I − γK(x∗) is
positive definite, i.e., when

1 − γκ1 > 0. (11.2.14)
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If 1 − γκ1 ≤ 0 then the least squares problem has a saddle point at x∗ or if also
1 − γκn < 0 even a local maximum at x∗.

-

6z1

z2

z∗ = (g(x∗, t1), g(x
∗, t2))

(y1, y2)
ρ1

×

×

Figure 11.2.1. Geometry of the data fitting problem for m = 2, n = 1.

Example 11.2.3.

The geometrical interpretation of the nonlinear least squares problem (11.2.1)
is to find a point on the surface {f(x) | x ∈ Rn} in Rm closest to the origin. In
case of data fitting fi(x) = yi − h(x, ti), and it is more illustrative to consider the
surface

z(x) = (h(x, t1), . . . , h(x, tm))T ∈ Rm.

The problem is then to find the point z(x∗) on this surface closest to the observation
vector y ∈ Rm. This is illustrated in Fig. 11.4.1 for the simple case of m = 2
observations and a scalar parameter x. Since in the figure we have γ = ‖y −
z(x∗)‖2 < ρ, it follows that 1 − γκ1 > 0, which is consistent with the fact that x∗

is a local minimum. In general the solution (if it exists) is given by an orthogonal
projection of y onto the surface z(x). Compare the geometrical intepretation in
Fig. 7.2.1 for the linear case z(x) = Ax!

It can be shown that the asymptotic rate of convergence of the Gauss–Newton
method in the neighborhood of a critical point x∗ is equal to

ρ = γmax(κ1,−κn),

where κi are the eigenvalues of the of the normal curvature matrix K(x) in (11.2.12)
evaluated at x∗ and γ = ‖f(x∗)‖2 = 0. In general convergence is linear, but if γ = 0
then convergence becomes superlinear. Hence the asymptotic rate of convergence
of the undamped Gauss–Newton method is fast when either

(i) the residual norm γ = ‖r(x∗)‖2 is small, or

(ii) f(x) is mildly nonlinear, i.e. |κi|, i = 1 : n are small.
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If x∗ is a saddle point then γκ1 ≥ 1, i.e., using undamped Gauss–Newton one
is repelled from a saddle point. This is an excellent property since saddle points are
not at all uncommon for nonlinear least squares problems.

The Gauss–Newton method can be modified for global convergence in a similar
way as described in Section 11.1.7 Newton’s method. If the Gauss–Newton direc-
tion dk is used as a search direction we consider the one-dimensional minimization
problem

min
λ

‖f(xk + λdk)‖2
2.

As remarked above it is in general not worthwhile to solve this minimization accu-
rately. Instead we can take λk to be the largest number in the sequence 1, 1

2 ,
1
4 , . . .

for which

‖f(xk)‖2
2 − ‖f(xk + λkdk)‖2

2 ≥ 1

2
λk‖PJk

f(xk)‖2
2.

Here λ = 1 corresponds to the full Gauss–Newton step. Since dk is a descent
direction, this damped Gauss–Newton method is locally convergent on almost all
nonlinear least squares problems. In fact is is usually even globally convergent. For
large residual or very nonlinear problems convergence may still be slow.

The rate of convergence for the Gauss–Newton method with exact line search
can be shown to be

ρ̃ = γ(κ1 − κn)/(2 − γ(κ1 + κn)).

We have ρ̃ = ρ if κn = −κ1 and ρ̃ < ρ otherwise. Since γκ1 < 1 implies ρ̃ < 1,
we always get convergence close to a local minimum. This is in contrast to the
undamped Gauss–Newton method, which may fail to converge to a local minimum.

The rate of convergence for the undamped Gauss–Newton method can be
estimated during the iterations from

ρest = ‖PJ(xk+1)rk+1‖2/‖PJ(xk)rk‖2 = ρ+O(‖xk − x∗‖2
2). (11.2.15)

Since PJ (xk)rk = J(xk)J(xk)†rk = −J(xk)pk the cost of computing this estimate
is only one matrix-vector multiplication. When ρest > 0.5 (say) then one should
consider switching to a method using second derivative information, or perhaps
evaluate the quality of the underlying model.

11.2.3 Trust Region Methods

Even the damped Gauss–Newton method can have difficulties to get around an
intermediate point where the Jacobian matrix rank deficient. This can be avoided
either by taking second derivatives into account (see Section 11.2.4) or by further
stabilizing the damped Gauss–Newton method to overcome this possibility of failure.
Methods using the latter approach were first suggested by Levenberg [26, ] and
Marquardt [24, ]. Here a search direction dk is computed by solving the problem

min
dk

{‖f(xk) + J(xk)dk‖2
2 + µk‖dk‖2

2}, (11.2.16)

where the parameter µk ≥ 0 controls the iterations and limits the size of dk. Note
that if µk > 0 then dk is well defined even when J(xk) is rank deficient. As
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µk → ∞, ‖dk‖2 → 0 and dk becomes parallel to the steepest descent direction. It
can be shown that dk is the solution to the least squares problem with quadratic
constraint

min
dk

‖f(xk) + J(xk)dk‖2, subject to ‖dk‖2 ≤ δk, (11.2.17)

where µk = 0 if the constraint in (11.2.17) is not binding and µk > 0 otherwise.
The set of feasible vectors dk, ‖dk‖2 ≤ δk can be thought of as a region of trust for
the linear model f(x) ≈ f(xk) + J(xk)(x− xk).

The following trust region strategy has proved very successful in practice:
Let x0, D0 and δ0 be given and choose β ∈ (0, 1). For k = 0, 1, 2, . . . do

(a) Compute f(xk), J(xk), and determine dk as a solution to the subproblem

min
dk

‖f(xk) + J(xk)dk‖2, subject to ‖Dkdk‖2 ≤ δk,

where Dk is a diagonal scaling matrix.

(b) Compute the ratio ρk =
(
‖f(xk)‖2

2 − ‖f(xk + dk)‖2
2

)
/ψk(dk), where

ψk(dk) = ‖f(xk)‖2
2 − ‖f(xk) + J(xk)dk‖2

2

is the model prediction of the decrease in ‖f(xk)‖2
2.

(c) If ρk > β the step is successful and we set xk+1 = xk + dk, and δk+1 = δk;
otherwise set xk+1 = xk and δk+1 = βδk. Update the scaling matrix Dk.

The ratio ρk measures the agreement between the linear model and the non-
linear function. After an unsuccessful iteration δk is reduced. The scaling Dk can
be chosen such that the algorithm is scale invariant, i.e., the algorithm generates
the same iterations if applied to r(Dx) for any nonsingular diagonal matrix D. It
can be proved that if f(x) is continuously differentiable, f ′(x) uniformly continuous
and J(xk) bounded then this algorithm will converge to a stationary point.

A trust region implementation of the Levenberg-Marquard method will give
a Gauss–Newton step close to the solution of a regular problem. Its convergence
will therefore often be slow for large residual or very nonlinear problems. Methods
using second derivative information , see Section 11.2.4 are somewhat more efficient
but also more complex than the Levenberg-Marquardt methods.

11.2.4 Newton-Type Methods

The analysis in the Section 11.2.2 showed that for large residual problems and
strongly nonlinear problems, methods of Gauss–Newton type may converge slowly.
Also, these methods can have problems at points where the Jacobian is rank defi-
cient. When second derivatives of f(x) are available Newton’s method, which uses
the quadratic model (11.2.8), can be used to overcome these problems. The optimal
point dk of this quadratic model, satisfies the linear system

H(xk)dk = −J(xk)T f(xk), (11.2.18)
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where H(xk) is the Hessian matrix at xk, and xk +dk is chosen as the next approx-
imation.

It can be shown, see Dennis and Schnabel [10, , p. 229], that Newton’s
method is quadratically convergent to a local minimum x∗ as long as H(x) is Lips-
chitz continuous around xk andH(x∗) is positive definite. To get global convergence
a line search algorithm is used, where the search direction dk is taken as the Newton
direction. Note that the Hessian matrix H(xk) must be positive definite in order
for the Newton direction dk to be a descent direction.

Newton’s method is not often used since the second derivative term Q(xk) in
the Hessian is rarely available at a reasonable cost. However, a number of methods
have been suggested that partly takes the second derivatives into account, either
explicitly or implicitly. An implicit way to obtain second derivative information
is to use a general quasi-Newton optimization routine, which successively builds
up approximations Bk to the Hessian matrices H(xk). The search directions are
computed from

Bkdk = −J(xk)T f(xk),

where Bk satisfies the quasi-Newton conditions

Bksk = yk, sk = xk − xk−1, yk = g(xk) − g(xk−1), (11.2.19)

where g(xk) = J(xk)T f(xk). As starting value B0 = J(x0)
TJ(x0) is recommended.

The direct application of quasi-Newton methods to the nonlinear least squares
problem outlined above has not been so efficient in practice. One reason is that
these methods disregard the information in J(xk), and often J(xk)TJ(xk) is the
dominant part of H(xk). A more successful approach is to approximate H(xk) by
J(xk)TJ(xk) + Sk, where Sk is a quasi-Newton approximation of the term Q(xk).
Initially one takes S0 = 0. The quasi-Newton relations (11.2.19) can now be written

Sksk = zk, zk =
(
J(xk) − J(xk−1)

)T
f(xk), (11.2.20)

where Sk is required to be symmetric. It can be shown that a solution to (11.2.20)
which minimizes the change from Sk−1 in a certain weighted Frobenius norm is
given by the update formula

Bk = Bk−1 +
wky

T
k + ykw

T
k

yT
k sk

− wT
k skyky

T
k

yT
k s

2
k

, (11.2.21)

where sk = xk − xk−1, and wk = zk −Bk−1sk.
In some cases the updating (11.2.21) gives inadequate results. This motivates

the inclusion of “sizing” in which the matrix Bk is replaced by τkBk, where

τk = min{|sT
k zk|/|sT

kBksk|, 1}.

This heuristic choice ensures that Sk converges to zero for zero residual problems,
which improves the convergence behavior.

In another approach, due to Gill and Murray [15], J(xk)TJ(xk) is regarded
as a good estimate of the Hessian in the right invariant subspace corresponding
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to the large singular values of J(xk). In the complementary subspace the second
derivative term Q(xk) is taken into account. Let the singular value decomposition
of J(xk) be

J(xk) = U

(
Σ
0

)

V T , Σ = diag(σ1, . . . , σn),

where the singular values are ordered so that σ1 ≥ σ2 ≥ . . . ≥ σn. Then putting
Qk = Q(xk) the equations for the Newton direction dk = V q can be written

(Σ2 + V TQkV )q = −Σr1, r1 = ( In 0 )UT f(xk). (11.2.22)

We now split the singular values into two groups, Σ = diag(Σ1,Σ2), where Σ1 =
diag(σ1, . . . , σr) are the ”large” singular values. If we partition V, q and r̄ confor-
mally, then the first r equations in (11.2.22) can be written.

(Σ2
1 + V T

1 QkV2)q1 + V T
1 QkV2q2 = −Σ1r̄1.

If the terms involving Qk are neglected compared to Σ2
1q1 we get q1 = −Σ−1

1 r̄1. If
this is substituted into the last (n− r) equations we can solve for q2 from

(Σ2
2 + V T

2 QkV2)q2 = −Σ2r̄2 − V T
2 QkV1q1.

The approximate Newton direction is then given by dk = V q = V1q1 + V2q2. The
splitting of the singular values is updated at each iteration, the idea being to main-
tain r close to n as long as adequate progress is made.

There are several alternative ways to implement the method by Gill and Mur-
ray [15, ]. If Qk is not available explicitly, then a finite difference approximation
to V T

2 QkV2 can be obtained as follows. Let vj be a column of V2 and h a small
positive scalar. Then

(∇ri(xk + hvj) −∇ri(xk))/h = vT
j Gi(xk) +O(h).

The vector on the left hand side is the ith row of (J(xk+hvj)−J(xk))/h. Multplying
with ri(xk) and adding we obtain

r(xk)T (J(xk + hvj) − J(xk))/h = vT
j

m∑

i=1

ri(xk)Gi(xk) +O(h)

= vT
j Qk +O(h).

Repeating this for all columns in V2 we obtain an approximation for V T
2 Qk and we

finally form (V T
2 Qk)V2.
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11.2.5 Separable Problems

A nonlinear least squares problem is said to be separable if the parameter vector
x can be partitioned as xT = (yT , zT ), with the subproblem

min
y

‖r(y, z)‖2, y ∈ Rp, z ∈ Rq, (11.2.23)

easy to solve. In the following we restrict ourself to the particular case when r(y, z)
is linear in y i.e.

r(y, z) = f(z)y − g(z), f(z) ∈ Rm×p. (11.2.24)

Then the minimum norm solution to (11.2.22) is y(z) = f †(z)g(z), where f †(z) is
the pseudoinverse of f(z). The original problem can be written

min
z

‖g(z)− f(z)y(z)‖2 = min ‖(I − Pf(z))g(z)‖2 (11.2.25)

where Pf(z) = f(z)f(z)† is the orthogonal projector onto the range of f(z). Algo-
rithms based on (11.2.25) are often called variable projection algorithms.

Many practical nonlinear least squares problems are separable in this way. A
particularly simple case is when r(y, z) is linear in both y and z so that we also
have

r(y, z) = H(y)z − h(y), H(y) ∈ Rm×q.

Example 11.2.4.

Consider the exponential fitting problem

min
y,z

m∑

i=1

(y1e
z1ti + y2e

z2ti − gi)
2.

Here the model is nonlinear only in the parameters z1 and z2. Given values of z1
and z2 the subproblem (11.2.22) is easily solved.

A problem that arises in many applications, e.g., where we have reactions with
different time constant is to approximate empirical data with a sum of exponential
functions. This problem is often ill-conditioned because the same data can be well
approximated by different exponential sums.

We describe a standard method for solving this problem is Prony’s method.
. Assume that that the function y = f(x) is given in equidistant points with the
coordinates (xi, yi), i = 1 : m, where xi = x1 + ih. We want to approximate these
data with a function

q(x) =

n∑

j=1

aje
λjx. (11.2.26)

Putting cj = aje
λjx1 and vj = ehλj , we obtain the linear system of equations

Mc = y, where

M =







1 1 · · · 1
v1 v2 · · · vn
...

... · · ·
...

vm
1 vm

2 · · · vm
n






, y =







y1
y2
...
yn






. (11.2.27)
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Now assume that the unknown v1, . . . , vn are roots to the polynomial

φ(v) = (v − v1)(v − v2) · · · (v − vn) = vn + s1v
m−1 + · · · sm.

Multiplying the equations in (11.2.27) in turn by sn, sn−1, . . . , s1, s0 = 1, and
adding, we obtain

n∑

j=1

φ(vj)cj =

n∑

j=0

sn−jyj = 0

since φ(vj) = 0, j = 1 : n. Normally n is substantially smaller than m. By
shifting the origin with h we get a new equation. Repeating this we get a (usually
overdetermined) system Thus we have m − n + 1 equations for determining the
unknowns sn, sn−1, . . . , s1. This can be solved by the method of least squares.
Determining the roots of the polynomial φ(v) we obtain vj and λj = ln vj/h. Finally
we get cj from the linear system (11.2.27) and aj = cje

−λjx1 .

We here describe a variable projection algorithm due to Kaufman [21, ],
which uses a Gauss–Newton method applied to the problem (11.2.25). The al-
gorithm contains two steps merged into one. Let xk = (yk, zk)T be the current
approximation. The next approximation is determined as follows:

(i) Compute the solution δyk to the linear subproblem

min
δyk

∥
∥f(zk)δyk −

(
g(zk) − f(zk)yk

)∥
∥

2
, (11.2.28)

and put yk+1/2 = yk + δk, and xk+1/2 = (yk+1/2, zk)T .

(ii) Compute dk as the Gauss–Newton step at xk+1/2, i.e., dk is the solution to

min
dk

∥
∥C(xk+1/2)dk + r(yk+1/2, zk)

∥
∥

2
, (11.2.29)

where the Jacobian is C(xk+1/2) =
(
f(zk), rz(yk+1/2, zk)

)
. Take xk+1 = xk +

λkdk and go to (i).

In (11.2.29) we have used that by (11.2.23) the first derivative of r with respect
to y is given by ry(yk+1/2, zk) = f(zk). The derivatives with respect to z are given
by

rz(yk+1/2, zk) = B(zk)yk+1/2 − g′(zk), B(z)y =

(
∂F

∂z1
y, . . . ,

∂F

∂zq
y

)

,

where B(z)y ∈ Rm×q. Note that in case r(y, z) is linear also in y it follows from
(11.2.4) that C(xk+1/2) = (f(zk), H(yk+1/2)). To be robust the algorithms for
separable problems must employ a line search or trust region approach for the
Gauss–Newton steps as described in Section 11.2.3 and 11.2.4.

It can be shown that the Gauss–Newton algorithm applied to (11.2.25) has
the same asymptotic convergence rate as the ordinary Gauss–Newton’s method. In



11.2. Nonlinear Least Squares Problems 33

particular both converge quadratically for zero residual problem. This is in contrast
to the naive algorithm for separable problems of alternatively minimizing ‖r(y, z)‖2

over y and z, which always converges linearly. One advantage of the Kaufman
algorithm is that no starting values for the linear parameters have to be provided.
We can, e.g., take y0 = 0 and determine y1 = δy1, in the first step of (11.2.28).
This seems to make a difference in the first steps of the iterations, and sometimes
the variable projection algorithm can solve problems for which methods not using
separability fail.

11.2.6 Orthogonal Distance Regression

Consider the problem of fitting observations (yi, ti), i = 1 : m to a mathematical
model

y = f(p, t). (11.2.30)

where y and t are scalar variables and p ∈ Rn are parameters to be determined. In
the classical regression model the values ti of the independent variable are assumed
to be exact and only yi are subject to random errors. Then it is natural to minimize
the sum of squares of the deviations yi − g(p, ti). In this section we consider the
more general situation, when also the values ti contain errors.

-

6

t

y
y = f(p, t)

(yi, ti)

×

×

×

×

×

×

Figure 11.2.2. Orthogonal distance regression.

Assume that yi and ti are subject to errors ǭi and δ̄i respectively, so that

yi + ǭi = f(p, ti + δ̄i), i = 1 : m,

where ǭi and δ̄i are independent random variables with zero mean and variance
σ2. Then the parameters p should be chosen so that the sum of squares of the
orthogonal distances from the observations (yi, ti) to the curve in (11.2.30) is
minimized, cf. Fig. 11.4.2. Hence the parameters p should be chosen as the solution
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to

min
p,ǫ,δ

m∑

i=1

(ǫ2i + δ2i ), subject to yi + ǫi = f(p, ti + δi), i = 1 : m.

Eliminating ǫi using the constraints we arrive at the orthogonal distance prob-

lem

min
p,δ

m∑

i=1

(
f(p, ti + δi) − yi

)2
+ δ2i . (11.2.31)

Note that (11.2.31) is a nonlinear least squares problem even if f(p, t) is linear in p.
The problem (11.2.31) has (m+n) unknowns p and δ. In applications usually

m ≫ n and accounting for the errors in ti will considerably increase the size of
the problem. Therefore the use of standard methods will not be efficient unless the
special structure is taken into account to reduce the work. If we define the residual
vector r(δ, p) = (rT

1 (δ, p), rT
2 (δ)) by

rT
1 (δ, p)i = f(p, ti + δi) − yi, rT

2 (δ) = δi, i = 1 : m,

the Jacobian matrix for problem (11.2.31) can be written in block form as

J̃ =
(
D1 J
Im
︸︷︷︸

m

0
︸︷︷︸

n

) }m
}m ∈ R2m×(m+n), (11.2.32)

where

D1 = diag (d1, . . . , dm), di =

(
∂f

∂t

)

t=ti+δi

,

Jij =

(
∂f

∂pj

)

t=ti+δi

, i = 1 : m, j = 1 : n.

Note that J̃ is sparse and highly structured. In the Gauss–Newton method we
compute corrections ∆δk and ∆pk to the current approximations which solve the
linear least squares problem

min
∆δ,∆p

∥
∥
∥J̃

(
∆δ
∆p

)

−
(
r1
r2

) ∥
∥
∥

2
, (11.2.33)

where J̃ , r1, and r2 are evaluated at the current estimates of δ and p. To solve
this problem we need the QR decomposition of J̃ . This can be computed in two
steps. First we apply a sequence of Givens rotations Q1 = Gm · · ·G2G1, where
Gi = Ri,i+m, i = 1 : m, to zero the (2,1) block of J̃ :

Q1J̃ =

(
D2 K
0 L

)

, Q2

(
r1
r2

)

=

(
s1
s2

)

,

where D2 is again a diagonal matrix. The problem (11.2.33) now decouples, and
∆pk is determined as the solution to

min
∆p

‖L∆p− s2‖2.
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Here L ∈ Rm×n, so this is a problem of the same size as that which defines the
Gauss–Newton correction in the classical nonlinear least squares problem. We then
have

∆δk = D−1
2 (s2 −K∆pk).

So far we have assumed that y and t are scalar variables. More generally if
y ∈ Rny and t ∈ Rnt the problem becomes

min
p,δ

m∑

i=1

(

‖f(p, ti + δi) − yi‖2
2 + ‖δi‖2

2

)

.

The structure in this more general problem can also be taken advantage of in a
similar manner.

Schwetlik and Tiller [33, ] use a partial Marquardt type regularization
where only the ∆x part of J̃ is regularized. The algorithm by Boggs, Byrd and
Schnabel [1985] incorporates a full trust region strategy. Algorithms for the nonlin-
ear case, based on stabilized Gauss–Newton methods, have been given by Schwetlik
and Tiller [1986] and Boggs, Byrd and Schnabel [1986].

11.2.7 Fitting of Circles and Ellipses.

A special nonlinear least squares problem that arises in many areas of applications
is to fit given data points to a geometrical element, which may be defined in implicit
form. We have already discussed fitting data to an affine linear manifold such as a
line or a plane. The problem of fitting circles, ellipses, spheres, and cylinders arises
in applications such as computer graphics, coordinate meteorology, and statistics.

Least squares algorithms to fit an by f(x, y, p) implicitly defined curve in the
x-y plane can be divided into two classes. In the first, called algebraic fitting, a
least squares functional is used, which directly involves the function f(x, y, p) = 0
to be fitted, If (xi, yi), i = 1 : n are given data points we minimize the functional

Φ(p) =

m∑

i=1

f2(xi, yi, p).

The second method, geometric fitting, minimizes a least squares functional involving
the geometric distances from the data points to the curve; cf. orthogonal distance
regression. Often algebraic fitting leads to a simpler problem, in particular when f
is linear in the parameters p.

We first discuss algebraic fitting of circles. A circle has three degrees of freedom
and can be represented algebraically by

f(x, y, p) = a (x y )

(
x
y

)

+ (b1 b2)

(
x
y

)

+ c = 0.

We define a parameter vector p and an m× 4 matrix S with rows sT
i by

p = (a, b1, b2, c)
T , sT

i = (x2
i + y2

i , xi, yi, 1). (11.2.34)
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The problem can now be formulated as

min
p

‖Sp‖2
2 subject to ‖p‖2 = 1.

Note that the p is defined only up to a constant multiple, which is why the constraint
is required. The solution equals the right singular vector corresponding to the
smallest singular value of S. When p is known the center z and radius ρ of the
circle can be obtained from

z = − 1

2a

(
b1
b2

)

, ρ =
1

2a

√

‖b‖2
2 − 4ac. (11.2.35)

We now discuss the algebraic fitting of ellipses. An ellipse in the x-y plane
can be represented algebraically by

f(x, y, p) = (x y)

(
a11 a12

a21 a22

) (
x
y

)

+ (b1 b2)

(
x
y

)

+ c = 0. (11.2.36)

It we define

p = (a11, a12, a22, b1, b2, c)
T , sT

i = (x2
i , 2xiyi, y

2
i , xi, yi, 1), (11.2.37)

then we have Φ(p) = ‖Sp‖2
2, where S is an m× 6 matrix with rows sT

i . Obviously
the parameter vector is only determined up to a constant factor. Hence, we must
complete the problem formulation by including some constraint on p. Three such
constraints have been considered for fitting ellipses.

(a) SVD constraint:

min
p

‖Sp‖2
2 subject to ‖p‖2 = 1. (11.2.38)

The solution of this constrained problem equals the right singular vector corre-
sponding to the smallest singular value of S.

(b) Linear constraint:

min
p

‖Sp‖2
2 subject to pT b = 1, (11.2.39)

where b is a fixed vector. Assuming ‖b‖2 = 1, which is no restriction, and let
H be an orthogonal matrix such that Hb = e1. Then the constraint becomes
(Hp)T e1 = 1 so we can write Sp = (SHT )(Hp), where Hp = (1qT )T . Now if we
partition SHT = [sS2] we arrive at the unconstrained problem

min
q

‖S2q + s‖2
2, (11.2.40)

which is a standard linear least squares problem.

(c) Quadratic constraint:

min
p

‖Sp‖2
2 subject to ‖Bp‖2 = 1. (11.2.41)
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Of particular interest is the choice B = (0 I). In this case, if we let pT = (p1, p2)
the constraint can be written ‖p2‖2

2 = 1, and is equivalent to a generalized total
least squares problem. The solution can then be obtained as follows. First form the
QR decomposition of S,

S = QR = Q

(
R11 R12

0 R22

)

.

We can now determine p2 from the SVD of S and then p1 from back-substitution
in R11p1 = −R12p2.
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(b)

(c)

Figure 11.2.3. Ellipse fits for triangle and shifted triangle data: (a) SVD
constraint; (b) Linear constraint λ1 +λ2 = 1; (c) Bookstein constraint λ2

1 +λ2
2 = 1.

It should be stressed that the different constraints above can lead to very
different solutions, unless the errors in the fit are small. One desirable property of
the fitting algorithm is that when the data is translated and rotated the fitted ellipse
should be transformed in the same way. It can be seen that to lead to this kind of
invariance the constraint must involve only symmetric functions of the eigenvalues
of the matrix A.

The disadvantage of the SVD constraint is its non-invariance under translation
and rotations. In case of a linear constraint the choice bT = (1 0 1 0 0 0), which
corresponds to

trace(A) = a11 + a22 = λ1 + λ2 = 1. (11.2.42)

gives the desired invariance. This constraint, attributed to Bookstein,

‖A‖2
F = a2

11 + 2a2
12 + a2

22 = λ2
1 + λ2

2 = 1. (11.2.43)

also leads to this kind of invariance. Note that the Bookstein constraint can be put
in the form (0 I) by permuting the variables and scaling by

√
2.
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To construct and plot the ellipse it is convenient to convert the algebraic form
(11.2.36) to the parametric form

(
x(θ)
y(θ)

)

=

(
xc

yc

)

+Q(α)

(
a cos(θ)
b sin(θ)

)

, Q(α) =

(
cosα sinα
− sinα cosα

)

. (11.2.44)

The new parameters (xc, yc, a, b, α) can be obtained from the algebraic parameters
p. The eigendecomposition A = QΛQT , where A is the 2 × 2 matrix in (11.2.36)
can be obtained by a Jacobi rotation, see Section 10.4.1. We assume that a12 = 0
since otherwise Q = I and Λ = A is the solution. To determine Λ and Q we first
compute

τ = (a22 − a11)/(2a12), tanα = t = sign (τ)/
(
|τ | +

√

1 + τ2
)
.

The elements in Q and Λ are then given by

cosα = 1/
√

1 + t2, sinα = t cosα,

λ1 = a11 − t a12, λ2 = a22 + t a12.

If we introduce the new coordinates z = Qz̃+s in the algebraic form (11.2.36)
this equation becomes

z̃T Λz̃ + (2As+ b)TQz̃ + (As+ b)T s+ c = 0.

Here s can be chosen so that this equation reduces to

λ1x̃
2 + λ2ỹ

2 + c̃ = 0.

Hence the center s equals

s =

(
xc

yc

)

= −1

2
A−1b = −1

2
A−1QΛ−1(QT b), (11.2.45)

and the axis (a, b) of the ellipse are given by
(
a
b

)

=
√
−c̃ diag Λ−1/2, c̃ = c+

1

2
bT s = −1

2
b̃T Λ−1b̃. (11.2.46)

In geometric fitting of data (xi, yi), i = 1 : m to a curve of the form f(x, y, p) =
0, where the orthogonal distance di(p) is first measured from each data point to the
curve, where

d2
i (p) = min

f(x,y,p)=0

(
(x − xi)

2 + (y − yi)
2
)
.

Then the problem

min
p

m∑

i=1

d2
i (p)

is solved. This is similar to orthogonal distance regression described for an explicitly
defined function y = f(x, β) in Section 11.2.6. Algorithms for geometric fitting

are described in Gander, Golub, and Strebel [13, ].
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For implicitly defined functions the calculation of the distance function di(p) is
more complicated than for explicit functions. When the curve admits a parametriza-
tion as in the case of the ellipse the minimization problem for each point is only
one-dimensional.

We consider first the orthogonal distance fitting of a circle written in para-
metric form

f(x, y, p) =

(
x− xc − r cosφ
y − yc − r sinφ

)

= 0, (11.2.47)

where p = (xc, yc, r)
T . The problem can be written as a nonlinear least squares

problem
min
p,φi

‖r(p, φ)‖2
2, φ = (φ1, . . . , φm), (11.2.48)

where

r =





r1
...
rm



 ∈ R2m, ri =

(
xi − xc − r cosφi

yi − yc − r sinφi

)

.

We have 2m nonlinear equations for m+3 unknowns φ1, . . . , φm and xc, yc, r. (Note
that at least 3 points are needed to define a circle.)

We now show how to contruct the Jacobian matrix, which should be evaluated
at the current approximations to the m + 3. parameters. We need the partial
derivatives

∂ri
∂φi

= r

(
sinφi

− cosφi

)

,
∂ri
∂r

= −
(

cosφi

sinφi

)

,

and
∂ri
∂xc

=

(
−1
0

)

,
∂ri
∂yc

=

(
0
−1

)

.

After reordering the rows the Jacobian associated with this problem has the form

J =
(
rS A
−rC
︸︷︷︸

m

B
︸︷︷︸

3

) }m
}m,

where
S = diag (sinφi), C = diag (cosφi), (11.2.49)

are two m×m diagonal matrices. Here the first block column, which corresponds
to the m parameters φi, is orthogonal. Multiplying from the left with an orthogonal
matrix we obtain

QTJ =

(
rI SA− CB
0 CA+ SB

)

, Q =

(
S C
−C S

)

.

To obtain the QR factorization of J we only need to compute the QR factorization
of the m× 3 matrix CA+ SB.

A Gauss–Newton type method with a trust region strategy can be imple-
mented using this QR decomposition of the Jacobian. Good starting values for the
parameters may often be obtained using an algebraic fit as described in the previous
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section. Experience shows that the amount of computation involved in a geometric
fit is at least an order of magnitude more than for an algebraic fit.

For the geometric fit of an ellipse we use the parametric form

f(x, y, p) =

(
x− xc

y − yc

)

−Q(α)

(
a cosφ
b sinφ

)

= 0. (11.2.50)

where p = (xc, yc, a, b, α)T and

Q(α) =

(
cosα sinα

− sinα cosα

)

.

The problem can be written as a nonlinear least squares of the form (11.2.48), where

ri =

(
xi − xc

yi − yc

)

−Q(α)

(
a cosφi

b sinφi

)

.

We thus have 2m nonlinear equations form+5 unknowns φ1, . . . , φm and xc, yc, a, b, α.
To construct the Jacobian we need the partial derivatives

∂ri
∂φi

= Q(α)

(
−a sinφi

b cosφi

)

,
∂ri
∂α

= − d

dα
Q(α)

(
a cosφi

b sinφi

)

,

and
∂ri
∂a

= −Q(α)

(
cosφi

0

)

,
∂ri
∂b

= −Q(α)

(
0

sinφi

)

.

Note that
d

dα
Q(α) =

(
− sinα cosα
− cosα − sinα

)

= Q

(
0 1
−1 0

)

.

After a reordering of the rows the Jacobian associated with this problem has the
form

J = U
(−aS A
bC
︸︷︷︸

m

B
︸︷︷︸

3

) }m
}m, S = diag (sinφi), C = diag (cosφi).

where U = −diag (Q, . . . , Q) ∈ R2m×2m is a block diagonal orthogonal matrix and
S and C given by (11.2.49). The ith row of the matrices A ∈ Rm×5 and B ∈ Rm×5

are

aT
i = (−b sinφi cosφi 0 cosα sinα ) ,

bTi = ( a cosφi 0 sinφi − sinα cosα ) .

The first m columns of UTJ can be diagonalized using a sequence of Givens rota-
tions, where the ith rotation zeros the second component in the vector

(
−a sinφi

b cosφi

)

, i = 1 : m.
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The fitting of a sphere or an ellipsoid can be treated analogously. The sphere
can be represented in parametric form as

f(x, y, z, p) =





x− xc − r cos θ cosφ
y − yc − r cos θ sinφ
z − zc − r sin θ



 = 0, (11.2.51)

where p = (xc, yc, zc, r)
T . We get 3m nonlinear equations for 2m + 4 unknowns.

The first 2m columns of the Jacobian matrix can simply be brought into upper
triangular form; cf. Computer Exercies 2.

When the data covers only a small arc of the circle or a small patch of the
sphere the fitting problem can be ill-conditioned. An important application involv-
ing this this type of data is the fitting of a spherical lens. Also the fitting of a sphere
or an ellipsoid to near planar data gives rise to ill-conditioned problems.

Review Questions

1. Describe the damped Gauss–Newton method with a recommended step length pro-
cedure.

2. How does the Gauss–Newton method differ from the full Newton method? When
can the behavior of the Gauss–Newton method be expected to be similar to that of
Newton’s method?

3. What is a separable nonlinear least squares problem? Describe a recommended
method. Give an important example.

4. Consider fitting observations (yi, ti), i = 1 : m to the model y = g(p, t), where y and
t are scalar variables and p ∈ R

n are parameters to be determined. Formulate the
method of orthogonal distance regression for this problem.

Computer Exercises

1. One wants to fit a circle with radius r and center (x0, y0) to given data (xi, yi),
i = 1 : m. The orthogonal distance from (xi, yi) to the circle

di(x0, y0, r) = ri − r, ri =
“

(xi − x0)
2 + (yi − y0)

2
”1/2

,

depends nonlinearly on the parameters x0, y0. The problem

min
x0,y0,r

m
X

i=1

d2
i (x0, y0, r)

is thus a nonlinear least squares problem. An approximative linear model is obtained
by writing the equation of the circle (x− x0)

2 + (y − y0)
2 = r2 in the form

δ(x0, y0, c) = 2xx0 + 2yy0 + c = x2 + y2,

which depends linearly on the parameters x0, y0 and c = r2 − x2
0 − y2

0 . If these
parameters are known, then the radius of the circle can be determined by r =
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(c+ x2
0 + y2

0)
1/2.

(a) Write down the overdetermined linear system δi(x0, y0, c) = x2+y2 corresponding
to the data (x, y) = (xi, yi), where

xi 0.7 3.3 5.6 7.5 0.3 −1.1
yi 4.0 4.7 4.0 1.3 −2.5 1.3

(b) Describe, preferably in the form of a MATLAB program a suitable algorithm
to calculate x0, y0, c with the linearized model. The program should function for all
possible cases, e.g., even when m < 3.

2. Generalize the algorithm described in Sec. 11.3.9 to fit a sphere to three-dimensional
data (xi, yi, zi), i = 1 : m.

11.3 Unconstrained Optimization

11.3.1 Optimality Conditions

Consider an unconstrained optimization problem of the form

min
x
φ(x), x ∈ Rn. (11.3.1)

where the objective function φ is a mapping Rn → R. Often one would like to
find a global minimum, i.e., a point where φ(x) assumes its least value in some
subset × ∈ B ⊂ Rn. However, this is only possible in rather special cases and most
numerical methods try to find local minima of φ(x).

Definition 11.3.1.

A point x∗ is said to be a local minimum of φ if φ(x∗) ≤ φ(y) for all y in
a sufficiently small neighborhood of x∗. If φ(x∗) < φ(y) then x∗ is a strong local
minimum.

Assume that the objective function φ is continuously differentiable at a point x
with gradient vector g(x) = ∇φ(x). The gradient vector g(x) = ∇φ(x) is the normal
to the tangent hyperplane of the multivariate function φ(x) (see Def. 11.1.3). As in
the scalar case, a necessary condition for a point x∗ to be optimal is that it satisfies
the nonlinear system g(x) = 0.

Definition 11.3.2.

A point x∗ which satisfies g(x) = ∇φ(x) = 0 is called a stationary point.

Definition 11.3.3.

A function φ : Rn → R is twice continuously differentiable at x, if

gij =
∂

∂xi

(
∂φ

∂xj

)

=
∂2φ

∂xi∂xj
, 1 ≤ i, j ≤ n.

exist and are continuous. The square matrix H(x) formed by these n2 quantities is
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called the Hessian of φ(x),

H(x) = ∇2φ(x) =







∂2φ
∂x2

1

. . . ∂2φ
∂xn∂x1

...
...

∂2φ
∂x1∂xn

. . . ∂2φ
∂x2

n







∈ Rn×n. (11.3.2)

If the gradient and Hessian exist and are continuous then the Hessian matrix
is symmetric, i.e., ∂2φ/∂xi∂xj = ∂2φ/∂xj∂xi. Note that information about the
Hessian is needed to determine if a stationary point corresponds to a minimum of
the objective function. We have the following fundamental result.

Theorem 11.3.4.

Necessary conditions for x∗ to be a local minimum of φ is that x∗ is a sta-
tionary point, i.e., g(x∗) = 0, and that H(x∗) is positive semi-definite. If g(x∗) = 0
and H(x∗) positive definite then x∗ is a strong local minimum.

Proof. The Taylor-series expansion of φ about x∗ is

φ(x∗ + ǫd) = φ(x∗) + ǫdT g(x∗) +
1

2
ǫ2dTH(x∗ + ǫθd)d,

where 0 ≤ θ ≤ 1, ǫ is a scalar and d a vector. Assume that g(x∗) 6= 0 and choose
d so that dT g(x∗) < 0. Then for sufficiently small ǫ > 0 the last term is negligible
and φ(x∗ + ǫd) < φ(x∗).

Note that, as in the one-dimensional case, it is possible for a stationary point
to be neither a maximum or a minimum. Such a point is called a saddle point,
and is illustrated in Fig. 11.2.1.

Figure 11.3.1. A saddle point.

11.3.2 Steepest Descent

In many iterative methods for minimizing a function φ(x) : Rn → R, a sequence
of points {xk}, k = 0, 1, 2, . . . are generated from

x(k+1) = xk + αkdk, (11.3.3)
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where dk is a search direction and αk a step length. If we put

f(α) = φ(xk + αkdk), (11.3.4)

then f ′(0) = (dk)T g(xk), where g(xk) is the gradient at xk. The search direction
dk is said to be a descent direction if (dk)T g(xk) < 0.

We assume in the following that dk is normalized so that ‖dk‖2 = 1. Then by
the Schwarz inequality f ′(0) is minimized when

dk = −g(xk)/||g(xk)||2. (11.3.5)

Hence the negative gradient direction is a direction of steepest descent, and this
choice with λk > 0 leads to the steepest descent method (Cauchy, 1847). If
combined with a suitable step length criteria this method is always guaranteed to
converge to a stationary point.

In the steepest descent method the Hessian is not needed. Because of this the
rate of convergence is only linear, and can be very slow, see Fig. 11.4.1. Hence this
method is usually used only as a starting step, or when other search directions fail.

Example 11.3.1.

If the steepest descent method is applied to a quadratic function

φ(x) = bTx+
1

2
xTGx,

whereG is a symmetric positive definite matrix. Then from the analysis in Sec. 11.4.3
it follows that

φ(xk+1) − φ(x∗) ≈ ρ2(φ(xk) − φ(x∗)), ρ =
κ− 1

κ+ 1
,

where κ = κ2(G) is the condition number of G. For example, if κ = 1000, then
ρ2 = (999/1001)2 ≈ 0.996, and about 575 iterations would be needed to gain one
decimal digit of accuracy!

11.3.3 Newton and Quasi-Newton Methods

Faster convergence can be achieved by making use, not only of the gradient, but
also of the second derivatives of the objective function φ(x). The basic Newton
method determines the new iterate xk+1, by minimizing the quadratic model

φ(xk + sk) ≈ qk(sk),

qk(sk) = φ(xk) + g(xk)T sk +
1

2
sT

kH(xk)sk, (11.3.6)

of the function φ(x) at the current iterate xk. When the Hessian matrix H(xk)
is positive definite, qk has a unique minimizer that is obtained by taking xk+1 =
xk + sk, where the Newton step sk is the solution of the symmetric linear system

H(xk)sk = −g(xk). (11.3.7)
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As in the case of solving a nonlinear system Newton’s method needs to be
modified when the initial point x0 is not close to a minimizer. Either a line search
can be included or a trust region technique used. In a line search we take the new
iterate to be

xk+1 = xk + λkdk,

where dk is a search direction and λk > 0 chosen so that φ(xk+1) < φ(xk). The
algorithms described in Section 11.3.2 for minimizing the univariate function φ(xk +
λdk) can be used to determine λk. However, it is usually not efficient to determine
an accurate minimizer. Rather it is required that λk satisfy the two conditions

φ(xk + λkdk) ≤ φ(xk) + µλkg(xk)T dk, (11.3.8)
∣
∣g(xk + λkdk)Tdk

∣
∣ ≤ η

∣
∣g(xk)Tdk

∣
∣ , (11.3.9)

where µ and η are constants satisfying 0 < µ < η < 1. Typically µ = 0.001 and
η = 0.9 are used.

Note that the Newton step is not a descent direction if gT
k H(xk)−1gk ≤ 0. This

situation is not likely to occur in the vicinity of a local optimum x∗, because of the
positive (or at least nonnegative) definiteness of H(x∗). Far away from an optimal
point, however, this can happen. This is the reason for admitting the gradient as
an alternative search direction—especially since there is a danger that the Newton
direction will lead to a saddle point.

In the quadratic model the term sT
kH(xk)sk can be interpreted as the curva-

ture of the surface φ(x) at xk along sk. Often H(xk) is expensive to compute, and
we want to approximate this term. Expanding the gradient function in a Taylor
series about xk along a direction sk we have

g(xk + sk) = gk +H(xk)sk + . . . . (11.3.10)

Hence the curvature can be approximated from the gradient using a forward differ-
ence approximation

sT
kGksk ≈

(
g(xk + sk) − g(xk)

)T
sk.

In quasi-Newton, or variable metric methods an approximate Hessian is
built up as the iterations proceed. Denote by Bk the approximate Hessian at the
kth step. It is then required that Bk+1 approximates the curvature of φ along
sk = xk+1 − xk, i.e.,

Bk+1sk = γk, γk = g(xk+1) − g(xk), (11.3.11)

where γk is the change in the gradient. The first equation in (11.3.11) is the analog
of the secant equation (11.3.10) and is called the quasi-Newton condition.

Since the Hessian matrix is symmetric, it seems natural to require also that
each approximate Hessian is symmetric. The quasi-Newton condition can be sat-
isfied by making a simple update to Bk. The Powell-Symmetric-Broyden (PSB)
update is

Bk+1 = Bk +
rks

T
k + skr

T
k

sT
k sk

− (rT
k sk)sks

T
k

(sT
k sk)2

, (11.3.12)
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where rk = γk − Bksk. The update matrix Bk+1 − Bk is here of rank two. It can
be shown that it is the unique symmetric matrix which minimizes ‖Bk+1 − Bk‖F ,
subject to (11.3.11).

When line searches are used, practical experience has shown the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) update, given by

Bk+1 = Bk − Bksks
T
kBk

sT
kBksk

+
γkγ

T
k

γT
k sk

,

to be the best update.
If the choice of step length parameter λk is such that γT

k sk > 0, then Bk+1

will inherit positive definiteness from Bk. Therefore it is usual to combine the
BFGS formula with B0 = I. The most widely used algorithms for unconstrained
optimization use these techniques, when it is reasonable to store Bk as a dense
matrix. Note that since the search direction will be computed from

Bkdk = −gk, k ≥ 1, (11.3.13)

this means that the first iteration of a quasi-Newton method is a steepest descent
step.

If Bk is positive definite then the local quadratic model has a unique local
minimum, and the search direction dk computed from (11.3.13) is a descent direc-
tion. Therefore it is usually required that the update formula generates a positive
definite approximation Bk+1 when Bk is positive definite.

To compute a new search direction we must solve the linear system (11.3.13),
which in general would require order n3 operations. However, since the approximate
Hessian Bk is a rank two modification of Bk−1, it is possible to solve this system
more efficiently. One possibility would be to maintain an approximation to the
inverse Hessian, using the Shermann-Morrison formula (6.2.14). Then only O(n2)
operations would be needed. However, if the Cholesky factorization Bk = LkDkL

T
k

is available the system (11.3.13) can also be solved in order n2 operations. Fur-
thermore, the factors Lk+1 and Dk+1 of the updated Hessian approximation Bk+1

can be computed in about the same number of operations that would be needed
to generate B−1

k+1. An important advantage of using the Cholesky factorization is
that the positive definiteness of the approximate Hessian cannot be lost through
round-off errors.

An algorithm for modifying the Cholesky factors of a symmetric positive def-
inite matrix B was given by Gill, et al. [14, ]. Let B = LDLT be the Cholesky
factorization of B, where L = (lij) is unit lower triangular and D = diag (dj) > 0
diagonal. Let B̄ = B ± vvT be a rank-one modification of B. Then we can write

B̄ = LDLT ± vvT = L(D ± ppT )LT ,

where p is the solution of the triangular system Lp = v. The Cholesky factorization
D±ppT = L̂D̄L̂T can be computed by a simple recursion, and then we have L̄ = LL̂.
In case of a positive correction B = B + vvT , the vector p and the elements of L̄
and D̄ can be computed in a numerical stable way using only 3n2/2 flops.
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Review Questions

1. Consider the unconstrained optimization problem minx φ(x), x ∈ R
n. Give neces-

sary conditions for x∗ to be a local minimum. (φ(x) : R
n → R is assumed to be

twice continuously differentiable.)

2. (a) In many iterative methods for minimizing a function φ(x), a sequence of points
are generated from xk+1 = xk + λkdk, k = 0, 1, 2, . . ., where dk is a search direction.
When is dk a descent direction? Describe some strategies to choose the step length
λk.

(b) Define the Newton direction. When is the Newton direction a descent direction?

3. In quasi-Newton, or variable metric methods an approximate Hessian is built up as
the iterations proceed. Denote by Bk the approximate Hessian at the kth step. What
quasi-Newton condition does Bk satisfy, and what is the geometrical significance of
this condition?

4. (a) What property should the function f(x) have to be unimodal in [a, b]?

(b) Describe an interval reduction methods for finding the minimum of a unimodal
function in [a, b], which can be thought of as being analogues of the bisection method.
What is its rate of convergence?

Problems

1. (a) The general form for a quadratic function is

φ(x) =
1

2
xTGx− bTx+ c,

where G ∈ R
n×n is a symmetric matrix and b ∈ R

n a column vector. Show that the
gradient of φ is g = Gx− b and the Hessian is G. Also show that if g(x∗) = 0, then

φ(x) = φ(x∗) +
1

2
(x− x∗)TH(x− x∗).

(b) Suppose that G is symmetric and nonsingular. Using the result from (a) show
that Newton’s method will find a stationary point of φ in one step from an arbitrary
starting point x0. Under what condition is this a minimum point?

2. Let ψ(x) be quadratic with Hessian matrix G, which need not be positive definite.

(a) Let ψ(λ) = φ(x0 − λd). Show using Taylor’s formula that

ψ(λ) = ψ(0) − λgTd+
1

2
λ2dTGd.

Conclude that if dTGd > 0 for a certain vector d then ψ(λ) is minimized when
λ = gTd/dTGd, and

min
λ
ψ(λ) = ψ(0) − 1

2

(dT g)2

dTGd
.

(b) Using the result from (a) show that if gTGg > 0 and gTG−1g > 0, then the
steepest descent method d = g with optimal λ gives a smaller reduction of ψ than
Newton’s method if gTG−1g > (gT g)2/gTGg. (The conclusion holds also if φ(x0 −
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λd) can be approximated by a quadratic function of λ reasonably well in the relevant
intervals.)

(c) Suppose that G is symmetric and nonsingular. Using the result from (b) show
that Newton’s method will find a stationary point of φ in one step from an arbitrary
starting point x0. Under what condition is this a minimum point?

11.4 Constrained Optimization

11.4.1 Introduction.

Linear optimization or linear programming is a mathematical theory and method
of calculation for determining the minimum (or maximum) of a linear objective
function, where the domain of the variables are restricted by a system of linear
inequalities, and possibly also by a system of linear equations. This is famous
problem which has been extensively studied since the late 1940’s. Problems of this
type come up, e.g., in economics, strategic planning, transportation and productions
problems, telecommunications, and many other applications. Important special
cases arise in approximation theory, e.g., data fitting in l1 and l∞ norms. The
number of variables in linear optimization can be very large. Today linear programs
with 5 million variables are solved!

A linear programming problem cannot be solved by setting certain partial
derivatives equal to zero. As the following example shows, the deciding factor is the
domain in which the variables can vary.

Example 11.4.1.

In a given factory there are three machines M1,M2,M3 used in making two
products P1, P2. One unit of P1 occupies M1 5 minutes, M2 3 minutes, and M3

4 minutes. The corresponding figures for one unit of P2 are: M1 1 minute, M2 4
minutes, and M3 3 minutes. The net profit per unit of P1 produced is 30 dollars,
and for P2 20 dollars. What production plan gives the most profit?

Suppose that x1 units of P1 and x2 units of P2 are produced per hour. Then
the problem is to maximize

f = 30x1 + 20x2

subject to the constraints x1 ≥ 0, x2 ≥ 0, and

5x1 + x2 ≤ 60 for M1,

3x1 + 4x2 ≤ 60 for M2, (11.4.1)

4x1 + 3x2 ≤ 60 for M3.

The problem is illustrated geometrically in Fig. 11.3.1. The first of the in-
equalities (11.4.2) can be interpreted that the solution (x1, x2) must lie on the left
of or on the line AB whose equation is 5x1 + x2 = 60. The other two can be
interpreted in a similar way. Thus (x1, x2) must lie within or on the boundary
of the pentagon OABCD. The value of the function f to be maximized is pro-
portional to the orthogonal distance and the dashed line f = 0; it clearly takes
on its largest value at the vertex B. Since every vertex is the intersection of two
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lines, we must have equality in (at least) two of the inequalities. At the solution
x∗ equality holds in the inequalities for M1 and M3. These two constraints are
called active at x∗; the other are inactive. The active constraints give two linear
equations for determining the solution, x1 = 120/11, x2 = 60/11. Hence the maxi-
mal profit f = 4, 800/11 = 436.36 dollars per hour is obtained b using M1 and M2

continuously, while M2 is used only 600/11 = 54.55 minutes per hour.

Figure 11.4.1. Geometric illustration of a linear programming problem.

11.4.2 Optimality for Inequality Constraints.

A linear programming (LP) problem can more generally be stated in the following
form:

min
x∈Rn

cTx (11.4.2)

subject to Ax ≥ b, x ≥ 0.

Here x ∈ Rn is the vector of unknowns, c ∈ Rn is the cost vector, and A ∈ Rm×n

the constraint matrix. The function cTx to be minimized is called the objective

function. (Note that the problem of maximizing cTx is equivalent to minimizing
−cTx. )

A single linear inequality constraint has the form aT
i x ≥ bi. The corresponding

equality aT
i x = bi defines a hyperplane in Rn. The inequality restricts x to lie on

the feasible side of this hyperplane. The feasible region of the LP (11.4.2) is the set

F = {x ∈ Rn | Ax ≥ b}. (11.4.3)

An inequality constraint is said to be redundant if its removal does not alter the
feasible region.

Obviously, a solution to the LP (11.4.2)can exist only if F is not empty.
When F is not empty, it has the important property of being a convex set, which
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is defined as follows: Let x and y be any two points in F . Then the line segment

{z ≡ (1 − α)x + αy | 0 ≤ α ≤ 1}

joining x and y is also in F . It is simple to verify that F defined by (11.4.3) has
this property, since

Az = (1 − α)Ax + αAy ≥ (1 − α)b + αb = b.

when 0 ≤ α ≤ 1}.
The active set of the inequality constraints Ax ≥ b at a point x is the subset

of constraints which are satisfied with equality at x. Hence the constraint aT
i x ≥ bi

is active if the residual at x is zero,

ri(x) = aT
i x− bi = 0.

Let x be a feasible point in F . Then it is of interest to find directions p such that
x + αp remains feasible for some α > 0. If the constraint aT

i x ≥ bi is active at x,
then all points y = x+αp, α > 0, will remain feasible with respect to this constraint
if and only if aT

i p ≥ 0. It is not difficult to see that the feasible directions p are
not affected by the inactive constraints at x. Hence p is a feasible directions at the
point x if and only if aT

i p ≥ 0 for all active constraints at x.
Given a feasible point x the maximum step α that can be taken along a

feasible direction p depends on the inactive constraints. We need to consider the
set of inactive constraints i for which aT

i p < 0. For these constraints, which are
called decreasing constraints, aT

i (x+αp) = aT
i x+αaT

i p = bi, and thus the constraint
i becomes active when

α = αi =
aT

i x− bi
−aT

i p
.

Hence the largest step we can take along p is maxαi where we maximize over all
decreasing constraints.

For an LP there are three possibilities: There may be no feasible points, in
which case the LP has no solution; there may be a feasible point x∗ at which the
objective function is minimized; Finally, the feasible region may be unbounded
and the objective function unbounded below in the feasible region. The following
fundamental theorem states how these three possibilities can be distinguished:

Theorem 11.4.1.

Consider the linear program minimizing cTx subject to Ax ≥ b. (We assume
here that the constraints x ≥ 0 are not present.) Then the following results hold:

(a) If no points satisfy Ax ≥ b, the LP has no solution;

(b) If there exists a point x8 satisfying the conditions

Ax∗ ≥ b, c = AT
Aλ

∗
A, λ∗A ≥ 0,

where AA is the matrix of active constraints at x∗, then cTx∗ is the unique
minimum value of cTx in the feasible region, and x∗ is a minimizer.
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(c) If the constraints Ax ≥ b are consistent, the objective function is unbounded
below in the feasible region if and only if the last two conditions in (b) are not
satisfied at any feasible point.

The last two conditions in (b) state that c can be written as a nonnegative
linear combination of the rows in A corresponding to the active constraints. The
proof of this theorem is nontrivial. It is usually proved by invoking Farkas Ĺemma,
a classical result published in 1902. For a proof we refer to [17, Sec. 7.7].

The geometrical ideas in the introductory example are useful also in the general
case. Given a set of linear constraints a vertex is a feasible point for which the active
constraints matrix has rank n. Thus at least n constraints are active at a vertex x. A
vertex is an extreme point of the feasible region F . If exactly n constraints are active
at a vertex, the vertex is said to be nondegenerate; if more than n constraints are
active at a vertex, the vertex is said to be degenerate. In Example 11.4.1 there
are five vertices O,A,B,C, and D, all of which are nondegenerate. The vertices
form a polyhedron, or simplex in Rn.

Vertices are of central importance in linear programming since many LP have
the property that a minimizer lies at a vertex. The following theorem states the
conditions under which this is true.

Theorem 11.4.2.

Consider the linear program of minimizing cTx subject to Ax ≥ b, A ∈ Rm×n.
If rank (A) = n and the optimal value of cTx is finite, a vertex minimizer exists.

Note that by convexity an infinity of non-vertex solutions will exist if the
minimizer is not unique. For example, in a problem like Example 11.4.1, one could
have an objective function f = cTx such that the line f = 0 were parallel to one of
the sides of the pentagon. Then all points on the line segment between two optimal
vertices in the polyhedron are also optimal points.

Suppose a linear program includes the constraints x ≥ 0. Then the constraint
matrix has the form (

A
In

)

∈ R(m+n)×n.

Since the rows include the identity matrix In this matrix always has rank n. Hence
a feasible vertex must exist if any feasible point exists.

11.4.3 Standard Form LP.

It is convenient to adopt the following standard form of a linear programming
problem:

min
x∈Rn

cTx (11.4.4)

subject to Ax = b, x ≥ 0.

where A ∈ Rm×n. The constraints x ≥ 0 are the only inequality constraints in a
standard form problem. The set F of feasible points consists of points x that satisfy



52 Chapter 11. Nonlinear Systems and Optimization

Ax = b and x ≥ 0. If rank (A) = n this set contains just one point if A−1b ≥ 0;
otherwise it is empty. Hence in general we have rank (A) < n.

It is simple to convert a linear programming problem to standard form. Many
LP software packages apply an automatic internal conversion to standard form. The
change of form involves modification of the dimensions, variables and constraints.
An upper bound inequality aTx ≤ β is converted into an equality aTx + s = β
by introducing a slack variable s subject to s ≥ 0. A lower bound inequality of
the form aTx ≥ β can be changed to an upper bound inequality (−a)Tx ≤ −β.
Thus when a linear programming problems with inequality constraints is converted
to standard form, the number of variables will increase. If the original constraints
are Ax ≤ b, A ∈ Rm×n, then the matrix in the equivalent standard form will be
(A Im ), and the number of variables n plus m slack variables.

Example 11.4.2.

The problem in Example 11.4.1 can be brought into standard form with the
help of three slack variables, x3, x4, x5. We get

A =





5 1 1
3 4 1
4 3 1



 , b = 60





1
1
1



 ,

cT = (−20 −30 0 0 0 ) .

The three equations Ax = b define a two-dimensional subspace (the plane in
Fig. 11.4.1) in the five-dimensional space of x. Each side of the pentagon OABCD
has an equation of the form xi = 0, i = 1 : 5. At a vertex two of the coordinates
are zero, and the rest cannot be negative.

For completeness we note that, although this is seldom used in practice, equal-
ity constraints can be converted to inequality constraints. For example, aT

i x = bi
is equivalent to the two inequality constraints aT

i x > bi and −aT
i x ≥ −bi.

The optimality conditions for an LP in standard form are as follows:

Theorem 11.4.3.

Consider the standard linear program of minimizing cTx subject to Ax = b
and x ≥ 0 for which feasible points exist. Then x∗ is a minimizer if and only if x∗

is a feasible point and

c = ATπ∗ + η∗, η∗ ≥ 0, η∗i x
∗
i = 0, i = 1, . . . , n. (11.4.5)

A vertex for a standard form problem is also called a basic feasible point.
In case more than n−m coordinates are zero at a feasible point we say that the

point is a degenerate feasible point. A feasible vertex must exist if any feasible
point exists. Since the m equality constraints are active at all feasible points, at
least n−m of the bound constraints must also be active at a vertex. It follows that
a point x can be a vertex only if at least n−m of its components are zero.
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In the following we assume that there exist feasible points, and that cTx has
a finite minimum. Then an eventual unboundedness of the polyhedron does not
give rise to difficulties. These assumptions are as a rule satisfied in all practical
problems which are properly formulated.

We have the following fundamental theorem, the validity of which the reader
can easily convince himself of for n−m ≤ 3.

Theorem 11.4.4.

For a linear programming problem in standard form some optimal feasible
point is also a basic feasible point, i.e., at least n −m of its coordinates are zero;
equivalently at most m coordinates are strictly positive.

The standard form given above has the drawback that when variables are
subject to lower and upper bounds, these bounds have to be entered as general
constraints in the matrix A. Since lower and upper bounds on x can be handled
much more easily, a more efficient formulation is often used where inequalities l ≤
x ≤ u are substituted for x ≥ 0. Then it is convenient to allow li = −∞ and ui = ∞
for some of the variables xi. If for some j, lj = −∞ and uj = ∞, xj is said to be
free, and if for some j, lj = uj , xj is said to be fixed. For simplicity we consider in
the following mainly the first standard form.

Example 11.4.3.

As a nontrivial example of the use of Theorem 11.4.2 we consider the fol-
lowing transportation problem, which is one of the most well-known problems
in optimization. Suppose that a business concern has I factories which produce
a1, a2, . . . , aI units of a certain product. This product is sent to J consumers, who
need b1, b2, . . . , bJ units, respectively. We assume that the total number of units
produced is equal to the total need, i.e.,

∑I
i=1 ai =

∑J
j=1 bj. The cost to transport

one unit from producer i to consumer j equals cij . The problem is to determine the
quantities xij transported so that the total cost is minimized. This problem can be
formulated as a linear programming problem as follows:

minimize f =

I∑

i=1

J∑

j=1

cijxij

subject to xij ≥ 0, and the constraints

J∑

j=1

xij = ai, i = 1 : I,
I∑

i=1

xij = bj, j = 1 : J.

There is a linear dependence between these equations, since

I∑

i=1

J∑

j=1

xij −
J∑

j=1

I∑

i=1

xij = 0.

The number of linearly independent equations is thus (at most) equal to m =
I+J−1. From Theorem 11.4.2 it follows that there exist an optimal transportation
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scheme, where at most I + J − 1 of the IJ possible routes between producer and
consumer are used. In principle the transportation problem can be solved by the
simplex method described below; however, there are much more efficient methods
which make use of the special structure of the equations.

Many other problems can be formulated as transportation problems. One im-
portant example is the personnel-assignment problem: One wants to distribute
I applicants to J jobs, where the suitability of applicant i for job j is known. The
problem to maximize the total suitability is clearly analogous to the transportation
problem.

11.4.4 The Simplex Method

The simplex method was invented in 1947 by G. B. Danzig. Until the late 1980s
it was the only effective algorithm for solving large linear programming problems.
Later the simplex method has been rivaled by so called interior-point methods (see
Section 11.4.7), but it is still competitive for many classes of problems.

The idea behind the simplex method is simple. From Theorem 11.4.2 we know
that the problem is solved if we can find out which of the n coordinates x are zero
at the optimal feasible point. In theory, one could consider trying all the

(
n

n−m

)

possible ways of setting n−m variables equal to zero, sorting out those combinations
which do not give feasible points. The rest are vertices of the polyhedron, and one
can look among these to find a vertex at which f is minimized. However, since
the number of vertices increases exponentially with n−m this is laborious even for
small values of m and n.

The simplex method starts at a vertex (basic feasible point) and recursively
proceeds from one vertex to an adjacent vertex with a lower value of the objective
function cTx. The first phase in the simplex method is to determine an initial
basic feasible point (vertex). In some cases an initial vertex can be trivially found
(see, e.g., Example 11.4.4 below). A systematic method which can be used in more
difficult situations will be described later in Section 11.4.5.

When an initial feasible point has been found, the following steps are repeated
until convergence:

I. Check if the current vertex is an optimal solution. If so then stop, else con-
tinue.

II. Proceed from the current vertex to a neighboring vertex at which the value
of f if possible is smaller.

Consider the standard form linear programming problem (11.4.4). At a vertex
n−m variables are zero. We divide the index set I = {1 : m} into two disjoint sets

I = B ∪N, B = {j1, . . . , jn}, N = {i1, . . . , in−m}, (11.4.6)

such that N corresponds to the zero variables. We call xB basic variables and xN

nonbasic variables. If the vector x and the columns of the matrix A are split in
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a corresponding way, we can write the system Ax = b as

ABxB = b −ANxN . (11.4.7)

We start by illustrating the simplex method on the small example from the
introduction.

Example 11.4.4.

In Example 11.4.2 we get an initial feasible point by taking xB = (x3, x4, x5)
T

and xN = (x1, x2)
T . The corresponding splitting of A is

AB =





1 0 0
0 1 0
0 0 1



 , AN =





5 1
3 4
4 3



 ,

Putting xN = 0 gives x̂B = b = (60, 60, 60)T . Since xB ≥ 0 this corresponds to a
vertex (the vertex O in Fig. 11.4.1) for which f = 0. The optimality criterion is not
fulfilled since cB = 0 and ĉTN = cTN = (−30,−20) < 0. If we choose xr = x1 = θ > 0
then using x̂B and the first column of A−1

B AN = AN we find

θmax = 60 min
i
{1/5, 1/3, 1/4} = 12.

Clearly a further increase in x1 is inhibited by x3. We now exchange these variables
to get xB = (x1, x4, x5)

T , and xN = (x3, x2)
T . (Geometrically this means that one

goes from O to A in Fig. 11.4.1.)
The new sets of basic and non-basic variables are xB = (x1, x4, x5)

T , and
xN = (x3, x2). Taking xN = 0 we have

x̂B = (12, 24, 12)T , f = 0 + 12 · 30 = 360.

The new splitting of A is

AB =





5 0 0
3 1 0
4 0 1



 , AN =





1 1
0 4
0 3



 .

The reduced costs ĉTN = ( 6 −14 ) for non-basic variables are easily computed from
(11.4.10). The optimality criterion is not satisfied. We take xr = x2 and solve
ABb2 = a2 to get b2 = (1/5)(1, 17, 11)T . We find θ = 5 min(12/1, 24/17, 12/11) =
60/11. Exchanging x2 and x5 we go from A to B in Fig. 11.4.1. The new basic
variables are

x̂B = (x1, x4, x2) = (5/11)(24, 12, 12)T , f = 4, 800/11.

The non-basic variables are xN = (x3, x5)
T , and to compute the reduced costs we

must solve 



5 3 4
0 1 0
1 4 3



 d =





−30
0

−20



 .
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We have cTN = (0, 0) and get ĉTN = (d1, d3) = 10
11 ( 1 7 ). The optimality criterion is

now satisfied, so we have found the optimal solution.

In older textbooks the calculations in the simplex method is usually presented
in form of a tableau, where the whole matrix BN = A−1

B AN is updated in each
step; see Problem 3. However, these formulas are costly and potentially unstable,
since they do not allow for pivoting for size.

We now give a general description of the steps in the simplex method which
is closer to what is used in current simplex codes. We assume that the matrix AB

in (11.4.7) is nonsingular. (This will always be the case if rank (A) = n.) We can
then express the basic variables in in terms of the nonbasic

xB = x̂B −A−1
B ANxN , x̂B = A−1

B b, (11.4.8)

where x̂B is obtained by solving the linear system ABx̂B = b. If x̂B ≥ 0 then
xN = 0 corresponds to a basic feasible point (vertex). The vector c is also split in
two subvectors cB and cN , and using (11.4.8) we have

f = cTx = cTB(x̂B −A−1
B ANxN ) + cTNxN = cTBx̂B + ĉTNxN ,

where
ĉN = cN −AT

Nd, d = A−T
B cB. (11.4.9)

Here d can be computed by solving the linear system

AT
Bd = cB. (11.4.10)

The components of ĉN are known as the reduced costs for the nonbasic variables,
and the process of computing them known as pricing. If ĉN ≥ 0 then xN = 0
corresponds to an optimal point, since f cannot decrease when one gives one (or
more) nonbasic variables positive values (negative values are not permitted). Hence
if the optimality criterion ĉN ≥ 0 is satisfied, then the solution xB = x̂B , xN = 0
is optimal, and we can stop.

If the optimality criterion is not satisfied, then there is at least one non-basic
variable xr whose coefficient ĉr in ĉN is negative. We now determine the largest
positive increment one can give xr without making any of the basic variables neg-
ative, while holding the other non-basic variables equal to zero. Consider equation
(11.4.8), and let br be the corresponding column of the matrix A−1

B AN . This column
can be determined by solving the linear system

ABbr = ar, (11.4.11)

where ar is the column in AN corresponding to xr. If we take xr = θ > 0, then
xB = x̂B − θbr, and for any basic variable xi we have xi = x̂i − θbir. Hence if
bir > 0, then xi remains positive for θ = θi ≤ x̂i/bir. The largest θ for which no
basic variable becomes negative is given by

θ = min
i
θi, θi =

{

x̂i/bir if bir > 0;
+∞ if bir ≤ 0;

(11.4.12)
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If θ = +∞, the object function is unbounded in the feasible region, and we stop.
Otherwise there is at least one basic variable xl that becomes zero for this value of
θ. Such a variable is now interchanged with xr, so xr becomes a basic variable and
xl a non-basic variable. (Geometrically this corresponds to going to a neighboring
vertex.) Note that the new values of the basic variables can easily be found by
updating the old values using xi = xi − θbir, and xr = θ.

In case several components of the vector ĉN are negative we have to specify
which variable to choose. The so-called textbook strategy chooses r as the index
of the most negative component in ĉN . This can be motivated by noting that
cr equals the reduction in the object function f = cTB x̂B + ĉTNxN , produced by a
unit step along xr Hence this choice leads to the largest reduction in the objective
function assuming a fixed length of the step. A defect of this strategy is that it is
not invariant under scalings of the matrix A. A scaling invariant strategy called
the steepest edge strategy can lead to great gains in efficiency, see Gill, Murray,
and Wright [17, ,Ch.8].

It is possible that even at a vertex which is not an optimal solution one cannot
increase f by exchanging a single variable without coming in conflict with the
constraints. This exceptional case occurs only when one of the basic variables is
zero at the same time that the non-basic variables are zero. As mentioned previously
such a point is called a degenerate vertex. In such a case one has to exchange a
non-basic variable with one of the basic variables which is zero at the vertex, and
a step with θ = 0 occurs. In more difficult cases, it may even be possible to make
several such exchanges.

Figure 11.4.2. Feasible points in a degenerate case.

Example 11.4.5.

Suppose we want to maximize f = 2x1 + 2x2 + 3x3 subject to the constraints

x1 + x3 ≤ 1, x2 + x3 ≤ 1, xi ≥ 0, i = 1, 2, 3.

The feasible points form a four-sided pyramid in (x1, x2, x3) -space; see Fig. 11.3.2.
Introduce slack variables x4 and x5, and take {x1, x2, x3} as non-basic variables.
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This gives a feasible point since x1 = x2 = x3 = 0 (the point O in Fig. 11.3.2) sat-
isfies the constraints. Suppose at the next step we move to point A, by exchanging
x3 and x4. At this point the non-basic variables {x1, x2, x4} are zero but also x5,
and A is a degenerate vertex, and we have

x3 = 1 − x1 − x4,

x5 = x1 − x2 + x4,

f = 3 − x1 + 2x2 − 3x4.

The optimality condition is not satisfied, and at the next step we have to exchange
x2 and x5, and remain at point A. In the final step we can now exchange x1 and
x2 to get to the point B, at which

x1 = 1 − x3 − x4,

x2 = 1 − x3 − x5,

f = 4 − x3 − x4 − 2x5.

The optimality criterion is fulfilled, and so B is the optimal point.

Traditionally degeneracy has been a major problem with the Simplex method.
A proof that the simplex algorithm converges after a finite number of steps relies
on a strict increase of the objective function in each step. When steps in which
f does not increase occur in the simplex algorithm, there is a danger of cycling,
i.e., the same sequence of vertices are repeated infinitely often, which leads to non-
convergence. Techniques exist which prevent cycling by allowing slightly infeasible
points, see Gill, Murray and Wright [17, , Sec. 8.3.3]. By perturbing each bound
by a small random amount, the possibility of a tie in choosing the variable to leave
the basis is virtually eliminated.

Most of the computation in a simplex iteration is spent with the solution of
the two systems of equations AT

Bd = cB and ABbr = ar. We note that both the
matrix AB and the right hand sides cB and ar are often very sparse. In the original
simplex method these systems were solved by recurring the inverse A−1

B of the basis
matrix. However, this is in general inadvisable because of lack of numerical stability.

Stable methods can be devised which store and update the LU factorization

PBAB = LU (11.4.13)

where PB is a permutation matrix. The initial factorization (11.4.13) is computed
by Gaussian elimination and partial pivoting. The new basis matrix which results
from dropping the column ar and inserting the column as in the last position is a
Hessenberg matrix. Special methods can therefore be used to generate the factors
of the subsequent basis matrices as columns enter or leave.

From the above it is clear that the major computational effort in a simplex
step is the solution of the two linear systems

AT
B d̂ = cB, ABbr = ar, (11.4.14)
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to compute reduced costs and update the basic solution. These systems can be
solved cheaply by computing a LU factorization of the matrix AB is available. For
large problems it is essential to take advantage of sparsity in AB. In particular the
initial basis should be chosen such that AB has a structure close to diagonal or
triangular. Therefore row and column permutations are used to bring AB into such
a form. Assume that a LU factorization has been computed for the initial basis.
Since in each step only one column in AB is changed, techniques for updating
a (sparse) LU factorization play a central role in modern implementation of the
simplex method.

Although the worst case behaviour of the simplex method is very poor–the
number of iterations may be exponential in the number of unknowns—this is never
observed in practice. Computational experience indicates that the simplex methods
tends to give the exact result after about 2m–3m steps, and essentially independent
of the number of variables n. Note that the number of iterations can be decreased
substantially if one starts from an initial point close to an optimal feasible point.
In some cases it may be possible to start from the optimal solution of a nearby
problem. (This is sometimes called “a warm start”.)

11.4.5 Finding an Initial Basis

It may not be trivial to decide if a feasible point exists, and if so, how to find one.
Modify the problem by introducing a sufficient number of new artificial variables

are added to the constraints in (11.4.4) to assure that an initial bases matrix AB

can be found satisfying

xB = A−1
B b ≥ 0, xN = 0, x = (xT

B , x
T
N )T .

By introducing large positive costs associated with the artificial variables these
are driven towards zero in the initial phase of the Simplex algorithm. If a feasible
point exists, then eventually all artificial variables will become non-basic variables
and can be dropped. This is often called the phase 1 in the solution of the original
linear program. The following example illustrates this technique.

Example 11.4.6.

Maximize f = x1 − x2, subject to the constraints xi ≥ 0, i = 1 : 5, and

x3 = −2 + 2x1 − x2,

x4 = 2 − x1 + 2x2,

x5 = 5 − x1 − x2.

Here if x1 = x2 = 0, x3 is negative, so x1, x2 cannot be used as non-basic variables.
It is not immediately obvious which pair of variables suffice as non-basic variables.
Modify the problem by introducing a new artificial variable x6 ≥ 0, defined by
the equation

x6 = 2 − 2x1 + x2 + x3.

We can now take x4, x5, x6 as basic variables, and have found a feasible point for an
extended problem with six variables. This problem will have the same solution as
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the original, if we can ensure that the artificial variable x6 is zero at the solution.
To accomplish this we modify the objective function to become

f̄ = x1 − x2 −Mx6 = −2M + (1 + 2M)x1 − (1 +M)x2 −Mx3.

Here M is assumed to be a large positive number, much larger than other numbers
in the computation. Then a positive value of x6 will tend to make the function to
be maximized quite small, which forces the artificial variable to become zero at the
solution. Indeed, as soon as x6 appears as a nonbasic variable, (this will happen if
x1 and x6 are exchanged here) it is no longer needed in the computation, and can
be deleted, since we have found an initial feasible point for the original problem.

The technique sketched above may be quite inefficient. A significant amount
of time may be spent minimizing the sum of the artificial variables, and may lead to
a vertex far away from optimality. We note that it is desirable to choose the initial
basis so that AB has a diagonal or triangular structure. Several such basis selection
algorithms, named basis crashes, have been developed, see Bixby [2, ].

11.4.6 Duality

Consider the linear programming problem in standard form

min
x∈Rn

cTx

subject to Ax = b, x ≥ 0.

When this problem has a bounded optimal minimizer x∗ The optimality conditions
of Theorem 11.4.3 imply the existence of Lagrange multipliers y∗ such that

c = AT y∗ + η∗, η∗ ≥ 0, η∗i x
∗
i = 0, i = 1, . . . , n.

It follows that y∗ satisfies the inequality constraints yTA ≤ cT . This leads us to
define the dual problem to the standard form problem as follows:

max
y∈Rm

g = yT b (11.4.15)

subject to yTA ≤ cT .

Here y are the dual variables. The initial problem will be called the primal

problem and x the primal variables. If y satisfies the inequality in (11.4.15) y
is called a feasible point of the dual problem. Note that the constraint matrix for
the dual problem is the transposed constraint matrix of the primal, the right-hand
side in the dual is the normal vector of the primal objective, and the normal vector
of the dual objective is the right-hand side of the primal.

Note that the dual to a standard form linear programming problem is in all
inequality form. However, the dual problem may also be written in standard form

max
y∈Rm

g = yT b (11.4.16)

subject to AT y + z = c, z ≥ 0,
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where z are the dual slack variables. The solution y∗ to the dual problem is the
Lagrange multiplier for them linear equality constraints in the primal problem. The
primal solution x∗ is the Lagrange multiplier for the n linear equality constraints
of the standard-form dual problem.

Let x and y be arbitrary feasible vectors for the primal and dual problems,
respectively. Then

g(y) = yT b = yTAx ≤ cTx = f(x). (11.4.17)

The nonnegative quantity
cTx− yT b = xT z

is called the duality gap. We will show it is zero if and only if x and y are optimal
for the primal and dual.

Theorem 11.4.5.

The optimal values of the primal and dual problem are equal, i.e.,

max g(y) = min f(x). (11.4.18)

The minimum value is obtained at a point ŷ which is the solution of the m simul-
taneous equations

ŷTai = ci, i ∈ S, (11.4.19)

where the set S is the set of integers defined previously.

Proof. By (11.4.17) it holds that

max g(y) ≤ min f(x). (11.4.20)

We shall show that ŷ as defined by (11.4.19) is a feasible vector. Since Ax = b, we
may write

f(x) = cTx− ŷT (Ax− b) = ŷT b+ (cT − ŷTA)x.

Hence by (11.4.19)

f(x) = yT b+
∑

j 6∈S

(cj − ŷTaj)xj . (11.4.21)

Now f(x) is expressed in terms of the nonbasic variables corresponding to the
optimal solution of the primal. It then follows form the optimality criterion (see
Section 11.4.4) that cj − ŷTaj ≥ 0, j 6∈ S. This together with (11.4.19), shows that
ŷ is a feasible point for the dual. Moreover, since x̂j = 0, j 6∈ S, then by (11.4.21)
f(x̂) = ŷT b = g(ŷ). This is consistent with (11.4.20) only if max g(y) = g(ŷ). Hence
max g(y) = min f(x), and the theorem is proved.

A linear program initially given in the inequality form (11.4.15)–(11.4.17) can
be converted to standard form by adding n slack variables. If the simplex method
is used to solve this standard problem, each step involves solution of a linear system
of sizes n× n. If n is large it may be advantageous to switch instead to the primal
problem, which is already in standard form. A simplex step for this problem involves
solving linear systems of size m×m, which may be much smaller size!
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11.4.7 Interior Point Methods

Interior point methods for optimization problems were introduced by Fiacco and
McCormick [1968]. They are characterized by the property that a sequence of
approximation strictly inside the feasible region are generated. They work by in-
troducing a nonlinear barrier function which makes the approximations stay away
from the boundary. Interest in interior point methods for linear programming did
not arise until the work by Karmarkar [20, ], since solving a linear problem by
techniques from nonlinear optimization was not believed to be a competitive ap-
proach. Currently the best interior point methods are competitive with the Simplex
method on most problems and superior for some.

The most promising interior point method for linear programming is the so
called primal-dual logarithmic barrier method, which we sketch below. We add a
logarithmic barrier to the dual problem (11.4.15) and consider

maximize g = yT b + µ

n∑

j=1

ln zj , (11.4.22)

subject to yTA ≤ cT .

The first order optimality conditions for (11.4.22) can be shown to be

XZe = µe,

Ax = b (11.4.23)

AT y + z = c,

where e = (1, 1, . . . , 1)T , and X = diag (x), Z = diag (z). Let µ > 0 be a parameter
(which we will let tend to zero). Note that the last two sets of equations are the
primal and dual feasibility equations, and in the limit µ→ 0 the first set of equations
expresses the complementarity condition yTx = 0.

We then have a set of (partly nonlinear) equations for the unknown variables
x, y, z. If we apply Newton’s method the corrections will satisfy the following system
of linear equations

Zδx+Xδz = µe−XZe,

Aδx = b−Ax, (11.4.24)

AT δy + δz = c−AT y − z.

If Z > 0 we can solve to get

AZ−1XAT δy = −AZ−1(µe−XZe) +AZ−1rD + rP ,

δz = −AT δy + rD,

δx = Z−1(µe−XZe)− Z−1Xδz.

A sparse Cholesky factorization of ADAT , where D = Z−1X is a positive diagonal
matrix, is the main computational cost for the solution. Note that we need not
worry about feasibility. The idea is to follow a central path y(µ) when µ→ 0.
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Review Questions

1. Give the standard form for a linear programming problem. Define the terms feasible
point, basic feasible point, and slack variable.

2. State the basic theorem of linear optimization (Theorem 11.4.2). Can there be more
than one optimal solution? Is every optimal solution a basic feasible point?

3. Describe the simplex method. What does one do in the case of a degenerate feasible
vector?

4. Give the dual problem to min cTx subject Ax = b, x ≥ 0. How are the solutions to
the dual and primal problems related?

Problems

1. (a) Find the maximum of f = x1 + 3x2 subject to the constraints x1 ≥ 0, x2 ≥ 0,

x1 + x2 ≤ 2, x1 + 2x2 ≤ 2.

First solve the problem graphically, and then use the simplex method with x1 =
x2 = 0 as initial point. In the following variants, begin at the optimal vertex found
in problem (a).

(b) Find the maximum of f = 2x1 + 5x2 under the same constraints as in (a).

(c) Find the maximum of f = x1 + x2 under the same constraints as in (a).

(d) Find the maximum of f = x1 + 3x2 after changing the second constraint in (a)
to 2x1 + 2x2 ≤ 3.

2. Suppose that there is a set of programs LP that solves linear programming problems
in standard form. One wants to treat the problem to minimize f = dTx, dT =
(1, 2, 3, 4, 5, 1, 1), where xi ≥ 0, i = 1 : 7,

|x1 + x2 + x3 − 4| ≤ 12

3x1 + x2 + 5x4 ≤ 6

x1 + x2 + 3x3 ≥ 3

|x1 − x2 + 5x7| ≥ 1

Give A, b, and c in the standard form formulation in this case.

3. At each stage in the simplex method a basic variable xl is exchanged with a certain
nonbasic variable xr. Before the change we have for each basic variable xi a linear
relation

xi = birxr +
X

bikxk, i ∈ L,
where the sum is taken over all nonbasic variables except xr. If the equation for
i = l is used to solve for xr we get

xr =
1

blr
xl −

X blk
blr
xk.

If this expression is substituted in the rest of the equations we obtain after the
exchange a relation of the form

xi = b̂ilxl +
X

b̂ikxk, i 6= l,
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(even for i = r), where the sum is now taken over all the nonbasic variables except
xl. Express the coefficients in the new relation in terms of the old coefficients.

4. (a) Put the dual problem in normal form, defined in Section 11.4.3. (Note that there
is no non-negativity condition on y.)

(b) Show that the dual problem of the dual problem is the primal problem.

Notes and References

The numerical solution of nonlinear equations by the methods of Newton, Brown
and Brent is discussed by Moré and Cosnard [27, ]. An evaluation of numerical
software that solves systems of nonlinear equations is given by Hiebert [19, ].
Here eight different available Fortran codes are compared on a set of test prob-
lems. Of these one uses a quasi-Newton method, two Brown’s method, one Brent’s
method, and the remaining four Powell’s hybrid method, see Powell [31, ]. A
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algorithm
Euler-Newton method, 18

Armijo-Goldstein criterion, 15

Banach space, 5
BFGS update, 46
Broyden’s method, 13

continuation method, 17–19
contraction, 4
contraction mapping theorem, 4
convex set, 49
cost vector, 49

degeneracy, 57–59
descent direction, 15, 43
double pendulum, 21

exponential fitting, 22

feasible point, 2
basic, 52
degenerate, 52

feasible region, 2
fixed point iteration, 3–6
functional equation, 1

Gauss–Newton method, 23–27
rate of convergence, 26

Gauss–Seidel’s method
nonlinear, 3

geometric fitting, 38
global convergence, 15–17
gradient vector, 5, 42

Hessian matrix, 42
homotopy, 17

incremental loading, 18

initial basis, 59–60

Jacobi’s method
nonlinear, 2

Jacobian matrix, 5

least squares fitting
of circles, 35–38
of ellipses, 35–38, 41

least squares method
nonlinear, 22–35
separable problem, 30–33

Levenberg-Marquardt method, 27
line search, 15
linear optimization, 48–62

dual problem, 60
duality, 60–61
duality gap, 61
interior point method, 62
primal problem, 60
standard form, 51

linear programming, see linear opti-
mization

Lipschitz constant, 4
local minimum

necessary conditions, 43

minimum
global, 42
local, 42

Newton step, 44
Newton’s method, 6–10

damped, 15
discretized, 12
for least squares, 28–30
for minimization, 44

Newton–Kantorovich theorem, 8
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normal curvature matrix, 25
numerical differentiation

errors, 11
optimal, 11

orthogonal distance, 34

personnel-assignment problem, 54
Powell’s hybrid method, 16
principal radius of curvature, 25
Prony’s method, 31

quadratic model, 44
quasi-Newton

condition, 29, 45
method, 13, 45

regression
orthogonal distance, 33–35

saddle point, 43
search direction, 43
secant equation, 13
simplex, 51
simplex method, 54–60

cycling, 58
optimality criterion, 56
pricing, 56
reduced costs, 56
steepest edge strategy, 57
tableau, 55
textbook strategy, 57

stationary point, 42
step length, 43

transportation problem, 53–54
trust region method, 16, 27–28

variable projection algorithm, 31
variables

basic, 54
nonbasic, 54

vertex
degenerate, 57
of polyhedron, 52


