
Contents

1 Principles of Numerical Calculations 1
1.1 Introduction . 1

1.1.1 Fixed-Point Iteration 2
1.1.2 Linearization and Extrapolation 5
1.1.3 Finite Difference Approximations 9

Review Questions . 12
Problems and Computer Exercises . 13
1.2 Some Numerical Algorithms . 14

1.2.1 Recurrence Relations 14
1.2.2 Divide and Conquer Strategy 16
1.2.3 Approximation of Functions 18
1.2.4 The Principle of Least Squares 20

Review Questions . 22
Problems and Computer Exercises . 22
1.3 Matrix Computations . 24

1.3.1 Matrix Multiplication 25
1.3.2 Solving Triangular Systems 27
1.3.3 Gaussian Elimination 29
1.3.4 Sparse Matrices and Iterative Methods 34
1.3.5 Software for Matrix Computations 37

Review Questions . 38
Problems and Computer Exercises . 38
1.4 Numerical Solution of Differential Equations 39

1.4.1 Euler’s Method . 39
1.4.2 An Introductory Example 40
1.4.3 A Second Order Accurate Method 44

Review Questions . 48
Problems and Computer Exercises . 48
1.5 Monte Carlo Methods . 49

1.5.1 Origin of Monte Carlo Methods 49
1.5.2 Random and Pseudo-Random Numbers 52
1.5.3 Testing Pseudo-Random Number Generators 57
1.5.4 Random Deviates for Other Distributions. 59
1.5.5 Reduction of Variance. 63

i

ii Contents

Review Questions . 67
Problems and Computer Exercises . 67

Bibliography 71

Index 74

Chapter 1

Principles of Numerical

Calculations

1.1 Introduction

Although mathematics has been used for centuries in one form or another within
many areas of science and industry, modern scientific computing using electronic
computers has its origin in research and developments during the second world war.
In the late forties and early fifties the foundation of numerical analysis was laid as
a separate discipline of mathematics. The new capabilities of performing millions
of operations led to new classes of algorithms, which needed a careful analysis to
ensure their accuracy and stability.

Recent modern development has increased enormously the scope for using nu-
merical methods. Not only has this been caused by the continuing advent of faster
computers with larger memories. Gain in problem solving capabilities through bet-
ter mathematical algorithms have in many cases played an equally important role!
This has meant that today one can treat much more complex and less simplified
problems through massive amounts of numerical calculations. This development has
caused the always close interaction between mathematics on the one hand and sci-
ence and technology on the other to increase tremendously during the last decades.
Advanced mathematical models and methods are now used more and more also in
areas like medicine, economics and social sciences. It is fair to say that today ex-
periment and theory, the two classical elements of scientific method, in many fields
of science and engineering are supplemented in many areas by computations as an
equally important component.

As a rule, applications lead to mathematical problems which in their complete
form cannot be conveniently solved with exact formulas unless one restricts oneself
to special cases or simplified models which can be exactly analyzed. In many cases,
one thereby reduces the problem to a linear problem—for example, a linear system
of equations or a linear differential equation. Such an approach can quite often lead
to concepts and points of view which can, at least qualitatively, be used even in the
unreduced problems.

In most numerical methods one applies a small number of general and rela-

1

2 Chapter 1. Principles of Numerical Calculations

tively simple ideas. These are then combined in an inventive way with one another
and with such knowledge of the given problem as one can obtain in other ways—
for example, with the methods of mathematical analysis. Some knowledge of the
background of the problem is also of value; among other things, one should take
into account the order of magnitude of certain numerical data of the problem.

In this chapter we shall illustrate the use of some general ideas behind nu-
merical methods on some simple problems which may occur as subproblems or
computational details of larger problems, though as a rule they occur in a less pure
form and on a larger scale than they do here. When we present and analyze numer-
ical methods, we use to some degree the same approach which was described first
above: we study in detail special cases and simplified situations, with the aim of
uncovering more generally applicable concepts and points of view which can guide
in more difficult problems.

It is important to have in mind that the success of the methods presented
depends on the smoothness properties of the functions involved. In this first survey
we shall tacitly assume that the functions have as many well-behaved derivatives as
is needed.

1.1.1 Fixed-Point Iteration

One of the most frequently recurring ideas in many contexts is iteration (from
the Latin iteratio, “repetition”) or successive approximation. Taken generally,
iteration means the repetition of a pattern of action or process. Iteration in this
sense occurs, for example, in the repeated application of a numerical process—
perhaps very complicated and itself containing many instances of the use of iteration
in the somewhat narrower sense to be described below—in order to improve previous
results. To illustrate a more specific use of the idea of iteration, we consider the
problem of solving a nonlinear equation of the form

x = F (x), (1.1.1)

where F is assumed to be a differentiable function whose value can be computed for
any given value of a real variable x, within a certain interval. Using the method of
iteration, one starts with an initial approximation x0, and computes the sequence

x1 = F (x0), x2 = F (x1), x3 = F (x2), . . . (1.1.2)

Each computation of the type xn+1 = F (xn) is called an iteration. If the sequence
{xn} converges to a limiting value α then we have

α = lim
n→∞

xn+1 = lim
n→∞

F (xn) = F (α),

so x = α satisfies the equation x = F (x). As n grows, we would like the numbers xn

to be better and better estimates of the desired root. One then stops the iterations
when sufficient accuracy has been attained.

A geometric interpretation is shown in Fig. 1.1.1. A root of Equation (1.1.1) is
given by the abscissa (and ordinate) of an intersecting point of the curve y = F (x)

1.1. Introduction 3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x0 x1 x2

0 < F′(x) < 1

y = F(x)

y = x

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x0 x1x2 x3x4

−1 < F′(x) < 0

y = F(x)

y = x

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x0x1x2x3

F′(x) > 1

y = F(x)

y = x

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x0 x1x2 x3x4

F′(x) < −1

y = F(x) y = x

Figure 1.1.1. (a)–(d) Geometric interpretation of iteration xn+1 = F (xn).

and the line y = x. Using iteration and starting from x0 we have x1 = F (x0).
The point x1 on the x-axis is obtained by first drawing a horizontal line from the
point (x0, F (x0)) = (x0, x1) until it intersects the line y = x in the point (x1, x1)
and from there drawing a vertical line to (x1, F (x1)) = (x1, x2) and so on in a
“staircase” pattern. In Fig. 1.1.1a it is obvious that {xn} converges monotonically
to α. Fig. 1.1.1b shows a case where F is a decreasing function. There we also
have convergence but not monotone convergence; the successive iterates xn are
alternately to the right and to the left of the root α.

There are also divergent cases, exemplified by Figs. 1.1.1c and 1.1.1d. One
can see geometrically that the quantity, which determines the rate of convergence
(or divergence), is the slope of the curve y = F (x) in the neighborhood of the root.
Indeed, from the mean value theorem we have

xn+1 − α

xn − α
=

F (xn) − F (α)

xn − α
= F ′(ξn),

where ξn lies between xn and α. We see that, if x0 is chosen sufficiently close to
the root, (yet x0 6= α), the iteration will converge if |F ′(α)| < 1. In this case α is

4 Chapter 1. Principles of Numerical Calculations

called a point of attraction. The convergence is faster the smaller |F ′(α)| is. If
|F ′(α)| > 1 then α is a point of repulsion and the iteration diverges.

Example 1.1.1.
A classical fast method for calculating square roots:
The equation x2 = c (c > 0) can be written in the form x = F (x), where

F (x) = 1
2 (x + c/x). If we set

x0 > 0, xn+1 = 1
2 (xn + c/xn) ,

then the α = limn→∞ xn =
√

c (see Fig. 1.1.2)

0.5 1 1.5 2 2.5
0.5

1

1.5

2

2.5

x
0

x
1

x
2

Figure 1.1.2. The fix-point iteration xn = (xn + c/xn)/2, c = 2, x0 = 0.75.

For c = 2, and x0 = 1.5, we get x1 = 1
2 (1.5 + 2/1.5) = 1 5

12 = 1.4166666 . . .,
and

x2 = 1.414215 686274, x3 = 1.414213 562375,

which can be compared with
√

2 = 1.414213 562373 . . . (correct to digits shown).
As can be seen from Fig. 1.1.2 a rough value for x0 suffices. The rapid convergence
is due to the fact that for α =

√
c we have

F ′(α) = (1 − c/α2)/2 = 0.

One can in fact show that if xn has t correct digits, then xn+1 will have at least
2t − 1 correct digits; see Example 6.3.3 and the following exercise. The above
iteration method is used quite generally on both pocket calculators and computers
for calculating square roots. The computation converges for any x0 > 0.

Iteration is one of the most important aids for the practical as well as theoreti-
cal treatment of both linear and nonlinear problems. One very common application
of iteration is to the solution of systems of equations. In this case {xn} is a sequence

1.1. Introduction 5

of vectors, and F is a vector-valued function. When iteration is applied to differen-
tial equations {xn} means a sequence of functions, and F (x) means an expression in
which integration or other operations on functions may be involved. A number of
other variations on the very general idea of iteration will be given in later chapters.

The form of equation (1.1.1) is frequently called the fixed point form, since
the root α is a fixed point of the mapping F . An equation may not be given
originally in this form. One has a certain amount of choice in the rewriting of
equation f(x) = 0 in fixed point form, and the rate of convergence depends very
much on this choice. The equation x2 = c can also be written, for example, as
x = c/x. The iteration formula xn+1 = c/xn, however, gives a sequence which
alternates between x0 (for even n) and c/x0 (for odd n)—the sequence does not
even converge!

Let an equation be given in the form f(x) = 0, and for any k 6= 0, set

F (x) = x + kf(x).

Then the equation x = F (x) is equivalent to the equation f(x) = 0. Since F ′(α) =
1 + kf ′(α), we obtain the fastest convergence for k = −1/f ′(α). Because α is not
known, this cannot be applied literally. However, if we use xn as an approximation
this leads to the choice F (x) = x − f(x)/f ′(x), or the iteration

xn+1 = xn − f(xn)

f ′(xn)
. (1.1.3)

This is the celebrated Newton’s method.1 (Occasionally this method is referred
to as the Newton–Raphson method.) We shall derive it in another way below.

Example 1.1.2.
The equation x2 = c can be written in the form f(x) = x2 − c = 0. Newton’s

method for this equation becomes

xn+1 = xn − x2
n − c

2xn
=

1

2

(

xn +
c

xn

)

,

which is the fast method in Example 1.1.1.

1.1.2 Linearization and Extrapolation

Another often recurring idea is that of linearization. This means that one locally,
i.e. in a small neighborhood of a point, approximates a more complicated function
with a linear function. We shall first illustrate the use of this idea in the solution of
the equation f(x) = 0. Geometrically, this means that we are seeking the intersec-
tion point between the x-axis and the curve y = f(x); see Fig. 1.1.3. Assume that

1Isaac Newton (1642–1727), English mathematician, astronomer and physicist, invented, inde-
pendently of the German mathematician and philosopher Gottfried W. von Leibniz (1646–1716),
the infinitesimal calculus. Newton, the Greek mathematician Archimedes (287–212 B.C.) and
the German mathematician Carl Friedrich Gauss (1777–1883) gave pioneering contributions to
numerical mathematics and to other sciences.

6 Chapter 1. Principles of Numerical Calculations

x
0 x

1
x

2

Figure 1.1.3. Newton’s method.

we have an approximating value x0 to the root. We then approximate the curve
with its tangent at the point (x0, f(x0)). Let x1 be the abscissa of the point of
intersection between the x-axis and the tangent. Since the equation for the tangent
reads

y − f(x0) = f ′(x0)(x − x0),

we obtain by setting y = 0, the approximation

x1 = x0 − f(x0)/f ′(x0).

In many cases x1 will have about twice as many correct digits as x0. However, if
x0 is a poor approximation and f(x) far from linear, then it is possible that x1 will
be a worse approximation than x0.

If we combine the ideas of iteration and linearization, that is, we substitute
xn for x0 and xn+1 for x1, we rediscover Newton’s method mentioned earlier. If x0

is close enough to α the iterations will converge rapidly; see Fig. 1.1.3, but there
are also cases of divergence.

x
1

x
0

x
2

Figure 1.1.4. The secant method.

Another way, instead of drawing the tangent, to approximate a curve locally
with a linear function is to choose two neighboring points on the curve and to ap-
proximate the curve with the secant which joins the two points; see Fig. 1.1.4. The

1.1. Introduction 7

secant method for the solution of nonlinear equations is based on this approxi-
mation. This method, which preceded Newton’s method, is discussed more closely
in Sec. 6.4.1.

Newton’s method can easily be generalized to solve a system of nonlinear
equations

fi(x1, x2, . . . , xn) = 0, i = 1 : n.

or f(x) = 0, where f and x now are vectors in Rn. Then xn+1 is determined by
the system of linear equations

f ′(xn)(xn+1 − xn) = f(xn), (1.1.4)

where

f ′(x) =







∂f1

∂x1

. . . ∂f1

∂xn

...
...

∂fn

∂x1

. . . ∂fn

∂xn






∈ Rn×n, (1.1.5)

is the matrix of partial derivatives of f with respect to x. This matrix is called the
Jacobian of f and often denoted by J(x). System of nonlinear equations arise in
many different contexts in scientific computing, e.g., in the solution of differential
equations and optimization problems. We shall several times, in later chapters,
return to this fundamental concept.

The secant approximation is useful in many other contexts. It is, for instance,
generally used when one “reads between the lines” or interpolates in a table of
numerical values. In this case the secant approximation is called linear interpo-
lation. When the secant approximation is used in numerical integration, that
is in the approximate calculation of a definite integral,

I =

∫ b

a

y(x) dx, (1.1.6)

(see Fig. 1.1.5) it is called the trapezoidal rule. With this method, the area
between the curve y = y(x) and the x-axis is approximated with the sum T (h) of
the areas of a series of parallel trapezoids.

Using the notation of Fig. 1.1.5, we have

T (h) = h
1

2

n−1
∑

i=0

(yi + yi+1), h =
b − a

n
. (1.1.7)

(In the figure, n = 4.) We shall show in a later chapter that the error is very nearly
proportional to h2 when h is small. One can then, in principle, attain arbitrary
high accuracy by choosing h sufficiently small. However, the computational work
involved is roughly proportional to the number of points where y(x) must be com-
puted, and thus inversely proportional to h. Thus the computational work grows
rapidly as one demands higher accuracy (smaller h).

Numerical integration is a fairly common problem because in fact it is quite
seldom that the “primitive” function can be analytically calculated in a finite ex-
pression containing only elementary functions. It is not possible, for example, for

8 Chapter 1. Principles of Numerical Calculations

a b

y
0

y
1

y
2

y
3

y
4

Figure 1.1.5. Numerical integration by the trapezoidal rule (n = 4).

such simple functions as ex2

or (sinx)/x. In order to obtain higher accuracy with
significant less work than the trapezoidal rule requires, one can use one of the fol-
lowing two important ideas:

(a) Local approximation of the integrand with a polynomial of higher degree,
or with a function of some other class, for which one knows the primitive
function.

(b) Computation with the trapezoidal rule for several values of h and then extrap-
olation to h = 0, so-called Richardson extrapolation2 or the deferred
approach to the limit, with the use of general results concerning the de-
pendence of the error on h.

The technical details for the various ways of approximating a function with
a polynomial, among others Taylor expansions, interpolation, and the method of
least squares, are treated in later chapters.

The extrapolation to the limit can easily be applied to numerical integration
with the trapezoidal rule. As was mentioned previously, the trapezoidal approxima-
tion (1.1.7) to the integral has an error approximately proportional to the square
of the step size. Thus, using two step sizes, h and 2h, one has:

T (h) − I ≈ kh2, T (2h)− I ≈ k(2h)2,

and hence 4(T (h)− I) ≈ T (2h) − I, from which it follows that

I ≈ 1
3 (4T (h) − T (2h)) = T (h) + 1

3 (T (h) − T (2h)).

Thus, by adding the corrective term 1
3 (T (h) − T (2h)) to T (h), one should get an

estimate of I which typically is far more accurate than T (h). In Sec. 3.6 we shall see

2Lewis Fry Richardson (1881–1953) studied mathematics, physics, chemistry, botany and zo-
ology. He graduated from King’s College, Cambridge 1903. He was the first (1922) to attempt to
apply the method of finite differences to weather prediction, long before the computer age!

1.1. Introduction 9

that the improvements is in most cases quite striking. The result of the Richardson
extrapolation is in this case equivalent to the classical Simpson’s rule3 for nu-
merical integration, which we shall encounter many times in this volume. It can be
derived in several different ways. Sec. 3.6 also contains application of extrapolation
to other problems than numerical integration, as well as a further development of the
extrapolation idea, namely repeated Richardson extrapolation. In numerical
integration this is also known as Romberg’s method.

Knowledge of the behavior of the error can, together with the idea of extrap-
olation, lead to a powerful method for improving results. Such a line of reasoning is
useful not only for the common problem of numerical integration, but also in many
other types of problems.

Example 1.1.3.

The integral
∫ 12

10
f(x) dx is computed for f(x) = x3 by the trapezoidal method.

With h = 1 we obtain

T (h) = 2, 695, T (2h) = 2, 728,

and extrapolation gives T = 2.684, equal to the exact result. Similarly, for f(x) = x4

we obtain
T (h) = 30, 009, T (2h) = 30, 736,

and with extrapolation T = 29, 766.7 (exact 29, 766.4).

1.1.3 Finite Difference Approximations

The local approximation of a complicated function by a linear function leads to an-
other frequently encountered idea in the construction of numerical methods, namely
the approximation of a derivative by a difference quotient. Fig. 1.1.6 shows the
graph of a function y(x) in the interval [xn−1, xn+1] where xn+1−xn = xn−xn−1 =
h; h is called the step size. If we set yi = y(xi), i = n−1, n, n+1, then the derivative
at xn can be approximated by a forward difference quotient,

y′(xn) ≈ yn+1 − yn

h
, (1.1.8)

or a similar backward difference quotient involving yn and yn−1. The error in the
approximation is called a discretization error.

However, it is conceivable that the centered difference approximation

y′(xn) ≈ yn+1 − yn−1

2h
(1.1.9)

will usually be more accurate. It is in fact easy to motivate this. By Taylor’s
formula,

y(x + h) − y(x) = y′(x)h + y′′(x)h2/2 + y′′′(x)h3/6 + . . . (1.1.10)

−y(x − h) + y(x) = y′(x)h − y′′(x)h2/2 + y′′′(x)h3/6 − . . . (1.1.11)

3Thomas Simpson (1710–1761), English mathematician best remembered for his work on inter-
polation and numerical methods of integration. He taught mathematics privately in the London
coffee–houses and from 1737 began to write texts on mathematics.

10 Chapter 1. Principles of Numerical Calculations

(n − 1)h nh (n + 1)h

y
n−1

y
n

y
n+1

Figure 1.1.6. Finite difference quotients.

Set x = xn. Then, by the first of these equations,

y′(xn) =
yn+1 − yn

h
− h

2
y′′(xn) + . . .

Next, add the two Taylor expansions and divide by 2h. Then the first error term
cancels and we have

y′(xn) =
yn+1 − yn−1

2h
+

h2

6
y′′′(xn) + . . .

We shall in the sequel call a formula (or a method), where a step size parameter h
is involved, accurate of order p, if its error is approximately proportional to hp.
Since y′′(x) vanishes for all x if and only if y is a linear function of x, and similarly,
y′′′(x) vanishes for all x if and only if y is a quadratic function, we have established
the following important result:

Lemma 1.1.1. The forward difference approximation (1.1.8) is exact only for a
linear function, and it is only first order accurate in the general case. The centered
difference approximation (1.1.9) is exact also for a quadratic function, and is second
order accurate in the general case.

For the above reason the approximation (1.1.9) is, in most situations, prefer-
able to (1.1.8). However, there are situations when these formulas are applied to the
approximate solution of differential equations where the forward difference approx-
imation suffices, but where the centered difference quotient is entirely unusable, for
reasons which have to do with how errors are propagated to later stages in the cal-
culation. We shall not discuss it more closely here, but mention it only to intimate
some of the surprising and fascinating mathematical questions which can arise in
the study of numerical methods.

Higher derivatives are approximated with higher differences, that is, differ-

1.1. Introduction 11

ences of differences, another central concept in numerical calculations. We define:

(∆y)n = yn+1 − yn;

(∆2y)n = (∆(∆y))n = (yn+2 − yn+1) − (yn+1 − yn)

= yn+2 − 2yn+1 + yn;

(∆3y)n = (∆(∆2y))n = yn+3 − 3yn+2 + 3yn+1 − yn;

etc. For simplicity one often omits the parentheses and writes, for example, ∆2y5

instead of (∆2y)5. The coefficients that appear here in the expressions for the higher
differences are, by the way, the binomial coefficients. In addition, if we denote the
step length by ∆x instead of by h, we get the following formulas, which are easily
remembered:

dy

dx
≈ ∆y

∆x
,

d2y

dx2
≈ ∆2y

(∆x)2
, (1.1.12)

etc. Each of these approximations is second order accurate for the value of the
derivative at an x which equals the mean value of the largest and smallest x for
which the corresponding value of y is used in the computation of the difference. (The
formulas are only first order accurate when regarded as approximations to deriva-
tives at other points between these bounds.) These statements can be established
by arguments similar to the motivation for the formulas (1.1.8) and (1.1.9).

Taking the difference of the Taylor expansions (1.1.10)–(1.1.11) with one more
term in each, and dividing by h2 we obtain the following important formula

y′′(xn) =
yn+1 − 2yn + yn−1

h2
− h2

12
yiv(xn) + · · · ,

Introducing the central difference operator

δyn =
(

xn + 1
2h

)

− y
(

xn − 1
2h

)

, (1.1.13)

and neglecting higher order terms we get

y′′(xn) ≈ 1

h2
δ2yn − h2

12
yiv(xn). (1.1.14)

The approximation of equation (1.1.9) can be interpreted as an application of
(1.1.12) with ∆x = 2h, or else as the mean of the estimates which one gets according
to equation (1.1.12) for y′((n + 1

2)h) and y′((n − 1
2)h).

When the values of the function have errors, for example, when they are
rounded numbers, the difference quotients become more and more uncertain the
less h is. Thus if one wishes to compute the derivatives of a function given by a
table, one should as a rule use a step length which is greater than the table step.

Example 1.1.4.
For y = cosx one has, using function values correct to six decimal digits:
This arrangement of the numbers is called a difference scheme. Note that

the differences are expressed in units of 10−6. Using (1.1.9) and (1.1.12) one gets

y′(0.60) ≈ (0.819648− 0.830941)/0.02 = −0.56465,

y′′(0.60) ≈ −83 · 10−6/(0.01)2 = −0.83.

12 Chapter 1. Principles of Numerical Calculations

x y ∆y ∆2y

0.59 0.830941
-5605

0.60 0.825336 -83
-5688

0.61 0.819648

The correct results are, with six decimals,

y′(0.60) = −0.564642, y′′(0.60) = −0.825336.

In y′′ we only got two correct decimal digits. This is due to cancellation, which is
an important cause of loss of accuracy; see further Sec. 2.2.3. Better accuracy can
be achieved by increasing the step h; see Problem 5 at the end of this section.

Finite difference approximations are useful for partial derivatives too. Suppose
that the values ui,j = u(xi, yj) of a function u(x, y) are given on a square grid with
grid size h, i.e. xi = x0 + ih, yj = y0 + jh, 0 ≤ i ≤ M , 0 ≤ j ≤ N that covers
a rectangle. A very important equation of Mathematical Physics is Poisson’s
equation:4

∂2u

∂x2
+

∂2u

∂y2
= f(x, y), (1.1.15)

where f(x, y) is a given function. Under certain conditions, gravitational, electric,
magnetic, and velocity potentials satisfy Laplace equation5, which is (1.1.15)
with f(x, y) = 0. By (1.1.14), a second order accurate approximation of Poisson’s
equation is given by

ui+1,j − 2ui,j + ui−1,j

h2
+

ui,j+1 − 2ui,j + ui,j−1

h2

=
1

h2

(

ui,j+1 + ui−1,j + ui+1,j + ui,j−1 − 4ui,j

)

= fi,j .

This corresponds to the “computational molecule”





1
1 −4 1

1





Review Questions

1. Make lists of the concepts and ideas which have been introduced. Review their
use in the various types of problems mentioned.

4Siméon Denis Poisson (1781–1840).
5Pierre Simon, Marquis de Laplace (1749–1827).

Problems and Computer Exercises 13

2. Discuss the convergence condition and the rate of convergence of the method
of iteration for solving x = F (x).

3. What is the trapezoidal rule? What is said about the dependence of its error
on the step length?

Problems and Computer Exercises

1. Calculate
√

10 to seven decimal places using the method in Example 1.1.1.
Begin with x0 = 2.

2. Consider f(x) = x3−2x−5. The cubic equation f(x) = 0 has been a standard
test problem, since Newton used it in 1669 to demonstrate his method. By
computing (say) f(x) for x = 1, 2, 3, we see that x = 2 probably is a rather
good initial guess. Iterate then by Newton’s method until you trust that the
result is correct to six decimal places.

3. The equation x3−x = 0 has three roots, −1, 0, 1. We shall study the behaviour
of Newton’s method on this equation, with the notations used in §1.1.2 and
Fig. 1.1.3.

(a) What happens if x0 = 1/
√

3 ? Show that xn converges to 1 for any
x0 > 1/

√
3. What is the analogous result for convergence to −1?

(b) What happens if x0 = 1/
√

5? Show that xn converges to 0 for any x0 ∈
(−1/

√
5, 1/

√
5).

Hint: Show first that if x0 ∈ (0, 1/
√

5) then x1 ∈ (−x0, 0). What can then
be said about x2?

(c) Find, by a drawing (with paper and pencil), limxn if x0 is a little less than
1/

√
3. Find by computation limxn if x0 = 0.46.

*(d) A complete discussion of the question in (c) is rather complicated, but
there is an implicit recurrence relation that produces a decreasing sequence
{a1 = 1/

√
3, a2, a3, . . .}, by means of which you can easily find limn→∞ xn

for any x0 ∈ (1/
√

5, 1/
√

3). Try to find this recurrence.

Answer: ai − f(ai)/f ′(ai) = −ai−1; limn→∞ xn = (−1)i if x0 ∈ (ai, ai+1);
a1 = 0.577, a2 = 0.462, a3 = 0.450, a4 ≈ limi→∞ ai = 1/

√
5 = 0.447.

4. Calculate
∫ 1/2

0 ex dx

(a) to six decimals using the primitive function.

(b) with the trapezoidal rule, using step length h = 1/4.

(c) using Richardson extrapolation to h = 0 on the results using step length
h = 1/2, and h = 1/4.

(d) Compute the ratio between the error in the result in (c) to that of (b).

5. In Example 1.1.4 we computed y′′(0.6) for y = cos(x), with step length h =
0.01. Make similar calculations using h = 0.1, h = 0.05 and h = 0.001. Which
value of h gives the best result, using values of y to six decimal places? Discuss
qualitatively the influences of both the rounding errors in the function values

14 Chapter 1. Principles of Numerical Calculations

and the error in the approximation of a derivative with a difference quotient
on the result for various values of h.

1.2 Some Numerical Algorithms

For a given numerical problem one can consider many different algorithms. These
can differ in efficiency and reliability and give approximate answers sometimes with
widely varying accuracy. In the following we give a few examples of how algorithms
can be developed to solve some typical numerical problems.

1.2.1 Recurrence Relations

One of the most important and interesting parts of the preparation of a problem
for a computer is to find a recursive description of the task. Often an enormous
amount of computation can be described by a small set of recurrence relations.
Euler’s method for the step-by-step solution of ordinary differential equations is an
example. Other examples will be given in this section; see also problems at the end
of this section.

A common computational task is the evaluation of a polynomial, at a given
point x where, say,

p(x) = a0x
3 + a1x

2 + a2x + a3 = ((a0x + a1)x + a2)x + a3.

We set b0 = a0, and compute

b1 = b0x + a1, b2 = b1x + a2, p(x) = b3 = b2x + a3.

This illustrates, for n = 3, Horner’s rule for evaluating a polynomial of degree n,

p(x) = a0x
n + a1x

n−1 + · · · + an−1x + an,

This algorithm can be described by the recurrence relation:

b0 = a0, bi = bi−1x + ai, i = 1 : n, (1.2.1)

where p(x) = bn.
The quantities bi in (1.2.1) are of intrinsic interest because of the following

result, often called synthetic division:

p(x) − p(z)

x − z
=

n−1
∑

i=0

bix
n−1−i, (1.2.2)

where the bi are defined by (1.2.1). The proof of this result is left as an exercise.
Synthetic division is used, for instance, in the solution of algebraic equations, when
already computed roots are successively eliminated. After each elimination, one can
deal with an equation of lower degree. This process is called deflationsee Sec. 6.5.5.
. (As shown in Sec. 6.6.4, some care is necessary in the numerical application of this
idea.)

The proof of the following useful relation is left as an exercise to the reader:

1.2. Some Numerical Algorithms 15

Lemma 1.2.1.
Let the bi be defined by (1.2.1) and

c0 = b0, ci = bi + zci−1, i = 1 : n − 1. (1.2.3)

Then p′(z) = cn−1.

Recurrence relations are among the most valuable aids in numerical calcu-
lation. Very extensive calculations can be specified in relatively short computer
programs with the help of such formulas. However, unless used in the right way
errors can grow exponentially and completely ruin the results.

Example 1.2.1.

To compute the integrals In =

∫ 1

0

xn

x + 5
dx, i = 1 : N one can use the

recurrence relation
In + 5In−1 = 1/n, (1.2.4)

which follows from

In + 5In−1 =

∫ 1

0

xn + 5xn−1

x + 5
dx =

∫ 1

0

xn−1 dx =
1

n
.

Below we use this formula to compute I8, using six decimals throughout. For n = 0
we have

I0 = [ln(x + 5)]10 = ln 6 − ln 5 = 0.182322.

Using the recurrence relation we get

I1 = 1 − 5I0 = 1 − 0.911610 = 0.088390,

I2 = 1/2 − 5I1 = 0.500000− 0.441950 = 0.058050,

I3 = 1/3 − 5I2 = 0.333333− 0.290250 = 0.043083,

I4 = 1/4 − 5I3 = 0.250000− 0.215415 = 0.034585,

I5 = 1/5 − 5I4 = 0.200000− 0.172925 = 0.027075,

I6 = 1/6 − 5I5 = 0.166667− 0.135375 = 0.031292,

I7 = 1/7 − 5I6 = 0.142857− 0.156460 = −0.013603.

It is strange that I6 > I5, and obviously absurd that I7 < 0! The reason for the
absurd result is that the round-off error ǫ in I0 = 0.18232156 . . ., whose magnitude
is about 0.44 · 10−6 is multiplied by (−5) in the calculation of I1, which then has an
error of −5ǫ. That error produces an error in I2 of 52ǫ, etc. Thus the magnitude
of the error in I7 is 57ǫ = 0.0391, which is larger than the true value of I7. On top
of this comes the round-off errors committed in the various steps of the calculation.
These can be shown in this case to be relatively unimportant.

If one uses higher precision, the absurd result will show up at a later stage.
For example, a computer that works with a precision corresponding to about 16

16 Chapter 1. Principles of Numerical Calculations

decimal places, gave a negative value to I22 although I0 had full accuracy. The
above algorithm is an example of a disagreeable phenomenon, called numerical
instability.

We now show how, in this case, one can avoid numerical instability by choosing
a more suitable algorithm.

Example 1.2.2.
We shall here use the recurrence relation in the other direction,

In−1 = (1/n − In)/5. (1.2.5)

Now the errors will be divided by −5 in each step. But we need a starting value.
We can directly see from the definition that In decreases as n increases. One can
also surmise that In decreases slowly when n is large (the reader is recommended
to motivate this). Thus we try setting I12 = I11. It then follows that

I11 + 5I11 ≈ 1/12, I11 ≈ 1/72 ≈ 0.013889.

(show that 0 < I12 < 1/72 < I11). Using the recurrence relation we get

I10 = (1/11 − 0.013889)/5 = 0.015404, I9 = (1/10− 0.015404)/5 = 0.016919,

and further

I8 = 0.018838, I7 = 0.021232, I6 = 0.024325, I5 = 0.028468,

I4 = 0.034306, I3 = 0.043139, I2 = 0.058039, I1 = 0.088392,

and finally I0 = 0.182322. Correct!
If we instead simply take as starting value I12 = 0, one gets I11 = 0.016667,

I10 = 0.018889, I9 = 0, 016222, I8 = 0.018978, I7 = 0.021204, I6 = 0.024331, and
I5, . . . , I0 have the same values as above. The difference in the values for I11 is
0.002778. The subsequent values of I10, I9, . . . , I0 are quite close because the error
is divided by -5 in each step. The results for In obtained above have errors which
are less than 10−3 for n ≤ 8.

The reader is warned, however, not to draw erroneous conclusions from the
above example. The use of a recurrence relation “backwards” is not a universal
recipe as will be seen later on! Compare also Problems 6 and 7 at the end of this
section.

1.2.2 Divide and Conquer Strategy

A powerful strategy for solving large scale problems is the divide and conquer
strategy. The idea is to split a high dimensional problem into problems of lower
dimension. Each of these are then again split into smaller subproblems, etc., until
a number of sufficiently small problems are obtained. The solution of the initial
problem is then obtained by combining the solution of the subproblems working
backwards in the hierarchy.

1.2. Some Numerical Algorithms 17

We illustrate the idea on the computation of the sum s =
∑n

i=1 ai. The usual
way to proceed is to use the recursion

s0 = 0, si = si−1 + ai, i = 1 : n.

Another order of summation is as illustrated below for n = 23 = 8:
a1

ց
a2

ւ
a3

ց
a4

ւ
a5

ց
a6

ւ
a7

ց
a8

ւ
s1:2

ց
s3:4

ւ
s5:6

ց
s7:8

ւ
s1:4

ց
s5:8

ւ
s1:8

where si,j = ai + · · · + aj . In this table each new entry is obtained by adding its
two neighbors in the row above. Clearly this can be generalized to compute an
arbitrary sum of n = 2k terms in k steps. In the first step we perform n/2 sums of
two terms, then n/4 partial sums each of four terms, etc., until in the kth step we
compute the final sum.

This summation algorithm uses the same number of additions as the first one.
However, it has the advantage that it splits the task in several subtasks that can
be performed in parallel. For large values of n this summation order can also be
much more accurate than the conventional order (see Problem 2.3.5, Chapter 2).
Espelid [9] gives an interesting discussion of such summation algorithms.

The algorithm can also be described in another way. Consider the following
definition of a summation algorithm for computing the s(i, j) = ai + · · ·+ aj , j > i:

sum = s(i, j);

if j = i + 1 then sum = ai + aj ;

else k = ⌊(i + j)/2⌋; sum = s(i, k) + s(k + 1, j);

end

(Here and in the following ⌊x⌋ denotes the floor of x, i.e. the largest integer ≤ x.
Similarly, ⌈x⌉ denotes the ceiling of x, i.e. the smallest integer ≥ x.) This function
defines s(i, j) in a recursive way; if the sum consists of only two terms then we add
them and return with the answer. Otherwise we split the sum in two and use the
function again to evaluate the corresponding two partial sums. This approach is
aptly called the divide and conquer strategy. The function above is an example of
a recursive algorithm—it calls itself. Many computer languages (e.g., Matlab

) allow the definition of such recursive algorithms. The divide and conquer is a top
down description of the algorithm in contrast to the bottom up description we
gave first.

There are many other less trivial examples of the power of the divide and
conquer approach. It underlies the Fast Fourier Transform and leads to efficient
implementations of, for example, matrix multiplication, Cholesky factorization, and
other matrix factorizations. Interest in such implementations have increased lately
since it has been realized that they achieve very efficient automatic parallelization
of many tasks.

18 Chapter 1. Principles of Numerical Calculations

1.2.3 Approximation of Functions

Many important function in applied mathematics cannot be expressed in finite
terms of elementary functions, and must be approximated by numerical methods.
Examples from statistics are the normal probability function, the chi-square dis-
tribution function, the exponential integral, and the Poisson distribution. These
can, by simple transformations, be brought to particular cases of the incomplete
gamma function

γ(a, z) =

∫ z

0

e−tta−1dt, ℜa > 0, (1.2.6)

A collection of formulas that can be used to evaluate this function is found in
Abramowitz and Stegun [1, Sec. 6.5]. Codes and some theoretical background are
given in Numerical Recipes [31, Sec. 6.2–6.3].

Example 1.2.3.
As a simple example we consider evaluating the error function defined by

erf(x) =
2√
π

∫ x

0

e−t2 dt, (1.2.7)

for x ∈ [−1, 1]. This function is encountered in computing the distribution function
of a normal deviate. It takes the values erf(0) = 0, erf(∞) = 1.

Suppose one wishes to compute erf(x) for x ∈ [−1, 1] with a relative error
less than 10−8. One can then approximate the function by a power series. Setting
z = −t2 in the well known Maclaurin series for ez, truncating after n + 1 terms,
and integrating term by term we obtain

erf(x) ≈ 2√
π

∫ x

0

n
∑

j=0

(−1)j t2j

j!
dt =

2√
π

n
∑

j=0

ajx
2j+1, (1.2.8)

where

a0 = 1, aj =
(−1)j

j!(2j + 1)
.

(Note that erf(x) is a odd function of x.) This series converges for all x, but is
suitable for numerical computations only for values of x which are not too large. To
evaluate the series we note that the coefficients aj satisfies the recurrence relation

aj = −aj−1
(2j − 1)

j(2j + 1)
.

This recursion shows that for x ∈ [0, 1] the absolute values of the terms tj = ajx
2j+1

decrease monotonically. This implies that the absolute error in a partial sum is
bounded by the absolute value of the first neglected term. (Why? For an answer
see Theorem 3.1.5 in Chapter 3.)

A possible algorithm for evaluating the sum in (1.2.8) is then:

1.2. Some Numerical Algorithms 19

Set s0 = t0 = x; for j = 1, 2, . . . compute

tj = −tj−1
(2j − 1)

j(2j + 1)
x2, sj = sj−1 + tj , until |tj | ≤ ·10−8sj .

Here we have estimated the error by the last term added in the series. Since we
have to compute this term for the error estimate we might as well use it! Note also
that in this case, where the number of terms is fixed in advance, Horner’s scheme
is not suitable for the evaluation. Fig. 1.2.1 shows the graph of the relative error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

x

Figure 1.2.1. Relative error e(x) = |p2n+1(x) − erf(x)|/erf(x).

in the computed approximation p2n+1(x). At most twelve terms in the series were
needed.

Clearly the “model” of approximating the error function with a polynomial
is not exact, since the function demonstrably is not a polynomial. The error from
truncating the series is called truncation error. In general the error due to re-
placing an infinite process by a finite is referred to as a truncation error. In the
above example this error can be made as small as one wants by choosing the degree
of the polynomial sufficiently large by taking more terms in the Maclaurin series.

The use of power series and rational approximations will be studied in depth
in Chapter 3, where also other more efficient methods than the Maclaurin series for
approximation by polynomials will be treated.

A different approximation problem, which occurs in many variants, is to ap-
proximate a function f by a member f∗ of a class of functions which is easy to work
with mathematically (e.g., polynomials, rational functions, or trigonometric poly-
nomials), where each particular function in the class is specified by the numerical
values of a number of parameters.

In computer aided design (CAD) curves and surfaces have to be represented
mathematically, so that they can be manipulated and visualized easily. Important
applications occur in aircraft and automotive industries. For this purpose spline

20 Chapter 1. Principles of Numerical Calculations

functions are now used extensively. The name spline comes from a very old tech-
nique in drawing smooth curves, in which a thin strip of wood, called a draftsman’s
spline, is bent so that it passes trough a given set of points. The points of inter-
polation are called knots and the spline is secured at the knots by means of lead
weights called ducks. Before the computer age splines were used in ship building
and other engineering designs.

Bézier curves, which can also be used for these purposes, were developed
in 1962 by Bézier and de Casteljau, when working for the French car companies
Renault and Citroën,

1.2.4 The Principle of Least Squares

In many applications a linear mathematical model is to be fitted to given observa-
tions. For example, consider a model described by a scalar function y(t) = f(x, t),
where x ∈ Rn is a parameter vector to be determined from measurements (yi, ti),
i = 1 : m. There are two types of shortcomings to take into account: errors in
the input data, and shortcomings in the particular model (class of functions, form),
which one intends to adopt to the input data. For ease in discussion. We shall call
these measurement errors and errors in the model, respectively.

In order to reduce the influence of measurement errors in the observations one
would like to use a greater number of measurements than the number of unknown
parameters in the model. If f(x, t) be linear in x and of the form

f(x, t) =
n

∑

j=1

xjφj(t).

Then the equations

yi =

n
∑

j=1

xjφj(ti), i = 1 : m,

form an overdetermined linear system Ax = b, where aij = φj(ti) and bi = yi.
The resulting problem is then to “solve” an overdetermined linear system of
equations Ax = b. where b ∈ Rm, A ∈ Rm×n (m > n). Thus we want to find
a vector x ∈ Rn such that Ax is the “best” approximation to b. We refer in the
following to r = b − Ax as the residual vector.

There are many possible ways of defining the “best” solution. A choice which
can often be motivated for statistical reasons and which also leads to a simple
computational problem is to take as solution a vector x, which minimizes the sum
of the squared residuals, i.e.

min
x∈Rn

m
∑

i=1

r2
i , (1.2.9)

The principle of least squares for solving an overdetermined linear system was first
used by Gauss, who in 1801 used it to successively predicted the orbit of the as-
teroid Ceres. It can shown that the least squares solution satisfies the normal
equations

AT Ax = AT b. (1.2.10)

1.2. Some Numerical Algorithms 21

The matrix AT A is symmetric and can be shown to be nonsingular if A has linearly
independent columns, in which case Ax = b has a unique least squares solution.

0 1 2 3 4 5 6
1

2

3

4

5

6

7

8

n

tim
e

Figure 1.2.2. Fitting a linear relation to observations.

Example 1.2.4.
The points in Fig. 1.2.2 show for n = 1 : 5, the time tn, for the nth passage

of a swinging pendulum through its point of equilibrium. The condition of the
experiment were such that a linear relation of the form t = a + b n can be assumed
to be valid. Random errors in measurement are the dominant cause of the deviation
from linearity shown in Fig. 1.3.2. This deviation causes the values of the parameters
a and b to be uncertain. The least squares fit to the model, shown by the straight
line in Fig 1.2.2, minimizes the sum of squares of the deviations

∑5
n=1(a+b n−tn)2.

Example 1.2.5.
The recently discovered comet 1968 Tentax is supposed to move within the

solar system. The following observations of its position in a certain polar coordinate
system have been made

r 2.70 2.00 1.61 1.20 1.02
φ 48◦ 67◦ 83◦ 108◦ 126◦

By Kepler’s first law the comet should move in a plane orbit of elliptic or hyperbolic
form, if the perturbations from planets are neglected. Then the coordinates satisfy

r = p/(1 − e cosφ),

where p is a parameter and e the eccentricity. We want to estimate p and e by the
method of least squares from the given observations.

We first note that if the relationship is rewritten as

1/p − (e/p) cosφ = 1/r,

22 Chapter 1. Principles of Numerical Calculations

it becomes linear in the parameters x1 = 1/p and X2 = e/p. We then get the linear
system Ax = b, where

A =













1.0000 −0.6691
1.0000 −0.3907
1.0000 −0.1219
1.0000 0.3090
1.0000 0.5878













, b =











0.3704
0.5000
0.6211
0.8333
0.9804











.

The least squares solution is x = (0.6886 0.4839)T giving p = 1/x1 = 1.4522 and
finally e = px2 = 0.7027.

In practice, both the measurements and the model are as a rule insufficient.
One can also see approximation problems as analogous to the task of a communi-
cation engineer, to filter away noise from the signal. These questions are connected
with both Mathematical Statistics and the mathematical discipline Approximation
Theory.

Review Questions

1. Describe Horner’s rule and synthetic division.

2. Give a concise explanation why the algorithm in Example 1.2.1 did not work
and why that in Example 1.2.2 did work.

3. Describe the idea behind the divide and conquer strategy. What is a main
advantage of this strategy? How do you apply it to the task of summing n
numbers?

4. Describe the least squares principle for solving an overdetermined linear sys-
tem.

Problems and Computer Exercises

1. (a) Use Horner’s scheme to compute p(2) where

p(x) = x4 + 2x3 − 3x2 + 2.

(b) Count the number of multiplications and additions required for the eval-
uation of a polynomial p(z) of degree n by Horner’s rule. Compare with the
work needed when the powers are calculated recursively by xi = x · xi−1 and
subsequently multiplied by an−i.

2. Show how repeated synthetic division can be used to move the origin of a
polynomial, i.e., given a1, a2, . . . , an and z, find c1, c2, . . . , cn so that

pn(x) =
∑n

j=1 ajx
j−1 ≡ ∑n

j=1 cj(x − z)j−1.

Problems and Computer Exercises 23

Write a program for synthetic division (with this ordering of the coefficients),
and apply it to this algorithm.

Hint: Apply synthetic division to pn(x), pn−1(x) = (pn(x) − pn(z))/(x − z),
etc.

3. (a) Show that the transformation made in Problem 2 can also be expressed
by means of the matrix-vector equation,

c = diag(z1−i)P diag(zj−1) a,

where a = [a1, a2, . . . an]T , c = [c1, c2, . . . cn]T , and diag(zj−1) is a diagonal
matrix with the elements zj−1, j = 1 : n. The matrix P ∈ Rn×n has elements
pi,j =

(

j−1
i−1

)

, if j ≥ i, else pi,j = 0. By convention,
(

0
0

)

= 1 here.

(b) Note the relation of P to the Pascal triangle, and show how P can be
generated by a simple recursion formula. Also show how each element of P−1

can be expressed in terms of the corresponding element of P . How is the origin
of the polynomial pn(x) moved, if you replace P by P−1 in the matrix-vector
equation that defines c?

(c) If you reverse the order of the elements of the vectors a, c—this may
sometimes be a more convenient ordering—how is the matrix P changed?

Comment: With a terminology to be used much in this book (see Sec. 4.1.2),
we can look upon a and c as different coordinate vectors for the same element
in the n-dimensional linear space Pn of polynomials of degree less than n. The
matrix P gives the coordinate transformation.

4. Derive recurrence relations and write a program for computing the coefficients
of the product r of two polynomials p and q,

r(x) = p(x)q(x) =

(m
∑

i=1

aix
i−1

)(n
∑

j=1

bjx
j−1

)

=

m+n−1
∑

k=1

ckxk−1.

5. Let x, y be nonnegative integers, with y 6= 0. The division x/y yields the
quotient q and the remainder r. Show that if x and y have a common factor,
then that number is a divisor of r as well. Use this remark to design an
algorithm for the determination of the greatest common divisor of x and y
(Euclid’s algorithm).

6. Derive a forward and a backward recurrence relation for calculating the inte-
grals

In =

∫ 1

0

xn

4x + 1
dx.

Why is in this case the forward recurrence stable and the backward recurrence
unstable?

7. (a) Solve Example 1.2.1 on a computer, with the following changes: Start the
recursion (1.2.4) with I0 = ln 1.2, and compute and print the sequence {In}
until In for the first time becomes negative.

(b) Start the recursion (1.2.5) first with the condition I19 = I20, then with

24 Chapter 1. Principles of Numerical Calculations

I29 = I30. Compare the results you obtain and assess their approximate
accuracy. Compare also with the results of 7 (a).

*8. (a) Write a program (or study some library program) for finding the quotient
Q(x) and the remainder R(x) of two polynomials A(x), B(x), i.e., A(x) =
Q(x)B(x) + R(x), deg R(x) < deg B(x).

(b) Write a program (or study some library program) for finding the coeffi-
cients of a polynomial with given roots.

*9. (a) Write a program (or study some library program) for finding the greatest
common divisor of two polynomials. Test it on a number of polynomials of
your own choice. Choose also some polynomials of a rather high degree, and
do not only choose polynomials with small integer coefficients. Even if you
have constructed the polynomials so that they should have a common divisor,
rounding errors may disturb this, and some tolerance is needed in the decision
whether a remainder is zero or not. One way of finding a suitable size of
the tolerance is to make one or several runs where the coefficients are subject
to some small random perturbations, and find out how much the results are
changed.

(b) Apply the programs mentioned in the last two problems for finding and
eliminating multiple zeros of a polynomial.

Hint: A multiple zero of a polynomial is a common zero of the polynomial
and its derivative.

10. It is well known that erf(x) → 1 as x → ∞. If x ≫ 1 the relative accuracy of
the complement 1 − erf(x) is of interest. However, the series expansion used
in Example 1.2.3 for x ∈ [0, 1] is not suitable for large values of x. Why?

Hint: Derive an approximate expression for the largest term.

1.3 Matrix Computations

Matrix computations are ubiquitous in Scientific Computing. A survey of basic
notations and concepts in matrix computations and linear vector spaces is given in
Appendix A. This is needed for several topics treated in later chapters of this first
volume. A fuller treatment of this topic will be given in Vol. II.

In this section we focus on some important developments since the 1950s in
the solution of linear systems. One is the systematic use of matrix notations and
the interpretation of Gaussian elimination as matrix factorization. This decom-
positional approach has several advantages, e.g, a computed factorization can
often be used with great saving to solve new problems involving the original ma-
trix. Another is the rapid developments of sophisticated iterative methods, which
are becoming increasingly important as the size of systems increase.

1.3. Matrix Computations 25

1.3.1 Matrix Multiplication

A matrix A is a collection of m × n numbers ordered in m rows and n columns

A = (aij) =









a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn









.

We write A ∈ Rm×n, where Rm×n denotes the set of all real m × n matrices. If
m = n, then the matrix A is said to be square and of order n. If m 6= n, then A is
said to be rectangular.

The product of two matrices A and B is defined if and only if the number of
columns in A equals the number of rows in B. If A ∈ Rm×p and B ∈ Rp×n then

C = AB ∈ Rm×n, cij =

p
∑

k=1

aikbkj , 1 ≤ i, j ≤ m, (1.3.1)

but BA ∈ Rp×p. Hence matrix multiplication is not commutative, and in general,
AB 6= BA even when m = n = p. If AB = BA the matrices are said to commute.

Matrix multiplication satisfies the distributive rules

A(BC) = (AB)C, A(B + C) = AB + AC.

However, the number of arithmetic operations required to compute, the left- and
right-hand sides of these equations can be very different!

Example 1.3.1. If C ∈ Rp×q then computing the product ABC as (AB)C requires
mp(n + q) operations whereas A(BC) requires nq(m + p) operations. For example,
if A and B are square n × n matrices and x a column vector of length n then
computing the product ABx as (AB)x requires n3 + n2 operations whereas A(Bx)
only requires 2n2 operations. When n ≫ 1 this makes a great difference!

It is often useful to think of a matrix as being built up of blocks of lower
dimensions. The great convenience of this lies in the fact that the operations of ad-
dition and multiplication can be performed by treating the blocks as non-commuting
scalars and applying the definition (1.3.1). Of course the dimensions of the blocks
must correspond in such a way that the operations can be performed.

Example 1.3.2.
Assume that the two n × n matrices are partitioned into 2 × 2 block form

A =

(

A11 A12

A21 A22

)

, B =

(

B11 B12

B21 B22

)

,

where A11 and B11 are square matrices of the same dimension. Then the product
C = AB equals

C =

(

A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)

. (1.3.2)

26 Chapter 1. Principles of Numerical Calculations

Be careful to note that since matrix multiplication is not commutative the order of
the factors in the products cannot be changed! In the special case of block upper
triangular matrices this reduces to

(

R11 R12

0 R22

) (

S11 S12

0 S22

)

=

(

R11S11 R11S12 + R12S22

0 R22S22

)

. (1.3.3)

Note that the product is again block upper triangular and its block diagonal simply
equals the products of the diagonal blocks of the factors.

It is important to know roughly how much work is required by different matrix
algorithms. By inspection of (1.3.1) it is seen that computing the mp elements cij

requires mnp additions and multiplications.
In matrix computations the number of multiplicative operations (×, /) is usu-

ally about the same as the number of additive operations (+,−). Therefore, in
older literature, a flop was defined to mean roughly the amount of work associated
with the computation

s := s + aikbkj ,

i.e., one addition and one multiplication (or division). In more recent textbooks
(e.g., Golub and Van Loan [12, ]) a flop is defined as one floating point operation
doubling the older flop counts.6 Hence, multiplication C = AB of two two square
matrices of order n requires 2n3 flops. The matrix-vector multiplication y = Ax,
where x ∈ Rn×1 requires 2mn flops.

Operation counts are meant only as a rough appraisal of the work and one
should not assign too much meaning to their precise value. On modern computer
architectures the rate of transfer of data between different levels of memory of-
ten limits the actual performance. Also ignored here is the fact that on current
computers division usually is 5–10 times slower than a multiply.

However, an operation count still provides useful information, and can serve
as an initial basis of comparison of different algorithms. For example, it tells us
that the running time for multiplying two square matrices on a computer roughly
will increase cubically with the dimension n. Thus, doubling n will approximately
increase the work by a factor of eight; cf. (1.3.2).

An intriguing question is whether it is possible to multiply two matrices A, B ∈
Rn×n (or solve a linear system of order n) in less than n3 (scalar) multiplications.
The answer is yes! Strassen [35] developed a fast algorithm for matrix multiplication,
which, if used recursively to multiply two square matrices of dimension n = 2k,
reduces the number of multiplications from n3 to nlog

2
7 = n2.807.... It is still an

open question what is the minimum exponent ω such that matrix multiplication
can be done in O(nω) operations. The current best upper bound is ω ≤ 2.376; see
Higham [15, Ch. 23]. (Note that for many of the “fast” methods large constants are
hidden in the O notation.)

6Stewart [p. 96][33] uses flam (floating point addition and multiplication) to denote an “old”
flop.

1.3. Matrix Computations 27

1.3.2 Solving Triangular Systems

The solution of linear systems of equations is one of the most frequently en-
countered problems in scientific computing. One important source of linear systems
is discrete approximations of continuous differential and integral equations.

A linear system can be written in matrix-vector form as









a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

















x1

x2
...

xn









=









b1

b2
...

bm









, (1.3.4)

where aij and bi, 1 ≤ i ≤ m, 1 ≤ j ≤ n be the known input data and the task is
to compute the unknown variables xj , 1 ≤ j ≤ n. More compactly Ax = b, where
A ∈ Rm×n is a matrix and x ∈ Rn and b ∈ Rm are column vectors. If A is square
and nonsingular there is an inverse matrix A−1 such that A−1A = AA−1 = I, the
identity matrix. The solution to (1.3.4) can then be written as x = A−1b, but in
almost all cases one should avoid computing the inverse A−1.

Linear systems which (possibly after a permutation of rows and columns)
are of triangular form are particularly simple to solve. Consider a square upper
triangular linear system (m = n)









u11 . . . u1,n−1 u1n

. . .
...

...
un−1,n−1 un−1,n

unn

















x1
...

xn−1

xn









=









b1
...

bn−1

bn









.

The matrix U is nonsingular if and only if

det(U) = u11 · · ·un−1,n−1unn 6= 0.

If this is the case the unknowns can be computed by the following recursion

xn = bn/unn, xi =
(

bi −
n

∑

k=i+1

uikxk

)

/uii, i = n − 1, . . . , 1. (1.3.5)

It follows that the solution of a triangular system of order n can be computed in
about n2 flops. Note that this is the same amount of work as required for multiplying
a vector by a triangular matrix.

Since the unknowns are solved for in backward order, this is called back-
substitution. Similarly, a square linear system of lower triangular form Lx = b,









l11
l21 l22
...

...
. . .

ln1 ln2 . . . lnn

















x1

x2
...

xn









=









b1

b2
...

bn









.

28 Chapter 1. Principles of Numerical Calculations

where L is nonsingular, can be solved by forward-substitution

x1 = b1/l11, xi =
(

bi −
i−1
∑

k=1

likxk

)

/lii, i = 2 : n. (1.3.6)

(Note that by reversing the order of the rows and columns an upper triangular
system is transformed into a lower triangular and vice versa.)

When implementing a matrix algorithm on a computer, the order of operations
in matrix algorithms may be important. One reason for this is the economizing of
storage, since even matrices of moderate dimensions have a large number of ele-
ments. When the initial data is not needed for future use, computed quantities may
overwrite data. To resolve such ambiguities in the description of matrix algorithms
it is important to be able to describe computations like those in equations (1.3.5)
in a more precise form. For this purpose we will use an informal programming
language, which is sufficiently precise for our purpose but allows the suppression
of cumbersome details. We illustrate these concepts on the back-substitution al-
gorithm given above. In the following back-substitution algorithm the solution x
overwrites the data b.

Algorithm 1.3.1 Back-substitution

Given a nonsingular upper triangular matrix U ∈ Rn×n and a vector b ∈ Rn, the
following algorithm computes x ∈ Rn such that Ux = b:

for i = n : (−1) : 1

s :=

n
∑

j=i+1

uikbk;

bi := (bi − s)/uii;

end

Here x := y means that the value of y is evaluated and assigned to x. We use the
convention that when the upper limit in a sum is smaller than the lower limit the
sum is set to zero.

Another possible sequencing of the operations in Algorithm 1.3.1 is the fol-
lowing:

for k = n : (−1) : 1

bk := bk/ukk;

for i = k − 1 : (−1) : 1

bi := bi − uikbk;

end

end

Here the elements in U are accessed column-wise instead of row-wise as in the pre-
vious algorithm. Such differences can influence the efficiency of the implementation
depending on how the elements in the matrix U are stored.

1.3. Matrix Computations 29

1.3.3 Gaussian Elimination

Gaussian elimination7 is taught already in elementary courses in linear algebra.
However, although the theory is deceptively simple the practical solution of large
linear systems is far from trivial. In the beginning of the computer age in 1940s
there was a mood of pessimism about the possibility of accurately solving systems
even of modest order, say n = 100. Today there is a much deeper understanding of
how Gaussian elimination performs in finite precision arithmetic and linear systems
with hundred of thousands unknowns are routinely solved in scientific computing!

Clearly the following elementary operation can be performed on the system
without changing the set of solutions:

• Interchanging two equations

• Multiplying an equation by a nonzero scalar α.

• Adding a multiple α of the ith equation to the jth equation.

These operations correspond in an obvious way to row operations carried out on the
augmented matrix (A, b). By performing a sequence of such elementary operations
one can always transform the system Ax = b into a simpler system, which can be
trivially solved.

In the most important direct method Gaussian elimination the unknowns are
eliminated in a systematic way, so that at the end an equivalent triangular system
is produced, which can be solved by substitution. Consider the system (1.3.4) with
m = n and assume that a11 6= 0. Then we can eliminate x1 from the last (n − 1)
equations as follows. Subtracting from the ith equation the multiple

li1 = ai1/a11, i = 2 : n,

of the first equation, the last (n − 1) equations become







a
(2)
22 · · · a

(2)
2n

...
. . .

...
a
(2)
n2 · · · a

(2)
nn











x2
...

xn



 =







b
(2)
2
...

b
(2)
n






,

where the new elements are given by

a
(2)
ij = aij − li1a1j , b

(2)
i = bi − li1b1, i = 2 : n.

This is a system of (n−1) equations in the (n−1) unknowns x2, . . . , xn. If a
(2)
22 6= 0,

we can proceed and in the next step eliminate x2 from the last (n−2) of these equa-
tions. This gives a system of equations containing only the unknowns x3, . . . , xn.
We take

li2 = a
(2)
i2 /a

(2)
22 , i = 3 : n,

7Named after Carl Friedrich Gauss (1777–1855), but known already in China as early as in the
first century BC.

30 Chapter 1. Principles of Numerical Calculations

and the elements of the new system are given by

a
(3)
ij = a

(2)
ij − li2a

(2)
2j , b

(3)
i = b

(2)
i − li2b

(2)
2 , i = 3 : n.

The diagonal elements a11, a
(2)
22 , a

(3)
33 , . . ., which appear during the elimination

are called pivotal elements. As long as these are nonzero, the elimination can be
continued. After (n − 1) steps we get the single equation

a(n)
nn xn = b(n)

n .

Collecting the first equation from each step we get











a
(1)
11 a

(1)
12 · · · a

(1)
1n

a
(2)
22 · · · a

(2)
2n

. . .
...

a
(n)
nn



















x1

x2
...

xn









=











b
(1)
1

b
(2)
2
...

b
(n)
n











, (1.3.7)

where we have introduced the notations a
(1)
ij = aij , b

(1)
i = bi for the coefficients in the

original system. Thus, we have reduced (1.3.4) to an equivalent nonsingular, upper
triangular system (1.3.7), which can be solved by back-substitution. In passing we
remark that the determinant of a matrix A, defined in (A.2.4), does not change
under row operations we have from (1.3.7)

det(A) = a
(1)
11 a

(2)
22 · · · a(n)

nn (1.3.8)

Gaussian elimination is indeed in general the most efficient method for computing
determinants!

Algorithm 1.3.2 Gaussian Elimination (without row interchanges)

Given a matrix A = A(1) ∈ Rn×n and a vector b = b(1) ∈ Rn, the following
algorithm computes the elements of the reduced system of upper triangular form

(1.3.7). It is assumed that a
(k)
kk 6= 0, k = 1 : n:

for k = 1 : n − 1

for i = k + 1 : n

lik := a
(k)
ik /a

(k)
kk ; a

(k+1)
ik := 0;

for j = k + 1 : n

a
(k+1)
ij := a

(k)
ij − lika

(k)
kj ;

end

b
(k+1)
i := b

(k)
i − likb

(k)
k ;

end

end

1.3. Matrix Computations 31

We remark that no extra memory space is needed to store the multipliers.

When lik = a
(k)
ik /a

(k)
kk is computed the element a

(k+1)
ik becomes equal to zero, so the

multipliers can be stored in the lower triangular part of the matrix. Note also that if
the multipliers lik are saved, then the operations on the vector b can be carried out
at a later stage. This observation is important in that it shows that when solving a
sequence of linear systems

Axi = bi, i = 1 : p,

with the same matrix A but different right hand sides the operations on A only have
to be carried out once.

If we form the matrices

L =









1
l21 1
...

...
. . .

ln1 ln2 . . . 1









, U =











a
(1)
11 a

(1)
12 · · · a

(1)
1n

a
(2)
22 · · · a

(2)
2n

. . .
...

a
(n)
nn











(1.3.9)

then it can be shown that we have A = LU . Hence Gaussian elimination provides
a factorization of the matrix A into a lower triangular matrix L and an upper
triangular matrix U . This interpretation of Gaussian elimination has turned out to
be extremely fruitful. For example, it immediately follows that the inverse of A (if
it exists) has the factorization

A−1 = (LU)−1 = U−1L−1.

This shows that the solution of linear system Ax = b,

x = A−1b = U−1(L−1b),

can be computed by solving the two triangular systems Ly = b, Ux = y. Indeed it
has been said (G. E. Forsythe and C. B. Moler [10]) that

“almost anything you can do with A−1 can be done without it”

Several other important matrix factorizations will be studied at length in Volume II.
From Algorithm 1.3.2 it follows that (n − k) divisions and (n − k)2 multipli-

cations and additions are used in step k to transform the elements of A. A further
(n−k) multiplications and additions are used to transform the elements of b. Sum-
ming over k and neglecting low order terms we find that the total number of flops
required for the reduction of Ax = b to a triangular system by Gaussian elimination
is

n−1
∑

k=1

2(n − k)2 ≈ 2n3/3,

for the LU factorization ofA and

n−1
∑

k=1

2(n − k) ≈ n2,

32 Chapter 1. Principles of Numerical Calculations

for each right hand side vector b. Comparing this with the n2 flops needed to solve
a triangular system we conclude that, except for very small values of n, the LU
factorization of A dominates the work in solving a linear system. If several linear
systems with the same matrix A but different right-hand sides are to be solved,
then the factorization needs to be performed only once!

Example 1.3.3. Many applications give rise to linear systems where the matrix
A only has a few nonzero elements close to the main diagonal. Such matrices are
called band matrices. An important example is, banded matrices of the form

A =













b1 c1

a1 b2 c2

. . .
. . .

. . .

an−2 bn−1 cn−1

an−1 bn













, (1.3.10)

which are called tridiagonal. Tridiagonal systems of linear equations can be solved
by Gaussian elimination with much less work than the general case. The following
algorithm solves the tridiagonal system Ax = g by Gaussian elimination without
pivoting.

First compute the LU factorization A = LU , where

L =













1
γ1 1

γ2 1
. . .

. . .

γn−1 1













, U =













β1 c1

β2 c2

. . .
. . .

βn−1 cn−1

βn













.

The new elements in L nd U are obtained from the recursion: Set β1 = b1, and

γk = ak/βk, βk+1 = bk+1 − γkck, k = 1 : n − 1. (1.3.11)

(Check this by computing the product LU !) The solution to Ax = L(Ux) = g is
then obtained in two steps. First a forward substitution to get y = Ux

y1 = g1, yk+1 = gk+1 − γkyk, k = 1 : n − 1, (1.3.12)

followed by a backward recursion for x

xn = yn/βn, xk = (yk − ckxk+1)/βk, k = n − 1 : −1 : 1. (1.3.13)

In this algorithm the LU factorization requires only about n divisions and n multi-
plications and additions. The solution of the two triangular systems require about
twice as much work.

Consider the case when in step k of Gaussian elimination a zero pivotal element

is encountered, i.e. a
(k)
kk = 0. (The equations may have been reordered in previous

1.3. Matrix Computations 33

steps, but we assume that the notations have been changed accordingly.) If A is
nonsingular, then in particular its first k columns are linearly independent. This
must also be true for the first k columns of the reduced matrix and hence some
element a

(k)
ik , i = k : n must be nonzero, say a

(k)
rk 6= 0. By interchanging rows k and r

this element can be taken as pivot and it is possible to proceed with the elimination.
The important conclusion is that any nonsingular system of equations can be reduced
to triangular form by Gaussian elimination, if appropriate row interchanges are
used.

Note that when rows are interchanged in A the same interchanges must be
made in the elements of the right-hand side b. Also the computed factors L and U
will be the same as had the the row interchanges first been performed on A and the
Gaussian elimination been performed without interchanges.

To ensure the numerical stability in Gaussian elimination it will, except for
special classes of linear systems, be necessary to perform row interchanges not only
when a pivotal element is exactly zero. Usually it suffices to use partial pivoting,
i.e. to choose the pivotal element in step k as the element of largest magnitude in
the unreduced part of the kth column.

Example 1.3.4.
The linear system

(

ǫ 1
1 1

) (

x1

x2

)

=

(

1
0

)

.

is nonsingular for any ǫ 6= 1 and has the unique solution x1 = −x2 = −1/(1 − ǫ).
However, when a11 = ǫ = 0 the first step in Gaussian elimination cannot be carried
out. The remedy here is obviously to interchange the two equations, which directly
gives an upper triangular system.

Suppose that in the system above ǫ = 10−4. Then the exact solution, rounded
to four decimals equals x = (−1.0001, 1.0001)T . However, if Gaussian elimination is
carried through without interchanges we obtain l21 = 104 and the triangular system

0.0001x1 + x2 = 1

(1 − 104)x2 = −104.

Suppose that the computation is performed using arithmetic with three decimal

digits. Then in the last equation the coefficient a
(2)
22 will be rounded to −104 and

the solution computed by back-substitution is x̄2 = 1.000, x̄1 = 0, which is a
catastrophic result!

If before performing Gaussian elimination we interchange the two equations
then we get l21 = 10−4 and the reduced system becomes

x1 + x2 = 0

(1 − 10−4)x2 = 1.

The coefficient a
(2)
22 is now rounded to 1, and the computed solution becomes x̄2 =

1.000, x̄1 = −1.000, which is correct to the precision carried.

34 Chapter 1. Principles of Numerical Calculations

In this simple example it is easy to see what went wrong in the elimination
without interchanges. The problem is that the choice of a small pivotal element
gives rise to large elements in the reduced matrix and the coefficient a22 in the
original system is lost through rounding. Rounding errors which are small when
compared to the large elements in the reduced matrix are unacceptable in terms of
the original elements! When the equations are interchanged the multiplier is small
and the elements of the reduced matrix of the same size as in the original matrix.

In general an algorithm is said to be backward stable if the computed solu-
tion w always equals the exact solution of a problem with “slightly perturbed data”.
It will be shown in Volume II, Sec. 7.5, that backward stability can almost always
be ensured for Gaussian elimination with partial pivoting. The essential condition
for stability is that no substantial growth occurs in the elements in L and U . To
formulate a basic result of the error analysis we need to introduce some new nota-
tions. In the following the absolute values |A| and |b| of a matrix A and vector b
should be interpreted componentwise,

|A|ij = (|aij |), |b|i = (|bi|).

Similarly the partial ordering “≤” for the absolute values of matrices |A|, |B| and
vectors |b|, |c|, is to be interpreted component-wise.

Theorem 1.3.1.
Let L and U denote the LU factors and x the solution of the system Ax = b,

using LU factorization and substitution. Then x satisfies exactly the linear system

(A + ∆A)x = b, (1.3.14)

where δA is a matrix depending on both A and b, such that

|∆A| / 3nu|L| |U |, (1.3.15)

where u is a measure of the precision in the arithmetic.

It is important to note that the result that the solution satisfies (1.3.14) with
a small |∆A| does not mean that the solution has been computed with a small error.
If the matrix A is ill-conditioned then the solution is very sensitive to perturbations
in the data. This is the case, e.g., when the rows (columns) of A are almost linearly
dependent. However, this inaccuracy is intrinsic to the problem and cannot be
avoided except by using higher precision in the calculations. Condition numbers for
linear systems are discussed in Sec. 2.4.4.

1.3.4 Sparse Matrices and Iterative Methods

A matrix A is called a sparse if it contains much fewer than the n2 nonzero elements
of a full matrix of size n × n. Sparse matrices typically arise in many different
applications. In Figure 1.3.1 we show a sparse matrix and its LU factors. In this
case the original matrix is of order n = 479 and contains 1887 nonzero elements,

1.3. Matrix Computations 35

0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

nz = 1887
0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

nz = 5904

Figure 1.3.1. Nonzero pattern of a sparse matrix and its LU factors.

i.e., less than 0.9% of the elements are nonzero. The LU factors are also sparse and
contain together 5904 nonzero elements or about 2.6%.

For many classes of sparse linear systems iterative methods when a are
more efficient o use than direct methods such as Gaussian elimination. Typical
examples are those arising when a differential equation in 2D or 3D is discretized.
In iterative methods a sequence of approximate solutions is computed, which in the
limit converges to the exact solution x. Basic iterative methods work directly with
the original matrix A and therefore has the added advantage of requiring only extra
storage for a few vectors.

In a classical iterative method due to Richardson [32], a sequence of approxi-
mate solutions x(k) is defined by x(0) = 0,

x(k+1) = x(k) + ω(b − Ax(k)), k = 0, 1, 2, . . . , (1.3.16)

where ω > 0 is a parameter to be chosen. It follows easily from (1.3.16) that the
error in x(k) satisfies x(k+1) − x = (I − ωA)(x(k) − x), and hence

x(k) − x = (I − ωA)k(x(0) − x).

The convergence of Richardson’s method will be studied in Sec. 10.1.4 in Volume II.
Iterative methods are used most often for the solution of very large linear

systems, which typically arise in the solution of boundary value problems of partial
differential equations by finite difference or finite element methods. The matrices
involved can be huge, sometimes involving several million unknowns. The LU fac-
tors of matrices arising in such applications typically contain order of magnitudes
more nonzero elements than A itself. Hence, because of the storage and number of
arithmetic operations required, Gaussian elimination may be far too costly to use.

Example 1.3.5.

36 Chapter 1. Principles of Numerical Calculations

In a typical problem for Poisson’s equation (1.1.15) the function is to be de-
termined in a plane domain D, when the values of u are given on the boundary
∂D. Such boundary value problems occur in the study of steady states in most
branches of Physics, such as electricity, elasticity, heat flow, fluid mechanics (in-
cluding meteorology). Let D be the a square grid with grid size h, i.e. xi = x0 + ih,
yj = y0 + jh, 0 ≤ i ≤ N + 1, 0 ≤ j ≤ N + 1. Then the difference approximation
yields

ui,j+1 + ui−1,j + ui+1,j + ui,j−1 − 4ui,j = h2f(xi, yj),

(1 ≤ i ≤ M, 1 ≤ j ≤ N). This is a huge system of linear algebraic equations; one
equation for each interior gridpoint, altogether N2 unknown and equations. (Note
that ui,0, ui,N+1, u0,j , uN+1,j are known boundary values.) To write the equations
in matrix-vector form we order the unknowns in a vector

u = (u1,1, . . . , u1,N , u2,1, . . . , u2,N−1, uN,1, . . . , uN,N).

If the equations are ordered in the same order we get a system Au = b where A
is symmetric with all nonzero elements located in five diagonals; see Figure 1.2.3
(left).

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

nz = 1958
0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

nz = 15638

Figure 1.3.2. Structure of A (left) and L + U (right) for the Poisson
problem, N = 20. (Row-wise ordering of the unknowns)

In principle Gaussian elimination can be used to solve such systems. However,
even taking symmetry and the banded structure into account this would require 1

2·N4

multiplications, since in the LU factors the zero elements inside the outer diagonals
will fill-in during the elimination as shown in Figure 1.3.2 (right).

The linear system arising from Poisson’s equation has several features common
to boundary value problems for all linear partial differential equations. One of
these is that there are at most 5 nonzero elements in each row of A, i.e. only a
tiny fraction of the elements are nonzero. Therefore one iteration in Richardson’s
method requires only about 5·N2 multiplications or equivalently five multiplications

1.3. Matrix Computations 37

per unknown. Using iterative methods which take advantage of the sparsity and
other features does allow the efficient solution of such systems. This becomes even
more essential for three-dimensional problems!

1.3.5 Software for Matrix Computations

In most computers in use today the key to high efficiency is to avoid as much
as possible data transfers between memory, registers and functional units, since
these can be more costly than arithmetic operations on the data. This means that
the operations have to be carefully structured. One observation is that Gaussian
elimination consists of three nested loops, which can be ordered in 3 ·2 ·1 = 6 ways.
Disregarding the right hand side vector b, each version does the operations

a
(k+1)
ij := a

(k)
ij − a

(k)
kj a

(k)
ik /a

(k)
kk ,

and only the ordering in which they are done differs. The version given above uses
row operations and may be called the “kij” variant, where k refers to step number,
i to row index, and j to column index. This version is not suitable for program-
ming languages like Fortran 77, in which matrix elements are stored sequentially
by columns. In such a language the form “kji” should be preferred, which is the
column oriented back-substitution rather than Algorithm 1.3.1 might be preferred.

An important tool for structuring linear algebra computations are the Basic
Linear Algebra Subprograms (BLAS). These are now commonly used to formulate
matrix algorithms and have become an aid to clarity, portability and modularity in
modern software. The original set of BLAS identified frequently occurring vector
operations in matrix computation such as scalar product, adding of a multiple of
one vector to another. For example, the operation

y := αx + y

in Single precision is named SAXPY. These BLAS were adopted in early Fortran
programs and by carefully optimizing them for each specific computer the perfor-
mance was enhanced without sacrificing portability.

For modern computers is is important to avoid excessive data movements
between different parts of memory hierarchy. To achieve this so called level 3 BLAS
have been introduced in the 1990s. These work on blocks of the full matrix and
perform, e.g., the operations

C := αAB + βC, C := αAT B + βC, C := αABT + βC,

Since level 3 BLAS use O(n2) data but perform O(n3) arithmetic operations
and gives a surface-to-volume effect for the ratio of data movement to operations.
LAPACK [2], is a linear algebra package initially released in 1992, which forms
the backbone of the interactive matrix computing system Matlab . LAPACK
achieves close to optimal performance on a large variety of computer architectures
by expressing as much as possible of the algorithm as calls to level 3 BLAS.

38 Chapter 1. Principles of Numerical Calculations

Example 1.3.6.
In 1974 the authors wrote in [8, Sec. 8.5.3] that “a full 1, 000 × 1, 000 system

of equations is near the limit at what can be solved at a reasonable cost”. Today
systemsof this size can easily be handled on a personal computer. The benchmark
problem for the Japanese Earth Simulator, one of the worlds fastest computers in
2004, was the solution of a system of size 1, 041, 216 on which a speed of 35.6×1012

operations per second was measured. This is a striking illustration of the progress
in high speed matrix computing that has occurred in these 30 years!

Review Questions

1. How many operations are needed (approximately) for

(a) The multiplication of two square matrices?

(b) The LU factorization of a square matrix?

(b) The solution of Ax = b, when the triangular factorization of A is known?

2. Show that if the kth diagonal entry of an upper triangular matrix is zero, then
its first k columns are linearly dependent.

3. What is the LU -decomposition of an n by n matrix A, and how is it related to
Gaussian elimination? Does it always exist? If not, give sufficient conditions
for its existence.

4. (a)For what type of linear systems are iterative methods to be preferred to
Gaussian elimination?

(b) Describe Richardson’s method for solving Ax = b. What can you say
about the error in successive iterations?

5. What does the acronym BLAS stand for? What is meant by level 3 BLAS
and why are they used in current linear algebra software??

Problems and Computer Exercises

1. Let A be a square matrix of order n and k a positive integer such that
2p ≤ k < 2p+1. Show how Ak can be computed in at most 2p · n3 multi-
plications.

Hint: Compute A2, A4, A8, . . . , by successive squaring and write k in the bi-
nary number system.

2. (a) Let A and B be square upper triangular matrices of order n. Show that
the product matrix C = AB is also upper triangular. Determine how many
multiplications are needed to compute C.

(b) Show that if R is an upper triangular matrix with zero diagonal elements,
then Rn = 0.

1.4. Numerical Solution of Differential Equations 39

3. Show that there cannot exist a factorization

A =

(

0 1
1 1

)

=

(

l11 0
l21 l22

) (

u11 u12

0 u22

)

.

Hint: Equate the (1, 1)-elements and deduce that either the first row or the
first column in LU must be zero.

4. (a) Consider the special upper triangular matrix of order n,

Un(a) =













1 a a · · · a
1 a · · · a

1 · · · a
. . .

...
1













,

Determine the solution x to the triangular system Un(a)x = en, where en =
(0, 0, . . . , 0, 1)T is the nth unit vector.

(b) Show that the inverse of an upper triangular matrix is also upper trian-
gular. Determine for n = 3 the inverse of of Un(a). Try also to determine
Un(a)−1 for an arbitrary n.

Hint: Use the property of the inverse that UU−1 = U−1U = I, the identity
matrix.

5. A matrix Hn of order n such that hij = 0 whenever i > j + 1 is called an
upper Hessenberg matrix. For n = 5 it has the structure e.g.,

H5 =











h11 h12 h13 h14 h15

h21 h22 h23 h24 h25

0 h32 h33 h34 h35

0 0 h43 h44 h45

0 0 0 h54 h55











.

(a) Determine the approximate number of operations needed to compute the
LU factorization of Hn if no pivoting is needed.

(b) Determine the approximate number of operations needed to solve the
system Hnx = b, when the factorization in (a) is given.

6. Compute the product |L| |U | for the LU factors of the matrix in Example 1.3.4
with and without pivoting.

1.4 Numerical Solution of Differential Equations

1.4.1 Euler’s Method

Approximate solution of differential equations is a very important task in scientific
computing. Nearly all the areas of science and technology contain mathematical
models which leads to systems of ordinary (or partial) differential equations. An
initial value problem for an ordinary differential equation is to find y(x) such
that

dy

dt
= f(t, y), y(0) = c.

40 Chapter 1. Principles of Numerical Calculations

The differential equation gives, at each point (t, y), the direction of the tangent to
the solution curve which passes through the point in question. The direction of the
tangent changes continuously from point to point, but the simplest approximation
(which was proposed as early as the 18th century by Euler) is that one studies the
solution for only certain values of t = tn = nh, n = 0, 1, 2, . . . (h is called the “step”
or “step length”) and assumes that dy/dt is constant between the points. In this
way the solution is approximated by a polygon segment (Fig. 1.4.1) which joins the
points (tn, yn), 0, 1, 2, . . ., where

y0 = c,
yn+1 − yn

h
= f(tn, yn). (1.4.1)

Thus we have a simple recursion formula, Euler’s method:

y0 = c, yn+1 = yn + hf(tn, yn), n = 0, 1, 2 . . . (1.4.2)

During the computation, each yn occurs first on the left-hand side, then recurs

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 1.4.1. Approximate solution of dy/dx = y, y0 = 0.25, by Euler’s
method with h = 0.5.

later on the right-hand side of an equation: hence the name recursion formula.
(One could also call equation (1.4.2) an iteration formula, but one usually reserves
the word “iteration” for the special case where a recursion formula is used solely as
a means of calculating a limiting value.)

1.4.2 An Introductory Example

One of the most important techniques in computer applications to science and tech-
nology is the step by step simulation of a process or the time development of
a system. A mathematical model is first set up, i.e., state variables which
describe the essential features of the state of the system are set up. Then the laws
are formulated, which govern the rate of change of the state variables, and other
mathematical relations between these variables. Finally, these equations are pro-
grammed for a computer to calculate approximately, step by step, the development
in time of the system.

1.4. Numerical Solution of Differential Equations 41

The reliability of the results depends primarily on the goodness of the mathe-
matical model and on the size of the time step. The choice of the time step is partly
a question of economics. Small time steps may give you good accuracy, but also long
computing time. More accurate numerical methods are often a good alternative to
the use of small time steps. Such questions will be discussed in depth in Chapter 13
in Volume III.

The construction of a mathematical model is not trivial. Knowledge of nu-
merical methods and programming helps also in that phase of the job, but more
important is a good understanding of the fundamental processes in the system, and
that is beyond the scope of this text. It is, however, important to realize that if
the mathematical model is bad, no sophisticated numerical techniques or powerful
computers can stop the results from being unreliable, or even harmful.

A mathematical model can be studied by analytic or computational tech-
niques. Analytic methods do not belong to this text. We want, though, to empha-
size that the comparison with results obtained by analytic methods, in the special
cases when they can be applied, can be very useful when numerical methods and
computer programs are tested. We shall now illustrate these general comments on
a particular example.

Example 1.4.1.
Consider the motion of a ball (or a shot) under the influence of gravity and air

resistance. It is well known that the trajectory is a parabola, when the air resistance
is neglected and the force of gravity is assumed to be constant. We shall still neglect
the variation of the force of gravity and the curvature and the rotation of the earth.
This means that we forsake serious applications to satellites, etc. We shall, however,
take the air resistance into account. We neglect the rotation of the shot around its
own axis. Therefore we can treat the problem a a motion in a plane, but we have to
forsake the application to, for example, table tennis or a rotating projectile. Now
we have introduced a number of assumptions, which define our model of reality.

The state of the ball is described by its position (x, y) and velocity (u, v),
each of which has two Cartesian coordinates in the plane of motion. The x-axis is
horizontal, and the y-axis is directed upwards. Assume that the air resistance is
a force P , such that the direction is opposite to the velocity, and the strength is
proportional to the square of the speed and to the square of the radius R of the
shot. If we denote by Px and Py the components of P along the x and y directions,
respectively, we can then write,

Px = −mzu, Py = −mzv, z =
cR2

m

√

u2 + v2, (1.4.3)

where m is the mass of the ball.
For the sake of simplicity we assume that c is a constant. It actually depends on

the density and the viscosity of the air. Therefore, we have to forsake the application
to cannon shots, where the variation of the density with height is important. If one
has access to a good model of the atmosphere, the variation of c would not make
the numerical simulation much more difficult. This contrasts to analytic methods,
where such a modification is likely to mean a considerable complication. In fact,

42 Chapter 1. Principles of Numerical Calculations

even with a constant c, a purely analytic treatment offers great difficulties.
Newton’s law of motion tells us that,

mdu/dt = Px, mdv/dt = −mg + Py, (1.4.4)

where the term −mg is the force of gravity. Inserting (1.4.3) into (1.4.4) and dividing
by m we get

du/dt = −zu, dv/dt = −g − zv, (1.4.5)

By the definition of velocity,

dx/dt = u, dy/dt = v, (1.4.6)

Equations (1.4.5) and (1.4.6) constitute a system of four differential equations for
the four variables x, y, u, v. The initial state x0, y0, and u0, v0 at time t0 = 0
is assumed to be given. A fundamental proposition in the theory of differential
equations tells that, if initial values of the state variables u, v, x, y are given at some
initial time t = t0, then they will be uniquely determined for all t > t0.

The simulation in Example 1.4.1 means that, at a sequence of times, tn, n =
0, 1, 2, . . ., we determine the approximate values, un, vn, xn, yn. We first look at the
simplest technique, using Euler’s method with a constant time step h. Set therefore
tn = nh. We replace the derivative du/dt by the forward difference quotient (un+1−
un)/h, and similarly for the other variables. Hence after multiplication by h, the
differential equations are replaced by the following system of difference equations:

un+1 − un = −hznun,

vn+1 − vn = −h(g + znvn), (1.4.7)

xn+1 − xn = hun, yn+1 − yn = hvn,

from which un+1, vn+1, xn+1, yn+1, etc. are solved, step by step, for n = 0, 1, 2, . . .,
using the provided initial values u0, v0, x0, y0. Here zn is obtained by insertion of
u = un, v = vn into (1.4.3).

We performed these computations until yn+1 became negative for the first
time, with g = 9.81, φ = 60o, and the initial values

x0 = 0, y0 = 0, u0 = 100 cosφ, v0 = 100 sinφ.

In Fig. 1.4.2 are shown curves obtained for h = 0.01, and cR2/m = 0.25i · 10−3,
i = 0, 1, 2, 3, 4. There is, in this graphical representation, also an error due to the
limited resolution of the plotting device.

In Euler’s method the state variables are locally approximated by linear func-
tions of time, one of the often recurrent ideas in numerical computation. We can
use the same idea for computing the coordinate x∗ of the point, where the shot hits
the ground. Suppose that yn+1 becomes negative for the first time when n = N .
For xN ≤ x ≤ xN+1 we then approximate y by a linear function of x, represented
by the secant through the points (xN , yN) and(xN+1, yN+1) , i.e.,

y = yN + (x − xN)
yN+1 − yN

xN+1 − xN
.

1.4. Numerical Solution of Differential Equations 43

0 100 200 300 400 500 600 700 800

−100

0

100

200

300

400

500

i = 0

1

2
3

4

Figure 1.4.2. Approximate trajectories computed with Euler’s method for
cR2/m = 0.25i · 10−3, i = 0 : 4, and h = 0.01.

By setting y = 0 we obtain

x∗ = xN − yN
xN+1 − xN

yN+1 − yN
. (1.4.8)

The error from the linear approximation in (1.4.8) used for the computation of x∗

is proportional to h2. It is thus approximately equal to the error committed in one
single step with Euler’s method, and hence of less importance than the other error.

The case without air resistance (i = 0) can be solved exactly. In fact it can be
shown that x∗ = 2u0v0/9.81 = 5000 ·

√
3/9.81 = 882.7986. The computer produced

x∗ = 883.2985 for h = 0.01, and x∗ = 883.7984 for h = 0.02. The error for h = 0.01
is therefore 0.4999, and for h = 0.02 it is 0.9998. The approximate proportionality
to h is thus verified, actually more strikingly than could be expected!

It can be shown that the error in the results obtained with Euler’s method is
also proportional to h (not h2). Hence a disadvantage of the above method is that
the step length h must be chosen quite short if reasonable accuracy is desired. In
order to improve the method we can apply another idea mentioned in the previously,
namely Richardson extrapolation. The application differs a little from the one you
saw there, because now the error is approximately proportional to h, while for the
trapezoidal rule it was approximately proportional to h2. For i = 4, the computer
produced x∗ = 500.2646 and x∗ = 500.3845 for, respectively, h = 0.01 and h = 0.02.
Now let x∗ denote the exact coordinate of the landing point. Then

x∗ − 500.2646 ≈ 0.01k, x∗ − 500.3845 ≈ 0.02k.

By elimination of k we obtain

x∗ ≈ 2 · 500.2646− 500.3845 = 500.1447,

44 Chapter 1. Principles of Numerical Calculations

which should be a more accurate estimate of the landing point. By a more accurate
integration method we obtained 500.1440. So in this case, we gained more than two
decimal digits by the use of Richardson extrapolation.

The simulations shown in Fig. 1.4.2 required about 1500 time steps for each
curve. This may seem satisfactory, but we must not forget that this is a very small
task, compared to most serious applications. So we would like to have a method
that allows much larger time steps than Euler’s method.

1.4.3 A Second Order Accurate Method

In step by step computations we have to distinguish between the local error, i.e.,
the error that is committed at a single step, and the global error, i.e., the error
of the final results. Recall that we say that a method is accurate of order p, if
its global error is approximately proportional to hp. Euler’s method is only first
order accurate; we shall below present a method that is second order accurate. To
achieve the same accuracy as with Euler’s method the number of steps can then be
reduced to about the square root of the number of steps in Euler’s method, e.g., in
the above ball problem to

√
1500 ≈ 40 steps. Since the amount of work is closely

proportional to the number of steps this is an enormous saving!
Another question is how the step size h is to be chosen. It can be shown that

even for rather simple examples (see below) it is adequate to use very different step
size in different parts of the computation. Hence the automatic control of the step
size (also called adaptive control) is an important issue.

Both requests can be met by an improvement of the Euler method (due to
Runge) obtained by the applying the Richardson extrapolation in every second
step. This is different from our previous application of the Richardson idea. We
first introduce a better notation by writing a system of differential equations
and the initial conditions in vector form

dy/dt = f(t,y), y(a) = c, (1.4.9)

where y is a column vector that contains all the state variables.8 With this notation
methods for large systems of differential equations can be described as easily as
methods for a single equation. The change of a system with time can then be
thought of as a motion of the state vector in a multidimensional space, where the
differential equation defines the velocity field. This is our first example of the
central role of vectors and matrices in modern computing. We temporarily use
superscripts for the vector components, because we need subscripts for the same
purpose as in the above description of Euler’s method.

For the ball example, we have by (1.4.5) and (1.4.6)

y =







y1

y2

y3

y4






≡







x
y
u
v






, f(t,y) =







y3

y4

−zy3

−g − zy4






, c = 102







0
0

cosφ
sin φ






,

8The boldface notation is temporarily used for vectors in this section, not in the rest of the
book.

1.4. Numerical Solution of Differential Equations 45

where

z =
cR2

m

√

(y3)2 + (y4)2.

The computations in the step which leads from tn to tn+1 are then as follows:

i. One Euler step of length h yields the estimate:

y∗

n+1 = yn + hf(tn,yn).

ii. Two Euler steps of length 1
2h yield another estimate:

yn+ 1

2

= yn +
1

2
hf(tn, yn); y∗∗

n+1 = yn+ 1

2

+
1

2
hf(tn+1/2,yn+1/2),

where tn+1/2 = tn + h/2.

iii. Then yn+1 is obtained by Richardson extrapolation:

yn+1 = y∗∗

n+1 + (y∗∗

n+1 − y∗

n+1).

It is conceivable that this yields a 2nd order accurate method. It is left as an
exercise (Problem 2) to verify that this scheme is identical to the following somewhat
simpler scheme known as Runge’s 2nd order method:

k1 = hnf(tn,yn);

k2 = hnf(tn + hn/2,yn + k1/2); (1.4.10)

yn+1 = yn + k2,

where we have replaced h by hn in order to include the use of variable step size.
Another explanation of the 2nd order accuracy of this method is that the displace-
ment k2 equals the product of the step size and a sufficiently accurate estimate
of the velocity at the midstep of the time step. A more detailed analysis of this
method comes in Sec. 13.3.2. Sometimes this method is called the improved Euler
method or Heun’s method, but these names are also used to denote other 2nd order
accurate methods.

We shall now describe how the step size can be adaptively (or automatically)
controlled by means of a tolerance tol, by which the user tells the program how
large error he tolerates in values of variables (relative to the values themselves).9

Compute
δ = max

i
|ki

2 − ki
1|/|3yi|,

where δ is related to the relative errors of the components of the vector y; see below.
A step size is accepted if δ ≤ tol, and the next step should be

hnext = h min{1.5,
√

tol/(1.2δ)},
9With the terminology that will be introduced in the next chapter, TOL is, with the step size

control described here, related to the global relative errors . At the time of writing, this contrasts
to most codes for the solution of ordinary differential equations, in which the local errors per step
are controlled by the tolerance.

46 Chapter 1. Principles of Numerical Calculations

where 1.2 is a safety factor, since the future is never exactly like the past The
square root occurring here is due to the fact that this method is 2nd order accurate,
i.e., the global error is almost proportional to the square of the step size and δ is
approximately proportional to h2.

A step is rejected, if δ > tol, and recomputed with the step size

hnext = h max{0.1,
√

tol/(1.2δ)}.

The program needs a suggestion for the size of the first step. This can be be
a very rough guess, because the step size control described above, will improve it
automatically, so that an adequate step size is found after a few steps (or recompu-
tations, if the suggested step was too big). In our experience, a program of this sort
can efficiently handle guesses that are wrong by several powers of 10. If y(a) 6= 0
and y′(a) = 0, you may try the initial step size

h =
1

4

∑

i

|yi|
/

∑

i

|dyi/dt|

evaluated at the initial point t = a. When you encounter the cases y(a) = 0 or
y′(a) = 0 for the first time, you are likely to have gained enough experience to
suggest something that the program can handle. More professional programs take
care of this detail automatically.

The request for a certain relative accuracy may cause trouble when some
components of y are close to zero. So, already in the first version of your program,
you had better replace yi in the above definition of δ by ȳi = max{|yi|, 0.001}.
A more detailed discussion of such matters follows in Sections 13.1 and 13.2 in
Volume II (see in particular Computer Exercise 13.1.1). (You may sometimes have
to replace the default value 0.001 by something else.)

It is a good habit to make a second run with a predetermined sequence of
times (if your program allows this) instead of adaptive control. Suppose that the
sequence of times used in the first run is t0, t1, t2, Divide each subinterval
[tn, tn+1] into two steps of equal length. So, the second run still has variable step
size and twice as many steps as the first run. The errors are therefore expected to
be approximately 1

4 of the errors of the first run. The first run can therefore use a
tolerance that is 4 times as large than the error you can tolerate in the final result.
Denote the results of the two runs by yI(t) and yII(t). You can plot 1

3 (yII(t)−yI(t))
versus t; this is an error curve for yII(t) Alternatively you can add 1

3 (yII(t)− yI(t))
to yII(t). This is another application of the Richardson extrapolation idea. The
cost is only 50% more work than the plain result without an error curve.

If there are no singularities in the differential equation, 1
3 (yII(t) − yI(t))

strongly overestimates the error of the extrapolated values—typically by a factor
like tol

−1/2. It is, however, a non-trivial matter to find an error curve that strictly
and realistically tells how good the extrapolated results are. There will be more
comments about these matters in Sec. 3.3.4 in Volume II (see also Example 13.2.1
in Volume III). The reader is advised to test experimentally how this works on
examples where the exact results are known.

1.4. Numerical Solution of Differential Equations 47

An easier, though inferior, alternative is to run a problem with two different
tolerances. One reason why it is inferior is that the two runs do not ”keep in step”.
For example, Richardson extrapolation cannot be easily applied.

If you request very high accuracy in your results, or if you are going to sim-
ulate a system over a very long time, you will need a method with a higher order
of accuracy than two. The reduction of computing time if you replace this method
by a higher order method can be large, but the improvements are seldom as dras-
tic as when you replace Euler’s method by a second order accurate scheme like
this. Runge’s 2nd order method is, however, no universal recipe. There are spe-
cial classes of problems, notably the problems which are called “stiff”, which need
special methods. These matters are treated in Chapter 13.

One advantage of a second order accurate scheme when requests for accuracy
are modest, is that the quality of the computed results is normally not ruined by
the use of linear interpolation at the graphical output, or at the post-processing
of numerical results. (After you have used a more than second order accurate
integration method, it may be necessary to use a more sophisticated interpolation
at the graphical or numerical treatment of the results.)

Example 1.4.2.
The differential equation y′ = − 1

2y3, with initial condition y(1) = 1, was
treated by a program, essentially constructed as described above, with tol = 10−4

until t = 104.
In this example we can compare with the exact solution, y(t) = t−1/2. It was

found that the actual relative error stayed a little less than 1.5tol all the time
when t > 10. The step size increased almost linearly with t from h = 0.025 to
h = 260. The number of steps increased almost proportionally to log t; the total
number of steps was 374. Only one step had to be recomputed (except for the first
step, where the program had to find an appropriate step size).

The computation was repeated with tol = 4 · 10−4. The experience was the
same, except that the steps were about twice as long all the time. This is what can
be expected, since the step sizes should be approximately proportional to

√
tol,

for a second order accurate method. The total number of steps was 194.

Example 1.4.3.
The example of the motion of a ball was treated by Runge’s 2nd order method

with the constant step size h = 0.9. The coordinate of the landing point became
x∗ = 500.194, which is more than twice as accurate than the result obtained by
Euler’s method (without Richardson extrapolation) with h = 0.01, which uses about
90 times as many steps.

We have now seen a variety of ideas and concepts which can be used in the
development of numerical methods. A small warning is perhaps warranted here: it
is not certain that the methods will work as well in practice as one might expect.
This is because approximations and the restriction of numbers to a certain number
of digits introduce errors which are propagated to later stages of a calculation. The

48 Chapter 1. Principles of Numerical Calculations

manner in which errors are propagated is decisive for the practical usefulness of a
numerical method. We shall examine such questions in Chapter 2. Later chapters
will treat propagation of errors in connection with various typical problems.

The risk that error propagation may up-stage the desired result of a numerical
process should, however, not dissuade one from the use of numerical methods. It is
often wise, though, to experiment with a proposed method on a simplified problem
before using it in a larger context. The development of hardware as well as software
has created a far better environment for such work than we had a decade ago. In
this area too, the famous phrase of the Belgian-American chemist Baekeland holds:

“Commit your blunders on a small scale and make your profits on a
large scale.”

Review Questions

1. Explain the difference between the local and global error of a numerical method
for solving a differential equation. What is meant by the order of accuracy for
a method?

2. Describe how Richardson extrapolation can be used to increase the order of
accuracy of Euler’s method.

Problems and Computer Exercises

1. Integrate numerically using Euler’s method the differential equation dy/dx =
y, with initial conditions y(0) = 1, to x = 0.4:

(a) with step length h = 0.2 and h = 0.1.

(b) Extrapolate to h = 0, using the fact that the error is approximately
proportional to the step length. Compare the result with the exact solution
of the differential equation and determine the ratio of the errors in the results
in (a) and (b).

(c) How many steps would have been needed in order to attain, without using
extrapolation, the same accuracy as was obtained in (b)?

2. (a) Write a program for the simulation of the motion of the ball, using Euler’s
method and the same initial values and parameter values as above. Print only
x, y at integer values of t and at the last two points (i.e. for n = N and
n = N + 1) as well as the coordinate of the landing point. Take h = 0.05
and h = 0.1. As post-processing, improve the estimates of x∗ by Richardson
extrapolation, and estimate the error by comparison with the results given in
the text above.

(b) In Equation (1.4.8) replace in the equations for xn+1 and yn+1 the right
hand sides un and vn by, respectively, un+1 and vn+1. Then proceed as in (a)
and compare the accuracy obtained with that obtained in (a).

1.5. Monte Carlo Methods 49

(c) Choose initial values which correspond to what you think is reasonable for
shot put. Make experiments with several values of u0, v0 for c = 0. How much
is x∗ influenced by the parameter cR2/m?

3. Verify that Runge’s 2nd order method, as described by equation (1.4.10), is
equivalent to the scheme described a few lines earlier (with Euler steps and
Richardson extrapolation).

4. Write a program for Runge’s 2nd order method with automatic step size con-
trol that can be applied to a system of differential equations, or use the Mat-

lab program on the diskette. Store the results so that they can be processed
afterwards, e.g., for making table of the results, and/or curves to be drawn
showing y(t) versus t, or (for a system) y2 versus y1, or some other interesting
curves.
Apply the program to Examples 1.4.2 and 1.4.3, and to the circle test, i.e.

y′

1 = −y2, y′

2 = y1,

with initial conditions y1(0) = 1, y2(0) = 0. Verify that the exact solution is
a uniform motion along the unit circle in the (y1, y2)-plane. Stop the com-
putations after 10 revolutions (t = 20π). Make experiments with different
tolerances, and determine how small the tolerance has to be in order that the
circle on the screen should not become “thick”.

1.5 Monte Carlo Methods

1.5.1 Origin of Monte Carlo Methods

In most of the applications of probability theory one makes a mathematical formu-
lation of a stochastic problem (i.e., a problem where chance plays some part), and
then solves the problem by using analytical or numerical methods. In the Monte
Carlo method, one does the opposite; a mathematical or physical problem is
given, and one constructs numerical game of chance, the mathematical analysis
of which leads to the same equations as the given problem, e.g., for the probability
of some event, or for the mean of some random variable in the game. One plays
it N times and estimates the relevant quantities by traditional statistical methods.
Here N is a large number, because the standard deviation of a statistical estimate
typically decreases only inversely proportional to

√
N .

The idea behind the Monte Carlo method was used by the Italian physicist
Enrico Fermi to study the neutron diffusion in the early 1930s. Fermi used a small
mechanical adding machine for this purpose. With the development of comput-
ers larger problems could be tackled. At Los Alamos in the late 1940s the use of

50 Chapter 1. Principles of Numerical Calculations

Inside Shield Outside

Figure 1.5.1. Neutron scattering.

the method was pioneered by von Neumann,10 and Ulam11 and others for many
problems in mathematical physics including approximating complicated multidi-
mensional integrals. The picturesque name of the method was coined by Nicholas
Metropolis.

The Monte Carlo method is now so popular that the definition is too narrow.
For instance, in many of the problems where the Monte Carlo method is successful,
there is already an element of chance in the system or process which one wants to
study. Thus such games of chance can be considered to be a numerical simulation
of the most important aspects. In this wider sense the “Monte Carlo methods also
include techniques used by statisticians since around 1900, under names like ex-
perimental or artificial sampling. For example, one used statistical experiments to
check the adequacy of certain theoretical probability laws, which the eminent scien-
tist W .S .Gosset, who used the pseudonym “Student” when he wrote on Probability,
had derived mathematically.

Monte Carlo methods may be used, when the changes in the system are de-
scribed with a much more complicated type of equation than a system of ordinary
differential equations. Note that there are many ways to combine analytical meth-
ods and Monte Carlo methods. An important rule is that if a part of a problem
can be treated with analytical or traditional numerical methods, then one should use
such methods.

The following are some areas where the Monte Carlo method has been applied:

(a) Problems in reactor physics; for example, a neutron, because it collides with
other particles, is forced to make a random journey. In infrequent but impor-
tant cases the neutron can go through a layer of (say) shielding material (see

10John von Neumann was born János Neumann in Budapest 1903, and died in Washington
D.C. 1957. He studied under Hilbert in Göttingen during 1926–27, was appointed professor at
Princeton University in 1931, and in 1933 joined the newly founded Institute for Advanced Studies
in Princeton. He built a framework for quantum mechanics, worked in game theory and was one
of the pioneers of computer science.

11Stanislaw Marcin Ulam, born in Lemberg, Poland (now Lwow, Ukraine) 1909, died in Santa
Fe, New Mexico, USA, 1984. Ulam obtained his Ph.D. in 1933 from the Polytechnic institute of
Lwow, where he studied under Banach. He was invited to Harward University by G. D. Birkhoff
in 1935, and left Poland permanently in 1939. In 1943 he was asked by von Neumann to come to
Los Alamos, where he remained until 1965.

1.5. Monte Carlo Methods 51

Fig. 1.5.1).

(b) Technical problems concerning traffic (telecommunication, railway networks,
regulation of traffic lights and other problems concerning automobile traffic).

(c) Queuing problems.

(d) Models of conflict.

(e) Approximate computation of multiple integrals.

(f) Stochastic models in financial mathematics.

Monte Carlo methods are often used for the evaluation of high dimensional
(10–100) integrals over complicated regions. Such integrals occur in such diverse ar-
eas as quantum physics and mathematical finance. The integrand is then evaluated
at random points uniformly distributed in the region of integration. The arithmetic
mean of these function values is then used to approximate the integral. Such ran-
domization makes multivariate integration computationally feasible. Interestingly
choosing the evaluation points uniformly distributed in the region of integration is
not the optimal strategy. Instead one should use “quasi-random numbers” designed
specifically for that purpose; see Sec. 5.??.

In a simulation, one can study the result of various actions more cheaply, more
quickly, and with less risk of organizational problems than if one were to take the
corresponding actions on the actual system. In particular, for problems in applied
operations research, it is quite common to take a shortcut from the actual system to
a computer program for the game of chance, without formulating any mathematical
equations. The game is then a model of the system. In order for the term Monte
Carlo method to be correctly applied, however, random choices should occur
in the calculations. This is achieved by using so-called random numbers; the
values of certain variables are determined by a process comparable to dice throwing.
Simulation is so important that several special programming languages have been
developed exclusively for its use.12

In the rest of this section we assume that the reader is familiar with some
basic concepts, formulas and results from Probability and Statistics, and we make
use of them without proofs (which may be found in most texts on these subjects).
The terminology of Probability and Statistics is varied, in particular within areas
of application. We shall use the following terms for probability distributions in R:

The distribution function of a random variable X is denoted by F (x) and
defined by

F (x) = Pr{X ≤ x}.

Note that F (x) is non-negative and non-decreasing, F (−∞) = 0, F (∞) = 1. If

12One notable example is the SIMULA programming language designed and built by Ole-Johan
Dahl and Kristen Nygaard at the Norwegian Computing Center in Oslo 1962–1967, It was originally
built as a language for discrete event simulation, but was influential also because it introduced
object-oriented programming concepts.

52 Chapter 1. Principles of Numerical Calculations

F (x) is differentiable, the (probability) density function 13 is f(x) = F ′(x). Note
that

f(x) ≥ 0,

∫

R

f(x) dx = 1,

and

Pr{X ∈ [x, x + dx] = f(x) dx + o(dx)}.
In the discrete case X can only take on discrete values xi, i = 1 : N , and

Pr{X = xi} = pi, i = 1 : N.

where pi ≥ 0 and
∑

i pi = 1.
The mean or the expectation of X is

E(X) =



















∫

R

xf(x) dx, continuous case,

N
∑

i=1

pixi, discrete case,

The variance of X equals

var(X) = E((X − m)2),

where m = E(X) and std(X) =
√

var(X) is the standard deviation. If Xj

and Xk, i 6= j, are two random variables with mean values mj and mk, then their
covariance is

covar(Xj , Xk) = E((Xj − mj)(Xk − mk)).

If covar(Xj , Xk) = 0 then Xj and Xk are said to be uncorrelated.
Some formulas for the estimation of mean, standard deviation etc., from re-

sults of simulation experiments or other statistical data are given in the computer
exercises of Sec. 2.3. See also the references to the Matlab Reference Guide in the
problems and exercises of the present section.

1.5.2 Random and Pseudo-Random Numbers

In the beginning coins, dice and roulettes were used for creating the randomness,
e.g., the sequence of twenty digits

11100 01001 10011 01100

is a record of twenty tosses of a coin where “heads” are denoted by 1 and “tails”
by 0. Such digits are sometimes called (binary) random digits, assuming that we
have a perfect coin—i.e., that heads and tails have the same probability of occurring.

13In old literature a density function is often called a frequency function. The term cumulative
distribution is also used as a synonym of distribution function. Unfortunately, distribution or
probability distribution is sometimes used in the meaning of a density function.

1.5. Monte Carlo Methods 53

We also assume that the tosses of the coin are made in a statistically independent
way. (Of course, these assumptions cannot be obtained in practice!)

Similarly, decimal random digits could in principle be obtained by using a
well-made icosahedral (twenty-sided) dice, and assigning each decimal digit to two
of its sides. Such mechanical (or analogous electronical) devices have been used
to produce tables of random sampling digits; the first one by Tippett was
published in 1927 and was to be considered as a sequence of 40, 000 independent
observations of a random variable that equals one of the integer values 0, 1, 2, . . . , 9,
each with probability 1/10. In the early 1950s the Rand Corporation constructed
a million-digit table of random numbers using an electrical “roulette wheel” ([6,
]). The wheel had 32 slots, of which 12 were ignored; the others were numbered
from 0 to 9 twice. To test the quality of the randomness several tests were applied.
Every block of a thousand digits in the tables (and also the table as a whole) were
tested.

Example 1.5.1.
A random number generator to be used for drawing of prizes of Swedish Pre-

mium Saving Bonds was developed in 1962 by Dahlquist [7]. For this application
speed is not a major concern, since relatively few random decimal digits (about
50,000) are needed. Therefore an algorithm, which is easier to analyze, was chosen.
This uses a primary series of less than 240 decimal random digits produced by some
mechanical device, or taken from a table of random numbers. The length of the
primary series is n = p1 + p2 + · · · + pk, where pi are prime numbers and pi 6= pj ,
i 6= j. For the analysis it is assumed that the primary series is perfectly random.

The primary series is used in a way that is best described by a mechanical
analogy. Think of k cog-wheels with pi cogs, i = 1 : k, and place the digits from
the primary series on the cogs of these. The first digit in the secondary series is
obtained by adding the k digits (modulus 10) that are at the top position of each
cog-wheel. Then each wheel is turned one cog clock-wise and the second digit is
obtained in the same way as the first, etc. After p1 · p2 · · · pk steps we are back in
the original position. This is the minimum period of the secondary series of random
digits.

For the application mentioned above k = 7 prime numbers, in the range 13 ≤
pi ≤ 53, are randomly selected. This gives a varying minimum period approximately
equal to 108, which is much more than the number of digits used to produce the
drawing list. Considering the public reaction the primary series is generated by a
tombola drawing.

Random digits from a table can be packed together to give a sequence of
equidistributed integers. For example, the sequence

55693 02945 81723 43588 81350 76302 . . .

can be considered as six five-digit random numbers, where each element in the
sequence has probability of 10−5 of taking on the value, 0,1,2,. . . ,99,999. From the

54 Chapter 1. Principles of Numerical Calculations

same digits one can also construct the sequence

0.556935, 0.029455, 0.817235, 0.435885, 0.813505, 0.763025, . . . , (1.5.1)

which can be considered a good approximation to a sequence of independent ob-
servations of a variable which is a sequence of uniform deviates in on the interval
[0, 1). The 5 in the sixth decimal place is added in order to get the correct mean
(without this the mean would be 0.499995 instead of 0.5).

We shall return to this in the next subsection, together with the further devel-
opment in the computer age, where arithmetic methods are used for producing
the so-called pseudo-random numbers needed for the large-scale simulations that
nowadays are demanded, e.g. in the areas applications mentioned below.14

In a computer it is usually not appropriate to store a large table of random
numbers. One instead computes a sequence of uniform deviates u0, u1, u2, . . . ,∈
[0, 1], by a random number generator, (RNG) i.e., some arithmetic algorithm.
Sequences obtained in this way are uniquely determined by one or more starting
values (seeds), to be given by the user (or some default values). The aim of a
pseudo-random number generator is to imitate the abstract mathematical concept
of mutually independent random variables uniformly distributed over the interval
[0, 1). They should be analyzed theoretically and be backed by practical evidence
from extensive statistical testing. According to a much quoted statement by D. H.
Lehmer15

“A random sequence is a vague notion . . . in which each term is un-
predictable to the uninitiated and whose digits pass a certain number of
tests traditional with statisticians. . .”

Because the set of floating point numbers in [0, 1] is finite, although very large,
there will eventually appear a number that has appeared before, (say) ui+j = ui

for some positive i, j. The sequence {un} therefore repeats itself periodically for
n ≥ i; the length of the period is j. A truly random sequence is, of course, never
periodic. A sequence generated like this is, for this and for other reasons, called
pseudo-random. However, the ability to repeat exactly the same sequence of
numbers, which is needed for program verification and variance reduction, is a
major advantage over generation by physical devices.

There are two popular myths about the making of random number generators:

(1) it is impossible; (2) it is trivial

We have seen that the first myth is correct, unless we add the prefix “pseudo”.16

The second myth, however, is completely false.

14Several physical devices for random number generation, using for instance electronic or ra-
dioactive noise, have been proposed but very few seem to have been inserted in an actual computer
system.

15Some readers may think that Lehmer’s definition is too vague. There have been many deep
attempts for more precise formulation. See Knuth [17, pp. 149–179], who catches the flavor of the
philosophical discussion of these matters and contributes to it himself.

16“Anyone who considers arithmetic methods of producing random numbers is, of course, in a
state of sin ”, John von Neumann (1951).

1.5. Monte Carlo Methods 55

In a computer the fundamental concept is not a sequence of decimal random
digits, but the uniform random deviates, i.e., a sequence of mutually indepen-
dent observations of a random variable U with a uniform distribution on [0, 1); the
density function of U is thus (with a temporary notation)

f1(u) =

{

1, if u ∈ (0, 1);
0, otherwise.

Random deviates for other distributions, are generated by means of uniform devi-
ates, e.g., the variable X = a + (b − a)U is a uniform deviate on (a, b).. Its density
function isf(x) = f1((x − a)/(b − a)). If [a, b] = [0, 1] we usually write “uniform
deviate” (without mentioning the interval). We often write “deviate” instead of
“random deviate”, when the meaning is evident from the context.

The most widely generators used for producing pseudo-random numbers are
the multiple recursive generator based on linear recurrences of order k

xi = a1xi−1 + · · · + akxi−k + c mod m, (1.5.2)

i.e., xi is the remainder obtained when the right hand side is divided by the modulus
m. Here m is a positive integer and the coefficients a1, . . . , ak belong to the set
{0, 1, . . . , m − 1}. The state at step i is si = (xi−k+1, . . . , xi) and the generator
is started from a seed sk−1 = (x0, . . . , xk−1). When m is large the output can
be taken as the number ui = xi/m. When k = 1, we obtain the classical linear
congruential generator.

An important characteristic of a RNG is its period, which is the maximum
length of the sequence before it begins to repeat. Note that if the algorithm for
computing xi only depends on xi−1, then the entire sequence repeats once the seed
x0 is duplicated.

A good RNG should have an extremely long period. If m is a prime number
and and if the coefficients aj satisfy certain conditions, then the generated sequence
has the maximal period length mk − 1; see Knuth [17].

The linear congruential generator defined by

xi = 16807xi−1 mod (231 − 1), (1.5.3)

with period length (231−2), was proposed originally by Lewis, Goodman, and Miller
(1969). It has been widely used in many software libraries for statistics, simulation
and optimization. In the survey by Park and Miller [29] this generator was proposed
as a “minimal standard” against which other generators should be judged. A similar
generator but with the multiplier 77 = 823543 was used in Matlab 4.

Marsaglia [22] pointed out a theoretical weakness of all linear congruential
generators. He showed that if k successive random numbers (xi+1, . . . , xi+k) at
a time are generated and used to plot points in k-dimensional space, then they
will lie on (k − 1)-dimensional hyperplanes, and will not fill up the space. More
precisely the values will lie on a set of, at most (k!m)1/k ∼ (k/e)m1/k equidistant
parallel hyperplanes in the k-dimensional hypercube (0, 1)k. When the number of
hyperplanes is too small, this obviously is a strong limitation to the k-dimensional

56 Chapter 1. Principles of Numerical Calculations

uniformity. For example, for m = 231 − 1 and k = 3, this is only about 1600 planes.
This clearly may interfere with a simulation problem.

If the constants m, a and c are not very carefully chosen, there will be many
fewer hyperplanes than the maximum possible. One such infamous example is the
linear congruential generator with a = 65539, c = 0 and m = 231 used by IBM
mainframe computers for many years.

Another weakness of linear congruential generators is that their low-order
digits are much less random than their high-order digits. Therefore when only part
of a generated random number is used one should pick the high-order digits.

One approach to better generators is to combine two RNGs. One possibility
is to use a second RNG to shuffle the output of a linear congruential generator. In
this way it is possible to get rid of some serial correlations in the output; see the
generator ran1 described in Press et. al. [31, Chapter 7.1].

At the time of writing simplistic and unreliable RNGs still abound in some
other commercial software products, despite the availability of much better alter-
natives. L’Ecuyer [19] reports on tests of RNGs used in some popular software
products. Microsoft Excel uses the linear congruential generator

ui = 9821.0un−1 + 0.211327 mod 1,

implemented directly for the ui in floating point arithmetic. Its period length
depends on the precision of the arithmetic and it is not clear what it is. Microsoft
Visual Basic uses a linear congruential generator with period 224, defined by

xi = 1140671485xi−1 + 12820163 mod (224),

and takes ui = xi/224. The Unix standard library uses the recurrence

xi = 25214903917xi−1 + 12820163 mod (248),

with period length 248 and sets ui = xi/248. The Java standard library uses the
same recurrence but construct random deviates ui from x2i and x2i+1.

One conclusion of recent tests is that when large sample sizes are needed all
the above RNGs are unsafe to use and can fail decisively. It has been observed that
to avoid misleading results the period length ρ of the RNG needs to be such that
generating ρ1/3 numbers is not feasible. Thus a period length of 224 or even 248

may not be enough. Linear RNGs are also unsuitable for cryptographic applications,
because the output is too predictable. For this reason, nonlinear generators have
been developed, but these are in general much slower than the linear generators.

In Matlab 5 and later versions the previous linear congruential generator
has been replaced with a much better generator, based on ideas of G, Marsaglia.
This generator has a 35 element state vector and can generate all the floating point
numbers in the closed interval [2−53, 1 − 2−53]. Theoretically it can generate 21492

values before repeating itself; see Moler [26]. If one generates one million random
numbers a second it would take 10435 years before it repeats itself!

Some recently developed linear RNGs can generate huge samples of pseudo-
random numbers very fast and reliably. The multiple recursive generator MRG32k3a

1.5. Monte Carlo Methods 57

proposed by L’Ecuyer has a period near 2191. The Mersenne twister MT19937
by Matsumoto and Nishimura [25], the current “World Champion” among RNGs,
has a period length of 219937 − 1!

1.5.3 Testing Pseudo-Random Number Generators

Many statistical tests have been adapted and extended for the examination of arith-
metic methods of (pseudo-)random number generation, in use or proposed for digital
computers. In these the observed frequencies (a histogram) for some random vari-
able associated with the test, is compared with the theoretical frequencies on the
hypothesis that the numbers are independent observations from a true sequence of
random digits without bias. This is done by means of the famous χ2-test of K.
Pearson [30]17, which we now describe.

Suppose that the space S of the random variable is divided into a finite number
r of non-overlapping parts S1, . . . , Sr. These parts may be groups into which the
sample values have been arranged for tabulation purposes. Let the corresponding
group probabilities be pi = Pr(Si), i = 1, . . . , r, where

∑

i pi = 1. We now form
a measure of the deviation of the observed frequencies ν1, . . . , νr,

∑

i νi = n, from
the expected frequencies

χ2 =

r
∑

i=1

(νi − npi)
2

npi
=

r
∑

i=1

ν2
i

npi
− n. (1.5.4)

It is known that as n tends to infinity the distribution of χ2 tends to a limit inde-
pendent of P (Si), which is the χ2-distribution with r − 1 degrees of freedom.

Now let χ2
p be a value such that Pr(χ2 > χ2

p) = p%. Here p is chosen so small
that we are practically certain that an event of probability p% will not occur in a
single trial. The hypothesis is rejected if the observed value of χ2 is larger than χ2

p.
Often a rejection level of 5% or 1% is used.

Example 1.5.2.
In n = 4040 throws with a coin, Buffon obtained ν = 2048 heads and hence

n− ν = 1992 tails. Is this consistent with the hypothesis that there is a probability
of p = 1/2 of throwing tails? Here we obtain

χ2 =
(νi − np)2

np
+

(n − ν − np)2

npi
= 2

(2048− 2020)2

2020
= 0.776.

Using a rejection level of 5% we find from a table of the χ2-distribution with one
degree of freedom that κ2

5 = 3.841. Hence the hypothesis is accepted at this level.

Some test that have been used for testing RNGs are:

17This paper by the English mathematician Karl Pearson (1857–1936) is considered as one of
the foundations of modern statistics. In it he gave several examples, e.g., he proved that some
runs at roulette he had observed during a visit to Monte Carlo were so far from expectations that
the odds against an honest wheel was about 1029 to one.

58 Chapter 1. Principles of Numerical Calculations

1. Frequency test This test is to find out if the generated numbers are equidis-
tributed. One divides the possible outcomes in equal non-overlapping intervals
and tallies the amount of numbers in each interval.

2. Poker test This test applies to generated digits, which are divided into non-
overlapping groups of 5 digits. Within the groups we study some (unordered)
combinations of interest in poker. These are given below together with their
probabilities.

All different: abcde 0.3024
One pair: aabcd 0.5040
Two pairs: aabbc 0.1080
Three of a kind: aaabc 0.0720
Full house: aaabb 0.0090
Four of a kind: aaaab 0.0045
Five of a kind: aaaaa 0.0001

3. Gap test This test examines the length of “gaps” between occurrences of Uj in
a certain range. If α and β are two numbers with 0 ≤ α < β ≤ 1, we consider
the length of consecutive subsequences Uj, Uj+1, . . . , Uj+r in which Uj+r lies
between α and β but Uj, Uj+1, . . . , Uj+r−1 does not. This subsequence then
represents a gap of length r.

Working with single digits the gap equals the distance between two equal
digits. The probability of a gap of length r in this case equals

pr = 0.1(1 − 0.1)r = 0.1(0.9)r, r = 0, 1, 2,

Several other tests are described in Knuth [17, Sec. 3.3].

Example 1.5.3.
It is also important to test the serial correlation of the generated numbers.

To test the two-dimensional behavior of a RNG we generated 106 pseudo-random
numbers Ui. We then placed the numbers each plot (Ui, Ui+1) in the unit square.
A thin slice of the surface of the square 0.0001 wide by 1.0 high was the cut on its
left side and stretched out horizontally. This corresponds to plotting only the pairs
(Ui, Ui+1) such that Ui < 0.0001 (about 1000 points).

In Figure 1.6.2 we show the two plots from the generators in Matlab 4 and
Matlab 5, respectively. The lattice structure is quite clear in the first plot. With
the new generator no lattice structure is visible.

A good generator should have been analyzed theoretically and be supported by
practical evidence from extensive statistical and other tests. Knuth [17, Chapter 3],
ends his masterly chapter on Random Numbers with the following exercise: Look at
the subroutine library at your computer installation, and replace the random number
generators by good ones. Try to avoid to be too shocked at what you find. He has
in the chapter pointed out both the important ideas, concepts and facts of the

1.5. Monte Carlo Methods 59

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1.5.2. Plots of pairs of 106 random uniform deviates (Ui, Ui+1)
such that Ui < 0.0001. Left: Matlab 4; Right: Matlab 5.

topic, and also mentioned some scandalously poor random number generators that
were in daily use for decades as standard tools in widely spread computer libraries.
Although the generators in daily use have improved, many are still not satisfactory.
L’Ecuyer [19] writes in 2001:

“Unfortunately, despite repeated warnings over the past years about cer-
tain classes of generators, and despite the availability of much better
alternatives, simplistic and unsafe generators still abound in commer-
cial software.”

1.5.4 Random Deviates for Other Distributions.

We have so far discussed how to generate sequences that behave as if they were
random uniform deviates U on [0, 1). By arithmetic operations one can form random
numbers with other distributions. A simple example is that S = a + (b − a)U will
be uniformly distributed on [a, b). We can also easily generate a random integer
between 1 and k; see Example 1.5.2.

Monte Carlo methods often call for other kinds of distributions, for example
normal deviates. As we shall see, these can also be generated from a sequence of
uniform deviates. Many of the tricks used to do this were originally suggested by
John von Neumann in the early 1950s, but have since been improved and refined.
We now exemplify, how to use uniform deviates to generate random deviates X for
some other distributions.

Discrete Distributions

To make a random choice from a finite number k equally probable possibilities is
equivalent to generate a random integer X between 1 and k. To do this we take a

60 Chapter 1. Principles of Numerical Calculations

random deviate U uniformly distributed on [0, 1) multiply by k and take the integer
part, and 1, i.e.

X = ⌈kU⌉,

where ⌈x⌉ denotes the smallest integer larger than or equal to x.There is a small
error because the set of floating point numbers is finite, but this is usually negligible.

In a more general situation, we might want to give different probabilities to the
values of a variable. Suppose we give the values X = xi, i = 1 : k the probabilities
pi, i = 1 : k; note that

∑

pi = 1. We can the generate a uniform number U and let

X =















x1, if 0 ≤ U < p1;
x2, if p1 ≤ U < p1 + p2;
...
xk, if p1 + p2 + · · · pk−1 ≤ U < 1.

If k is large, and the sequence {pi} is irregular, may require some thought how to
find x quickly for a given u. See the analogous question to find a first guess to the
root of Equation (1.5.5) below, and the discussion in Knuth [17, Sec. 3.4.1].

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F(x)

x

U

Figure 1.5.3. Random number with distribution F (x).

A General Transformation from U to X

Suppose we want to generate numbers for a random variable X with a given con-
tinuous or discrete distribution function F (x). (In the discrete case, the graph of
the distribution function becomes a staircase, see the formulas above.) A general
method for this is to solve the equation

F (X) = U, or equivalently, X = F−1(U), (1.5.5)

see Figure 1.6.4. Because F (x) is a nondecreasing function, and Pr{U ≤ u} =
u, ∀u ∈ [0, 1], equation (1) is proved by the line

1.5. Monte Carlo Methods 61

Pr{X ≤ x} = Pr{F (X) ≤ F (x)} = Pr{U ≤ F (x)} = F (x).

How to solve (1.5.5) fast is often a problem with this method, and for some distri-
butions we shall see better methods below.

Exponential Deviates.

As an example consider the exponential distribution with parameter λ > 0. This
distribution occurs in queuing problems, e.g., in tele-communication, to model ar-
rival and service times. The important property is that the intervals of time between
two successive events are a sequence of exponential deviates. The exponential dis-
tribution with mean 1/λ has density function f(t) = λe−λt, t > 0, and distribution
function

F (x) =

∫ x

0

λe−λt dt = 1 − e−λx. (1.5.6)

Using the general rule given above, exponentially distributed random numbers X
can be generated as follows: Let U be a uniformly distributed random number in
[0, 1]. Solving the equation 1 − e−λX = U , we obtain

X = −λ−1 ln(1 − U).

A drawback of this method is that the evaluation of the logarithm is relatively slow.
One important use of exponentially distributed random numbers is in the

generation of so-called Poisson processes. Such processes are often fundamental
in models of telecommunications systems and other service systems. A Poisson
process with frequency parameter λ is a sequence of events characterized by the
property that the probability of occurrence of an event in a short time interval
(t, t + ∆t) is equal to λ·∆t + o(∆t), independent of the sequence of events previous
to time t. In applications an “event” can mean a call on a telephone line, the
arrival of a customer in a store, etc. For simulating a Poisson process one can use
the important property that the intervals of time between two successive events are
independent exponentially distributed random numbers.

Normal Deviates.

A normal deviate N is a random variable with zero mean and unit standard devia-
tion, and has the density function

f(x) =
1√
2π

e−x2/2, (m = 0, σ = 1).

A normal deviate with mean m and standard deviation σ is m + σN ; the density
function is (1/σ)f((x − m)/σ). The normal distribution function

Φ(x) =
1√
2π

∫ x

−∞

e−t2/2 dt =
1

2

(

1 + erf
(x√

2

))

62 Chapter 1. Principles of Numerical Calculations

is related to the error function erf(x) introduced in Sec. 1.2.3 and is not an elemen-
tary function, In this case solving the equation (1.5.5) is time consuming.

Fortunately random normal deviates can be obtained in easier ways. In the
polar algorithm a random point in the unit circle is generated as follows. Let
U1, U2 be two independent, uniformly distributed random numbers on [0, 1]. Then
the point (V1, V2), where Vi = 2Ui − 1, i = 1, 2, is uniformly distributed in the
square [−1, 1]× [−1, 1]. We compute S = V 2

1 + V 2
2 and reject the point if it outside

the unit circle, i.e. if S > 1. The remaining points are uniformly distributed on the
unit circle.

For each accepted point we form

N1 = V1

√

−2 lnS

S
, N2 = V2

√

−2 lnS

S
. (1.5.7)

It can be proved that N1, N2 are two independent, normally distributed random
numbers with mean zero and standard deviation 1. We point out that N1, N2 can be
considered to be rectangular coordinates of a point whose polar coordinates (r, φ)
are determined by the equations

r2 = N2
1 + N2

2 = −2 lnS, cosφ = U1/
√

S, sinφ = U2/
√

S.

Thus the problem is to show that the distribution function for a pair of indepen-
dent, normally distributed random variables is rotationally symmetric (uniformly
distributed angle) and that their sum of squares is exponentially distributed with
mean 2; see Knuth [17, p. 123].

The polar algorithm, which was used for Matlab 4, is moderately expensive.
First, about (1 − π/4) = 21.5% of the uniform numbers are rejected because the
generated point falls outside the unit circle. Further, the calculation of the logarithm
contributes significantly to the cost. From Matlab 5 on a more efficient table
look-up algorithm developed by Marsaglia and Tsang [24] is used. This is called
the “ziggurat” algorithm after the name of ancient Mesopotamian terraced temples
mounds, that look like two-dimensional step functions. A popular description of
the ziggurat algorithm is given by Moler [27]; see also [16].

Chi-square Distribution

The chi-square distribution function P (χ2, n) is related to the incomplete gamma
function (see Sec. 3.?? by

P (χ2, n) = (n/2, χ2/2). (1.5.8)

Its complement Q(χ2, n) = 1 − P (χ2, n) is the probability that the observed chi-
square will exceed the value χ2 even for a correct model. Subroutines for evaluating
the χ2-distribution function as well as other important statistical distribution func-
tions are given in [31, Sec. 6.2–6.3].

Numbers belonging to the chi-square distribution can also be obtained by
using the definition of the distribution. If N1, N2, . . . , Nn are normal deviates with

1.5. Monte Carlo Methods 63

mean 0 and variance 1, the number

Yn = N2
1 + N2

2 + · · · + N2
n

is distributed as χ2 with n degrees of freedom.

Other Distributions

Methods to generate random deviates with, e.g., Poisson, gamma and binomial dis-
tribution, are described in Knuth [17, Sec. 3.4]) and Press et al. [31, Chapter 7.3].
A general method, introduced by G. Marsaglia [21], is the rectangle-wedge-tail
method. It been further developed and applied by Marsaglia and coauthors, see
references in Knuth [17, Sec. 3.4]). The rejection method is based on ideas of von
Neumann.Several authors, notably G. Marsaglia, have developed powerful combi-
nations of rejection methods and the rectangle-wedge-tail method.

1.5.5 Reduction of Variance.

From statistics, we know that if one makes n independent observations of a quantity
whose standard deviation is σ, then the standard deviation of the mean is σ/

√
n.

Hence to increase the accuracy by a factor of 10 (say) we have to increase the
number of experiments n by a factor 100.

0 200 400 600 800 1000
2

2.5

3

3.5

n

est
ima

te o
f pi

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

n

|m/
n−2

/pi|

Figure 1.5.4. The left part shows how the estimate of π varies with the
number of throws. The right part compares |m/n−2/π| with the standard deviation
of m/n. The latter is inversely proportional to n1/2, and is therefore a straight line
in the figure.

Example 1.5.4.
In 1777 Buffon18 carried out a probability experiment by throwing sticks over

his shoulder onto a tiled floor and counting the number of times the sticks fell across

18Compte de Buffon (1707–1788), French natural scientist that contributed to the understanding
of probability. He also computed the probability that the sun would continue to rise after having
been observed to rise on n consecutive days.

64 Chapter 1. Principles of Numerical Calculations

the lines between the tiles. He stated that the favourable cases correspond “to the
area of part of the cycloid whose generating circle has diameter equal to the length
of the needle”. To simulate Buffon’s experiment we suppose a board is ruled with
equidistant parallel lines and that a needle fine enough to be considered a segment
of length l not longer than the distance d between consecutive lines is thrown on
the board. The probability is then 2l/(πd) that it will hit one of the lines.

The Monte Carlo method and this game can be used to approximate the value
of π. Take the distance δ between the center of the needle and the lines and the
angle φ between the needle and the lines to be random numbers. By symmetry we
can choose these to be rectangularly distributed on [0, d/2] and [0, π/2], respectively.
Then the needle hits the line if δ < (l/2) sinφ.

We took l = d. Let m be the number of hits in the first n throws in a Monte
Carlo simulation with 1000 throws. The expected value of m/n is therefore 2/π,
and so 2n/m is an estimate of π after n throws. In the left part of Fig. 1.5.3 we see,
how 2n/m varies with n in one simulation. The right part compares |m/n − 2/π|
with the standard deviation of m/n, which equals

√

2/π(1 − 2/π)/n and is, in the
log-log-diagram, represented by a straight line, the slope of which is −1/2. This
can be taken as a test that the random number generator in Matlab is behaving
correctly! (The spikes, directed downwards in the figure, typically indicate where
m/n− 2/π changes sign.)

A more efficient way than increasing the number of samples, often is to instead
try to decrease the value of σ by redesigning the experiment in various ways. Assume
that one has two ways (which require the same amount of work) of carrying out an
experiment, and these experiments have standard deviations σ1 and σ2 associated
with them. If one repeats the experiments n1 and n2 times (respectively), the same
precision will be obtained if σ1/

√
n1 = σ2/

√
n2, or

n1/n2 = σ2
1/σ2

2 . (1.5.9)

Thus if a variance reduction by a factor k can be achieved, then the number of
experiments needed is also reduced by the same factor k.

An important means of reducing the variance of estimates obtained from the
Monte Carlo method is to use antithetic sequences. For example, if Ui is a series
of random uniform deviates on [0, 1] then U ′

i = 1−Ui are also uniformly distributed
on [0, 1]. For example, from the sequence in (1.5.1) we get the sequence

0.443065, 0.970545, 0.182765, 0.564115, 0.186495, 0.236975, . . . , (1.5.10)

which is the antithetic sequence derived from (1.5.1). Antithetic sequences of nor-
mally distributed numbers are obtained simply by reversing the sign of the original
sequence.

Roughly speaking, since the influence of chance has opposing effects in the
two antithetic experiments, one can presume that the effect of chance on the means
is much less than the effect of chance in the original experiments. In the following
example we show how to make a quantitative estimate of the reduction of variance
accomplished with the use of antithetic experiments.

1.5. Monte Carlo Methods 65

Example 1.5.5.
Suppose the numbers xi are the results of statistically independent measure-

ments of a quantity with expected value m, and standard deviation σ. Set

x̄ =
1

n

n
∑

i=1

xi, s2 =
1

n

n
∑

i=1

(xi − x̄)2.

Then x̄ is an estimate of m, and s/
√

n − 1 is an estimate of σ.
In ten simulation and their antithetic experiments of a service system the

following values were obtained for the treatment time:

685 1, 045 718 615 1, 021 735 675 635 616 889 .

From this experiment the mean for the treatment time is estimated as 763, 4, and
the standard deviation 51.5, which we write 763 ± 52. Using an antithetic series,
one got the following values:

731 521 585 710 527 574 607 698 761 532 .

The series means is thus

708 783 652 662 774 654 641 666 688 710 ,

from which one gets the estimate 694 ± 16.
When one instead supplemented the first sequence with ten values using in-

dependent random numbers, the estimate 704 ± 36 using all twenty values was
obtained. These results indicate that, in this example, using antithetical sequence
produces the desired accuracy with (16/36)2 ≈ 1/5 of the work required if com-
pletely independent random numbers are used. This rough estimate of the work
saved is uncertain, but indicates that it is profitable to use the technique of anti-
thetic series.

Example 1.5.6.
Monte Carlo methods have been successfully used to study queuing problems.

A well known example is a study by Bailey [3] to determine how to give appointment
times to patients at a polyclinic. The aim is to find a suitable balance between
the mean waiting times of both patients and doctors. This problem was in fact
solved analytically—much later—after Bailey already had gotten the results that he
wanted; this situation is not uncommon when numerically methods (and especially
Monte Carlo methods) have been used.

Suppose that k patients have been booked at the time t = 0 (when the clinic
opens), and that the rest of the patients (altogether 10) are booked at intervals
of 50 time units thereafter. The time of treatment is assumed to be exponentially
distributed with mean 50. (Bailey used a distribution function which was based
on empirical data.) Three alternatives, k = 1, 2, 3, are to be simulated. By using
the same random numbers for each k (hence the same treatment times) one gets a
reduced variance in the estimate of the change in waiting times as k varies.

66 Chapter 1. Principles of Numerical Calculations

Table 1.5.1. Simulation of patients at a polyclinic.

k = 1 k = 2

Pno Parr Tbeg R Ttime Tend Parr Tend

1 0∗ 0 211 106 106 0∗ 106

2 50 106 3 2 108 0 108

3 100 108 53 26 134 50 134

4 150∗ 150 159 80 230 100 214

5 200 230 24 12 242 150 226

6 250∗ 250 35 18 268 200 244

7 300∗ 300 54 27 327 250∗ 277

8 350∗ 350 39 20 370 300∗ 320

9 400∗ 400 44 22 422 350∗ 372

10 450∗ 450 13 6 456 400∗ 406

Σ 2,250 319 2,663 1,800 2,407

The computations are shown in the Table 1.5.1. The following abbreviations
are used: P = patient, D = doctor, T = treatment. An asterisk indicates that the
patient did not need to wait. In the table Parr follows from the rule for booking
patients given previously. The treatment time Ttime equals 50R/100 where R are
exponentially distributed numbers with mean 100 taken from a table. Tbeg equals
the larger of the number Parr (on the same row) and Tend (in the row just above),
where Tend = Tbeg + Ttreat.

From the table we find that for k = 1 the doctor waited the time D = 456 −
319 = 137; the total waiting time for patients was P = 2, 663 − 2, 250 − 319 = 94.
For k = 2 the corresponding waiting times were D = 406 − 319 = 87 and P =
2, 407−1, 800−319 = 288. Similar calculations for k = 3 gave D = 28 and P = 553
(see Fig. 1.5.5). For k ≥ 4 the doctor never needs to wait.

One cannot, of course, draw any tenable conclusions from one experiment.
More experiments should be made in order to put the conclusions on statistically
solid ground. Even isolated experiments, however, can give valuable suggestions
for the planning of subsequent experiments, or perhaps suggestions of appropriate
approximations to be made in the analytic treatment of the problem. The large-
scale use of Monte Carlo methods requires careful planning to avoid drowning in in
enormous quantities of unintelligible results.

Two methods for reduction of variance have here been introduced: anti-
thetic sequence of random numbers and the technique of using the same random
numbers in corresponding situations. The latter technique is used when studying
the changes in behavior of a system when a certain parameter is changed (e.g., the
parameter k in Exercise 4). (Note that we just have restart the RNG using the
same seed.)

Many effective methods have been developed for reducing variance, e.g., im-

Review Questions 67

0 10 20 30 40 50 60
2

4

6

8

10

12

14 k = 1

k = 2

k = 3

Mean waiting time for patients

M
ea

n
w

ai
tin

g
tim

e
fo

r
do

ct
or

Figure 1.5.5. Mean waiting times for doctor/patients at polyclinic.

portance sampling and splitting techniques (see Hammersley and Hand-
scomb [13]).

Review Questions

1. What is a uniformly distributed random number?

2. Describe a general method for obtaining random numbers with a given discrete
or continuous distribution. Give examples of their use.

3. What are the most important properties of a Poisson process? How can one
generate a Poisson process with the help of random numbers?

4. What is the mixed congruential method for generating pseudo-random num-
bers? What important difference is there between the numbers generated by
this method and “genuine” random numbers?

5. Give three methods for reduction of variance in estimates made with the Monte
Carlo method, and explain what is meant by this term. Give a quantitative
connection between reducing variance and decreasing the amount of compu-
tation needed in a given problem?

Problems and Computer Exercises

1. (C. Moler) Consider the toy random number generator, xi = axi mod m, with
a = 13, m = 31 and start with x0 = 1. Show that this generates a sequence
consisting of a permutation of all integers from 1 to 30, and then repeats itself.
Thus this generator has the period equal to m−1 = 30, equal to the maximum

68 Chapter 1. Principles of Numerical Calculations

possible.

2. Simulate (say) 360 throws with two usual dices. Denote the sum of the number
of dots on the two dice in the n’th throw by Yn, 2 ≤ Yn ≤ 12. Tabulate or draw
a histogram, i.e., the (absolute) frequency of the occurrence of j dots versus
j, j = 2 : 12. Make a conjecture about the true value of P (Yn = j). Try to
confirm it by repeating the experiment with fresh uniform random numbers.
When you have found the right conjecture, it is not hard to prove it.

3. (a) Let X, Y be independent uniform random numbers on the interval [0, 1].
Show that P (X2 + Y 2 ≤ 1) = π/4, and estimate this probability by a Monte
Carlo experiment with (say) 1000 pairs of random numbers. For example,
make graphical output like in the Buffon needle problem.

(b) Make an antithetic experiment, and take the average of the two results.
Is the average better than one can expect if the second experiment had been
independent of the first one.

(c) Estimate similarly the volume of the four-dimensional unit ball. If you
have enough time, use more random numbers. (The exact volume of the unit
ball is π2/2.)

4. A famous result by P. Diaconis asserts that it takes approximately 3
2 log2 52 ≈

8.55 riffle shuffles to randomize a deck of 52 cards, and that randomization
occurs abruptly according to a “cutoff phenomenon”. (For example, after six
shuffles the deck is still far from random.)
The following definition can be used for simulating a riffle shuffle. The deck
of cards is first cut roughly in half according to a binomial distribution, i.e.
the probability that ν cards are cut is n

ν /2n. The two halves are then riffled
together by dropping cards roughly alternately from each half onto a pile, with
the probability of a card being dropped from each half being proportional to
the number of cards in it.
Write a program that uses uniform random numbers (and perhaps uses the
the formula X = ⌈kR⌉ for several values of k) to simulate a random “shuffle”
of a deck of 52 cards according to the above precise definition. This is for a
numerical game; do not spend time on drawing beautiful hearts, clubs etc.

5. Brownian motion is the irregular motion of dust particles suspended in a fluid,
being bombarded by molecules in a random way. Generate two sequences of
random normal deviates ai and bi, and use these to simulate Brownian motion
by generating a path defined by the points (xi, yj), where x0 = y0 = 0,
xi = xi−1 + ai, yi = yi−1 + bi. Plot each point and connect the points with a
straight line to visualize the path.

6. Repeat the simulation in the queuing problem in Example 1.5.6 for k = 1 and
k = 2 using the sequence of exponentially distributed numbers R

13 365 88 23 154 122 87 112 104 213 ,

antithetic to that used in Example 1.5.6. Compute the mean of the waiting
times for the doctor and for all patients for this and the previous experiment.

7. A target with depth 2b and very large width is to be shot at with a can-

Problems and Computer Exercises 69

non. (The assumption that the target is very wide makes the problem one-
dimensional.) The distance to the center of the target is unknown, but esti-
mated to be D. The difference between the actual distance and D is assumed
to be a normally distributed variable X with zero mean and standard devia-
tion σ1.
One shoots at the target with a salvo of three shots, which are expected to
travel a distance D − a, D and D + a, respectively. The difference between
the actual and the expected distance traveled is assumed to be a normally
distributed random variable with zero mean and standard deviation σ2; the
resulting error component in the three shots is denoted by Y−1, Y0, Y1. We
further assume that these three variables are stochastically independent of
each other and X .
One wants to know how the probability of at least one “hit” in a given salvo
depends on a and b. Use normally distributed pseudo-random numbers to
shoot ten salvos and determine for each salvo, the least value of b for which
there is at least one “hit” in the salvo. Show that this is equal to

min
k

|X − (Yk + ka)|, k = −1, 0, 1.

Fire an “antithetic salvo” for each salvo.
Graph using σ1 = 3, σ2 = 1, for both a = 1 and a = 2 using the same random
numbers curves, which give the probability of a hit as a function of the depth
of the target.

Notes and References

The development of Numerical Analysis during he period when the foundation was
lade in the 16th through the 19th century is traced in Goldstine [11]. An acount
of the developments in the 20th Century is found in [5]. An eloquent essay on the
foundations of computational mathematics and its relation to other fields is given
by Baxter and Iserles [4]. Many of the methods and problems introduced in this
introductory chapter will be studied in more detail in later chapters and volumes.
Numerical quadrature methods are studied in Chapter 5 and iterative methods for
solving a single nonlinear equation in Chapter 6.

The later chapters in this book assumes a working knowledge in numerical
linear algebra. In Appendix A notations and basic results on Linear Vector Spaces
and Matrix Computations are given. For a more elementary introduction to Linear
Algebra we refer to one of several good textbooks, e.g., Leon [20] and Strang [34].
Computational aspects of numerical linear algebra will be treated in depth in Vol-
ume II. Gaussian elimination and iterative methods for linear systems are covered
in Volume II, Chapters 7 and 10, respectively. The numerical solution of ordinary
and partial differential equations are treated in Volume III.

A comprehensive source of information on all aspects of random numbers
is given by Knuth [17]. A good reference on the current state of the art is the
monograph by Niederreiter [28, ]. A more application oriented overview is

70 Chapter 1. Principles of Numerical Calculations

found in Press et al. [31, Chapter 7]. Guidelines for choosing a good random number
generator are given in Marsaglia [23] and L’Ecuyer [18]. Hellekalek [14] explains the
art to access random number generators for practitioners.

Bibliography

[1] Milton Abramowitz and Irene A. Stegun (eds.). Handbook of Mathematical
Functions. Dover, New York, NY, 1965.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, editors.
LAPACK Users’ Guide. SIAM, Philadelphia, PA, third edition, 1999.

[3] N. T. J. Bailey. A study of queues and appointment systems in hospital outpa-
tient departments, with special reference to waiting times. J. Roy. Stat. Soc.,
3:14:185ff, 1951.

[4] B. J. C. Baxter and Arieh Iserles. On the foundations of computational math-
ematics. In P. G. Ciarlet and F. Cucker, editors, Handbook of Numerical Anal-
ysis, pages 3–34. North Holland Elsevier, Amsterdam, 2002.

[5] Claude Brezinski and Luc Wuytack. Numerical analysis in the twentieth cen-
tury. In Claude Brezinski and L. Wuytack, editors, Numerical Analysis: His-
torical Developments in the 20th Century, pages 1–40. North Holland Elsevier,
Amsterdam, 2001.

[6] RAND Corporation. A Million Random Digits and 100,000 Normal Deviates.
Free Press, Glencoe, IL, 1955.

[7] Germund Dahlquist. Preliminär rapport om premieobligationsdragning med
datamaskin. (in swedish), Riksgäldskontoret, Stockholm, 1962.

[8] Germund Dahlquist and Åke Björck. Numerical Methods. Dover, Mineola, NY,
2004.

[9] Terje O. Espelid. On floating-point summation. SIAM Review, 37:603–607,
1995.

[10] George E. Forsythe and Cleve B. Moler. Computer Solution of Linear Algebraic
Systems. Prentice-Hall, Englewood Cliffs, NJ, 1967.

[11] H. H. Goldstine. A History of Numerical Analysis from the 16th through the
19th Century. Springer-Verlag, New York, 1977.

71

72 Bibliography

[12] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore, MD, third edition, 1996.

[13] J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Methuen,
London, UK, 1964.

[14] Peter Hellekalek. Good random number generators are (not so) easy to find.
Math. Comput. Simulation, 46:485–505, 1998.

[15] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, second edition, 2002.

[16] David Kahaner, Cleve B. Moler, and Stephen Nash. Numerical Methods and
Software. Prentice-Hall, Englewood Cliffs, NJ, 1989.

[17] Donald E. Knuth. The Art of Computer Programming, Vol. 2. Seminumerical
Algorithms. Addison-Wesley, Reading, MA, third edition, 1997.

[18] Pierre L’Ecuyer. Efficient and portable combined random number generators.
Comm. ACM, 31:6:742–774, 1988.

[19] Pierre L’Ecuyer. Software for uniform random number generation: Distin-
guishing the good and bad. In Proc. 2001 Winter Simulation Conference,
pages 95–105. IEEE Press, Pistacaway, NJ, 2001.

[20] Steven J. Leon. Linear Algebra with Applications. Macmillan, New York, fourth
edition, 1994.

[21] George Marsaglia. Expressing a random variable in terms of uniform random
variables. Ann. Math. Stat., 32:894–898, 1961.

[22] George Marsaglia. Random numbers falls mainly in the planes. Proc. Nat.
Acad. Sci., 60:5:25–28, 1968.

[23] George Marsaglia. A current view of random number generators. In L. Billard,
editor, Computer Science and Statistics: The Interface, pages 3–10. Elsevier
Science Publishers, Amsterdam, 1985.

[24] George Marsaglia and W. W. Tsang. A fast, easily implemented method for
sampling from decreasing or symmetric unimodal density functions. SIAM J.
Sci. Stat. Comput., 5:2:349–360, 1984.

[25] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans. Mod-
eling Comput. Software, 8:1:3–30, 1998.

[26] Cleve Moler. Random thoughts, 10435 years is a very long time. MATLAB
News and Notes, Fall, 1995.

[27] Cleve Moler. Normal behavior. MATLAB News and Notes, Spring, 2001.

Bibliography 73

[28] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods.
SIAM, Philadelphia, PA, 1992.

[29] S. K. Park and K. W. Miller. Random number generators: good ones are hard
to find. Comm. ACM, 22:1192–1201, 1988.

[30] K. Pearson. On the criterion that a given system of deviations from the prob-
able in the case of a correlated system of variables is such that it can be
reasonably supposed to have arisen from random sampling. Phil. Mag. Series
5, 50:p. 157–175, 1900.

[31] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vet-
terling. Numerical Recipes in Fortran; The Art of Scientific Computing. Cam-
bridge University Press, Cambridge, GB, second edition, 1992.

[32] Lewis F. Richardson. The approximate arithmetical solution by finite differ-
ences of physical problems involving differential equations, with application to
the stress in a masonry dam. Philos. Trans. Roy. Soc., A210:307–357, 1910.

[33] George W. Stewart. Matrix Algorithms Volume I: Basic Decompositions.
SIAM, Philadelphia, PA, 1998.

[34] Gilbert Strang. Linear Algebra and Its Applications. Academic Press, New
York, fourth edition, 2005.

[35] V. Strassen. Gaussian elimination is not optimal. Numer. Math.., 13:354–356,
1969.

Index

algorithm
back-substitution, 28
Gaussian elimination, 30

antithetic sequence, 64

back-substitution, 27
band matrix, 32
Biography

Archimedes, 5
Buffon, 63
Gauss, 5, 29
Laplace, 12
Leibnitz, 5
Newton, 5
Poisson, 12
Richardson, 8
Simpson, 9
Ulam, 50
von Neumann, 50

BLAS, 37

cancellation, 12
ceiling of number, 17
covariance, 52

deflation, 14
density function, 52
determinant, 30
difference approximation, 9–22

centered, 9
difference scheme, 11
discrete distributions, 59
discretization error, 9
distribution function, 51
divide and conquer, 17
divide and conquer strategy, 16

erf(x), 18

error function, 18
Euclid’s algorithm, 23
Euler’s method, 40, 42
exponential distribution, 61
exponential integral, 18

floor of number, 17
forward-substitution, 28
full matrix, 34

gamma function
incomplete, 18

Gaussian elimination, 29

Hessenberg matrix, 39
Horner’s rule, 14

importance sampling, 67
iteration

fixed point, 5

Jacobian matrix, 7

linear congruential generator, 55
linear interpolation, 7
linear system

overdetermined, 20
linearization, 5

matrix
tridiagonal, 32

mean, 52
Mersenne twister, 57
Monte Carlo Methods, 49–69
multiple recursive generator, 55

Newton’s method, 5
normal distribution function, 61

74

Index 75

normal equations, 20
normal probability function, 18
numerical instability, 16
numerical integration

trapezoidal rule, 7
numerical simulation, 39, 40

operation count, 26

Pascal matrix, 23
pivotal elements, 30
pivoting

partial, 33
point of attraction, 4
Poisson process, 63
polar algorithm, 62
pseudo-random numbers, 52–63

random
normal deviates, 62

random numbers, 52–63
antithetic sequence of, 64
generating, 54
uniformly distributed, 54

random variables
uncorrelated, 52

rectangle-wedge-tail method, 63
recursion formula, 40
reduction of variance, 63–67
rejection method, 63
residual vector, 20
Richardson extrapolation, 8, 43
Richardson’s method, 35
Romberg’s method, 9

secant method, 7
sparse matrix, 34
splitting technique, 67
square root

fast method, 4
standard deviation, 52
successive approximation, 2
synthetic division, 14

trapezoidal rule, 7
triangular

systems of equations, 27–28

tridiagonal system
algorithm, 32

truncation error, 19

variance, 52
reduction of, 63–67

