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Chapter 10

Iterative Methods for

Linear Systems

10.1 Classical Iterative Methods

10.1.1 Introduction

The methods discussed so far for solving systems of linear equations Ax = b, have
been direct methods based on matrix factorization. Disregarding rounding errors,
direct methods yield the exact solutionin in a fixed finite number of operations.
Iterative methods, on the other hand, start from an initial approximation, which
is successively improved until a sufficiently accurate solution is obtained. The idea
of solving systems of linear equations by iterative methods dates at least back to
Gauss (1823). Before the advent of computers iterative methods used were usually
noncyclic relaxation methods guided at each step by the sizes of the residuals of the
current solution. When in the 1950s computers replaced desk calculators an intense
development of cyclic iterative methods started.

Basic iterative methods work directly with the original matrix A and only
need extra storage for a few vectors. Since A is involved only in terms of matrix-
vector products there is usually no need even to store the matrix A. Such methods
are particularly useful for sparse system, which typically arise in the solution of
boundary value problems of partial differential equations by finite difference or
finite element methods. The matrices involved can be huge, sometimes involving
several million unknowns. The LU factors of matrices in such applications typically
contain order of magnitudes more nonzero elements than A itself. Hence, because
of the storage and number of arithmetic operations required, direct methods may
become far too costly to use. This is true in particular for problems arising from
three-dimensional simulations in e.g., reservoir modeling, mechanical engineering,
electric circuit simulation. However, in some areas, e.g., structural engineering,
which typically yield very ill-conditioned matrices, direct methods are still preferred.

In using an iterative methods for solving a linear system of equations Ax = b,
where A is square and nonsingular it is assumed that an initial approximation
x(0) is given (e.g., x(0) = 0). A sequence of approximations x(1), x(2), . . ., which

1



2 Chapter 10. Iterative Methods for Linear Systems

converges to the solution is then computed. The methods used before the age of
high speed computers were usually rather unsophisticated relaxation methods.
In Richardson’s method,1 the next approximation is computed as

x(k+1) = x(k) + ωk(b −Ax(k)), k = 0, 1, 2, . . . , (10.1.1)

where ωk > 0 are parameters to be chosen. It follows easily from (10.1.1) that the
residual r(k) = b−Ax(k) and error satisfy the recursions

r(k+1) = (I − ωkA)r(k), x(k+1) − x = (I − ωkA)(x(k) − x).

In the special case that ω = ωk we have

x(k) − x = (I − ωA)k(x(0) − x).

If A has a nonzero diagonal it can be scaled to have all diagonal elements equal to
1. In this case Richardson’s method with ω = 1 is equivalent to Jacobi’s method.
The convergence of the Richardson’s method will be considered in Section 10.1.3.

10.1.2 A Model Problem

The biggest source of large linear systems is partial differential equations. An
equation which is often encountered is Poisson’s equation, where u(x, y) satisfies

∂2u

∂x2
+
∂2u

∂y2
= f, (x, y) ∈ Ω = (0, 1) × (0, 1).

On the boundary Ω we assume u(x, y) to be prescribed. We will frequently use this
as a model problem.

To approximate the solution we impose a uniform square mesh of side h = 1/n
on Ω. Taking f = 0 (Laplace equation) and approximating the second derivatives
by symmetric difference quotients gives a difference equation

1

h2

(
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4uij

)
= 0, 0 < i, j < n,

for the unknown values uij at interior mesh points; see Section 13.1.2. If the mesh
points are enumerated line by line (the so called “natural ordering”) and a vector
u is formed of the function values, the difference equation can then be written in
matrix form as

Au = h2b, u = (u1, u2, . . . , un−1),

where ui is the vector of unknowns in the ith line and the matrix A is symmetric.
The linear system arising from Poisson’s equation has several features common

to boundary value problems for all linear partial differential equations. One of these
is that there are at most 5 nonzero elements in each row of A, i.e. only a tiny fraction

1Lewis Fry Richardson (1881–1953) English mathematician, who was the first to use mathe-
matical methods for weather prediction.



10.1. Classical Iterative Methods 3

of the elements are nonzero. Such matrices are called sparse. Therefore a matrix-
vector multiplication Ax requires only about 5 ·N2 multiplications or equivalently
five multiplications per unknown. Using iterative methods which take advantage
of the sparsity and other features does allow the efficient solution of such systems.
This becomes even more essential for three-dimensional problems!

It can be verified that in block form the matrix can be written as

A =




2I + T −I
−I 2I + T

. . .
. . .

. . . −I
−I 2I + T


 ∈ R(n−1)2×(n−1)2 , (10.1.2)

where T is symmetric tridiagonal,

T =




2 −1

−1 2
. . .

. . .
. . . −1
−1 2


 ∈ R(n−1)×(n−1). (10.1.3)

Taking n = 3 we obtain the matrix used in Example ??.

0 20 40 60 80 100

0

20

40

60

80

100

nz = 478
0 20 40 60 80 100

0

20

40

60

80

100

nz = 1918

Figure 10.1.1. Structure of A (left) and L + U (right) for the Poisson
problem, N = 10. (Row-wise ordering of the unknowns)

In principle Gaussian elimination can be used to solve such systems. However,
even taking symmetry and the banded structure into account this would require
1
2 ·N4 multiplications, since in the LU factors the zero elements inside the outer
diagonals will fill-in during the elimination Hence L contains about n3 nonzero
elements compared to only about 5n2 in A as shown in Figure 10.1.1 (right). To
compute the Cholesky factorization of a symmetric band matrix of order n and
(half) bandwidth w requires approximately 1

2nw
2 flops (see Algorithm 6.4.6). For

the matrix A in (10.1.3) the dimension is n2 and the bandwidth equals n. Hence
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about 1
2n

4 flops are needed for the factorization. This can be compared to the 5n2

flops needed per iteration, e.g., with Jacobi’s method.
The above shows that for the model problem direct methods use O(n2) flops

and about O(n) storage per grid point. This disadvantage becomes even more
accentuated if a three dimensional problem is considered. For Laplace equation in
the unit cube a similar study shows that for solving n3 unknown we need 1

2n
7 flops

and about n5 storage. When n growth this quickly becomes infeasible. However,
basic iterative methods still require only about 7n3 flops per iteration.

We still have not discussed the number of iterations needed to get acceptable
accuracy. It turns out that this will depend on the condition number of the matrix.
We now show that for the Laplace equation considered above this condition number
will be about πh−2, independent of the dimension of the problem.

Lemma 10.1.1. Let T = trid (c, a, b) ∈ Rn×n be a tridiagonal matrix with constant
diagonals, and assume that a, b, c are real and bc > 0. Then the n eigenvalues of T
are given by

λi = a+ 2
√
bc cos

iπ

n+ 1
, i = 1, . . . , n.

Further, the jth component of the eigenvector vi corresponding to λi is

vij =

(
b

c

)j/2

sin
ijπ

n+ 1
, j = 1, . . . , n.

From Lemma 10.1.1) it follows that the eigenvalues of T are λi = 2(1 +
cos (iπ/n)), i = 1, . . . , n− 1. In particular we have that

λmax = 2(1 + cos (π/n)) ≈ 4, λmin = 2(1 − cos (π/n)) ≈ (π/n)2.

Hence the condition number of T is approximately equal to 4n2/π2.
The matrix A = 4(I − L − U) in (10.1.2) can be written in terms of the

Kronecker product (see Section 6.2.3) as

A = (I ⊗ T ) + (T ⊗ I),

i.e., A is the Kronecker sum of T and T . It follows that the (n − 1)2 eigenvalues
of A are (λi + λj), i, j = 1, . . . , n − 1, and hence the condition number of A is the
same as for T . The same conclusion can be shown to hold for a three dimensional
problem.

10.1.3 Stationary Iterative Methods

Assume that A has nonzero diagonal entries, i.e, aii 6= 0, i = 1, 2, . . . , n. If A is
symmetric, positive definite this is necessarily the case. Otherwise, since A is non-
singular, the equations can always be reordered so that this is true. In component
form the system can then be written

xi =
1

aii

(
bi −

n∑

j=1,j 6=i

aijxj

)
, i = 1, 2 . . . , n. (10.1.4)
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In a (minor) step of the iteration we pick one equation, say the ith, and then
adjust the ith component of x(k) so that this equation becomes exactly satisfied.
Hence, given x(k) we compute

x
(k+1)
i = x

(k)
i +

1

aii
r
(k)
i , r

(k)
i = bi −

n∑

j=1

aijx
(k)
j . (10.1.5)

In the days of “hand” computation one picked an equation with a large residual
|ri and went through the equations in an irregular manner. This is less efficient
when using a computer, and here one usually perform these adjustments for i =
1, 2 . . . , n, in a cyclic fashion. The resulting iterative method is called the method
of simultaneous displacements or Jacobi’s method. Note that all components of
x can be updated simultaneously and the result does not depend on the sequencing
of the equations.

The method of successive displacements or Gauss–Seidel’s method2 differs

from the Jacobi method by using new values x
(k+1)
j as soon as they are available as

follows:

x
(k+1)
i = x

(k)
i +

1

aii
r
(k)
i , r

(k)
i = bi −

i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i

aijx
(k)
j , i = 1, 2 . . . , n.

(10.1.6)
Here the components are successively updated and the sequencing of the equations
will influence the result.

Since each new value x
(k+1)
i can immediately replace x

(k)
i in storage the Gauss–

Seidel method storage for unknowns is halved compared to Jacobi’s method. For
both methods the amount of work required in each iteration step is comparable in
complexity to the multiplication of A with a vector, i.e., proportional to the number
of nonzero elements in A. By construction it follows that if limk→∞ x(k) = x, then
x satisfies (10.1.4) and therefore the system Ax = b.

The Jacobi, Gauss–Seidel, and Richardson methods are all special cases of a
class of iterative methods, the general form of which is

Mx(k+1) = Nx(k) + b, k = 0, 1, . . . . (10.1.7)

Here
A = M −N (10.1.8)

is a splitting of the matrix coefficient matrix A with M nonsingular. If the iteration
(10.1.7) converges, i.e., limk→∞ x(k) = x, then Mx = Nx + b and it follows from
(10.1.8) that the limit vector x solves the linear system Ax = b. For the iteration
to be practical, it must be easy to solve linear systems with matrix M . This is the
case, for example, if M is chosen to be triangular.

The iteration (10.1.7) is equivalent to

x(k+1) = Bx(k) + c, k = 0, 1, . . . , (10.1.9)

where
2It was noted by G. Forsythe that Gauss nowhere mentioned this method and Seidel never

advocated using it!
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B = M−1N = I −M−1A, c = M−1b.

An iteration of the form of (10.1.3) is called a (one-step) stationary iterative
method, and B the iteration matrix. (In a non-stationary method the iteration
matrix B depends on k.) Subtracting the equation x = Bx + c from (10.1.3) we
obtain the recurrence formula

x(k+1) − x = B(x(k) − x) (10.1.10)

for the errors in successive approximations.
Richardson’s method (10.1.1) can, for fixed ωk = ω, be written in the form

(10.1.7) with
M = I, N = B = I − ωA.

To write the Jacobi and Gauss–Seidel methods in the form of one-step sta-
tionary iterative methods we introduce the standard splitting

A = DA − LA − UA, (10.1.11)

where DA = diag (a11, . . . , ann),

LA = −




0
a21 0
...

. . .
. . .

an1 · · · an,n−1 0


 , UA = −




0 a12 · · · a1n

. . .
. . .

...
0 an−1,n

0


 ,

and LA and UA are strictly lower and upper triangular, respectively. Assuming that
DA > 0, we can also write

D−1
A A = I − L− U, L = D−1

A LA, U = D−1
A UA.

With these notations the Jacobi method, (10.1.5), can be written DAx
(k+1) =

(LA + UA)x(k) + b or

x(k+1) = (L+ U)x(k) + c, c = D−1
A b. (10.1.12)

The Gauss–Seidel method, (10.1.6), becomes (DA − LA)x(k+1) = UAx
(k) + b, or

equivalently

x(k+1) = (I − L)−1Ux(k) + c, c = (I − L)−1D−1
A b

Hence these methods are special cases of one-step stationary iterative methods, and
correspond to the matrix splittings

Jacobi: M = DA, N = LA + UA,
Gauss–Seidel: M = DA − LA, N = UA,

The iteration matrices for the Jacobi and Gauss–Seidel methods are

BJ = D−1
A (LA + UA) = L+ U,

BGS = (DA − LA)−1UA = (I − L)−1U.
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10.1.4 Convergence Analysis

The iterative method (10.1.3) is called convergent if the sequence {x(k)}k=1,2,...

converges for all initial vectors x(0). Of fundamental importance in the study of
convergence of stationary iterative methods is conditions for a sequence of powers
of a matrix to converge to the null matrix. For this we need some results from the
theory of eigenvalues of matrices.

In Section 6.2.2 we introduced the spectral radius of a matrix A as the non-
negative number

ρ(A) = max
1≤i≤n

|λi(A)|.

We have the following important result:

Theorem 10.1.2. A given matrix B ∈ Rn×n is said to be convergent if ρ(B) < 1.
It holds that

lim
k→∞

Bk = 0 ⇔ ρ(B) < 1. (10.1.13)

Proof. We will show that the following four conditions are equivalent:

(i) lim
k→∞

Bk = 0,

(ii) lim
k→∞

Bkx = 0, ∀x ∈ Cn,

(iii) ρ(B) < 1,

(iv) ‖B‖ < 1 for at least one matrix norm.

For any vector x we have the inequality ‖Bkx‖ ≤ ‖Bk‖ ‖x‖, which shows that
(i) implies (ii).
If ρ(B) ≥ 1, then there is an eigenvector x ∈ Cn such that Bx = λx, with |λ| ≥ 1.
Then the sequence Bkx = λkx, k = 1, 2, . . ., is not convergent when k → ∞ and
hence (ii) implies (iii).
By Theorem 10.2.9, (see Section 10.2.4) given a number ǫ > 0 there exists a consis-
tent matrix norm ‖ · ‖, depending on B and ǫ, such that

‖B‖ < ρ(B) + ǫ.

Therefore (iv) follows from (iii).
Finally, by applying the inequality ‖Bk‖ ≤ ‖B‖k, we see that (iv) implies (i).

The following necessary and sufficient criterion for convergence of a stationary
iterative method follows from Theorem 10.1.2.

Theorem 10.1.3. The stationary iterative method x(k+1) = Bx(k)+c is convergent
for all initial vectors x(0) if and only if ρ(B) < 1, where ρ(B) is the spectral radius
of B.
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Proof. From the recurrence (10.1.10) it follows that

x(k) − x = Bk(x(0) − x). (10.1.14)

Hence x(k) converges for all initial vectors x(0) if and only if limk→∞Bk = 0. The
theorem now follows from Theorem 10.1.2.

The problem of obtaining the spectral radius of B is usually no less difficult
than solving the linear system. Hence the following upper bound is useful when
trying to prove convergence.

Lemma 10.1.4.
For any matrix A ∈ Rn×n and for any consistent matrix norm we have

ρ(A) ≤ ‖A‖.

Proof. Let λ be an eigenvalue of A such that |λ| = ρ(A). Then Ax = λx, x 6= 0,
and taking norms

‖λx‖ = ρ(A)‖x‖ = ‖Ax‖ ≤ ‖A‖ ‖x‖.
Since ‖x‖ > 0, we can divide the inequality by ‖x‖ and the theorem follows.

From Lemma 10.1.4 it follows that a sufficient condition for convergence of
the iterative method is that ‖B‖ < 1, for some matrix norm.

Usually, we are not only interested in convergence, but also in the rate of
convergence. By (10.1.14) the error at step k, e(k) = x(k) − x, satisfies e(k) =
Bke(0), we have for any consistent pair of norms

‖e(k)‖ ≤ ‖Bk‖ ‖e(0)‖ ≤ ‖B‖k‖ ‖e(0)‖.

Thus, to reduce the norm of the error by a given factor δ < 1, it suffices to perform
k iterations, where k is the smallest integer for which ‖Bk‖ ≤ δ. Taking logarithms
we obtain the condition

k ≥ − log δ/Rk(B), Rk(B) = −1

k
log ‖Bk‖.

An expression for the asymptotic rate follows from the relation

ρ(B) = lim
k→∞

(‖Bk‖)1/k,

which holds for any consistent matrix norm. This is a non-trivial result, but can be
proved by using the Jordan normal form, see Problem 10.2.4.

This motivates the following definition:

Definition 10.1.5. Assume that the iterative method (10.1.3) is convergent. For
any matrix norm ‖ · ‖ we define the average rate of convergence by

Rk(B) = −1

k
log ‖Bk‖, (10.1.15)
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The corresponding asymptotic rate of convergence is given by

R∞(B) = lim
k→∞

Rk(B) = − log ρ(B).

We now consider the convergence of some classical methods. We have seen
that For fixed ωk = ω Richardson’s method is a stationary iterative method with
iteration matrix B = I − ωA ∈ Rn×n.

Theorem 10.1.6.
Assume that the eigenvalues λi of A are all real and satisfy

0 < a ≤ λi ≤ b, i = 1, . . . , n.

Then Richardson’s method is convergent for 0 < ω < 2/b.

Proof. The eigenvalues of B = I − ωA are µi = 1 − λi and thus satisfy 1 − ωb ≤
µi ≤ 1− ωa. If 1− ωa < 1 and 1− ωb > −1, then |µi| < 1 for all i and the method
is convergent. Since a > 0 the first condition is satisfied for all ω > 0, while the
second is true if ω < 2/b.

Assuming that a = λmin and b = λmax, which value of ω will minimize the
spectral radius

ρ(B) = max{|1 − ωa|, |1 − ωb|} ?

It is left as an exercise to show that the optimal ω satisfies 1−ωa = ωb− 1. (Hint:
Plot the graphs of |1 − ωa| and |1 − ωb| for ω ∈ (0, 2/b).) Hence ωopt = 2/(b + a),
for which

ρ(B) =
b− a

b+ a
=
κ− 1

κ+ 1
= 1 − 2

κ+ 1
,

where κ = b/a is the condition number of A. Note that for large values of κ the rate
of convergence with ωopt is proportional to κ−1. This illustrates a typical fact for
iterative methods: ill-conditioned systems require in general more work to achieve
a certain accuracy!

Theorem 10.1.7. The Jacobi method is convergent if A is strictly row-wise diag-
onally dominant, i.e.,

|aii| >
n∑

j=1

j 6=i

|aij |, i = 1, 2, . . . , n.

Proof. For the Jacobi method the iteration matrix BJ = L + U has elements
bij = −aij/aii, i 6= j, bij = 0, i = j. From the assumption it then follows that

‖BJ‖∞ = max
1≤i≤n

n∑

j=1

j 6=i

|aij |/|aii| < 1.
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A similar result for strictly column-wise diagonally dominant matrices can be
proved using ‖BJ‖1. A slightly stronger convergence result than in Theorem 10.1.7
is of importance in applications. (Note that, e.g., the matrix A in (10.1.4) is not
strictly diagonal dominant!) For irreducible matrices (see Def. 10.1.1) the row sum
criterion in Theorem 10.1.7 can be sharpened.

Theorem 10.1.8. The Jacobi method is convergent if A is irreducible,

|aii| ≥
n∑

j=1

j 6=i

|aij |, i = 1, 2, . . . , n,

and inequality holds for at least one row.

The column sum criterion can be similarly improved. The conditions in The-
orem 10.1.7–10.1.8 are also sufficient for convergence of the Gauss–Seidel method
for which (I−L)BGS = U . Consider the strictly row-wise diagonally dominant and
choose k so that

‖BGS‖∞ = ‖BT
GS‖1 = ‖BT

GSek‖1.

Then from BT
GSek = BT

GSL
T ek + UT ek, we get

‖BGS‖∞ ≤ ‖BGS‖∞‖LT ek‖1 + ‖UT ek‖1.

Since A is strictly row-wise diagonally dominant we have ‖LT ek‖1 + ‖UT ek‖1 ≤
‖BJ‖∞ < 1, and it follows that

‖BGS‖∞ ≤ ‖UT ek‖1/
(
1 − ‖LT ek‖1

)
< 1.

Hence the Gauss–Seidel method is convergent. The proof for the strictly column-
wise diagonally dominant case is similar but estimates ‖BGS‖1.

Example 10.1.1. In Section 10.1.2 it was shown that the (n − 1)2 eigenvalues of
the matrix A = (I ⊗ T ) + (T ⊗ I) arising from the model problem are (λi + λj),
i, j = 1, . . . , n − 1, where λi = 2(1 + cos (iπ/n)). It follows that the eigenvalues of
the corresponding Jacobi iteration matrix BJ = L+ U = (1/4)(A− 4I) are

µij =
1

2
(cos iπh+ cos jπh), i, j = 1, 2, . . . , n− 1,

where h = 1/n is the grid size. The spectral radius is obtained for i = j = 1,

ρ(BJ ) = cos(πh) ≈ 1 − 1
2 (πh)2.

This means that the low frequency modes of the error are damped most slowly,
whereas the high frequency modes are damped much more quickly.3 The same is
true for the Gauss–Seidel method, for which

ρ(BGS) = cos2(πh) ≈ 1 − (πh)2,

3This is one of the basic observations used in the multigrid method, which uses a sequence of
different meshes to efficiently damp all frequencies.
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The corresponding asymptotic rates of convergence are R∞(BJ ) ≈ π2h2/2, and
R∞(BGS) ≈ π2h2. This explains the observation made in Example ex10.1.1 that
Gauss–Seidel’s method converged twice as fast as Jacobi’s method. However, for
both methods the number of iterations is proportional to κ(A) for the model prob-
lem.

The rate of convergence of the Jacobi and Gauss–Seidel methods, as exhibited
in the above example, is in general much too slow to make these methods of any
practical use. In Section 10.2.1 we show how with a simple modification of the
Gauss–Seidel method the rate of convergence can be improved by a factor of n for
the model problem.

10.1.5 The Effect of Nonnormality and Finite Precision

While the spectral radius determines the asymptotic rate of growth of matrix powers,
the norm will influence the initial behavior of the powers Bk. However, the norm of
a convergent matrix can for a nonnormal matrix be arbitrarily large. By the Schur
normal form any matrix A is unitarily equivalent to an upper triangular matrix.
Therefore, in exact arithmetic, it suffices to consider the case of an upper triangular
matrix.

Consider the 2 × 2 convergent matrix

B =

(
λ α
0 µ

)
, 0 < µ ≤ λ < 1, α≫ 1, (10.1.16)

for which we have ‖B‖2 ≫ ρ(B). Therefore, even though ‖Bk‖ → 0 as k → ∞, the
spectral norms ‖Bk‖2 will initially sharply increase! It is easily verified that

Bk =

(
λk βk

0 µk

)
, βk =




α
λk − µk

λ− µ
if µ 6= λ;

αkλk−1 if µ = λ.

(10.1.17)

Clearly the element βk will grow initially. In the case that λ = µ the maximum of
|βk| will occur when k ≈ λ/(1 − λ). (See also Computer Exercise 1.)

For matrices of larger dimension the initial increase of ‖Bk‖ can be huge as
shown by the following example:

Example 10.1.2. Consider the iteration x(k+1) = Bx(k), where B ∈ R20×20 is the
bidiagonal matrix

B =




0.5 1
0.5 1

. . .
. . .

0.5 1
0.5



, x(0) =




1
1
...
1


 .

Here ρ(B) = 0.15, and hence the iteration should converge to the exact solution of
the equation (I −B)x = 0, which is x = 0. From Fig. 10.2.1 it is seen that ‖x(n)‖2
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increases by almost a factor 1015 until it starts to decrease after 25 iterations!
Although in the long run the norm is reduced by about a factor of 0.5 at each
iteration, large intermediate values of x(n) give rise to persistent rounding errors.

The curve in Figure 10.2.1 shows a large hump. This is a typical phenomenon
in several other matrix problems and occurs also, e.g., when computing the matrix
exponential eBt, when t→ ∞.
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Figure 10.1.2. ‖x(n)‖2, where x(k+1) = Bx(k), and x = (1, 1, . . . , 1)T .

For the case when the iteration process is carried out in exact arithmetic we
found a complete and simple mathematical theory of convergence for iterates x(k) of
stationary iterative methods. According to Theorem 10.1.2 there is convergence for
any x(0) if and only if ρ(B) < 1, where ρ(B) is the spectral radius of B. The same
condition is necessary and sufficient for limk→∞Bk = 0 to hold. In finite precision
arithmetic the convergence behavior turns out to be more complex and less easy to
analyze.

It may be thought that iterative methods are less affected by rounding errors
than direct solution methods, because in iterative methods one continues to work
with the original matrix instead of modifying it. In Section 6.6.6 we showed that the
total effect of rounding errors in Gaussian elimination with partial pivoting usually
is equivalent to a perturbations in the elements of the original matrix of the order
of machine roundoff. It is easy to verify that, in general, iterative methods cannot
be expected to do much better than that!

Consider an iteration step with the Gauss–Seidel method performed in floating
point arithmetic. Typically, in the first step an improved x1 will be computed from
previous x2, . . . , xn by

x1 = fl
((
b1 −

n∑

j=1

a1jxj

)
/a11

)
=

(
b1(1 + δ1) −

n∑

j=1

a1jxj(1 + δj)
)
/a11,

with the usual bounds for δi, cf. Section 2.4.1. This can be interpreted that we
have performed an exact Gauss–Seidel step for a perturbed problem with elements
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b1(1 + δ1) and a1i(1 + δi), i = 2, . . . , n. The bounds for these perturbations are of
the same order of magnitude that for the perturbations in Gaussian elimination.
The idea that we have worked with the original matrix is not correct.

Example 10.1.3. (J. H. Wilkinson) Consider the (ill-conditioned) system Ax = b,
where

A =

(
0.96326 0.81321
0.81321 0.68654

)
, b =

(
0.88824
0.74988

)
.

The smallest singular value of A is 0.36 · 10−5. This system is symmetric, positive
definite and therefore the Gauss–Seidel method should converge, though slowly.
Starting with x1 = 0.33116, x2 = 0.70000, the next approximation for x1 is com-
puted from the relation

x1 = fl
(
(0.88824− 0.81321 · 0.7)/0.96326

)
= 0.33116,

(working with five decimals). This would be an exact result if the element a11 was
perturbed to be 0.963259 . . ., but no progress is made towards the true solution x1 =
0.39473 . . ., x2 = 0.62470 . . .. The ill-conditioning has affected the computations
adversely. Convergence is so slow that the modifications to be made in each step
are less than 0.5 · 10−5.

Stationary iterative methods may be badly affected by rounding errors for
nonnormal matrices. We have seen that the “hump” phenomenon can make it
possible for ‖x(k)‖2 to increase substantially, even when the iteration matrix B is
convergent; see Example 10.1.2. In such a case cancellation will occur in the com-
putation of the final solution, and a rounding error of size umaxk ‖x(k)‖2 remains,
where u is the machine unit.

Moreover, for as nonnormal matrix B asymptotic convergence in finite preci-
sion arithmetic is no longer guaranteed even if the condition ρ(B) < 1 is true in
exact arithmetic. This phenomenon is related to the fact that for a matrix of a
high degree of nonnormality the spectrum can be extremely sensitive to perturba-
tions. As shown above the computed iterate x̄(k) will at best be the exact iterate
corresponding to a perturbed matrix B + ∆B. Hence even though ρ(B) < 1 it
may be that ρ(B + ∆B) is larger than one. To have convergence in finite precision
arithmetic we need a stronger condition to hold, e.g.,

max ρ(B + E) < 1, ‖E‖2 < u‖B‖2,

where u is the machine precision. (Compare the discussion of pseudospectra in
Section 9.3.3.) The following rule of thumb has been suggested:

The iterative method with iteration matrix B can be expected to con-
verge in finite precision arithmetic if the spectral radius computed via a
backward stable eigensolver is less than 1.

This is an instance when an inexact results is more useful than the exact result!
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10.1.6 Termination Criteria

An iterative method solving a linear system Ax = b is not completely specified
unless clearly defined criteria are given for when to stop the iterations. Ideally such
criteria should identify when the error x − x(k) is small enough and also detect if
the error is no longer decreasing or decreasing too slowly.

Normally a user would like to specify an absolute (or a relative) tolerance ǫ
for the error, and stop as soon as

‖x− x(k)‖ ≤ ǫ (10.1.18)

is satisfied for some suitable vector norm ‖ · ‖. However, such a criterion cannot
in general be implemented since x is unknown. Moreover, if the system to be
solved is illconditioned, then because of roundoff the criterion (10.1.18) may never
be satisfied.

Instead of (10.1.18) one can use a test on the residual vector r(k) = b−Ax(k),
which is computable, and stop when

‖r(k)‖ ≤ ǫ(‖A‖ ‖x(k)‖ + ‖b‖).

This is often replaced by the stricter criterion

‖r(k)‖ ≤ ǫ‖b‖, (10.1.19)

but this may be difficult to satisfy in case ‖b‖ ≪ ‖A‖‖x‖ . Although such resid-
ual based criteria are frequently used, it should be remembered that if A is ill-
conditioned a small residual does not guarantee a small relative error in the ap-
proximate solution. Since x − x(k) = A−1r(k), (10.1.19) only guarantees that
‖x− x(k)‖ ≤ ǫ‖A−1‖ ‖b‖, and this bound is attainable.

Another possibility is to base the stopping criterion on the Oettli–Prager back-
ward error, see Theorem. 6.6.4. The idea is then to compute the quantity

ω = max
i

|r(k)
i |

(E|x(k)| + f)i
, (10.1.20)

where E > 0 and f > 0, and stop when ω ≤ ǫ. It then follows from Theorem 6.6.4
that x(k) is the exact solution to a perturbed linear system

(A+ δA)x = b+ δb, |δA| ≤ ωE, |δb| ≤ ωf.

We could in (10.1.20) takeE = |A| and f = |b|, which corresponds to componentwise
backward errors. However, it can be argued that for iterative methods a more
suitable choice is to use a normwise backward error by setting

E = ‖A‖∞eeT , f = ‖b‖∞e, e = (1, 1, . . . , 1)T .

This choice gives

ω =
‖r(k)‖∞

‖A‖∞‖x(k)‖1 + ‖b‖∞
.
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Review Questions

1. The standard discretization of Laplace equation on a square with Dirichlet boundary
conditions leads to a certain matrix A. Give this matrix in its block triangular form.

2. What iterative method can be derived from the splitting A = M − N? How is a
symmetrizable splitting defined?

3. Define the average and asymptotic rate of convergence for an iterative method
x(k+1) = Bx(k) + c. Does the condition ρ(B) < 1 imply that the error norm
‖x − x(k)‖2 is monotonically decreasing? If not, give a counterexample.

4. Give at least two different criteria which are suitable for terminating an iterative
method.

Problems

1. Let A ∈ R
n×n be a given nonsingular matrix, and X(0) ∈ R

n×n an arbitrary matrix.
Define a sequence of matrices by

X(k+1) = X(k) + X(k)(I − AX(k)), k = 0, 1, 2, . . . .

(a) Prove that limk→∞ X(k) = A−1 if and only if ρ(I − AX(0)) < 1.

Hint: First show that I − AX(k+1) = (I − AX(k))2.

(b) Use the iterations to compute the inverse A−1, where

A =

„

1 1
1 2

«

, X(0) =

„

1.9 −0.9
−0.9 0.9

«

.

Verify that the rate of convergence is quadratic!

2. Let A ∈ R
m×n be a given nonsingular matrix, Consider the stationary iterative

method
x(k+1) = x(k) + ωAT (b − Ax(k)),

where A ∈ Rm×n is a possibly rank deficient matrix.

(a) Show that if rank (A) = n and 0 < ω < 2/σ2
max(A) then then the iteration

converges to the unique solution to the normal equations AT Ax = AT b.

(b) If rank(A) < n, then split the vector x(k) into orthogonal components,

x(k) = x
(k)
1 + x

(k)
2 , x

(k)
1 ∈ R(AT ), x

(k)
2 ∈ N (A).

Show that the orthogonal projection of x(k)−x(0) onto N (A) is zero. Conclude that
in this case the iteration converges to the unique solution of the normal equations
which minimizes ‖x − x(0)‖2.

3. Show that if for a stationary iterative method x(k+1) = Bx(k) + c it holds that
‖B‖ ≤ β < 1, and

‖x(k) − x(k−1)‖ ≤ ǫ(1 − β)/β,

then the error estimate ‖x − x(k)‖ ≤ ǫ holds.

Computer Exercises
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1. Let B be the 2 × 2 matrix in (10.1.17), and take λ = µ = 0.99, α = 4. Verify that
‖Bk‖2 ≥ 1 for all k < 805!

2. Let B ∈ R
20×20 be an upper bidiagonal matrix with diagonal elements equal to

0.025, 0.05, 0.075, . . . , 0.5 and elements in the superdiagonal all equal to 5.

(a) Compute and plot ηk = ‖x(k)‖2/‖x
(0)‖2, k = 0 : 100, where

x(k+1) = Bx(k), x(0)0 = (1, 1, . . . , 1)T .

Show that ηk > 1014 before it starts to decrease after 25 iterations. What is the
smallest k for which ‖x(0)k‖2 < ‖x(0)‖2?

(b) Compute the eigendecomposition B = XΛX−1 and determine the condition
number κ = ‖X‖2‖X

−1‖2 of the transformation.

10.2 Successive Overrelaxation Methods

10.2.1 The SOR Method

It was noted early that great improvement in the rate of convergence could be
obtained by the simple means of introducing a relaxation parameter ω in the
Gauss–Seidel method

x
(k+1)
i = x

(k)
i +

ω

aii
r
(k)
i ,

with ω > 1 (over-relaxation) or ω < 1 under-relaxation). This lead to the famous
S
¯
uccessive O

¯
ver R

¯
elaxation (SOR) method, of Young [30], which remained

for a long time the “workhorse” in scientific computing..
The SOR method can be written in matrix form as

x(k+1) = x(k) + ω
(
c+ Lx(k+1) − (I − U)x(k)

)
,

where c = D−1
A b, or after rearranging

(I − ωL)x(k+1) = [(1 − ω)I + ωU ]x(k) + ωc.

The iteration matrix for SOR therefore is

Bω = (I − ωL)−1[(1 − ω)I + ωU ]. (10.2.1)

We now consider the convergence of the SOR method and first show that only
values of ω, 0 < ω < 2 are of interest.

Theorem 10.2.1.
Let B = L+U be any matrix with zero diagonal and let Bω be the corresponding

iteration matrix in the SOR method. Then we have

ρ(Bω) ≥ |ω − 1|, (10.2.2)

with equality only if all the eigenvalues of Bω are of modulus |ω − 1|. Hence the
SOR method can only converge for 0 < ω < 2.
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Proof. Since the determinant of a triangular matrix equals the product of its
diagonal elements we have

det(Bω) = det(I − ωL)−1 det[(1 − ω)I + ωU ] = (1 − ω)n.

Also det(Bω) = λ1λ2 · · ·λn, where λi are the eigenvalues of Bω . It follows that

ρ(Bω) = max
1≤i≤n

|λi| ≥ |1 − ω|

with equality only if all the eigenvalues have modulus |ω − 1|.

The following theorem asserts that if A is a positive definite matrix, then the
SOR method converges if 0 < ω < 2.

Theorem 10.2.2. For a symmetric positive definite matrix A we have

ρ(Bω) < 1, ∀ω, 0 < ω < 2.

Proof. We defer the proof to Theorem 10.3.4.

For an important class of matrices an explicit expression for the optimal value
of ω can be given. We first introduce the class of matrices with property A.

Definition 10.2.3. The matrix A is said to have property A if there exists a
permutation matrix P such that PAPT has the form

(
D1 U1

L1 D2

)
, (10.2.3)

where D1, D2 are diagonal matrices.

Equivalently, the matrix A ∈ Rn×n has property A if the set {1, 2, . . . , n} can
be divided into two non-void complementary subsets S and T such that aij = 0
unless i = j or i ∈ S, j ∈ T , or i ∈ T , j ∈ S.

Example 10.2.1. The tridiagonal matrix A below

A =




2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2


 , PTAP =




2 0 −1 0
0 2 −1 −1

−1 −1 2 0
0 −1 0 2




has property A, and we can choose S = {1, 3}, T = {2, 4}. Permutation of column
1 and 4 followed by a similar row permutation will give a matrix of the form above.

Definition 10.2.4. A matrix A with the decomposition A = DA(I − L− U), DA

nonsingular, is said to be consistently ordered if the eigenvalues of

J(α) = αL + α−1U, α 6= 0,
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are independent of α.

A matrix of the form of (10.2.3) is consistently ordered, since

J(α) =

(
0 −α−1D−1

1 U1

−αD−1
2 L1 0

)
= −

(
I 0
0 αI

)
J(1)

(
I 0
0 α−1I

)
,

the matrices J(α) and J(1) are similar and hence have the same eigenvalues. Sim-
ilarly one can prove more generally that any block-tridiagonal matrix

A =




D1 U1

L2 D2 U2

L3
. . .

. . .
. . .

. . . Un−1

Ln Dn



,

where Di are nonsingular diagonal matrices is consistently ordered.

Theorem 10.2.5.
Let A = DA(I − L − U) be a consistently ordered matrix. Then if µ is an

eigenvalue of the Jacobi matrix so is −µ. Further, to any eigenvalue λ 6= 0 of the
SOR matrix Bω, ω 6= 0, there corresponds an eigenvalue µ of the Jacobi matrix,
where

µ =
λ+ ω − 1

ωλ1/2
(10.2.4)

Proof. Since A is consistently ordered the matrix J(−1) = −L− U = −J(1) has
the same eigenvalues as J(1). Hence if µ is an eigenvalue so is −µ. If λ is an
eigenvalue of Bω, then det(λI − Bω) = 0, or since det(I − ωL) = 1 for all ω, using
(10.2.1)

det[(I − ωL)(λI −Bω)] = det[λ(I − ωL) − (1 − ω)I − ωU ] = 0.

If ω 6= 0 and λ 6= 0 we can rewrite this in the form

det

(
λ+ ω − 1

ωλ1/2
I − (λ1/2L+ λ−1/2U)

)
= 0

and since A is consistently ordered it follows that det
(
µI − (L+ U)

)
= 0, where µ

given by (10.2.4). Hence µ is an eigenvalue of L+ U .

If we put ω = 1 in (??) we get λ = µ2. Since ω = 1 corresponds to the Gauss–
Seidel method it follows that ρ(BGS) = ρ(BJ)2, which means that for consistently
ordered matrices A the Gauss–Seidel method converges twice as fast as the Jacobi
method.

We now state an important result due to Young [30].
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Theorem 10.2.6.
Let A be a consistently ordered matrix, and assume that the eigenvalues µ of

BJ = L + U are real and ρJ = ρ(BJ ) < 1. Then the optimal relaxation parameter
ω in SOR is given by

ωopt =
2

1 +
√

1 − ρ2
J

. (10.2.5)

For this optimal value we have

ρ(Bωopt
) = ωopt − 1. (10.2.6)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

λ

f(
λ,

ω
),

 g
(λ

,µ
)

ω=1.7, µ=0.99;

Figure 10.2.1. fω(λ) and g(λ, µ) as functions of λ (µ = 0.99, ω = ωb = 1.7527).

Proof. (See also Young [31, Section 6.2].) We consider, for a given value of µ in
the range 0 < µ ≤ ρ(L+ U) < 1, the two functions of λ,

fω(λ) =
λ+ ω − 1

ω
, g(λ, µ) = µλ1/2.

Here fω(λ) is a straight line passing through the points (1, 1) and (1 − ω, 0), and
g(λ, µ) a parabola. The relation (10.2.4) can now be interpreted as the intersection
of these two curves. For given µ and ω we get for λ the quadratic equation

λ2 + 2
(
(ω − 1) − 1

2
µ2ω2

)
λ+ (ω − 1)2 = 0. (10.2.7)

which has two roots

λ1,2 =
1

2
µ2ω2 − (ω − 1) ± µω

(1

4
µ2ω2 − (ω − 1)

)1/2

.

The larger of these roots decreases with increasing ω until eventually fω(λ) becomes
a tangent to g(λ, µ), when µ2ω2/4 − (ω − 1) = 0 (see Fig. 10.2.1) Solving for the
root ω ≤ 2 gives

ω̃ =
1 − (1 − µ2)1/2

1/2µ2
=

2

1 +
√

1 − µ2
.
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If ω > ω̃, we get two complex roots λ, which by the relation between roots and
coefficients in (10.2.7) satisfy

λ1λ2 = (ω − 1)2.

From this it follows that |λ1| = |λ2| = ω − 1, 1 < ω̃ < ω < 2, and hence the
minimum value of of maxi=1,2 |λi| occurs for ω̃. Since the parabola g(λ, ρ(L+U)) is
the envelope of all the curves g(λ, µ) for 0 < µ ≤ ρ(L+U) < 1 the theorem follows.

Example 10.2.2. By (10.2.5) for SOR ωopt = 2/(1 + sinπh), giving

ρ(Bωopt
) = ωopt − 1 =

1 − sinπh

1 + sinπh
≈ 1 − 2πh. (10.2.8)

Note that when limn→∞ ωopt = 2.

R∞(Bωopt
) ≈ 2πh,

which shows that for the model problem the number of iterations is proportional to
n for the SOR method

In Table 10.1.1 we give the number of iterations required to reduce the norm
of the initial error by a factor of 10−3.

Table 10.2.1. Number of iterations needed to reduce the initial error by a
factor of 10−3 for the model problem, as a function of n = 1/h.

n 10 20 50 100 200

Gauss–Seidel 69 279 1,749 6,998 27,995

SOR 17 35 92 195 413

In practice, the number ρJ is seldom known a priori, and its accurate deter-
mination would be prohibitively expensive. However, for some model problems the
spectrum of the Jacobi iteration matrix is known. In the following we need the
result:

A simple scheme for estimating ωopt is to initially perform a fixed number of
iterations using ω = 1, i.e., with the Gauss–Seidel method, and attempt to measure
the rate of convergence. The successive corrections satisfy

δ(n+1) = BGSδ
(n), δ(n) = x(n+1) − x(n).

Hence after a sufficient number of iterations we have

ρ(BJ )2 = ρ(BGS) ≈ θn, θn = ‖δ(n+1)‖∞/‖δ(n)‖∞,

An estimate of ωopt is then obtained by substituting this value into (10.2.5). A closer
analysis shows, however, that the number of iterations to obtain a good estimate of
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Figure 10.2.2. The spectral radius ρ(Bω) as a function of ω (ρ = 0.99,
ωb = 1.7527).

ωopt is comparable to the number of iterations needed to solve the original problem
by SOR. The scheme can still be practical if one wishes to solve a number of systems
involving the same matrix A. Several variations of this scheme have been developed,
see Young [31, p. 210].

In more complicated cases when ρJ is not known, we have to estimate ωopt in
the SOR method. From Fig. 10.2.2 we conclude that it is much better to overesti-
mate ωopt than to underestimate it.

10.2.2 The SSOR Method

As remarked above the iteration matrix Bω of the SOR-method is not symmetric
and its eigenvalues are not real. In fact, in case ω is chosen slightly larger than
optimal (as recommended when ρJ is not known) the extreme eigenvalues of Bω

lie on a circle in the complex plane. However, a symmetric version of SOR, the
(SSOR) method of Sheldon (1955), can be constructed as follows. One iteration
consists of two half iterations The first half is the same as the SOR iteration. The
second half iteration is the SOR method with the equations taken in reverse order.
The SSOR method can be written in matrix form as

x(k+1/2) = x(k) + ω
(
c+ Lx(k+1/2) − (I − U)x(k)

)
,

x(k+1) = x(k+1/2) + ω
(
c+ Ux(k+1) − (I − L)x(k+1/2)

)
.

This method is due to Sheldon [1955]. The iteration matrix for SSOR is

Sω = (I − ωU)−1[(1 − ω)I + ωL](I − ωL)−1[(1 − ω)I + ωU ].

It can be shown that SSOR corresponds to a splitting with the matrix

Mω =
ω

2 − ω

( 1

ω
DA − LA

)
D−1

A

( 1

ω
DA − UA

)
. (10.2.9)
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If A is symmetric, positive definite then so is Mω. In this case the SSOR method
is convergent for all ω ∈ (0, 2). A proof of this is obtained by a simple modification
of the proof of Theorem 10.3.4.

In contrast to the SOR method, the rate of convergence of SSOR is not very
sensitive to the choice of ω nor does it assume that A is consistently ordered. It
can be shown that provided ρ(LU) < 1/4 a suitable value for ω is ωb, where

ωb =
2

1 +
√

2(1 − ρJ )
, ρ(Sωb

) ≤ 1 −
√

(1 − ρJ)/2

1 +
√

(1 − ρJ)/2
.

In particular, for the model problem in Section 10.1.2 it follows that

ρ(Bωb
) ≤ 1 − sinπh/2

1 + sinπh/2
≈ 1 − πh.

This is half the rate of convergence for SOR with ωopt.

10.2.3 Block Iterative Methods

The basic iterative methods described so far can be generalized for block matrices
A. Assume that

A =




A11 A12 . . . A1n

A21 A22 . . . A2n
...

... . . .
...

An1 An2 . . . Ann


 ,

where the diagonal blocks are square and nonsingular. For this block matrix we
consider the splitting

A = DA − LA − UA, DA = diag (A11, A22, . . . , Ann),

and where LA and UA are strictly lower and upper triangular. As before Jacobi’s
method can be written DAx

(k+1) = (LA + UA)x(k) + b, or with x is partitioned
conformally

Aii

(
x

(k+1)
i − x

(k)
i

)
= b−

n∑

j=1

Aijx
(k)
j , i = 1, . . . , n.

Hence it is important that linear systems in the diagonal blocks Aii can be solved
efficiently.

Example 10.2.3. For the model problem in Section 10.1.2 the matrix A can
naturally be written in the block form where the diagonal blocks Aii = 2I + T
are tridiagonal and nonsingular, see (10.1.4). The resulting systems can be solved
with little overhead. Note that here the partitioning is such that xi corresponds to
the unknowns at the mesh points on the ith line. Hence block methods are in this
context also known as “line” methods and the other methods as “point” methods.
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Block versions of the Gauss–Seidel, SOR, and SSOR methods are developed
similarly. For SOR we have

Aii

(
x

(k+1)
i − x

(k)
i

)
= ω

(
b−

i−1∑

j=1

Aijx
(k+1)
j −

n∑

j=i

Aijx
(k)
j

)
, i = 1, . . . , n.

(Taking ω = 1 gives the Gauss–Seidel method.) Typically the rate of convergence
is improved by a factor

√
2 compared to the point methods.

It can easily be verified that the SOR theory as developed in Theorems 10.2.2
and 10.2.5 are still valid in the block case. We have

Bω = (I − ωL)−1
[
(1 − ω)I + ωU

]
,

where L = D−1
A LA and U = D−1

A UA. Let A be a consistently ordered matrix with
nonsingular diagonal blocks Aii, 1 ≤ i ≤ n. Assume that the block Jacobi matrix B
has spectral radius ρ(BJ ) < 1. Then the optimal value of ω in the SOR method is
given by (10.2.5). Note that with the block splitting any block-tridiagonal matrix

A =




D1 U1

L2 D2 U2

L3
. . .

. . .
. . .

. . . Un−1

Ln Dn



,

is consistently ordered; for the point methods this was true only in case the block
diagonal matrices Di, i = 1, . . . , n were diagonal. In particular we conclude that
with the block splitting the matrix A in (10.1.4) is consistently ordered.

10.2.4 Convergence Acceleration

Consider the stationary iterative method

x(k+1) = x(k) +M−1(b −Ax(k)), k = 0, 1, . . . , (10.2.10)

which corresponds to a matrix splitting A = M −N , and iteration matrix

B = M−1N = I −M−1A.

In this section we describe an important method for accelerating the convergence
of the method (10.2.10) provided it is symmetrizable.

Definition 10.2.7. The stationary iterative method (10.2.10) is said to be sym-
metrizable if there is a nonsingular matrix W such that the matrix W (I − B)W−1

is symmetric and positive definite.

For a symmetrizable method the matrix I − B has real positive eigenvalues.
A sufficient condition for a method to be symmetrizable is that both A and the
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splitting matrix M are symmetric, positive definite., since then there is a matrix W
such that M = WTW , and

W (I −B)W−1 = WM−1AW−1 = WW−1W−TAW−1 = W−TAW−1,

which again is positive definite.

Example 10.2.4. If A is positive definite then in the standard splitting (10.1.11)

DA > 0, and hence the Jacobi method is symmetrizable with W = D
1/2
A . From

(10.2.9) it follows that also the SSOR method is symmetrizable.

It is often possible to find an associated method which will converge faster than
the given method by taking a weighted arithmetic mean of the first k approximations
generated by the method (10.2.10),

x̃(k) =
k∑

i=0

γkix
(i),

k∑

i=0

γki = 1, k = 0, 1, 2, . . . , (10.2.11)

Such methods, introduced by Varga (1957), are non-stationary and called semi-
iterative methods. It follows from the error equation x(k) − x = Bk(x(0) − x)
that

x̃(k) − x =

k∑

i=0

γki(x
(i) − x) =

k∑

i=0

γkiB
i(x(0) − x).

Introducing the generating polynomial we can write this

x̃(k) − x = pk(B)(x(0) − x), pk(λ) =

k∑

i=0

γkiλ
i, (10.2.12)

where pk(λ) is a polynomial of degree k. Therefore this procedure is also known as
polynomial acceleration. Note that from (10.2.11) it follows that pk(1) = 1. In
the special case that M = I we obtain for the residual r̃(k) = b−Ax̃(k)

r̃(k) = A(x− x̃(k)) = qk(A)r(0), qk(λ) = pk(1 − λ). (10.2.13)

where we have used that A = I −B. The polynomials qk(λ) have the property that
qk(0) = 1 and are known as residual polynomials.

Example 10.2.5. Consider the non-stationary Richardson iteration,

x(i+1) = x(i) + ωi(b−Ax(i)), i = 1, 2, . . . ,

(cf. (10.1.1)). It is easily seen that the residual vector r(k) = b−Ax(k) satisfies

r(k) = qk(A)r(0), qk(λ) =

k−1∏

i=0

(I − ωiλ). (10.2.14)
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Hence, by choosing a suitable sequence of parameters {ωi}k−1
i=0 we can obtain any

residual polynomial qk(λ). If the spectrum of A is real, a < λ(A) < b, we would
like |qk(λ)| to be small in (a, b).

The most important case is Chebyshev acceleration, which we now develop.
We assume that the eigenvalues {λi}n

i=1 of M−1A are real and satisfy

0 < a ≤ λi < b. (10.2.15)

From (10.2.12) we get the error estimate

‖x̃(k) − x‖ = ‖qk(M−1A)‖ ‖x(0) − x‖,

If M−1A is Hermitian, then ‖qk(M−1A)‖2 = ρ(qk(M−1A)), and after k steps of the
accelerated method the 2-norm of the error is reduced by at least a factor of

ρ(qk(M−1A)) = max
i

|qk(λi)| ≤ max
λ∈[a,b]

|qk(λ)|.

Therefore a suitable polynomial qk is obtained by solving the minimization problem

min
q∈Π1

k

max
λ∈[a,b]

|q(λ)|,

where Π1
k denotes the set of residual polynomials qk of degree ≤ k such that qk(0) =

1. By a similar argument as used in the proof of the minimax property of Chebyshev
polynomials, see Section 9.3.4, the solution to the above minimization problem is
given by the shifted and normalized Chebyshev polynomials

qk(λ) = Tk(z(λ))/Tk(z(0)), (10.2.16)

where Tk(z) is the Chebyshev polynomial of degree k and z(λ) the linear transfor-
mation, which maps the interval λ ∈ [a, b] onto z ∈ [−1, 1]. Hence

z(λ) =
b + a− 2λ

b− a
= µ− 2

b− a
λ, (10.2.17)

where

µ = z(0) =
b+ a

b− a
=
κ+ 1

κ− 1
> 1, κ =

b

a
. (10.2.18)

Note that if M−1A is symmetrizable κ is the condition number of M−1A.
Since |Tk(z)| ≤ 1, z ∈ [−1, 1], and µ > 1, we have

ρ(qk(M−1A)) ≤ 1/Tk(µ) < 1.

Hence k iterations will reduce the error norm by at least a factor

Tk(µ) = cosh(kγ) = 1
2 (ekγ + e−kγ) > 1

2e
kγ ,
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where µ = coshγ = (eγ + e−γ)/2 or eγ = µ+
√
µ2 − 1. We obtain using (10.2.18)

after some simplification

γ = log

(√
κ+ 1√
κ− 1

)
>

2√
κ
.

(Verify the last inequality! See Problem 2.) Hence Tk(µ) > 1
2e

2k/
√

κ, and to reduce
the error norm at least by a factor of δ < 1 it suffices to perform k iterations, where

k >
1

2

√
κ log

2

δ
, (10.2.19)

Thus the number of iterations required for a certain accuracy for the accelerated
method is proportional to

√
κ rather than κ. This is a great improvement! Note

that the matrix M can be interpreted as a preconditioner. To increase the rate
of convergence M should be chosen so that the conditioning of the matrix M−1A
is improved.

Since the zeros of the Chebyshev polynomials Tk(z) are known it is possible
to implement Chebyshev acceleration as follows (cf. Example 10.2.5). To perform
N steps we compute

x(k+1)=x(k) + ωkM
−1(b−Ax(k)), k = 0, 1, . . . , N − 1, (10.2.20)

where
ωk=2

[
(b+ a) − (b− a) cos

((
k + 1

2

)
/N

)]−1
, k = 0, 1, . . . , N − 1.(10.2.21)

After N steps the iterations can be repeated in a cyclic fashion. (Note that for
N = 1 we retrieve the optimal ω for the stationary Richardson’s method derived in
Section 10.1.3.) However, this scheme was shown by David Young to be very sen-
sitive to rounding error effects unless N is small. The instability can be eliminated
by using a certain reordering of the iteration parameters ωk; see Computer exercise
1. However, one disadvantage remains, namely, the number N has to be fixed in
advance.

The best way to compute the vectors x̃(k) is instead based on the three term
recurrence relation for the Chebyshev polynomials. We have (see Section 9.3.4)
T0(z) = 1,

T1(z) = zT0, Tk+1(z) = 2zTk(z) − Tk−1(z), k ≥ 1. (10.2.22)

By (10.2.16) Tk(z(λ)) = Tk(µ)qk(λ), and substituting M−1A for z in (10.2.22), we
obtain

Tk+1(µ)qk+1(M
−1A) = 2z(M−1A)Tk(µ)qk(M−1A) − Tk−1(µ)qk−1(M

−1A).

Multiplying by (x̃(0) − x), using (10.2.12) and (10.2.17) we obtain

Tk+1(µ)(x̃(k+1) − x) = 2
(
µI − 2

b− a
M−1A

)
Tk(µ)(x̃(k) − x)− Tk−1(µ)(x̃(k−1) − x).

From (10.2.22) with z = µ it then follows that for k ≥ 1

Tk+1(µ)x̃(k+1) = 2µTk(µ)x̃(k) − 4Tk(µ)

b− a
M−1A(x̃(k) − x) − Tk−1(µ)x̃(k−1).
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Further, we have

M−1A(x̃(k) − x) = M−1(Ax̃(k) − b) = −M−1r(k).

Substituting −Tk−1(µ) = −2µTk(µ)+Tk+1(µ) and dividing with Tk+1(µ) we obtain

x̃(k+1) = x̃(k−1) + δkM
−1r(k) + ωk(x̃(k) − x̃(k−1)), k = 1, 2, . . . ,

where r(k) = b−Ax̃(k), and with α = 2/(b+ a),

ωk = 2µ
Tk(µ)

Tk+1(µ)
, δk = αωk, k ≥ 1.

A similar calculation for k = 0 gives x̃(1) = x̃(0) + αM−1r(0). Dropping the tilde
this leads to the following algorithm:

Algorithm 10.2.1 The Chebyshev Semi-Iterative Method

Assume that the eigenvalues {λi}n
i=1 of M−1A are real and satisfy 0 < a ≤ λi < b.

Then

x(k+1) =

{
x(0) + αM−1r(0), k = 0,
x(k−1) + ωk

(
αM−1r(k) + x(k) − x(k−1)

)
, k = 1, 2, . . . ,

(10.2.23)

where µ = (b+ a)/(b− a), α = 2/(b+ a), and

ω0 = 2, ωk =

(
1 − ωk−1

4µ2

)−1

, k = 1, 2, . . . .

A disadvantage of Chebyshev convergence acceleration is that it requires knowl-
edge of an interval [a, b] enclosing the (real) spectrum of M−1A is needed. If this
the enclosure is too crude, then the process loses efficiency.

The eigenvalues of the iteration matrix of the SOR-method Bωopt
are all com-

plex and have modulus |ωopt|. Therefore in this case convergence acceleration is of
no use. (A precise formulation is given in Young [31, p. 375].) However, Chebyshev
acceleration can be applied to the Jacobi and SSOR methods, with

MJ = DA, Mω =
ω

2 − ω

( 1

ω
DA − LA

)
D−1

A

( 1

ω
DA − UA

)
,

respectively, as well as block versions of these methods, often with a substantial
gain in convergence rate.

Review Questions

1. When is the matrix A reducible? Illustrate this property using the directed
graph of A.
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2. Let A = DA(I − L − U), where DA > 0. When is A said to have “property
A”. When is A consistently ordered? How are these properties related to the
SOR method?

3. For the model problem the asymptotic rate of convergence for the classical
iterative methods is proportional to hp, where h is the mesh size. Give the
value of p for Jacobi, Gauss–Seidel, SOR and SSOR. (For the last two methods
it is assumed that the optimal ω is used.

4. Consider an iterative method based on the splitting A = M −N . Give condi-
tions on the eigenvalues of M−1A which are sufficient for Chebyshev accelera-
tion to be used. Express the asymptotic rate of convergence for the accelerated
method in terms of eigenvalue bounds.

Problems

1. (a) Show that if A is reducible so is AT . Which of the following matrices are
irreducible? (

1 0
0 1

) (
0 1
1 0

) (
1 1
0 1

) (
1 1
1 0

)
.

(b) Is it true that a matrix A, in which the elements take the values 0 and 1
only, is irreducible if and only if the non-decreasing matrix sequence (I +A)k,
k = 1, 2, 3, . . . becomes a full matrix for some value of k?

2. The matrix A in (10.1.4) is block-tridiagonal, but its diagonal blocks are not
diagonal matrices. Show that in spite of this the matrix is consistently ordered.

Hint: Perform a similarity transformation with the diagonal matrix

D(α) = diag (D1(α), D2(α), . . . , Dn(α)),

where D1(α) = diag (1, α, . . . , αn−1), Di+1(α) = αDi(α), i = 1, 2, . . . , n− 1.

3. Verify the recursion for ωk for the Chebyshev semi-iteration method.

4. Show that

log
(
(1 + s)/(1 − s)

)
= 2(s+ s3/3 + s5/5 + . . .), 0 ≤ s < 1,

and use this result to prove (10.2.19).

5. Assume that A is symmetric indefinite with its eigenvalues contained in the
union of two intervals of equal length,

S = [a, b] ∪ [c, d], a < b < 0, 0 < c < d,

where d − c = b − a. Then the Chebyshev semi-iterative method cannot be
applied directly to the system Ax = b. Consider instead the equivalent system

Bx = c, B = A(A− αI), c = Ab− αb.

(a) Show that if α = d+ a = b+ c, then the eigenvalues of B are positive and
real and contained in the interval [−bc,−ad].
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(b) Show that the matrix B has condition number

κ(B) =
d

c
· |a||b| =

d

c

d− c+ |b|
|b| .

Use this to give estimates for the two special cases (i) Symmetric intervals
with respect to the origin. (ii) The case when |b| ≫ c.

Computer Exercises

1. Let A be a matrix with real eigenvalues {λi}n
i=1, 0 < a ≤ λi < b. Then the

Chebyshev semi-iterative method for solving Ax = b can be implemented by
the recursion (10.2.20)–(10.2.21). The instability of this scheme can be elim-
inated by using an ordering of the iteration parameters ωk given by Lebedev
and Finogenov. For N = 2p this permutation ordering κ is constructed by the
following Matlab program:

N = 2p; int = 1;
kappa = ones(1, N);
for i = 1 : p

int = 2 ∗ int; ins = int+ 1;
for j = int/2 : −1 : 1

kappa(2 ∗ j) = ins− kappa(j);
kappa(2 ∗ j − 1) = kappa(j);

end;
end;

Implement and test this method using the system Ax = b from the Laplace
equation on the unit square, with A block tridiagonal

A = tridiag(−I, T + 2I,−I) ∈ Rn2×n2

, T = tridiag(−1, 2 − 1) ∈ Rn×n.

Construct the right hand so that the exact solution becomes x = (1, 1, . . . , 1, 1)T .
Let x(0) = 0 as initial approximation and solve this problem using

• The implementation based on the three term recursion of Chebyshev
polynomials

• Richardson implementation with natural ordering of the parameters

• Richardson implementation with the Lebedev–Finogenov ordering of the
parameters

Take n = 50 and N = 128. Use the same number of iterations in all three
implementations. List in each case the maximum norm of the error and the
residual. Compare the results and draw conclusions!
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10.3 Projection Methods

10.3.1 General Principles

Consider a linear system Ax = b, where A ∈ Rn×n. Suppose we want to find
an approximate solution x̂ in a subspace K of dimension m. Then m independent
conditions are needed to determine x̂. One way to obtain these is by requiring that
the residual b−Ax̂ is orthogonal to a subspace L of dimension m, i.e.,

x̂ ∈ K, b−Ax̂ ⊥ L. (10.3.1)

Many important classes of iterative methods can be interpreted as being projection
methods in this general sense. The conditions (10.3.1) are often known as Petrov–
Galerkin conditions.

We can obtain a matrix form of (10.3.1) by introducing basis vectors in the
two subspaces. If we let

K = R(U), L = R(V ), (10.3.2)

where U = (u1, . . . , um), V = (v1, . . . , vm), then we can write (10.3.1) as V T (b −
AUz) = 0, for some z ∈ Rm. Hence x̂ = Uz is obtained by solving the reduced
system

Âz = V T b, Â = V TAU. (10.3.3)

We usually have m≪ n, and when m is small this system can be solved by a direct
method.

Example 10.3.1. Even though A is nonsingular the matrix Â may be singular.
Take, e.g., m = 1, U = V = e1, and

A =

(
0 1
1 1

)
.

Then Â = 0. Note that the matrix A here is symmetric, but not positive definite.

There are two important special cases in which the matrix Â can be guaranteed
to be nonsingular.

1. Let A by symmetric, positive definite (s.p.d.) and L = K. Then we can take
V = U , and have Â = UTAU . Clearly Â is s.p.d., and hence also nonsingular.

2. Let A be nonsingular and L = AK. Then we can take V = AU , and we get
Â = UTATAU . Here ATA is s.p.d. and hence Â is nonsingular.

We now derive important optimality properties satisfied in these two special
cases. For this purpose we first define a new inner product and norm related to a
s.p.d. matrix A.

Definition 10.3.1. For an s.p.d. matrix A we define a related A-inner product
and A-norm by

(u, v)A = uTAv, ‖u‖A = (uTAu)1/2, (10.3.4)
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It is easily verified that ‖u‖A satisfies the conditions for a norm.

Lemma 10.3.2.
Let A by symmetric, positive definite (s.p.d.) and consider the case L = K,

(V = U). Then x̂ = U(UTAU)−1UT b minimizes the A-norm of the error over all
vectors x ∈ K, i.e., x̂ solves the problem

min
x∈K

‖x− x∗‖A, x∗ = A−1b. (10.3.5)

Proof. By (10.3.1) x̂ satisfies vT (b−Ax̂) = 0, ∀v ∈ K. Let ê = x̂− x∗ be the error
in x̂. Then for the error in x̂+ v, v ∈ K we have e = ê+ v, and

‖e‖2
A = êTAê+ vTAv + 2vTAê.

But here the last term is zero because vTAê = vT (Ax̂− b) = 0. It follows that ‖e‖A

is minimum if v = 0.

A related result is obtained for the second case.

Lemma 10.3.3.
Let A be nonsingular and consider the case L = AK, (V = AU). Then

x̂ = U(UTATAU)−1UTAT b minimizes the 2-norm of the residual over all vectors
x ∈ K, i.e.,

min
x∈K

‖b−Ax‖2. (10.3.6)

Proof. Using x = Uz we have ‖b−Ax‖2 = ‖b−AUz‖2, which is minimized when z
satisfies the normal equations UTATAUz = UTAT b. This gives the desired result.

In an iterative method often a sequence of projection steps of the above form
is taken. Then we need to modify the above algorithms slightly so that they can
start from a given approximation xk.4

If we let x = xk + z, then z satisfies the system Az = rk, where rk = b−Axk.
In step k we now apply the above projection method to this system. Hence we
require that z ∈ K and that rk −Az = b−A(xk + z) ⊥ L. This gives the equations

rk = b−Axk, ẑ = (V TAU)−1V T rk, xk+1 = xk + Uz. (10.3.7)

for computing the new approximation xk+1. A generic projection algorithm is
obtained by starting from some x0 (e.g., x0 = 0), and repeatedly perform (10.3.7)
for a sequence of subspaces L = Lk, K = Kk, k = 1, 2, . . ..

4In the rest of this chapter we will use vector notations and xk will denote the kth approximation
and not the kth component of x.
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10.3.2 The One-Dimensional Case

The simplest case of a projection method is when m = 1. Then in step k we take
Lk = span (vk), and Kk = span (uk). Starting from some x0, we update xk in the
kth step by

rk = b−Axk, αk =
vT

k rk
vT

k Auk
, xk+1 = xk + αkuk, (10.3.8)

where we have to require that vT
k Auk 6= 0. By construction the new residual rk+1

is orthogonal to vk. Note that rk can be computed recursively from

rk = rk−1 − αk−1Auk−1. (10.3.9)

This expression is obtained by multiplying xk = xk−1 + αk−1uk−1 by A and using
the definition rk = b − Axk of the residual. Since Auk−1 is needed for computing
αk−1 using the recursive residual will save one matrix times vector multiplication.

If A is s.p.d. we can take vk = uk and the above formulas become

rk = b−Axk, αk =
uT

k rk
uT

kAuk
, xk+1 = xk + αkuk, (10.3.10)

In this case xk+1 minimizes the quadratic functional

φ(x) = ‖x− x∗‖2
A = (x − x∗)TA(x− x∗) (10.3.11)

for all vectors of the form xk + αkuk.
The vectors uk are often called search directions. Expanding the function

φ(xk + αuk) with respect to α, we obtain

φ(xk + αuk) = φ(xk) − αuT
k (b −Axk) +

1

2
α2uT

kAuk. (10.3.12)

Taking α = ωαk where αk is given by (10.3.10) we obtain

φ(xk + ωαkuk) = φ(xk) − ρ(ω)
(uT

k rk)2

uT
kAuk

, ρ(ω) =
1

2
ω(2 − ω), (10.3.13)

which is a quadratic function of ω. In a projection step (ω = 1) the line xk +αuk is
tangent to the ellipsoidal level surface φ(x) = φ(xk+1), and φ(xk + αkuk) < φ(xk)
provided that uT

k rk 6= 0. More generally, if uT
k rk 6= 0 we have from symmetry that

φ(xk + ωαkuk) < φ(xk), 0 < ω < 2.

For the error in xk+1 = xk + ωαkuk we have

x̂− xk+1 = x̂− xk − ω
uT

k rk

uT
kAuk

uk =

(
I − ω

uku
T
k

uT
kAuk

A

)
(x̂ − xk).

This shows that the error in each step is transformed by a linear transformation.
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Example 10.3.2. For the Gauss–Seidel method in the ith minor step the ith
component of the current approximation xk is changed so that the ith equation is
satisfied, i.e., we take

xk := xk − α̂ei, eT
i (b−A(xk − α̂ei)) = 0,

where ei is the ith unit vector. Hence the Gauss–Seidel method is equivalent to a
sequence of one-dimensional modifications where the search directions are chosen
equal to the unit vectors in cyclic order e1, . . . , en, e1, . . . , en, . . ..

This interpretation can be used to prove convergence for the Gauss–Seidel
(and more generally the SOR method) for the case when A is s.p.d..

Theorem 10.3.4.
If A is symmetric, positive definite then the SOR method converges for 0 <

ω < 2, to the unique solution of Ax = b. In particular the Gauss–Seidel method,
which corresponds to ω = 1, converges.

Proof. In a minor step using search direction ei the value of φ will decrease unless
eT

i (b − Axk) = 0, i.e., unless xk satisfies the ith equation. A major step consists
of a sequence of n minor steps using the search directions e1, . . . , en. Since each
minor step effects a linear transformation of the error yk = x̂ − xk, in a major
step it holds that yk+1 = Kyk, for some matrix K. Here ‖Kyk‖A < ‖yk‖A unless
yk is unchanged in all minor steps, i = 1, . . . , n, which would imply that yk = 0.
Therefore if yk 6= 0, then ‖Kyk‖A < ‖yk‖A, and thus ‖K‖A < 1. It follows that

‖Kny0‖A ≤ ‖K‖n
A‖y0‖A → 0 when n→ ∞,

i.e., the iteration converges.
If we define the minor step as x := ωα̂ei, where ω is a fix relaxation factor,

the convergence proof also holds. (We may even let ω vary with i, although the
proof assumes that ω for the same i has the same value in all major steps.) This
shows that the SOR method is convergent and by Theorem 10.1.3 this is equivalent
to ρ(Bω) < 1, 0 < ω < 2.

We make two remarks about the convergence proof. First, it also holds if
for the basis vectors {ei}n

i=1 we substitute an arbitrary set of linearly independent
vectors {pj}n

i=1. Second, if A is a positive diagonal matrix, then we obtain the
exact solution by the Gauss–Seidel method after n minor steps. Similarly, if A
assumes diagonal form after a coordinate transformation with, P = (p1, . . . , pn),
i.e., if PTAP = D, then the exact solution will be obtained in n steps using search
directions p1, . . . , pn. Note that this condition is equivalent to the requirement that
the vectors {pj}n

i=1 should be A-orthogonal, pT
i Apj = 0, i 6= j.

10.3.3 The Method of Steepest Descent

From the expansion (10.3.12) it is clear that the negative gradient of φ(x) with
respect to x equals −∇φ(x) = b − Ax. Hence the direction in which the function
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φ decreases most rapidly at the point xk equals the residual rk = b − Axk. The
method of steepest descent is a one-dimensional projection method where we
take vk = uk = rk. Then

rk = b−Axk, αk =
rT
k rk

rT
k Ark

, xk+1 = xk + αkrk. (10.3.14)

and according to (10.3.13) when rk 6= 0, we have φ(xk+1) < φ(xk).
We now derive an expression for the rate of convergence of the steepest descent

method. Denoting the error in xk by ek = xk − x∗ we have

‖ek+1‖2
A = eT

k+1Aek+1 = −rT
k+1ek+1 = −rT

k+1(ek + αkrk)

= −(rk − αkArk)T ek = eT
kAek − αkr

T
k rk,

where we have used that rT
k+1rk = 0. Using the expression (10.3.14) for αk we

obtain

‖ek+1‖2
A = ‖ek‖2

A

(
1 − rT

k rk
rT
k Ark

rT
k rk

rT
k A

−1rk

)
. (10.3.15)

To estimate the right hand side we need the following result.

Lemma 10.3.5 (Kantorovich5 inequality).
Let A be a real symmetric matrix with eigenvalues 0 < λ1 ≤ λ2 ≤ . . . ≤ λn.

Then for any vector x it holds

(xTAx)(xTA−1x)

(xTx)2
≤ 1

4

(
κ1/2 + κ−1/2

)2

, (10.3.16)

where κ = λn/λ1 is the condition number of A.

Proof. (After D. Braess) Let µ = (λ1λn)1/2 be the geometric mean of the eigen-
values and consider the symmetric matrix B = µ−1A + µA−1. The eigenvalues of
B satisfy

λi(B) = µ−1λi + µλ−1
i ≤ κ1/2 + κ−1/2, i = 1, . . . , n.

Hence, by the Courant maximum principle, for any vector x it holds

xTBx = µ−1(xTAx) + µ(xTA−1x) ≤ (κ1/2 + κ−1/2)(xTx).

The left hand can be bounded using the simple inequality

(ab)1/2 ≤ 1
2 (µ−1a+ µb), a, b > 0.

Squaring this and taking a = xTAx and b = xTA−1x the lemma follows.

From (10.3.15) and Kantorovich’s inequality it follows for the method of steep-
est descent that

‖ek+1‖2
A ≤ ‖ek‖2

A

(
κ1/2 − κ−1/2

κ1/2 + κ−1/2

)2

,

5Leonid V. Kantorovich, 1912–1986, Moscow, 1975 Nobel Lauerate in Economics.
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and hence

‖x− xk‖A ≤
(
κ− 1

κ+ 1

)k

‖x− x0‖A. (10.3.17)

It can also be shown that asymptotically this bound is sharp. Hence, the asymptotic
rate of convergence only depends on the extreme eigenvalues of A.

If the matrix A is ill-conditioned the level curves of φ are very elongated
hyper-ellipsoids. Then the successive iterates xk, k = 0, 1, 2, . . . will zig-zag slowly
towards the minimum x = A−1b as illustrated in Fig. 10.3.3 for a two dimensional
case. Note that successive search directions are orthogonal.

Figure 10.3.1. Convergence of the steepest descent method.

We now consider the more general case when u0 = p0 = r0 (i.e., the steep-
est descent direction) and the search direction uk+1 = pk+1 is chosen as a linear
combination of the negative gradient rk+1 and the previous search direction pk, i.e.,

pk+1 = rk+1 + βkpk, k = 0, 1, 2 . . . . (10.3.18)

Here the parameter βk remains to be determined. (Note that βk = 0 gives the
method of steepest descent.) From (10.3.13) we know that to get φ(xk+1) < φ(xk)
we must have pT

k rk 6= 0. Replacing (k+ 1) by k in (10.3.18) and multiplying by rT
k ,

we obtain

rT
k pk = rT

k rk + βk−1r
T
k pk−1 = rT

k rk, (10.3.19)

since rk is orthogonal to pk−1. It follows that rT
k pk = 0 implies rk = 0 and thus

xk = A−1b. Hence unless xk is the solution, the next iteration step is always defined,
regardless of the value of the parameter βk, and φ(xk+1) < φ(xk). From (10.3.19)
we also obtain the alternative expression

αk = (rT
k rk)/(pT

kApk). (10.3.20)
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Review Questions

1. Let φ(x) = 1
2
xT Ax − xT b, where A is symmetric positive definite, and consider the

function ϕ(α) = φ(xk + αpk), where pk is a search direction and xk the current
approximation to x = A−1b. For what value α = αk is ϕ(α) minimized? Show that
for xk+1 = xk + αkpk it holds that b − Axk+1 ⊥ pk.

2. Show that minimizing the quadratic form 1
2
xT Ax − xT b along the search directions

pi = ei, i = 1, 2, . . . , n is equivalent to one step of the Gauss–Seidel method.

3. How are the search directions chosen in the method of steepest descent? What is
the asymptotic rate of convergence of this method?

10.4 Krylov Subspace Methods

The Lanczos algorithm and the conjugate gradient algorithm of Hestenes and Stiefel
are the most important examples of Krylov subspace methods. They were devel-
oped already in the early 1950s, but did not come into wide use until twenty years
later. Now these methods, combined with preconditioning techniques, have been
developed into sophisticated solvers for large scale linear systems. Today these are
the standard method for solving linear systems involving large, sparse, symmetric
(or Hermitian) systems.

10.4.1 The Conjugate Gradient Method

We consider now projection methods where the subspaces K and L are chosen to be
the sequence of Krylov subspaces Kk+1(r0, A), k = 0, 1, 2, . . ., where r0 = b−Ax0,
and

Km(r0, A) = span {r0, Ar0, . . . , Am−1r0}. (10.4.1)

This choice leads to one of the most important iterative methods for solving large
symmetric positive definite systems, the conjugate gradient method.

If p0 = r0, and the recurrence (10.3.18) is used to generate pk+1 then a simple
induction argument shows that the vectors pk and rk both will lie in the Kk+1(r0, A).
In the conjugate gradient method the parameter βk is chosen to make pk+1 A-
orthogonal or conjugate to the previous search direction, i.e.,

pT
k+1Apk = 0. (10.4.2)

(A motivation to this choice is given in the second remark to Theorem 10.3.4.)
Multiplying (10.3.18) by pT

kA and using (10.4.2) it follows that

βk = −(pT
kArk+1)/(p

T
kApk). (10.4.3)

We now prove the important result that this choice will in fact make pk+1 A-
conjugate to all previous search directions!
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Lemma 10.4.1.
In the conjugate gradient algorithm the residual vector rk is orthogonal to all

previous search directions and residual vectors

rT
k pj = 0, j = 0, . . . , k − 1, (10.4.4)

and the search directions are mutually A-conjugate

pT
kApj = 0, j = 0, . . . , k − 1. (10.4.5)

Proof. We first prove the relations (10.4.4) and (10.4.5) jointly by induction.
Clearly rk is orthogonal to the previous search direction pk−1, and (10.4.2) shows
that also (10.4.5) holds for j = k − 1, Hence these relations are certainly true for
k = 1.

Assume now that the statements are true for some k ≥ 1. From pT
k rk+1 = 0,

changing the index, and taking the scalar product with pj , 0 ≤ j < k we get

rT
k+1pj = rT

k pj − αkp
T
kApj .

From the induction hypothesis this is zero, and since rT
k+1pk = 0 it follows that

(10.4.4) holds for k := k + 1. Using equation (10.3.18), the induction hypothesis
and equation (10.3.9) and then (10.3.18) again we find for 0 < j < k

pT
k+1Apj = rT

k+1Apj + βkp
T
kApj = α−1

j rT
k+1(rj − rj+1)

= α−1
j rT

k+1(pj − βj−1pj−1 − pj+1 + βjpj),

which is zero by equation (10.4.4). For j = 0 we use r0 = p0 in forming the last line
of the equation. For j = k we use (10.4.2), which yields (10.4.5).

Since the vectors p0, . . . , pk−1 span the Krylov subspace Kk(r0, A) the equation
(10.4.4) shows that rk ⊥ Kk(r0, A). This relation shows that the conjugate gradient
implements the projection method obtained by taking K = L = Kk(r0, A). Hence
from Lemma 10.3.2 we have the following global minimization property.

Theorem 10.4.2.
The vector xk in the conjugate gradient method solves the minimization prob-

lem

min
x
φ(x) =

1

2
‖x− x∗‖2

A, x− x0 ∈ Kk(r0, A) (10.4.6)

From this property it follows directly that the “energy” norm ‖x − x∗‖A in
the CG method is monotonically decreasing. It can also be shown that the error
norm ‖x− xk‖2 is monotonically decreased (see Hestenes and Stiefel [13]).

Since the vectors r0, . . . , rk−1 span the Krylov subspace Kk(r0, A) the following
orthogonality relations also hold:

rT
k rj = 0, j = 0, . . . , k − 1. (10.4.7)
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Equation (10.4.7) ensures that in exact arithmetic the conjugate gradient method
will terminate after at most n steps. For suppose the contrary is true. Then
rk 6= 0, k = 0, 1, . . . , n and by (10.4.7) these n + 1 nonzero vectors in Rn are
mutually orthogonal and hence linearly independent, which is impossible. Hence
the conjugate gradient method is in effect a direct method! However, as is now
well know, round-off errors spoil the finite termination property and this aspect has
little practical relevance.

From these relations, we can conclude that the residuals r0, r1, . . . , rk are
the same vectors as those obtained from the sequence r0, Ar0, . . . , A

kr0 by Gram-
Schmidt orthogonalization. This gives a connection to the Lanczos process described
in Section 10.8.4, which is further discussed below in Section 10.4.2. The vectors
p0, p1, p2, . . . may be constructed similarly from the conjugacy relation (10.4.5).

An alternative expression for βk is obtained by multiplying the recursive ex-
pression for the residual rk+1 = rk − αkApk by rT

k+1 and using the orthogonality

(10.4.7) to get rT
k+1rk+1 = −αkr

T
k+1Apk. Equations (10.3.20) and (10.4.3) then

yield
βk = rT

k+1rk+1/r
T
k rk.

We observe that in this expression for βk the matrix A is not needed. This property
is important when the conjugate gradient method is extended to non-quadratic
functionals.

We now summarize the conjugate gradient method. We have seen that there
are alternative, mathematically equivalent formulas for computing rk, αk and βk.
However, these are not equivalent with respect to accuracy, storage and computa-
tional work. A comparison tends to favor the following version:

Algorithm 10.4.1 The Conjugate Gradient Method

r0 = b−Ax0; p0 = r0;

for k = 0, 1, 2, . . . while ‖rk‖2 > ǫ do

αk = (rk, rk)/(pk, Apk);

xk+1 = xk + αkpk;

rk+1 = rk − αkApk;

βk = (rk+1, rk+1)/(rk, rk);

pk+1 = rk+1 + βkpk;

end

Here the inner product used is (p, q) = pT q. Four vectors x, r, p and Ap need to
be stored. Each iteration step requires one matrix by vector product when forming
Ap, two vector inner products and three scalar by vector products.

By instead taking the inner product in the above algorithm to be (p, q) = pTAq
we obtain a related method that in each step minimizes the Euclidian norm of
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the residual over the same Krylov subspace. In this algorithm the vectors Api,
i = 0, 1, . . . are orthogonal. In addition, the residual vectors are required to be
A-orthogonal, i.e., conjugate. Consequently this method is called the conjugate
residual method. This algorithm requires one more vector of storage and one more
vector update than the conjugate gradient method. Therefore, when applicable the
conjugate gradient method is usually preferred over the conjugate residual method.

10.4.2 CG and the Lanczos Process

To reveal the close connection between the conjugate gradient method and the
Lanczos Process we define the following matrices:

Rk =

(
r1

‖r1‖2
,

r2
‖r2‖2

, · · · , rk
‖rk‖2

)
(10.4.8)

Pk =

(
p1

‖r1‖2
,

p2

‖r2‖2
, · · · , pk

‖rk‖2

)
(10.4.9)

Lk =




1
−√

β1 1
−√

β2 1
. . .

. . .

−
√
βk−1 1




(10.4.10)

Dk = diag (α1 α2 · · · αk ) (10.4.11)

Assuming that rk 6= 0, k = 1 : n Rn is an orthogonal matrix. Then we have the
relations

APnDn = RnLn, PnLn = Rn.

Eliminating Pn from the first relation we obtain

ARn = Rn(LmD
−1
m Lm) = RnTn,

Hence provides an orthogonal similarity transformation of A to symmetric tridiag-
onal form Tn.

In Section 9.9.4 we described the Lanczos process for a real symmetric matrix
A. If this process can be carried out for k steps, starting with a vector v1, it
generates a symmetric tridiagonal matrix

Tk =




α1 β2

β2 α2 β3

. . .
. . .

. . .

βk−1 αk−1 βk

βk αk



.

and a matrix Vk = (v1, . . . , vk) with orthogonal columns spanning the Krylov sub-
space Kk(v1, A) such that

AVk = VkTk + βk+1vk+1e
T
k . (10.4.12)
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In the context of solving the linear system Ax = b, using Krylov subspaces the
appropriate choice of starting vector is

β1v1 = r0 = b−Ax0, β1 = ‖r0‖2.

We write the kth approximation as xk = x0 + Vkyk ∈ Kk(r0, A). Here yk is deter-
mined by the condition that rk = b−Axk is orthogonal to Kk(r0, A), i.e., V T

k rk = 0.
Using (10.4.12) we have

rk = r0 −AVkyk = β1v1 − VkTkyk − βk+1(e
T
k yk)vk+1. (10.4.13)

Since V T
k vk+1 = 0 and V T

k v1 = e, multiplying by V T
k gives

V T
k rk = 0 = β1e1 − Tkyk.

Hence yk is obtained by solving the tridiagonal system

Tkyk = β1e1, (10.4.14)

and then xk = x0 + Vkyk. Mathematically this gives the same sequence of approx-
imations as generated by the CG method. Moreover, the columns of Vk equal the
first k residual vectors in the conjugate gradient method, normalized to unit length.

The Lanczos process stops if βk+1 = ‖rk‖2 = 0 since then vk+1 is not defined.
However, then we have AVk = VkTk and using (10.4.13)

0 = rk = β1v1 − VkTkyk = r0 −AVkyk = r0 −A(xk − x0).

It follows that Axk = b, i.e. xk is an exact solution.
The recursion in the conjugate gradient method is obtained from (10.4.14)

by computing the Cholesky factorization of Tk = RT
kRk. This is always possible.

Suppose the Lanczos process stops for k = l ≤ n. Then, since A is a positive
definite matrix then Tl = V T

l AVl is also positive definite. Thus Tk, k ≤ l, which is
a principal submatrix of Tl, is also positive definite and its Cholesky factorization
must exist.

So far we have discussed the Lanczos process in exact arithmetic. In practice,
roundoff will cause the generated vectors to lose orthogonality. A possible remedy
is to reorthogonalize each generated vector vk+1 to all previous vectors vk, . . . , v1.
This is however very costly both in terms of storage and operations. The effect of
finite precision on the Lanczos method is the same as for the CG method; it slows
down convergence, but fortunately does not prevent accurate approximations to be
found!

10.4.3 Convergence of the Conjugate Gradient Method

In a Krylov subspace method the approximations are of the form xk−x0 ∈ Kk(r0, A),
k = 1, 2, . . .. With rk = b − Axk it follows that rk − r0 ∈ AKk(r0, A). Hence the
residual vectors can be written

rk = qk(A)r0,
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where qk ∈ Π̃1
k, the set of polynomials qk of degree k with qk(0) = 1. Since

φ(x) = 1
2‖x− x∗‖2

A = 1
2r

TA−1r = ‖r‖2
A−1 ,

the optimality property in Theorem 10.4.2 can alternatively be stated as

‖rk‖2
A−1 = min

qk∈Π̃1

k

‖qk(A)r0‖2
A−1. (10.4.15)

Denote by {λi, vi}, i = 1, . . . , n, the eigenvalues and eigenvectors of A. Since
A is symmetric we can assume that the eigenvectors are orthonormal. Expanding
the right hand side as

r0 =

n∑

i=1

γivi, (10.4.16)

we have for any qk ∈ Π̃1
k

‖rk‖2
A−1 ≤ ‖qk(A)r0‖2

A−1 = rT
0 qk(A)TA−1qk(A)r0 =

n∑

i=1

γ2
i λ

−1
i qk(λi)

2.

In particular, taking

qn(λ) =
(
1 − λ

λ1

)(
1 − λ

λ2

)
· · ·

(
1 − λ

λn

)
, (10.4.17)

we get ‖rn‖A−1 = 0. This is an alternative proof that the CG method terminates
after at most n steps in exact arithmetic.

If the eigenvalues of A are distinct then qn in (10.4.17) is the minimal polyno-
mial of A (see Section 10.1.2). If A only has p distinct eigenvalues then the minimal
polynomial is of degree p and CG converges in at most p steps for any vector r0.
Hence, CG is particularly effective when A has low rank! More generally, if the
grade of r0 with respect to A equals m then only m steps are needed to obtain the
exact solution. This will be the case if, e.g., in the expansion (10.4.16) γi 6= 0 only
for m different values of i.

We stress that the finite termination property of the CG method shown above
is only valid in exact arithmetic. In practical applications we want to obtain a good
approximate solution xk in far less than n iterations. We now use the optimality
property (10.4.16) to derive an upper bound for the rate of convergence of the CG
method considered as an iterative method. Let the set S contain all the eigenvalues
of A and assume that for some q̃k ∈ Π̃1

k we have

max
λ∈S

|q̃k(λ)| ≤Mk.

Then it follows that

‖rk‖2
A−1 ≤M2

k

n∑

i=1

γ2
i λ

−1
i = M2

k‖r0‖2
A−1
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or
‖x− xk‖A ≤Mk‖x− x0‖A. (10.4.18)

We now select a set S on the basis of some assumption regarding the eigenvalue
distribution of A and seek a polynomial q̃k ∈ Π̃1

k such that Mk = maxλ∈S |q̃k(λ)| is
small.

A simple choice is to take S = [λ1, λn] and seek the polynomial q̃k ∈ Π̃1
k which

minimizes maxλ1≤λ≤λn
|qk(λ)|. The solution to this problem is known to be a

shifted and scaled Chebyshev polynomial of degree k, see the analysis in Section??.
It follows that

‖x− xk‖A < 2

(√
κ− 1√
κ+ 1

)k

‖x− x0‖A. (10.4.19)

where κ = λn(A)/λ1(A). This estimate is the same as (10.2.19) for Chebyshev
semi-iteration.

We note that the convergence of the conjugate residual method can be ana-
lyzed using a similar technique.

Example 10.4.1. For the model problem in Section 10.1.2 the extreme eigenvalues
of 1

4A are λmax = 1 + cosπh, λmin = 1 − cosπh. It follows that

κ =
1 + cosπh

1 − cosπh
≈ 1

sin2 πh/2
≈ 4

(πh)2
.

For h = 1/100 the number of iterations needed to reduce the initial error by a factor
of 10−3 is then bounded by

k ≈ 1

2
log 2 · 103√κ ≈ 242.

This is about the same number of iterations as needed with SOR using ωopt to
reduce the L2-norm by the same factor. However, the conjugate gradient method
is more general in that it does not require the matrix A to have “property A”.

The error estimate above tends to be pessimistic asymptotically. One often
observes, in practice, a superlinear convergence for the conjugate gradient method.
This can be theoretically explained for the case when there are gaps in the spec-
trum of A. Then, as the iterations proceeds, the effect of the smallest and largest
eigenvalues of A are eliminated and the convergence then behaves according to
a smaller ”effective” condition number. This behavior, called superlinear conver-
gence, is in contrast to the Chebyshev semi-iterative method, which only takes the
extreme eigenvalues of the spectrum into account and for which the error estimate
in Section ?? tends to be sharp asymptotically.

We have seen that, in exact arithmetic, the conjugate gradient algorithm will
produce the exact solution to a linear system Ax = b in at most n steps. However, in
the presence of rounding errors, the orthogonality relations in Theorem 10.3.4 will
no longer be satisfied exactly. Indeed, orthogonality between residuals ri and rj , for
|i−j| is large, will usually be completely lost. Because of this, the finite termination
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property does not hold in practice. Its main use is instead as an iterative method
for solving large, sparse, well-conditioned linear systems, using far fewer than n
iterations.

The behavior of the conjugate gradient algorithm in finite precision is much
more complex than in exact arithmetic. It has been observed that the bound
(10.4.19) still holds to good approximation in finite precision. On the other hand a
good approximate solution may not be obtained after n iterations, even though a
large drop in the error sometimes occurs after step n. It has been observed that the
conjugate gradient algorithm in finite precision behaves like the exact algorithm
applied to a larger linear system Âx̂ = b̂, where the matrix Â has many eigen-
values distributed in tiny intervals about the eigenvalues of A. This means that
κ(Â) ≈ κ(A), which explains why the bound (10.4.19) still applies. It can also be
shown that even in finite precision ‖rk‖2 → 0, where rk is the recursively computed
residual in the algorithm. (Note that the norm of true residual ‖b−Axk‖2 cannot
be expected to approach zero.) This means that a termination criterion ‖rk‖2 ≤ ǫ
will eventually always be satisfied even if ǫ ≈ u, where u is the machine precision.

Table 10.4.1. Maximum error for Example 10.4.2 using Chebyshev itera-
tion with optimal parameters and the conjugate gradient algorithm.

Iteration Chebyshev Conj. gradient
1 1.6 · 10−2 1.6 · 10−2

2 7.1 · 10−4 6.5 · 10−4

3 1.1 · 10−5 1.0 · 10−5

4 2.7 · 10−7 1.0 · 10−7

5 4.3 · 10−9 8.1 · 10−10

6 1.2 · 10−10 5.7 · 10−12

Example 10.4.2. Consider the elliptic equation

−
(
∂2u

∂x2
+
∂2u

∂y2

)
+ p(x, y)u = f(x, y), p =

6(x2 + y2)

1 + 1
2 (x4 + y4)

,

0 < x, y < 1, and let the boundary conditions be determined so that

u(x, y) = 2
(
(x− 1/2)2 + (y − 1/2)2

)
.

The Laplacian operator is approximated with 32 mesh points in each direction. In
Table 10.4.3 we compare the maximum error using Chebyshev iteration with optimal
parameters and the conjugate gradient algorithm. An initial estimate identically
equal to zero is used.

It is seen that Algorithm 10.4.1 yields a smaller error without the need to
estimate the parameters.
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10.4.4 Symmetric Indefinite Systems

For symmetric positive definite matrices A the conjugate gradient method computes
iterates xk that satisfy the minimization property

min
x∈Sk

‖x̂− x‖A, Sk = x0 + Kk(r0, A).

In case A is symmetric but indefinite ‖ ·‖A is no longer a norm. Hence the standard
conjugate gradient method may break down. This is also true for the conjugate
residual method.

A Krylov subspace method for symmetric indefinite systems was given by
Paige and Saunders [22, ]. Using the Lanczos basis Vk they seek approximations
xk = Vkyk ∈ Kk(b, A), which are stationary values of ‖x̂ − xk‖2

A. These are given
by the Galerkin condition

V T
k (b −AVkyk) = 0.

This leads again to the tridiagonal system (10.4.14). However, when A is indefinite,
although the Lanczos process is still well defined, the Cholesky factorization of Tk

may not exist. Moreover, it may happen that Tk is singular at certain steps, and
then yk is not defined.

If the Lanczos process stops for some k ≤ n then AVk = VkTk. It follows
that the eigenvalues of Tk are a subset of the eigenvalues of A, and thus if A is
nonsingular so is Tk. Hence the problem with a singular Tk can only occur at
intermediate steps.

To solve the tridiagonal system (10.4.14) Paige and Saunders suggest comput-
ing the LQ factorization

Tk = L̄kQk, QT
kQk = I,

where L̄k is lower triangular and Qk orthogonal. Such a factorization always exists
and can be computed by multiplying Tk with a sequence of plane rotations from
the right

TkG12 · · ·Gk−1,k = L̄k =




γ1

δ2 γ2

ǫ3 δ3 γ3

. . .
. . .

. . .

ǫk δk γ̄k



.

The rotation Gk−1,k is defined by elements ck−1 and sk−1. The bar on the element
γ̄k is used to indicate that L̄k differs from Lk, the k × k leading part of L̄k+1, in
the (k, k) element only. In the next step the elements in Gk,k+1 are given by

γk = (γ̄2
k + β2

k+1)
1/2, ck = γ̄k/γk, sk = βk+1/γk.

Since the solution yk of Tkyk = β1e1 will change fully with each increase in k
we write

xk = Vkyk = (VkQ
T
k )z̄k = W̄kz̄k,
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and let

W̄k = (w1, . . . , wk−1, w̄k),

z̄k = (ζ1, . . . , ζk−1, ζ̄k) = Qkyk.

Here quantities without bars will be unchanged when k increases, and W̄k can be
updated with T̄k. The system (10.4.14) now becomes

L̄kz̄k = β1e1, xc
k = W̄kz̄k.

This formulation allows the vi and wi to be formed and discarded one by one.
In implementing the algorithm we should note that xc

k need not be updated
at each step, and that if γ̄k = 0, then z̄k is not defined. Instead we update

xL
k = Wkzk = xL

k−1 + ζkwk,

where Lk is used rather than L̄k. We can then always obtain xc
k+1 when needed

from
xc

k+1 = xL
k + ζ̄k+1w̄k+1.

This defines the SYMMLQ algorithm. In theory the algorithm will stop with βk+1 =
0 and then xc

k = xL
k = x. In practice it has been observed that βk+1 will rarely be

small and some other stopping criterion based on the size of the residual must be
used.

Paige and Saunders also derived an algorithm called MINRES, which is based
on minimizing the Euclidian norm of the residual rk. It should be noted that
MINRES suffers more from poorly conditioned systems than SYMMLQ does.

Review Questions

1. Define the Krylov space Kj(b, A). Show that it is invariant under (i) scaling τA.
(ii) translation A−sI . How is it affected by an orthogonal similarity transformation
Λ = V T AV , c = V T b?

2. What minimization problems are solved by the conjugate gradient method? How
can this property be used to derive an upper bound for the rate of convergence of
the conjugate gradient method.

3. Let the symmetric matrix A have eigenvalues λi and orthonormal eigenvectors vi,
i = 1, . . . , n. If only d < n eigenvalues are distinct, what is the maximum dimension
of the Krylov space Kj(b, A)?

Problems

1. Let λi, vi be an eigenvalue and eigenvector of the symmetric matrix A.

(a) Show that if vi ⊥ b, then also vi ⊥ Kj(b, A), for all j > 1.

(b) Show that if b is orthogonal against p eigenvectors, then the maximum dimension
of Kj(b, A) is at most n−p. Deduce that the the conjugate gradient method converges
in at most n − p iterations.
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2. Let A = I + BBT ∈ R
n×n, where B is of rank p. In exact arithmetic, how many

iterations are at most needed to solve a system Ax = b with the conjugate gradient
method?

3. Write down explicitly the conjugate residual method. Show that in this algorithm
one needs to store the vectors x, r, Ar, p and Ap.

4. SYMMLQ is based on solving the tridiagonal system (10.4.12) using an LQ factoriza-
tion of Tk. Derive an alternative algorithm, which solves this system with Gaussian
elimination with partial pivoting.

10.5 Nonsymmetric Problems

An ideal conjugate gradient-like method for nonsymmetric systems would be char-
acterized by one of the properties (10.4.6) or (10.4.13). We would also like to be
able to base the implementation on a short vector recursion. Unfortunately, it turns
out that such an ideal method essentially can only exist for matrices of very special
form. In particular, a two term recursion like in the CG method is only possible in
case A either has a minimal polynomial of degree ≤ 1, or is Hermitian, or is of the
form

A = eiθ(B + ρI), B = −BH ,

where θ and ρ are real. Hence the class essentially consists of shifted and rotated
Hermitian matrices.

There are several possibilities for generalizing the conjugate gradient method
to nonsymmetric systems. One simple approach is to apply the conjugate gradient
method to the symmetrize system of normal equations. Since these usually have
much higher spectral condition convergence of these methods can be very slow.

We can maintain the three-term relation by

10.5.1 Arnoldi’s Method and GMRES

A serious drawback with using methods based on the normal equations is that they
often converge very slowly, which is related to the fact that the singular values of
ATA are the square of the singular values of A. There also are applications where
it is not possible to compute matrix-vector products ATx—note that A may only
exist as subroutine for computing Ax.

We now consider a method for solving a general nonsymmetric system Ax = b
based on the Arnoldi process (see Section 9.9.6) with the starting vector

v1 = r0/β1, r0 = b−Ax0, β1 = ‖r0‖2,

In the following implementation of the Arnoldi process we perform the orthog-
onalization by the modified Gram-Schmidt method.

Algorithm 10.5.1 The Arnoldi Process.

β1 = ‖r0‖2; v1 = r0/β1;
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for k = 1 : n do

zk = Avk;

for i = 1 : k do

hik = zT
k vi;

zk = zk − hikvi;

end

hk+1,k = ‖zk‖2;

if |hk+1,k| < ǫ, break end

vk+1 = zk/hk+1,k;

end

In exact arithmetic the result after k steps is a matrix Vk = (v1, . . . , vk), that
(in exact arithmetic) gives an orthogonal basis for the Krylov subspace

Kk(r0, A) = span (r0, Ar0, . . . , A
k−1r0),

and a related square Hessenberg matrix Hk = (hij) ∈ Rk×k. Further we have

AVk = VkHk + hk+1,kvk+1e
T
k = Vk+1H̄k, (10.5.1)

where

H̄k =

(
Hk

hk+1,ke
T
k

)
=




h11 h12 · · · h1k

h21 h22 · · · h2k

. . .
. . .

...
hk,k−1 hkk

hk+1,k




∈ R(k+1)×k. (10.5.2)

We seek at step k an approximate solution of the form

xk = x0 + Vkyk ∈ x0 + Kk(r0, A), (10.5.3)

There are two different ways to choose the approximation xk. In the full
orthogonalization method (FOM) xk is determined by the Galerkin condition

rk ⊥ Kk(r0, A), rk = b−Axk.

Using (10.5.1) the residual rk can be expressed as

rk = r0 −AVkyk = β1v1 −VkHkyk −hk+1,kvk+1e
T
k . = Vk+1(β1e1 − H̄kyk). (10.5.4)

Using this the Galerkin condition gives V T
k rk = β1e1 − Hkyk = 0. Hence yk =

β1H
−1
k e1 is obtained as the solution of a linear system of Hessenberg form. (Note

that Hk is nonsingular if Kk(r0, A) has full rank).
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In the generalized minimum residual (GMRES) method yk is chosen so
that ‖b−Axk‖2 is minimized. Notice that this ensures that ‖rk‖2 is monotonically
decreasing as the iteration proceeds. Since (in exact arithmetic) Vk+1 has orthogonal
columns, ‖rk‖2 is minimized by taking yk to be the solution of the least squares
problem

min
yk

‖β1e1 − H̄kyk‖2. (10.5.5)

The Arnoldi process breaks down at step k if and only if Akr0 ∈ Kk(r0, A).
Then zk vanishes, hk+1,k = 0 and AVk = VkHk. Since rank (AVk) = rank (Vk) = k
the matrix Hk is nonsingular. Then

rk = Vk(β1e1 −Hkyk) = 0, yk = β1H
−1
k e1,

and xk = x0 + Vkyk is the solution of Ax = b. This shows the important property
(in exact arithmetic) that GMRES does not break down before the exact solution is
found. It follows that GMRES terminates in at most n steps.

We now discuss the implementation of GMRES. To solve (10.5.5) we compute
the QR factorization of the Hessenberg matrix H̄k. This can be done by using a
sequence of k plane rotations. Let

QT
k (H̄k e1) =

(
Rk dk

0 ρk

)
, QT

k = Gk,k+1Gk−1,k · · ·G12, (10.5.6)

where Gj+1,j is chosen to zero the subdiagonal element hj+1,j . Then the solution
to (10.5.5) and its residual is given by

Rkyk = β1dk, ‖rk‖2 = β1|ρk|. (10.5.7)

The iterations can be stopped as soon as |ρk| is maller than a prescribed tolerance.
Since H̄k−1 determines the first k − 1 Givens rotations and H̄k is obtained

from H̄k−1 by adding the kth column, it is possible to save work by updating the
QR factorization (10.5.6) at each step of the Arnoldi process. To derive the updating
formulas for step j = k we write

QT
k H̄k = Gk,k+1

(
QT

k−1 0
0 1

) (
H̄k−1 hk

0 hk+1,k

)
=



Rk−1 ck−1

0 γk

0 0


 ,

We first apply the previous rotations to hk giving

QT
k−1hk = Gk−1,k · · ·G12hk =

(
ck−1

δk

)
, (10.5.8)

The rotation Gk,k+1 is determined by

Gk,k+1

(
δk

hk+1,k

)
=

(
γk

0

)
. (10.5.9)

and gives the last element in the kth column in Rk.
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Proceeding similarly with the right hand side, we have

QT
k e1 = Gk,k+1

(
QT

k−1e1
0

)
= Gk,k+1



dk−1

ρk−1

0


 =



dk−1

τk
ρk


 ≡

(
dk

ρk

)
. (10.5.10)

(Note that the different dimensions of the unit vectors e1 above is not indicated in
the notation.) The first k − 1 elements in QT

k e1 are not changed.
The approximate solution can be obtained from xk = x0+Vkyk. Note that the

whole vector yk differs from yk−1 and therefore all the vectors v1, . . . , vk needs to be
saved. Since ‖rk‖2 = |ρk| is available without forming xk, this expensive operation
can be delayed until until GMRES has converged, i.e., when ρk is small enough.

Alternatively, an updating formula for xk can be derived using the same trick
as in LSQR. Set WkRk = Vk, which can be written

(Wk−1, wk)

(
Rk−1 ck−1

0 γk

)
= (Vk−1, vk).

Equating the first block columns gives Wk−1Rk−1 = Vk−1, which shows that the
first k − 1 columns of Wk equal Wk−1. Equating the last columns and solving for
wk we get

wk = (vk −Wk−1rk−1)/γk (10.5.11)

Then from (10.6.26) xk = xk−1 + β1τkwk. Note that if this formula is used we only
need the last column of the matrix Rk. (We now need to save Wk but not Rk.)

The steps in the resulting GMRES algorithm can now be summarized as fol-
lows:

1. Obtain last column of H̄k from the Arnoldi process and apply old rotations
gk = Gk−1,k · · ·G12hk.

2. Determine rotation Gk,k+1 and new column in Rk, i.e., ck−1 and γk according
to (10.5.9). This also determines τk and |ρk| = ‖rk‖2.

3. If xk−1 is recursively updated, then compute wk using (10.5.10) and xk from
(10.6.26).

Suppose that the matrix A is diagonalizable,

A = XΛX−1, Λ = diag(λi).

Then, using the property that the GMRES approximations minimize the Euclidian
norm of the residual rk = b−Axk in the Krylov subspace Kk(r0, A), it can be shown
that

||rk||2
||r0||2

≤ κ2(X)min
qk

max
i=1,2,...,n

|qk(λi)|, (10.5.12)

where qk is a polynomial of degree ≤ k and qk(0) = 1. The proof is similar to the
convergence proof for the conjugate gradient method in Section 10.4.3. This results
shows that if A has p ≤ n distinct eigenvalues then, as for CG in the symmetric
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case, GMRES converges in at most p steps. If the spectrum is clustered in p clusters
of sufficiently small diameters, then we can also expect GMRES to provide accurate
approximations after about p iterations.

Because of the factor κ2(X) in (10.5.12) an upper bound for the rate of conver-
gence can no longer be deduced from the spectrum {λi} of A alone. In the special
case that A is normal we have κ2(X) = 1, and the convergence is related to the
complex approximation problem

min
qk

max
i=1,2,...,n

|qk(λi)|, qk(0) = 1.

Because complex approximation problems are harder than real ones, no simple
results are available even for this special case.

In practice it is often observed that GMRES (like the CG method) has a
so-called superlinera convergence. By this we mean that the rate of convergence
improves as the iteration proceeds. It has been proved that this is related to the
convergence of Ritz values to exterior eigenvalues of A. When this happens GMRES
converges from then on as fast as for a related system in which these eigenvalues
and their eigenvector components are missing.

The memory requirement of GMRES increases linearly with the number of
steps k and the cost for orthogonalizing the vector Avk is proportional to k2. In
practice the number of steps taken by GMRES must therefore often be limited. by
restarting GMRES after each m iterations, where in practice typically m is be-
tween 10 and 30. We denote the corresponding algorithm GMRES(m). GMRES(m)
cannot break down (in exact arithmetic) before the true solution has been produced,
but for m < n GMRES may never converge.

Since restarting destroys the accumulated information about the eigenvalues
of A the superlinear convergence is usually lost. This loss can be compensated for by
extracting form the computed Arnoldi factorization an approximate invariant sub-
space of A associated with the small eigenvalues. This is then used to precondition
the restarted iteration.

If GMRES is applied to a real symmetric indefinite system, it can be imple-
mented with a three-term recurrence, which avoids the necessity to store all basis
vectors vj . This leads to the method MINRES by Paige and Saunders mentioned
in Section 10.5.1.

10.5.2 Lanczos Bi-Orthogonalization

The GMRES method is related to the reduction of a nonsymmetric matrix A ∈
Rn×n to Hessenberg form by an orthogonal similarity H = QTAQ. It gives up the
short recurrences of the CG method. Another possible generalization proposed by
Lanczos [17] is related to the reduction of to tridiagonal form by a general similarity
transformation.

Hence the stability of this process cannot be guaranteed, and this reduction
is in general not advisable.
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Assume that A can be reduced to tridiagonal form

WTAV = Tn =




α1 β2

γ2 α2
. . .

. . .
. . .

. . .
. . .

. . . βn

γn αn



,

where V = (v1, . . . , vn) and W = (w1, . . . , w), are nonsingular and WTV = I. The
two vector sequences {v1, . . . , vn} and {w1, . . . , w}, then are bi-orthogonal, i.e.,

wT
i vj =

{
1, if i = j,
0 otherwise.

(10.5.13)

Comparing columns in AV = V T and ATW = WT T we find (with v0 = w0 = 0)
the recurrence relations

γk+1vk+1 = ṽk+1 = (A− αkI)vk − βkvk−1, (10.5.14)

βk+1wk+1 = w̃k+1 = (AT − αkI)wk − γkwk−1, (10.5.15)

Multiplying equation (10.5.14) by wT
k , and using the bi-orthogonality we have

αk = wT
k Avk.

To satisfy the bi-orthogonality relation (10.5.15) for i = j = k + 1 it suffices to
choose γk+1 and βk+1 so that.

γk+1βk+1 = w̃T
k+1ṽk+1.

Hence there is some freedom in choosing these scale factors.
If we denote

Vk = (v1, . . . , vk), Wk = (w1, . . . , wk),

then we have WT
k AVk = Tk, and the recurrences in this process can be written in

matrix form as

AVk = VkTk + γk+1vk+1e
T
k , (10.5.16)

ATWk = WkT
T
k + βk+1wk+1e

T
k . (10.5.17)

By construction these vector sequences form basis vectors for the two Krylov spaces

R(Vk) = Kk(v1, A), R(Wk) = Kk(w1, A
T ). (10.5.18)

We summarize the algorithm for generating the two sequences of vectors
v1, v2, . . . and w1, w2, . . .:
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Algorithm 10.5.2 The Lanczos Bi-orthogonalization Process.
Let v1 and w1 be two vectors such that wT

1 v1 = 1. The following algorithm
computes in exact arithmetic after k steps a symmetric tridiagonal matrix Tk =
trid (γj , αj , βj+1) and two matricesWk and Vk with bi-orthogonal columns spanning
the Krylov subspaces Kk(v1, A) and Kk(w1, A

T ):

w0 = v0 = 0;

β1 = γ1 = 0;

for j = 1, 2, . . .

αj = wT
j Avj ;

vj+1 = Avj − αjvj − βjvj−1;

wj+1 = ATwj − αjwj − δjwj−1;

δj+1 = |wT
j+1vj+1|1/2;

if δj+1 = 0 then exit;

βj+1 = (wT
j+1vj+1)/δj+1;

vj+1 = vj+1/δj+1;

wj+1 = wj+1/βj+1;

end

Note that if A = AT , w1 = v1, and we take βk = γk, then the two sequences
generated will be identical. The process then is equivalent to the symmetric Lanczos
process.

There are two cases when the above algorithm breaks down. The first occurs
when either ṽk+1 or w̃k+1 (or both) is null. In this case it follows from (10.5.16)–
(10.5.17) that an invariant subspace has been found; if vk+1 = 0, then AVk = VkTk

and R(Vk) is an A-invariant subspace. If wk+1 = 0, then ATWk = WkT
T
k and

R(Wk) is an AT -invariant subspace. This is called regular termination. The second
case, called serious breakdown, occurs when w̃T

k ṽk = 0, with neither ṽk+1 nor w̃k+1

null.

10.5.3 Bi-Conjugate Gradient Method and QMR

We now consider the use of the nonsymmetric Lanczos process for solving a linear
system Ax = b. Let x0 be an initial approximation. Take β1v1 = r0, β1 = ‖r0‖2,
and w1 = v1. We seek an approximate solution xk such that

xk − x0 = Vkyk ∈ Kk(r0, A).

For the residual we then have

rk = b−Axk = β1v1 −AVkyk,

Here yk is determined so that the Galerkin condition rk ⊥ Kk(w1, A
T ) is satisfied,

or equivalently WT
k rk = 0. Using (10.5.16) and the bi-orthogonality conditions
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WT
k Vk = 0 this gives

WT
k (β1v1 −AVkyk) = β1e1 − Tkyk = 0. (10.5.19)

Hence, if the matrix Tk is nonsingular xk is determined by solving the tridiagonal
system Tkyk = β1e1 and setting xk = x0 + Vkyk.

If A is symmetric, this method becomes the SYMMLQ method, see Sec. 10.5.1.
We remark again that in the nonsymmetric case this method can break down with-
out producing a good approximate solution to Ax = b. In case of a serious break-
down, it is necessary to restart from the beginning with a new starting vector r0.
As in SYMMLQ the matrix Tk may be singular for some k and this is an additional
cause for breakdown.

The Lanczos bi-orthogonalization algorithm is the basis for several iterative
methods for nonsymmetric systems. The method can be written in a form more
like the conjugate gradient algorithm, which is called the bi-conjugate gradient
or Bi-CG method. The algorithm was first proposed by Lannczos [18] and later in
conjugate gradient form by Fletcher [7]. The Bi-CG algorithm can be derived from
Algorithm 10.5.4 in exactly the same way as the CG method was derived from the
Lanczos algorithm. The algorithm solves not only the original system Ax = b but
also a dual linear system AT x̃ = b̃, although the dual system usually is ignored in
the derivation of the algorithm.

To derive th Bi-CG algorithm from the Lanczos bi-orthogonalization we in-
troduce the LU decomposition

Tk = LkUk,

and write

xk = x0 + VkT
−1
k (βe1) = x0 + PkL

−1
k (βe1),

where Pk = VkU
−1
k . Notice that xk can be obtained by updating xk−1 as in the CG

method.
Define similarly the matrix P̃k = WkL

−T
k . Then the columns of Pk and P̃k

are A-conjugate, since

P̃T
k APk = L−1

k WT
k AVkU

−1
k = L−1

k TkU
−1
k = I.

Algorithm 10.5.3 Bi-conjugate Gradient Algorithm
Set r0 = b−Ax0 and choose r̃0 so that (r=0, r̃0) 6= 0.

p0 = r0; p̃0 = r̃0;

ρ0 = (r̃0, r0);

for j = 0, 1, 2, . . .

vj = Apj ; αj = ρj/(p̃j , vj);

xj+1 = xj + αjpj ;

rj+1 = rj − αjvj ;

r̃j+1 = r̃j − αj(A
T p̃j);
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ρj+1 = (r̃j+1, rj+1);

βj = ρj+1/ρj ;

pj+1 = rj+1 + βjpj ;

p̃j+1 = r̃j+1 + βj p̃j ;

end

The vectors rj and r̃j are in the same direction as vj+1 and wj+1, respectively.
Hence they form a biorthogonal sequence. Note that Bi-CG has the computational
advantage over CGNE that the most time-consuming operationss Apj and AT p̃j

can be carried out in parallel.
One can encounter convergence problems with Bi-CG, sinve for general ma-

trices the bilinear form
[x, y] = (ψ(AT )x, ψ(A)y)

used to define bi-orthogonality, does not define an inner product. Therefore if r̃0 is
chosen unfavorably, it may occur that ρj or (p̃j , vj) is zero (or very small), without
convergence having taken place.

Nothing is minmized in the Bi-CG and related methods, and for a general
unsymmetric matrix A there is no gurantee that the algorithm will not break down
or be unstable. On the contrary, it has been observed that sometimes convergence
can be as fast as for GMRES. However, the convergence behavior can be very
irregular, and as remarked above, breakdown occurs. Sometimes, breakdown can
be avoided by a restart at the iteration step immediately before the breakdown step.

A related method called the Quasi-Minimal Residual (QMR) method
can be developed as follows. After k steps of the nonsymmetric Lanczos process we
have from the relation (10.5.16) that

AVk = Vk+1T̂k, T̂k =

(
Tk

γk+1e
T
k

)
,

where T̂k is an (k + 1)× k tridiagonal matrix. We can now proceed as was done in
developing GMRES. If we take v1 = βr0, the the residual associated with with an
approximate solution of the form xk = x0 + Vky is given by

b−Axk = b−A(x0 + Vky) = r0 −AVky

= βv1 − Vk+1T̂ky = Vk+1(βe1 − T̂ky). (10.5.20)

Hence the norm of the residual vector is

‖b−Axk‖2 = ‖Vk+1(βe1 − T̂ky)‖2.

If the matrix Vk+1 had orthonormal columns then the residual norm would become
‖(βe1 − T̂ky)‖2, as in GMRES, and a least squares solution in the Krylov subspace
could be obtained by solving

min
y

‖βe1 − T̂ky‖2.
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for yk and taking xk = x0 + Vkyk.
Recent surveys on progress in iterative methods for non-symmetric systems

are given by Freund, Golub and Nachtigal [8, ] and Golub and van der Vorst
[11]. There is a huge variety of methods to choose from. Unfortunately in many
practical situations it is not clear what method to select. In general there is no best
method. In [21] examples are given which show that, depending on the linear system
to be solved, each method can be clear winner or clear loser! Hence insight into
the characteristics of the linear system is needed in order to discriminate between
methods. This is different from the symmetric case, where the rate of convergence
can be deduced from the spectral properties of the matrix alone.

10.5.4 Transpose-free Methods

A disadvantage of the methods previously described for solving non-symmetric lin-
ear systems is that they require subroutines for the calculation of both Ax and
AT y for arbitrary vectors x and y. If the data structure favors the calculation of
Ax then it is often less favorable for the calculation of AT y. Moreover, for some
problems deriving from ordinary differential equations the rows of A arise natuarrly
from a finite difference approximation and the matrix product Ax may be much
more easily computed than AT y. These consideration has lead to the development
of “transpose-free” methods

The first of the transpose-free iterative methods Bi-CGS, due to Sonneveld [26],
is a modification of the Bi-CG algorithm.. Here CGS stands for “conjugate gradient
squared”. The key observation behind this algorithm is the following property of
the vectors generated in the Bi-CG algorithm. Taking into account that p0 = r0, it
is easily showed that there are polynomials φj(x) and psij(x) of degree such that
for j = 1, 2, 3, . . . ,

rj = φj(A) r0, r̃j = φj(A
T ) r̃0,

pj = ψj(A) r0, p̃j = ψj(A
T ) r̃0.

That is rj and r̃j are obtained by premultiplication by the same polynomial φ(t) in
A and AT , respectively. The same is true for pj and p̃j for the polynomial ψ(t).
Using the fact that the polynomial of a transpose matrix is the transpose of the
polynomial, it follows that the quantities needed in the Bi-CG algorithm can be
expressed as

(r̃j , rj) = (r̃0, φ
2
j (A) r0), (p̃j , Apj) = (p̃0, ψ

2
j (A) r0).

Therefore, if we somehow could generate the vectors φj(A)]2r0 and ψj(A)]2p0 di-
rectly, then no products with AT would be required. To achieve this we note that
from the Bi-CG algorithm we have the relations, φ0(A) = ψ0(A) = I,

φj+1(A) = φj(A) − αjAψj(A), (10.5.21)

ψj+1(A) = φj+1(A) + βjψj(A), (10.5.22)

Squaring these relations we obtain

φ2
j+1 = φ2

j − 2αjAφjψj + α2
jA

2ψ2
j ,
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ψ2
j+1 = φ2

j+1 + 2βjφj+1ψj + β2
jψ

2
j .

where we have omitted the argument A. For the first cross product term we have
using (10.5.22)

φjψj = φj(φj + βj−1ψj−1) = φ2
j + βj−1φjψj−1.

From this and (10.5.21) we get for the other cross product term

φj+1ψj = (φj − αjAψj)ψj = φjψj − αjAψ
2
j = φ2

j + βj−1φjψj−1 − αjAψ
2
j .

Summarizing, we now have the three reccurence relations, which are the basis of
the Bi-CGS algorithm:

φ2
j+1 = φ2

j − αjA (2φ2
j + 2βj−1φjψj−1 − αjAψ

2
j ),

φj+1ψj = φ2
j + βj−1φjψj−1 − αjAψ

2
j

ψ2
j+1 = φ2

j+1 + 2βjφj+1ψj + β2
jψ

2
j .

If we now define

rj = φ2
j (A)r0, qj = φj+1(A)ψj(A)r0, pj = ψ2

j (A)r0. (10.5.23)

we get

rj+1 = rj − αjA (2rj + 2βj−1qj−1 − αjApj), (10.5.24)

qj = rj + βj−1qj−1 − αjApj , (10.5.25)

pj+1 = rj+1 + 2βjqj + β2
j pj. (10.5.26)

These recurrences can be simplified by introducing the auxiliary vectors

uj = rj + βj−1qj−1, dj = uj + qj . (10.5.27)

The resulting algorithm is given below.

Algorithm 10.5.4 Bi-CGS Algorithm
Set r0 = b−Ax0 and choose r̃0 so that (r0, r̃0) 6= 0.

p0 = u0 = r0; ρ0 = (r̃0, r0);

for j = 0, 1, 2, . . .

vj = Apj ; αj = ρj/(r̃0, vj);

qj = uj − αjvj ;

dj = uj + qj ;

xj+1 = xj + αjdj ;

rj+1 = rj − αjAdj ;

ρj+1 = (r̃0, rj+1);

βj = ρj+1/ρj;

uj+1 = rj+1 + βjqj ;

pj+1 = uj+1 + βj(qj + βjpj);

end
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There are now two matrix-vector multiplications with A in each step. When
Bi-CG converges well we can expect Bi-CGS to converge about twice as fast.

Although the Bi-CGS algorithm often is competetive with other methods such
as GMRES, a weak point of Bi-CGS is that the residual norms may behave very
erratically, in particular when the iteration is started close to the solution. For
example, although the norm of of the vector ψj(A)r0 is small it may happen that
‖ψ2

j (A)r0‖ is much bigger than ‖r0‖. This may even lead to such severe cancellation
that the accuracy of the computed solution is spoilt.

This problem motivated the developemnt a stabilized version called Bi-CGSTAB
by van der Vorst [27]), which is more smoothly converging. Instead of computing
the residuals ψ2

j (A)r0, this algorithm uses

rj = χj(A)ψj(A)r0, χj(t) = (1 − ω1t)(1 − ω2t) · · · (1 − ωjt), (10.5.28)

where the constants ωj are determined so that ‖rj‖2 is minmized as a function
of ωj.

From the ortogonality property (ψi(A)r0, χj(A)r0) = 0, for j < i, it follows
that Bi-CGSTAB is a finite method, i.e. in exact arithmetic it will convergen in at
most n steps.

Algorithm 10.5.5 Bi-CGSTAB Algorithm
Let x0 be an initial guess, r0 = b−Ax0 and choose r̃0 so that (r̃0, r0) 6= 0.

p0 = u0 = r0; ρ0 = (r̃0, r0);

for j = 0, 1, 2, . . .

vj = Apj ; αj = ρj/(r̃0, vj);

sj = rj − αjvj ;

tj = Apj ;

ωj = (tj , sj)/(tj , tj);

qj = uj − αjvj ;

dj = uj + qj ;

xj+1 = xj + αjpj + ωjsj;

rj+1 = sj − ωjtj ;

ρj+1 = (r̃0, rj+1);

βj = (ρj+1/ρj)(αj/ωj);

pj+1 = rj+1 + βj(pj − ωjvj);

end

As for Bi-CGS this algorithm requires two matrix-vector products with A.
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Review Questions

1. What optimality property does the residual vectors rk = b − Axk in the
GMRES method satisfy. In what subspace does the vector rk − r0 lie?

2. In Lanczos bi-orthogonalization bases for two different Krylov subspaces are
computed. Which subspaces and what property has these bases?

3. (a) The bi-conjugate gradient (Bi-CG) method is based on the reduction of
A ∈ Cn×n to tridiagonal form by a general similarity transformation.

(b) What are the main advantages and drawbacks of the Bi-CG method com-
pared to GMRES.

c) How are the approximations xk defined in QMR?

Problems

1. Derive Algorithms CGLS and CGNE by applying the conjugate gradient al-
gorithm to the normal equations ATAx = AT b and AAT y = b, x = AT y,
respectively.

2. Consider using GMRES to solve the system Ax = b, where

A =

(
0 1
−1 0

)
, b =

(
1
1

)
,

using x0 = 0. Show that x1 = 0, and that therefore GMRES(1) will never
produce a solution.

10.6 Methods Related to Normal Equations.

10.6.1 Landweber’s method

When A ∈ Rm×n, rank (A) = n, the normal equations of the first kind

ATAx = AT b (10.6.1)

give the conditions for the solution of the linear least squares problems

min
x

‖Ax− b‖2, (10.6.2)

Similarly, When rank (A) = m, the normal equations of the second kind

AAT y = b, x = AT y, (10.6.3)

give the conditions for the solution of the minimum norm problem

min ‖x‖2, Ax = b. (10.6.4)
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In particular, if A is nonsingular, then both systems are symmetric positive def-
inite with solution x = A−1b. Hence a natural extension of iterative methods for
symmetric positive definite systems to general nonsingular, non-symmetric linear
systems Ax = b is to to apply them to the normal equations of first or second kind.

Because of the relation κ(ATA) = κ(AAT ) = κ2(A), the condition number is
squared compared to the original system Ax = b. From the estimate (10.4.19) we
note that this can lead to a substantial decrease in the rate of convergence.

The non-stationary Richardson iteration applied to the normal equationsATAx =
AT b can be written in the form

x(k+1) = x(k) + ωkA
T (b −Ax(k)), k = 1, 2, . . . ,

This method is often referred to as Landweber’s method. It can be shown that
this methods is convergent provided that for some ǫ > 0 it holds

0 < ǫ < ωk < (2 − ǫ)/σmax(A), ∀k.

An important things to notice in the implementation is that to avoid numerical
instability and fill-in, the matrix ATA should not be explicitly computed.

The eigenvalues of the iteration matrix G = I − ωATA equal

λk(G) = 1 − ασ2
k, k = 1, . . . , n,

where σk are the singular values of A. From this it can be shown that Richardson’s
method converges to the least squares solution x = A†b if

x(0) ∈ R(AT ), 0 < α < 2/σ2
1(A).

Cimmino ([4]) introduced a method that is related the Landweber’s method.
Consider the nonsingular system Ax = b, where the rows of A are aT

1 , . . . , a
T
m. The

solution x = A−1b is then equal to the intersection of the n hyperplanes

aT
i x = bi, i = 1 : n.

In Cimmino’s method one considers the reflections of an initial approximation
x(0), with respect to these hyperplanes

x
(0)
i = x(0) + 2

bi − aT
i x

(0)

‖ai‖2
ai, i = 1 : n. (10.6.5)

The next approximation is then taken to be

x(1) =
n∑

i=1

mix
(0)
i /µ, µ =

n∑

i=1

mi.

This can be interpreted as the center of gravity of n masses mi placed at the points

x
(0)
i . Cimmino noted that the initial point x(0) and its reflections with respect to

the n hyperplanes (10.6.5) all lie on a hypersphere the center of which is the solution
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of the linear system. Because the center of gravity of the system of masses mi must
fall inside this hypersphere it follows that

‖x(1) − x‖2 < ‖x(0) − x‖2,

that is, the error is reduced. Therefore Cimmino’s method converges.
In matrix form Cimmino’s method can be written as

x(k+1) = x(k) +
2

µ
ATD(b−Ax(k)), (10.6.6)

where D = diag (d1, . . . , dn), where di = mi/‖ai‖2
2. In particular, with mi = ‖ai‖2

we get Landwebers method with ω = 2/µ. It follows that Cimmino’s method also
converges for singular and inconsistent linear systems provided that rank (A) ≥ 2.

10.6.2 Jacobi’s and Gauss–Seidel’s Methods

Assume that all columns in A are nonzero, and let

A = (a1, . . . , an) ∈ Rm×n, dj = aT
j aj = ‖aj‖2

2 > 0. (10.6.7)

In Jacobi’s method a sequence of approximations

x(k) =
(
x

(k)
1 , . . . , x

(k)
n

)T
, k = 1, 2, . . . ,

is computed from

x
(k+1)
j = x

(k)
j + aT

j (b−Ax(k))/dj , j = 1, 2, . . . , n. (10.6.8)

Jacobi’s method can be written (10.6.8) in matrix form as

x(k+1) = x(k) +D−1
A AT (b−Ax(k)), (10.6.9)

where DA = diag (d1, . . . , dn) = diag (ATA). Jacobi’s method is symmetrizable
since

D
1/2
A (I −D−1

A ATA)D
−1/2
A = I −D

−1/2
A ATAD

−1/2
A .

Jacobi’s method can also be used to solve the normal equations of second type
(10.6.3). This method can be written in the form

x(k+1) = x(k) +ATD−1
A (b−Ax(k)), DA = diag (AAT ). (10.6.10)

The Gauss–Seidel method is a special case of the following class of residual
reducing methods. Let pj 6∈ N (A), j = 1, 2, . . ., be a sequence of nonzero n-vectors
and compute a sequence of approximations of the form

x(j+1) = x(j) + αjpj , αj = pT
j A

T (b −Ax(j))/‖Apj‖2
2. (10.6.11)

It is easily verified that r(j+1) ⊥ Apj = 0, where rj = b−Ax(j), and hence

‖r(j+1)‖2
2 = ‖r(j)‖2

2 − |αj |2‖Apj‖2
2 ≤ ‖r(j)‖2

2,
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which shows that this class of methods (10.6.11) is residual reducing. For a square
matrix A method (10.6.12) was developed by de la Garza [6, ]. This class of
residual reducing projection methods was studied by Householder and Bauer [14,
].

If A has linearly independent columns we obtain the Gauss–Seidel method for
the normal equations by taking pj in (10.6.11) equal to the unit vectors ej in cyclic
order. Then if A = (a1, a2, . . . , an), we have Apj = Aej = aj . An iteration step in
the Gauss–Seidel method consists of n minor steps where we put z(1) = x(k), and
x(k+1) = z(n+1) is computed by

z(j+1) = z(j) + eja
T
j r

(j)/dj, r(j) = b−Az(j), (10.6.12)

j = 1, 2, . . . , n. In the jth minor step only the jth component of z(j) is changed, and
hence the residual r(j) can be cheaply updated. With r(1) = b − Ax(k) we obtain
the recursions

z(j+1) = z(j) + δjej, r(j+1) = r(j) − δjaj , (10.6.13)

δj = aT
j r

(j)/dj , j = 1, . . . , n.

Note that in the jth minor step only the jth column of A is accessed. and that it
can be implemented without forming the matrix ATA explicitly. In contrast to the
Jacobi method the Gauss–Seidel method is not symmetrizable and the ordering of
the columns of A will influence the convergence.

The Jacobi method has the advantage over Gauss–Seidel’s method that it is
more easily adapted to parallel computation, since (10.6.10) just requires a matrix-
vector multiplication. Further, it does not require A to be stored (or generated)
columnwise, since products of the form Ax and AT r can conveniently be computed
also if A can only be accessed by rows. In this case, if aT

1 , . . . , a
T
m are the rows of

A, then we have

(Ax)i = aT
i x, i = 1, . . . , n, AT r =

m∑

i=1

airi.

That is, for Ax we use an inner product formulation, and for AT r, an outer product
formulation.

The successive overrelaxation (SOR) method for the normal equations
ATAx = AT b is obtained by introducing an relaxation parameter ω in the Gauss–
Seidel method (10.6.14),

z(j+1) = z(j) + δjej, r(j+1) = r(j) − δjaj , (10.6.14)

δj = ωaT
j r

(j)/dj, j = 1, . . . , n.

The SOR method always converges when ATA is positive definite and ω satisfies
0 < ω < 2. The SOR shares with the Gauss–Seidel the advantage of simplicity and
small storage requirements.

The Gauss–Seidel method for solving the normal equations of second kind can
also be implemented without forming AAT . We define a class of error reducing
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methods as follows: Let pi 6∈ N (A), i = 1, 2, . . ., be a sequence of nonzero m-vectors
and compute approximations of the form

x(j+1) = x(j) + αjA
T pj , αj = pT

j (b −Ax(j))/‖AT pj‖2
2. (10.6.15)

If the system Ax = b is consistent there is a unique solution x of minimum norm.
If we denote the error by d(j) = x−x(j), then by construction d(j+1) ⊥ AT pi. Thus

‖d(j+1)‖2
2 = ‖d(j)‖2

2 − |αj |2‖AT pj‖2
2 ≤ ‖d(j)‖2

2,

i.e. this class of methods is error reducing.
We obtain the Gauss–Seidel method by taking pj to be the unit vectors ej in

cyclic order. Then AT pj = aj., where aT
j. is the jth row of AT and the iterative

method (10.6.15) takes the form

x(j+1) = x(j) + aj.(bj − aT
j.x

(j))/dj , j = 1, . . . , n. (10.6.16)

the approximation y(j) is updated by

∆y(j) = ej(bj − aT
j.A

T y(i))/dj ,

and with x(j) = AT y(j) and x(j+1) = x(j) + AT ∆y(j) we recover (10.6.16). This
shows that if we take x(0) = Ay(0), then for an arbitrary y(0) (10.6.16) is equivalent
to the Gauss–Seidel method for (10.6.3). For the case of a square matrix A this
method was originally devised by Kaczmarz [15, ].

The SOR method applied to the normal equations of the second kind can be
obtained by introducing an acceleration parameter ω, i.e.

x(j+1) = x(j) + ωaj.(cj − aT
j.x

(j))/dj , j = 1, . . . , n. (10.6.17)

10.6.3 The Conjugate Gradient Method

The implementation of CG applied to the normal equations of the first kind becomes
as follows:

Algorithm 10.6.1 CGLS

r0 = b−Ax0; p0 = s0 = AT r0;

for k = 0, 1, . . . while ‖rk‖2 > ǫ do

qk = Apk;

αk = ‖sk‖2
2/‖qk‖2

2;

xk+1 = xk + αkpk;

rk+1 = rk − αkqk;

sk+1 = AT rk+1;
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βk = ‖sk+1‖2
2/‖sk‖2

2;

pk+1 = sk+1 + βkpk;

end

Note that it is important for the stability that the residuals rk = b − Axk

and not the residuals sk = AT (b − Axk) are recurred. The method obtained by
applying CG to the normal equations of the second kind is also known as Craig’s
Method. This method can only be used for consistent problems, i.e., when b ∈
R(A). It can also be used to compute the (unique) minimum norm solution of an
underdetermined system, min ‖x‖2, subject to Ax = b, where A ∈ Rm×n, m < n.

Craig’s method (CGNE) can be implemented as follows:

Algorithm 10.6.2 CGNE

r0 = b−Ax0; p0 = AT r0;

for k = 0, 1, . . . while ‖rk‖2 > ǫ do

αk = ‖rk‖2
2/‖pk‖2

2;

xk+1 = xk + αkpk;

rk+1 = rk − αkApk;

βk = ‖rk+1‖2
2/‖rk‖2

2;

pk+1 = AT rk+1 + βkpk;

end

Both CGLS and CGNE will generate iterates in the shifted Krylov subspace,

xk ∈ x0 + Kk(AT r0, A
TA).

From the minimization property we have for the iterates in CGLS

‖x− xk‖AT A = ‖r − rk‖2 < 2
(κ− 1

κ+ 1

)k

‖r0‖2,

where κ = κ(A). Similarly for CGNE we have

‖y − yk‖AAT = ‖x− xk‖2 < 2
(κ− 1

κ+ 1

)k

‖x− x0‖2.

For consistent problems the method CGNE should in general be preferred.
The main drawback with the two above methods is that they often converge

very slowly, which is related to the fact that κ(ATA) = κ2(A). Note, however,
that in some special cases both CGLS and CGNE may converge much faster than
alternative methods. For example, when A is orthogonal then ATA = AAT = I
and both methods converge in one step!
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10.6.4 Least Squares and LSQR.

As shown by Paige and Saunders the Golub–Kahan bidiagonalization process de-
veloped in Section 9.9.4 can be used for developing methods related to CGLS and
CGNE for solving the linear least squares problem (10.6.1) and the minimum norm
problem (10.6.1), respectively.

To compute a sequence of approximate solutions to the least squares problem
we start the recursion (9.9.19)–(9.19.20) by

β1u1 = b −Ax0, α1v1 = ATu1, (10.6.18)

and for j = 1, 2, . . . compute

βj+1uj+1 = Avj − αjuj , (10.6.19)

αj+1vj+1 = ATuj+1 − βj+1vj ,

where βj ≥ 0 and αj ≥ 0, j ≥ 1, are determined so that ‖uj‖2 = ‖vj‖2 = 1.
After k steps we have computed orthogonal matrices

Vk = (v1, . . . , vk), Uk+1 = (u1, . . . , uk+1)

and a rectangular lower bidiagonal matrix

Bk =




α1

β2 α2

β3
. . .
. . . αk

βk+1




∈ R(k+1)×k. (10.6.20)

The recurrence relations (10.6.18)–(10.6.19) can be written in matrix form as

Uk+1β1e1 = r0, r0 = b−Ax0, (10.6.21)

where e1 denotes the first unit vector, and

AVk = Uk+1Bk, ATUk+1 = VkB
T
k + αk+1vk+1e

T
k+1. (10.6.22)

We now seek an approximate solution xk ∈ Kk = Kk(AT r0, A
TA). From the

recursions (10.6.18)–(10.6.19) it follows that Kk = span(Vk) and so we write

xk = x0 + Vkyk. (10.6.23)

Multiplying the first equation in (10.6.22) by yk we obtain Axk = AVkyk = Uk+1Bkyk,
and then from (10.6.21)

b−Axk = Uk+1tk+1, tk+1 = β1e1 −Bkyk. (10.6.24)

Using the orthogonality of Uk+1 and Vk, which holds in exact arithmetic, it follows
that ‖b−Axk‖2 is minimized over all xk ∈ span(Vk) by taking yk to be the solution
to the least squares problem

min
yk

‖Bkyk − β1e1‖2. (10.6.25)
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This forms the basis for the algorithm LSQR. Note the special form of the right-
hand side, which holds because the starting vector was taken as b. Now xk = Vkyk

solves minxk∈Kk
‖Ax−b‖2, where Kk = Kk(AT b, ATA). Thus mathematically LSQR

generates the same sequence of approximations as Algorithm 10.6.3 CGLS.
To solve (10.6.25) stably we need the QR factorization QT

kBk = Rk. This can
be computed by premultiplying Bk by a sequence Givens transformations, which
are also applied to the right hand side e1,

Gk,k+1Gk−1,k · · ·G12(Bk e1) =

(
Rk dk

0 ρk

)
.

Here the rotation Gj,j+1 is used to zero the element βj+1. It is easily verified that
Rk is an upper bidiagonal matrix. The least squares solution yk and the norm of
the corresponding residual are then obtained from

Rkyk = βe1, ‖b−Axk‖2 = |ρk|.

Note that the whole vector yk differs from yk−1. An updating formula for xk

can be derived using an idea due to Paige and Saunders. With Wk = VkR
−1
k we

can write

xk = x0 + Vkyk = x0 + β1VkR
−1
k dk = x0 + β1Wkdk

= x0 + β1(Wk−1, wk)

(
dk−1

τk

)
= xk−1 + β1τkwk. (10.6.26)

Consider now the minimum norm problem for a consistent system Ax = b.
Let Lk be the lower bidiagonal matrix formed by the first k rows of Bk

Lk =




α1

β2 α2

. . .
. . .

βk αk


 ∈ Rk×k. (10.6.27)

The relations (10.6.22) can now be rewritten as

AVk = UkLk + βk+1uk+1e
T
k , ATUk = VkL

T
k . (10.6.28)

The iterates xk in Craig’s method can be computed as

Lkyk = β1e1, xk = Vkzk. (10.6.29)

Using (10.6.28) and (10.6.18) it follows that the residual vector satisfies

rk = b−AVkzk = −βk+1uk+1(e
T
k zk) = −βk+1ηkuk+1,

and hence UT
k rk = 0. It can be shown that if rk−1 6= 0 then αk 6= 0. Hence the

vectors yk and xk can recursively be formed using

ηk = −βk

αk
ηk−1, xk = xk−1 + ηkvk.
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10.7 Preconditioned Iterative Methods

Preconditioned iterative methods can be viewed as a compromise between a direct
and iterative solution method. General purpose techniques for constructing precon-
ditioners have made iterative methods successful in many industrial applications.

The term “preconditioning” dates back to Turing in 1948, and is in general
taken to mean the transformation of a problem to a form that can more efficiently
be solved. In order to be effective iterative methods must usually be combined with
a (nonsingular) preconditioning matrix M , which in some sense is an approximation
to A. The original linear system Ax = b is then transformed by considering the
left-preconditioned system

M−1Ax = M−1b. (10.7.1)

or right-preconditioned system

AM−1u = b, u = Mx. (10.7.2)

The idea is to choose M so that the rate of convergence of the iterative method is
improved. Note that the product M−1A (or AM−1) should never be formed. The
preconditioned iteration is instead implemented by forming matrix vector products
with A and M−1 separately. Since forming u = M−1v for an arbitrary vector v is
equivalent to solving a linear system Mu = v, the inverse M−1 is not needed either.

Often the rate of convergence depends on the spectrum of the transformed
matrix. Since the eigenvalues of M−1A and AM−1 are the same, we see that the
main difference between these two approaches is that the actual residual norm is
available in the right-preconditioned case.

If A is symmetric, positive definite, the preconditioned system should also
have this property. In this case, it is natural to consider a split preconditioner.
Let M = LLT where L is the Cholesky factor of M . Then we consider the precon-
ditioned linear system

Ã = L−1AL−T , x̃ = LTx, b̃ = L−1b, (10.7.3)

and the spectrum of Ã is real. Note that the spectrum of A = C−1AC−T is the
same as for L−TL−1A = M−1A.

10.7.1 The Preconditioned CG Method

The conjugate gradient algorithm 10.4.1 can be applied to linear systems Ax = b,
where A is symmetric positive definite. In this case it is natural to use a split
preconditioner and consider the system (10.7.3).

In implementing the preconditioned conjugate gradient method we need to
form matrix-vector products of the form t = Ãp = L−1(A(L−T p)). These can be
calculated by solving two linear systems and performing one matrix multiplication
with A as

LT q = p, s = Aq, Lt = s.
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Thus, the extra work per step in using the preconditioner essentially is to solve two
linear systems with matrix LT and L respectively.

The preconditioned algorithm will have recursions for the transformed vari-
ables and residuals vectors x̃ = LTx and r̃ = L−1(b −Ax). It can be simplified by
reformulating it in terms of the original variables x and residual r = b − Ax. It is
left as an exercise to show that if we let pk = L−T p̃k, zk = L−T r̃k, and

M = LLT , (10.7.4)

we can obtain the following implementation of the preconditioned conjugate
gradient method:

Algorithm 10.7.1
Preconditioned Conjugate Gradient Method

r0 = b−Ax0; p0 = z0 = M−1r0;

for k = 0, 1, 2, . . . , while ‖rk‖2 > ǫ do

w = Apk;

βk = (zk, rk)/(pk, Apk);

xk+1 = xk + βkpk;

rk+1 = rk − βkApk;

zk+1 = M−1rk+1;

βk = (zk+1, rk+1)/(zk, rk);

pk+1 = zk+1 + βkpk;

end

A surprising and important feature of this version is that it depends only on
the symmetric positive definite matrix M = LLT .

The rate of convergence in the Ã-norm depends on κ(Ã), see (10.4.19). Note,
however, that

‖x̃− x̃k‖2
Ã

= (x̃− x̃k)TL−1AL−T (x̃− x̃k) = ‖x− xk‖2
A,

so the rate of convergence in A-norm of the error in x also depends on κ(Ã). The
preconditioned conjugate gradient method will have rapid convergence if one or
both of the following conditions are satisfied:

i. M−1A to have small condition number, or

ii. M−1A to have only few distinct eigenvalues.
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For symmetric indefinite systems SYMMLQ can be combined with a positive
definite preconditioner M . To solve the symmetric indefinite system Ax = b the
preconditioner is regarded to have the form M = LLT and SYMMLQ implicitly
applied to the system

L−1AL−Tw = L−1b.

The algorithm accumulates approximations to the solution x = L−Tw, without ap-
proximating w. A MATLAB implementation of this algorithm, which only requires
solves with M , is given by Gill et al. [9].

10.7.2 Preconditioned CGLS and CGNE.

To precondition CGLS Algorithm (10.6.3) it is natural to use a right preconditioner
S ∈ Rn×n, i.e., perform the transformation of variables

min
y

‖(AS−1)y − b‖2, Sx = y.

(Note that for a nonconsistent system Ax = b a left preconditioner would change
the problem.) If we apply CGLS to this problem and formulate the algorithm in
terms of the original variables x, we obtain the following algorithm:

Algorithm 10.7.2 Preconditioned CGLS.

r0 = b−Ax0; p0 = s0 = S−T (AT r0);

for k = 0, 1, . . . while ‖rk‖2 > ǫ do

tk = S−1pk;

qk = Atk;

αk = ‖sk‖2
2/‖qk‖2

2;

xk+1 = xk + αktk;

rk+1 = rk − αkqk;

sk+1 = S−T (AT rk+1);

βk = ‖sk+1‖2
2/‖sk‖2

2;

pk+1 = sk+1 + βkpk;

end

For solving a consistent underdetermined systems we can derive a precondi-
tioned version of CGNE. Here it is natural to use a left preconditioner S, and apply
CGNE to the problem

min ‖x‖2, S−1Ax = S−1b,
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i.e., the residual vectors are transformed. If the algorithm is formulated in terms of
the original residuals, the following algorithm results:

Algorithm 10.7.3 Preconditioned CGNE

r0 = b−Ax0; z0 = S−1r0; p0 = AT (S−T z0);

for k = 0, 1, . . . while ‖rk‖2 > ǫ do

αk = ‖zk‖2
2/‖pk‖2

2;

xk+1 = xk + αkpk;

rk+1 = rk − αkApk;

zk+1 = S−1rk+1;

βk = ‖zk+1‖2
2/‖zk‖2

2;

pk+1 = AT (S−T zk+1) + βkpk;

end

Algorithm PCCGLS still minimizes the error functional ‖r̂ − r(k)‖2, where
r = b −Ax, but over a different Krylov subspace

x(k) = x(k) + Kk, Kk = (S−1S−TATA,S−1S−TAT r0).

Algorithm PCCGNE minimizes the error functional ‖x̂ − x(k)‖2, over the Krylov
subspace

x(k) = x(k) + Kk, Kk = (ATS−TS−1A,ATS−TS−1r0).

The rate of convergence for PCGTLS depends on κ(AS−1), and for PCCGNE on
κ(S−1A) = κ(ATS−T ).

10.7.3 Preconditioned GMRES

For nonsymmetric linear systems there are two options for applying the precon-
ditioner. We can use the left preconditioned system (10.7.1) or the right precon-
ditioned system (10.7.2). (If A is almost symmetric positive definite, then a split
preconditioner might also be considered.) The changes to the GMRES algorithm
are small.

In the case of using a left preconditioner M only the following changes in the
Arnoldi algorithm are needed. We start the recursion with

r0 = M−1(b−Ax0), β1 = ‖r0‖2; v1 = r0/β1,

and define
zj = M−1Avj , j = 1, 2, . . . , k.
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All computed residual vectors will be preconditioned residuals M−1(b−Axm). This
is a disadvantage since most stopping criteria depend are based on the actual resid-
uals rm = b − Axm. In this left preconditioned version the transformed residual
norm ‖M−1(b−Ax)‖2 will be minimized among all vectors of the form

x0 + Km(M−1r0,M
−1A). (10.7.5)

In the right preconditioned version of GMRES the actual residual vectors are
used, but the variables are transformed according to u = Mx (x = M−1u). The
right preconditioned algorithm can easily be modified to give the untransformed
solution. We have

zj = AM−1vj , j = 1, 2, . . . , k.

The kth approximation is xk = x0 +M−1Vkyk, where yk solves

min
yk

‖β1e1 − H̄kyk‖2.

As before this can be written as

xk = xk−1 + β1τkM
−1
k wk, wk = Rkyk,

see (10.6.26).
In the right preconditioned version the residual norm ‖b − AM−1u‖2 will be

minimized among all vectors of the form u0 + Km(r0, AM
−1). However, this is

equivalent to minimizing ‖b−AM−1u‖2 among all vectors of the form

x0 +M−1Km(r0, AM
−1). (10.7.6)

Somewhat surprisingly the two affine subspaces (10.7.5) and (10.7.6) are the same!
The jth vector in the two Krylov subspaces are wj = (M−1A)jM−1r0 and w̃j =
M−1(AM−1)jr0. By a simple induction proof it can be shown thatM−1(AM−1)j =
(M−1A)jM−1 and so w̃j = wj , j ≥ 0. Hence the left and right preconditioned
versions generate approximations in the same Krylov subspaces, and they differ
only with respect to which error norm is minimized.

For the case when A is diagonalizable, A = XΛX−1, where Λ = diag(λi) we
proved the error estimate

||rk||2
||r0||2

≤ κ2(X)min
qk

max
i=1,2,...,n

|qk(λi)|, (10.7.7)

where qk is a polynomial of degree ≤ k and qk(0) = 1. Because of the factor κ2(X)
in (10.7.7) the rate of convergence can no longer be deduced from the spectrum
{λi} of the matrix A alone. Since the spectrum of M−1A and AM−1 are the same
we can expect that the convergence behavior will be similar when if A is close to
normal.
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10.8 Preconditioners

A preconditioner should typically satisfy the following conditions:

(i) M−1A = I +R, where ‖R‖ is small.

(ii) Linear systems of the form Mu = v should be easy to solve.

(iii) nz(M) ≈ nz(A).

Condition (i) implies fast convergence, (ii) that the arithmetic cost of precondi-
tioning is reasonable, and (iii) that the storage overhead is not too large. Obviously
these conditions are contradictory and a compromise must be sought. For example,
taking M = A is optimal in the sense of (i), but obviously this choice is ruled out
by (ii).

The choice of preconditioner is strongly problem dependent and possibly the
most crucial component in the success of an iterative method! A preconditioner
which is expensive to compute may become viable if it is to be used many times,
as may be the case, e.g., when dealing with time-dependent or nonlinear problems.
It is also dependent on the architecture of the computing system. Preconditioners
that are efficient in a scalar computing environment may show poor performance
on vector and parallel machines.

10.8.1 Preconditioners from Matrix Splittings

The stationary iterative method

x(k+1) = x(k) +M−1(b−Ax(k)), k = 0, 1, . . . , (10.8.1)

corresponds to a matrix splitting A = M −N , and the iteration matrix

B = M−1N = I −M−1A.

The iteration (10.8.1) can be considered as a fixed point iteration applied to the
preconditioned system M−1Ax = M−1b. Hence, the basic iterative methods con-
sidered in Sections 10.1.3 give simple examples of preconditioners.

The Jacobi and Gauss–Seidel methods are both special cases of one-step sta-
tionary iterative methods. Using the standard splitting A = DA −LA −UA, where
DA is diagonal, LA and UA are strictly lower and upper triangular, these methods
correspond to the matrix splittings

MJ = DA, and MGS = DA − LA.

If A is symmetric positive definite then MJ = DA > 0 and symmetric. However,
MGS is lower triangular and unsymmetric.

The simplest choice related to this splitting is to take M = DA. This
corresponds to a diagonal scaling of the rows of A, such that the scaled matrix
M−1A = D−1

A A has a unit diagonal. For s.p.d. matrices symmetry can be pre-

served by using a split preconditioner with L = LT = D
1/2
A . In this case it can be

shown that this is close to the optimal diagonal preconditioning.
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Lemma 10.8.1. Van der Sluis [1969]
Let A = DA − LA − LT

A be a symmetric positive definite matrix. Then if A
has at most q nonzero elements in any row it holds that

κ(D
−1/2
A AD

−1/2
A ) = min

D>0
κ(DAD).

Although diagonal scaling may give only a modest improvement in the rate of
convergence it is trivial to implement and therefore recommended even if no other
preconditioning is carried out.

In Section 10.2.2 it was shown that for a symmetric matrix A the SSOR iter-
ation method corresponds to a splitting with the matrix

MSSOR =
1

ω(2 − ω)

(
DA − ωLA

)
D−1

A

(
DA − ωUA

)
.

Since MSSOR is given in the form of an LDLT factorization it is easy to solve linear
systems involving this preconditioner. It also has the same sparsity as the original
matrix A. For 0 < ω < 2, if A is s.p.d. so is MSSOR.

The performance of the SSOR splitting turns out to be fairly insensitive to
the choice of ω. For systems arising from second order boundary values problems,
e.g., the model problem studied previously, the original condition number κ(A) =
O(h−2) can be reduced to κ(M−1A) = O(h−1). Taking ω = 1 is often close to
optimal. This corresponds to the symmetric Gauss–Seidel (SGS) preconditioner

MSGS =
(
DA − LA

)
D−1

A

(
DA − UA

)
.

All the above preconditioners satisfy conditions (ii) and (iii). The application
of the preconditioners involves only triangular solves and multiplication with a
diagonal matrix. They are all defined in terms of elements of the original matrix
A, and hence do not require extra storage. However, they may not be very effective
with respect to the condition (i).

10.8.2 Incomplete LU Factorizations

The SGS preconditioner has the form MSGS = LU where L =
(
I − LT

AD
−1
A

)
is

lower triangular and U =
(
DA −LT

A

)
upper triangular. To find out how well MSGS

approximates A we form the defect matrix ixdefect matrix

A− LU = DA − LA − UA −
(
I − LAD

−1
A

)(
DA − UA

)
= −LAD

−1
A UA.

An interesting question is whether we can find matrices L and U with the same
nonzero structure as above, but with a smaller defect matrix R = LU −A.

We now develop an important class of preconditioners obtained from so called
incomplete LU-factorizations of A. The idea is to compute a lower triangular
matrix L and an upper triangular matrix U with a prescribed sparsity structure
such that

A = LU −R,
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with R small. Such incomplete LU-factorizations can be realized by performing
a modified Gaussian elimination on A, in which elements are allowed only in in
specified places in the L and U matrices. We assume that these places (i, j) are
given by the index set

P ⊂ Pn ≡ {(i, j) | 1 ≤ i, j ≤ n},

where the diagonal positions always are included in P . For example, we could take
P = PA, the set of nonzero elements in A.

Algorithm 10.8.1 Incomplete LU Factorization

for k = 1, . . . , n− 1

for i = k + 1, . . . , n

if (i, k) ∈ P lik = aik/akk;

for j = k + 1, . . . , n

if (k, j) ∈ P aij = aij − likakj ;

end

end

end

The elimination consists of n− 1 steps. In the kth step we first subtract from
the current matrix elements with indices (i, k) and (k, i) /∈ P and place in a defect
matrix Rk. We then carry out the kthe step of Gaussian elimination on the so
modified matrix. This process can be expressed as follows. Let A0 = A and

Ãk = Ak−1 +Rk, Ak = LkÃk, k = 1, . . . , n− 1.

Applying this relation recursively we obtain

An−1 = Ln−1Ãn−1 = Ln−1An−2 + Ln−1Rn−1

= Ln−1Ln−2An−3 + Ln−1Ln−2Rn−2 + Ln−1Rn−1

= Ln−1Ln−2 · · ·L1A+ Ln−1Ln−2 · · ·L1R1

+ · · · + Ln−1Ln−2Rn−2 + Ln−1Rn−1.

We further notice that since the first m − 1 rows of Rm are zero it follows that
LkRm = Rm, if k < m. Then by combining the above equations we find LU = A+R,
where

U = An−1, L = (Ln−1Ln−2 · · ·L1)
−1, R = R1 +R2 + · · ·Rn−1.

Algorithm 10.8.2 can be improved by noting that any elements in the resulting
(n − k) × (n − k) lower part of the reduced matrix not in P need not be carried
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along and can also be included in the defect matrix Rk. This is achieved simply by
changing line five in the algorithm to

if (k, j) ∈ P and (i, j) ∈ P aij = aij − likakj ;

In practice the matrix A is sparse and the algorithm should be specialized to take
this into account. In particular, a version where A is processed a row at a time is
more convenient for general sparse matrices. Such an algorithm can be derived by
interchanging the k and i loops in Algorithm 10.8.2.

Example 10.8.1. For the model problem using a five-point approximation the
non-zero structure of the resulting matrix is given by

PA = {(i, j) | |i− j| = −n,−1, 0, 1, n}.

Let us write A = LU +R, where

L = L−n + L−1 + L0, U = U0 + U1 + Un,

where L−k (and Uk) denote matrices with nonzero elements only in the k-th lower
(upper) diagonal. By the rule for multiplication by diagonals (see Problem 6.1.6),

AkBl = Ck+l, if k + l ≤ n− 1,

we can form the product

LU = (L−n + L−1 + L0)(U0 + U1 + Un) = (L−nUn + L−1U1 + L0U0)

+ L−nU0 + L−1U0 + L0Un + L0U1 +R,

where R = L−nU1 +L−1Un. Hence the defect matrix R has nonzero elements only
in two extra diagonals.

A family of preconditioners can be derived by different choices of the set P .
The simplest choice is to take P equal to the sparsity pattern of A. This is called
a level 0 incomplete factorization. A level 1 incomplete factorization is obtained by
using the union of P and the pattern of the defect matrixR = LLT − A. Higher
level incomplete factorizations are defined in a similar way, and so on.

An incomplete LU factorization may not exist even if A is nonsingular and
has an LU factorization. However, for some more restricted classes of matrices the
existence of incomplete factorizations can be guaranteed. Many matrices arising
from the discretization of partial differential equations have the following property.

Definition 10.8.2. A matrix A = (aij) is an M -matrix if aij ≤ 0 for i 6= j, A is
nonsingular and A−1 ≥ 0.

The following result was proved by Meijerink and van der Vorst [20, ].
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Theorem 10.8.3.
If A is an M -matrix, there exists for every set P such that (i, j) ∈ P for

i = j, uniquely defined lower and upper triangular matrices L and U with lij = 0
or uij = 0 if (i, j) 6∈ P, such that the splitting A = LU −R is regular.

In case A is s.p.d., we define similarly an incomplete Cholesky factoriza-
tion. Here the nonzero set P is assumed to be symmetric, i.e., if (i, j) ∈ P then
also (j, i) ∈ P . Positive definiteness of A alone is not sufficient to guarantee the
existence of an incomplete Cholesky factorization. This is because zero elements
may occur on the diagonal during the factorization.

For the case when A is a symmetric M -matrix, a variant of the above theorem
guarantees the existence for each symmetric set P such that (i, j) ∈ P for i = j,
a uniquely defined lower triangular matrix L, with lij = 0 if (i, j) 6∈ P such that
the splitting A = LLT − R is regular. In particular the matrix arising from the
model problem is a symmetric M -matrix. A symmetric M -matrix is also called a
Stieltjes matrix.

An implementation of the incomplete Cholesky factorization in the general
case is given below.

Algorithm 10.8.2 Incomplete Cholesky Factorization

for j = 1, 2, . . . , n

ljj =
(
ajj −

j−1∑

k=1

l2jk

)1/2

;

for i = j + 1, . . . , n

if (i, j) 6∈ P then lij = 0 else

lij =
(
aij −

j−1∑

k=1

likljk

)

end

end

10.8.3 Block Incomplete Factorizations

Many matrices arising from the discretization of multidimensional problems have a
block structure. For such matrices one can generalize the above idea and develop
block incomplete factorizations. In particular, we consider here a symmetric
positive definite block tridiagonal matrices of the form



76 Chapter 10. Iterative Methods for Linear Systems

A =




D1 AT
2

A2 D2 AT
3

A3
. . .

. . .
. . .

. . . AT
N

AN DN




= DA − LA − LT
A, (10.8.2)

with square diagonal blocks Di. For the model problem with the natural ordering
of mesh points we obtain this form with Ai = −I, Di = tridiag(−1 4 − 1). If
systems with Di can be solved efficiently a simple choice of preconditioner is the
block diagonal preconditioner

M = diag (D1, D2, . . . , DN).

The case N = 2 is of special interest. For the system

(
D1 AT

2

A2 D2

) (
x1

x2

)
=

(
b1
b2

)
, (10.8.3)

the block diagonal preconditioner gives a preconditioned matrix of the form

M−1A =

(
I D−1

1 AT
2

D−1
2 A2 I

)
.

Note that this matrix is of the form (10.2.3) and therefore has property A. Sup-
pose the conjugate gradient method is used with this preconditioner and a starting

approximation x
(0)
1 . If we set

x
(0)
2 = D−1

2 (b2 −A2x
(0)
1 ),

then the corresponding residual r
(0)
2 = b2−D2x

(0)
1 A2x

(0)
2 = 0. It can be shown that

in the following steps of the conjugate gradient method we will alternately have

r
(2k)
2 = 0, r

(2k+1)
1 = 0, k = 0, 1, 2, . . . .

This can be used to save about half the work.
If we eliminate x1 in the system (10.8.3) then we obtain

Sx2 = b2 −A2D
−1
1 b1, S = D2 −A2D

−1
1 AT

2 , (10.8.4)

where S is the Schur complement of D1 in A. If A is s.p.d., then S is also s.p.d.,
and hence the conjugate gradient can be used to solve the system (10.8.4). This
process is called Schur complement preconditioning. Here it is not necessary
to form the Schur complement S, since we only need the effect of S on vectors. We
can save some computations by writing the residual of the system (10.8.4) as

r2 = (b2 −D2x2) −A2D
−1
1 (b1 −AT

2 x2).
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Note here that x1 = D−1
1 (b1 − AT

2 x2) is available as an intermediate result. The
solution of the system D1x1 = b1 −AT

2 x2 is cheap when, e.g., D1 is tridiagonal. In
other cases this system may be solved in each step by an iterative method in an
inner iteration.

We now describe a block incomplete Cholesky factorization due to Con-
cus, Golub and Meurant [5], which has proved to be very useful. We assume in
the following that in (10.8.2) Di is tridiagonal and Ai is diagonal, as in the model
problem. First recall from Section 6.4.6 that the exact block Cholesky factorization
of a symmetric positive definite block-tridiagonal matrix can be written as

A = (Σ + LA)Σ−1(Σ + LT
A),

where LA is the lower block triangular part of A, and Σ = diag (Σ1, . . . ,Σn), is
obtained from the recursion

Σ1 = D1, Σi = Di −AiΣ
−1
i−1A

T
i , i = 2, . . . , N.

For the model problem, although D1 is tridiagonal, Σ−1 and hence Σi, i ≥ 2, are
dense. Because of this the exact block Cholesky factorization is not useful.

Instead we consider computing an incomplete block factorization from

∆1 = D1, ∆i = Di −AiΛ
−1
i−1A

T
i , i = 2, . . . , N. (10.8.5)

Here, for each i, Λi−1 is a sparse approximation to ∆i−1. The incomplete block
Cholesky factorization is then

M = (∆ + LA)∆−1(∆ + LT
A), ∆ = diag (∆1, . . . ,∆n).

The corresponding defect matrix is R = M − A = diag (R1, . . . , Rn), where R1 =
∆1 −D1 = 0,

Ri = ∆i −Di −Ai∆
−1
i−1A

T
i , i = 2, . . . , n.

We have assumed that the diagonal blocks Di are diagonally dominant sym-
metric tridiagonal matrices. We now discuss the construction of an approximate
inverse of such a matrix

T =




α1 β1

β1 α2 β2

β2
. . .

. . .
. . . αn−1 βn−1

βn−1 αn



,

where αi > 0, i = 1, . . . , n and βi < 0, i = 1, . . . ,m− 1. A sparse approximation of
D−1

i can be obtained as follows. First compute the Cholesky factorization T = LLT ,
where

L =




γ1

δ1 γ2

δ2
. . .
. . . γn−1

δn−1 γn



,
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It can be shown that the elements of the inverse T−1 = L−TL decrease strictly away
from the diagonal. This suggests that the matrix L−1, which is lower triangular and
dense, is approximated by a banded lower triangular matrix L−1(p), taking only
the first p + 1 lower diagonals of the exact L−1. Note that elements of the matrix
L−1

L−1 =




1/γ1

ζ1 1/γ2

η1 ζ2
. . .

...
. . .

. . . 1/γn−1

· · · ηn−2 ζn−1 1/γn



,

can be computed diagonal by diagonal. For example, we have

ζi =
δi

γiγi+1
, i = 2, . . . , n− 1.

For p = 0 we get a diagonal approximate inverse. For p = 1 the approximate
Cholesky factor L−1(1) is lower bidiagonal, and the approximate inverseL−T (1)L−1(1)
a tridiagonal matrix. Since we have assumed that Ai are diagonal matrices, the ap-
proximations ∆i generated by (10.8.5) will in this case be tridiagonal.

10.8.4 Fast Direct Methods

For the solution of discretizations of some elliptic problems on a rectangular domain
fast direct methods can be developed. For this approach to be valid we needed to
make strong assumptions about the regularity of the system. It applies only to dis-
cretizations of problems with constant coefficients on a rectangular domain. How-
ever, if we have variable coefficients the fast solver may be used as a preconditioner
in the conjugate gradient method. Similarly, problems on an irregular domain may
be embedded in a rectangular domain, and again we may use a preconditioner based
on a fast solver.

Consider a linear system Ax = b where A has the block-tridiagonal form

A =




B T
T B T

T B
. . .

. . .
. . . T
T B



, x =




x1

x2
...
xq


 , b =




b1
b2
...
bq


 , (10.8.6)

where B, T ∈ Rp×p. We assume that the matrices B and T commute, i.e., BT =
TB. Then it follows that B and T have a common eigensystem, and we let

QTBQ = Λ = diag (λi), QTTQ = Ω = diag (ωi).

The system Ax = b can then be written Cz = y, where



Review Questions 79

C =




Λ Ω
Ω Λ Ω

Ω Λ
.. .

. . .
. . . Ω
Ω Λ



,

and xj = Qzj, yj = QT bj, j = 1, . . . , q.
For the model problem with Dirichlet boundary conditions the eigenvalues and

eigenvectors are known. Furthermore, the multiplication of a vector by Q and QT

is efficiently obtained by the Fast Fourier Transform algorithm (see Section 9.6.3).
One fast algorithm then is as follows:

1. Compute
yj = QT bj , j = 1, . . . , q.

2. Rearrange taking one element from each vectors yj ,

ŷi = (yi1, yi2, . . . , yiq)
T , i = 1, . . . , p,

and solve by elimination the p systems

Γiẑi = ŷi, i = 1, . . . , p,

where

Γi =




λi ωi

ωi λi ωi

ωi λi
. . .

. . .
. . . ωi

ωi λi



, i = 1, . . . , p.

3. Rearrange (inversely to step 2) taking one element from each ẑi,

zj = (ẑj1, ẑj2, . . . , ẑjq)
T , j = 1, . . . , q,

and compute
xj = Qzj, j = 1, . . . , q.

The fast Fourier transforms in steps 1 and 3 takes O(n2 logn) operations.
Solving the tridiagonal systems in step 2 only takes O(n2) operations, and hence
for this step Gaussian elimination is superior to FFT. In all this algorithm uses only
O(n2 logn) operations to compute the n2 unknown components of x.

Review Questions

1. What is meant by preconditioning of a linear system Ax = b. What are the properties
that a good preconditioner should have?

2. What is meant by an incomplete factorization of a matrix? Describe how incomplete
factorizations can be used as preconditioners.
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3. Describe two different transformations of a general nonsymmetric linear system Ax =
b, that allows the transformed system to be solved by the standard conjugate gradient
method.

Problems

1. Consider square matrices of order n, with nonzero elements only in the k-th upper
diagonal, i.e., of the form

Tk =

0

B

B

B

@

t1
. . .

tn−k

1

C

C

C

A

, k ≥ 0.

Show the following rule for multiplication by diagonals:

AkBl =



Ck+l, if k + l ≤ n − 1;
0, otherwise,

where the elements in Ck+l are a1bk+1, . . . , an−k−lbn−l.

2. Let B be a symmetric positive definite M -matrix of the form

B =

„

B1 −CT

−C B2

«

with B1 and B2 square. Show that the Schur complement S = B2 −CB−1
1 CT of B1

in B is a symmetric positive definite M -matrix.

3. The penta-diagonal matrix of the model problem has nonzero elements in positions
PA = {(i, j) | |i−j| = 0, 1, n}, which defines a level 0 incomplete factorization. Show
that the level 1 incomplete factorization has two extra diagonals corresponding to
|i − j| = n − 1.

4. The triangular solves needed when using an incomplete Cholesky factorizations as a
preconditioner are inherently sequential and difficult to vectorize. If the factors are
normalized to be unit triangular, then the solution can be computed making use of
one of the following expansions

(I − L)−1 =



I + L + L2 + L3 + · · · (Neumann expansion)
(I + L)(I + L2)(I + L4) · · · (Euler expansion)

Verify these expansions and prove that they are finite.

Computer Exercises
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1. Let A be a symmetric positive definite matrix. An incomplete Cholesky precon-
ditioner for A is obtained by neglecting elements in places (i, j) prescribed by a
symmetric set

P ⊂ Pn ≡ {(i, j) | 1 ≤ i, j ≤ n},

where (i, j) ∈ P , if i = j.

(a) The simplest choice is to take P equal to the sparsity pattern of A, which for the
model problem is PA = {(i, j) | |i − j| = 0, 1, n}. This is called a level 0 incomplete
factorization. A level 1 incomplete factorization is obtained by using the union of
P0 and the pattern of the defect matrix R = LLT − A. Higher level incomplete
factorizations are defined in a similar way.

(b) Consider the model problem, where A is block tridiagonal

A = tridiag(−I, T + 2I,−I) ∈ R
n2

×n2

, T = tridiag(−1, 2 − 1) ∈ R
n×n.

Show that A is an M -matrix and hence that an incomplete Cholesky factorizations
of A exists?

(c) Write a MATLAB function, which computes the level 0 incomplete Cholesky
factor L0 of A. (You should NOT write a general routine like that in the textbook,
but an efficient routine using the special five diagonal structure of A!) Implement also
the preconditioned conjugate gradient method in MATLAB, and a function which
solves L0L

T
0 z = r by forward and backward substitution. Solve the model problem

for n = 10, and 20 with and without preconditioning, plot the error norm ‖x−xk‖2,
and compare the rate of convergence. Stop the iterations when the recursive residual
is of the level of machine precision. Discuss your results!

(d) Take the exact solution to be x = (1, 1, . . . , 1, 1)T . To investigate the influence
of the preconditioner M = LLT on the spectrum of M−1A do the following. For
n = 10 plot the eigenvalues of A and of M−1A for level 0 and level 1 preconditioner.
You may use, e.g., the built-in MATLAB functions to compute the eigenvalues, and
efficiency is not a premium here. (To handle the level 1 preconditioner you need to
generalize your incomplete Cholesky routine.)

Notes

We remark that Kaczmarz’s method has been rediscovered and used successfully in
image reconstruction. In this context the method is known as the unconstrained
ART algorithm (algebraic reconstruction technique).

The book by Barret et al. [2, ] gives a compact survey of iterative methods
and their implementation.

Krylov subspace iteration, which originated with the conjugate gradient method
has been named one of the Top 10 Algorithms of the 20th century. The conjugate
gradient method was developed independently by E. Stiefel and M. R. Hestenes.
Further work was done at the Institute for Numerical Analysis, on the campus of
the University of California, in Los Angeles (UCLA). This work was published in
1952 in the seminal paper [13], which has had a tremendous impact in scientific
computing. In this paper the author acknowledge cooperation with J. B. Rosser,
G. E. Forsythe, and L. Paige, who were working at the institute during this period.
They also mention that C. Lanczos has developed a closely related method (see
Chapter 9).
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Two excellent classical texts on iterative methods for linear systems are Varga [29,
] and Young [31, ]. Axelsson [1, ] is an excellent source of more modern
material. For an up to date treatment of iterative methods and preconditioners we
recommend Greenbaum [12, ], Saad [24, ] and H. van der Vorst [28, ].
Barret et al. [2, ] gives a compact survey of iterative methods and their imple-
mentation. (See also available software listed in Chapter 15.) The early history of
the conjugate gradient and Lanczos algorithms are are detailed in [10, ] and a
historical view of iterative methods in general given in [25, ]. Krylov solvers
are studied by Broyden and Vespucci [3]
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[15] S. Kaczmarz. Angenäherte auflösung von systemen linearen gleichungen. Acad.
Polon. Sciences et Lettres, pages 355–357, 1937.

[16] Cornelius Lanczos. An iteration method for the solution of the eigenvalue prob-
lem of linear differential and integral operators. J. Res. Nat. Bur. Standards,
Sect. B, 45:255–282, 1950.

[17] Cornelius Lanczos. Solution of systems of linear equations by minimized iter-
ations. J. Res. Nat. Bur. Standards, Sect. B, 49:33–53, 1952.

[18] L. Landweber. An iterative formula for fredholm integral equations of the first
kind. Amer. J. Math., 73:615–624, 1951.

[19] J. A. Meijerink and Henk A. van der Vorst. An iterative solution method for
linear systems of which the coefficient matrix is a symmetric M-matrix. Math.
Comp., 31:148–162, 1977.

[20] N. M. Nachtigal, S. C. Reddy, and Lloyd N. Trefethen. How fast are nonsym-
metric matrix iterations? SIAM J. Matrix. Anal. Appl., 13:778–795, 1992.

[21] Christopher C. Paige and Michael Saunders. Solution of sparse indefinite sys-
tems of linear equations. SIAM J. Numer. Anal., 12:617–629, 1975.

[22] John K. Reid. A note on the stability of Gaussian elimination. J. Inst. Maths.
Applics., 8:374–375, 1971.

[23] Yosef Saad. Iterative Methods for Sparse Linear Systems. SIAM Publications.,
Philadelphia, PA, second edition, 2003.

[24] Yosef Saad and Henk van der Vorst. Iterative solution of linear systems in the
20th century. J. Comput. Appl. Math., 123:1–33, 2000.

[25] Peter Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear
systems. SIAM J. Sci. Stat. Comput.., 10:36–52, 1989.

[26] Henk van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of
Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat.
Comput.., 12:631–644, 1992.

[27] Henk van der Vorst. Iterative Krylov Methods for Large Linear Systems. Cam-
bridge University Press, Cambridge, UK, 2003.



Bibliography 85

[28] Richard S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs,
1962.

[29] David M. Young. Iterative methods for solving partial differential equations of
elliptic type. PhD thesis, Harward University, 1950.

[30] David M. Young. Iterative Solution of Large Linear Systems. Academic Press,
New York, 1971.

[31] David M. Young. A historical overview of iterative methods. Computer Phys.
Comm., 53:1–17, 1989.



Index

A-orthogonal vectors, 33

A-norm, 30
algorithm

CG, 38
CGLS, 49
CGNE, 49
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Lanczos, 57
preconditioned CG, 62
preconditioned CGNE, 64

Arnoldi’s method, 52–56
Arnoldi’s process, 53

BCG, see bi-conjugate gradient
bi-conjugate gradient method, 59

CG, see also conjugate gradient
CG method

preconditioned, 61–63
CGS, 59
Chebyshev polynomials, 26
Chebyshev semi-iterative method, 27
Cholesky factorization

block incomplete, 72
incomplete, 70

conjugate gradient method, 36–42
preconditioned, 63–64
rate of convergence, 40

conjugate residual method, 39, 43
consistently ordered, 17
convergence

acceleration of, 24–28
asymptotic rate, 8
average rate, 8

conditions for, 7
convergent matrix, 7
Craig’s method, 49

defect matrix, 72
diagonal scaling

optimal, 67
direct methods

fast, 73–74

elliptic equation, 41
Euler expansion, 75
expansion

Euler, 75
Neumann, 75

fast Fourier transform, 74

Gauss–Seidel’s method, 5, 33
GMRES, 52–56

preconditioned, 64
restarted, 56

Golub–Kahan bidiagonalization, 50

incomplete factorization, 67–73
block, 70–73
Cholesky, 70
LU, 67

inner iteration, 72
iteration matrix, 6

Gauss–Seidel, 6
Jacobi, 6
SOR, 16
SSOR, 21

iterative method
block, 22–23
classical, 46
convergent, 7
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error reducing, 48
residual reducing, 47
rounding errors in, 11–13
stationary, 6
symmetrizable, 24
terminating, 14

iterative methods
preconditioned, 61–65

Jacobi’s iterative method, 47
Jacobi’s method, 5

Kantorovich inequality, 34
Kronecker sum, 4
Krylov

subspace, 36
Krylov subspace, 64

best approximation in, 50–52

Lanczos bi-orthogonalization, 56–58
Lanczos bi-orthogonalization process,

57
Lanczos process, 42–43
Landweber’s method, 46
left-preconditioned system, 61
LU factorization

incomplete, 67

M -matrix, 69
matrix

consistently ordered, 17
diagonally dominant, 9
irreducible, 10
property A, 17
splitting, 5
Stieltjes, 69

matrix splitting
Gauss–Seidel, 6
Jacobi, 6

method of steepest descent, 33–35
MINRES, 43–44

Neumann expansion, 75
normal equations

first kind, 45
of second kind, 48
second kind, 46

Petrov–Galerkin conditions, 30
Poisson’s equation, 2
polynomial acceleration, 25
preconditioners, 66–74
preconditioning

Schur complement, 71
projection methods, 30–50

one-dimensional, 32–33
property A, 17, 71

QMR, see Quasi-Minimal Residual method
Quasi-Minimal Residual method, 60

relaxation parameter, 16, 48
Richardson’s method, 2, 46
right-preconditioned system, 61

Schur
complement, 71

search directions, 32
semi-iterative method, 25

Chebyshev, 27
SOR

method, 16–22, 33
convergence, 33

optimal relaxation parameter, 19
spectral radius, 7
split preconditioner, 61
splitting

standard, 6
SSOR method, 21
steepest descent method, 34
Stieltjes matrix, 69
successive overrelaxation method, see

SOR
SYMMLQ, 43–44

vector
bi-orthogonal, 57


