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ABSTRACT:
Based on the K-model, an alternative solution to
the problem of forecasting atmospheric pollution
other than the Gaussian models (either the plume
or the puff) is presented. It is intended to show its
possible use for the long-term as well as for the
real-time forecast. My proposed procedure is
expected to take similar computer time to
Gaussian models, thereby eliminating the main
objection for its use.
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1. INTRODUCTION:
It is well known that the Gaussian models have
been and still are of widespread use in the
analysis of the advection of pollutants. The main
advantage of Gaussian models is that they are
simple and economical as far as computer-time is
concerned. These advantages enable the user to
address long-term as well as real-time forecasts.
A comprehensive literature dealing with the
determination and measurement of the
parameters σz and σy of the Gaussian plume
model has accumulated for a wide range of cases.



In fact, it is common practice in the U.S. to use
models derived from the Gaussian law.
However, as the Gaussian models cannot easily
deal with chemical reactions, ground deposition,
rainwash, etc., a great effort has been made to
develop other methodologies, particularly the one
based on the K-model, which will be referred to
in the present work.
The K-theory, or first order closure model, has
been widely used in theoretical studies with
simple shapes. In fact, this theory is hardly ever
used in the case of multiple and irregularly
distributed sources, as is the case in cities, for
examples. As an exception to this rule, Reynolds,
Roth and Seinfeld, 1973, modeled the airshed of
Los Angeles using the K-theory. In this particular
case, eight computer hours on an IBM 370/155
were required to calculate the pollutant field for
an hour. Undoubtedly, hardware advances have
reduced computer costs, but calculations based on
the K-theory still remain at a disadvantage as to
computer time costs in comparison to the
algebraic formulations characteristic of the
Gaussian models. Therefore, in this work, a
methodology is presented which permits lowering
computation costs to a level comparable of the
Gaussian models.

2. OVERALL FORMULATION OF
THE MODEL
I will refer to the case of a single pollutant, which
is advected by a given windfield, assumed to be
steady for the interval [t,t+∆t]. A gravitational
settling velocity, an exponential rate decay and a
ground level absorption or emission can all be
attributed to the pollutant.
The above can be modeled according to the
following general equation:
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Where:
 C : Concentration of the pollutant (kg/m )
v = (u,v, w) : Time dependent windfield (three
components) (m/s)
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being
K  : Horizontal eddy viscosity coefficient (m / s)

K  : Vertical eddy viscosity coefficient (m / s)
H

V

Λ : Generation or decay rate of the
pollutant (1/s)
Si : Point source of pollutant (kg/m /s)
WD : Gravitational settling of the pollutant
(is positive downwards) (m/s)
X,Y,Z : Coordinates in an absolute reference
system (Eulerian)

Equation (1) can be solved subject to the proper
boundary conditions (BC). I shall assume that the
domain can be divided into zones where the
windfield is locally unidirectional for the interval
[t,t+∆t]. Then, the problem can be reformulated
choosing a system of coordinates in such a way
that the axis Ox is in the direction of the
horizontal wind. Such system is valid only for the
interval [t,t+∆t].
Taking this into consideration, I shall show that
being (1) a linear equation, it is possible to obtain
a result for field C(x,y,z,t+∆t), by means of a
linear combination of previously calculated
results. Thus, the field of the pollutant in the
whole workspace can be considered as a
superimposition of the field calculated under
unidirectional wind (but not necessarily uniform)
We will neglect topography, as well as nonlinear
chemistry, and also assume that parameters



Λ,WD ,KH ,KV ,VD have values that are not a
function of travel distance to the sources; i.e., we
state that those parameters are only function of
height z above ground, so they are independent of
x, y. However, they can vary with time. This
hypothesis will be discussed later.
In order to solve the problem, I shall point out
two particular cases among the general case:
 I) The case of the equation without sources
II) The case of the homogeneous initial condition
with sources

 I) The case of the equation without sources

The use of puff models for the simulation of the
problem of advection of pollutants is extremely
widespread. (See Ludwig et al, 1977, Ludwig,
1984, Sheih, 1978, etc.). The idea is based on the
fact that if two or more puffs exist in t, the
pollutant field in t + ∆t may be calculated as a
superimposition of the corresponding fields as if
each puff were considered separately. This
assumption precludes nonlinear chemistry effects.
I shall put forth a similar idea at this point.
According to common practice, in the following
lines, I shall develop the definition of the
pollutant fields by means of its value on the nodes
of a pre-established regular grid (with ∆x=∆y).
The initial conditions as well as the final results
can be defined through a finite number of values.
If it is possible to express the initial condition in
the following way:

 C (x, y, z, t) = C (t).H (x, y, z,0) 0 lmn lmn
l,m,n

L,M,N

∑ (2)

then, it may be observed that:
Clmn (t) : is a weight coefficient, related to a
reference concentration.
 l,m,n : are the indexes corresponding to the
grid values in direction x,y,z.



Hlmn(x,y,z,0) is a shape function, which will be
defined later.

Field C(x,y,z,t+∆t) resulting from the resolution
of equation (1), constrained by the BC, plus the
initial condition (2), may be calculated as

 C(x,y,z, t + t) = C (t).H (x, y, z, y) lmn lmn
l,m,n

L,M,N

∆ ∆∑
(3)

Hlmn(x,y,z,∆t) is the result of solving (1)+BC,
with the initial condition

 C (x, y,z, t) = 1.H (x, y, z, )0 lmn 0  (4)
The shape functions Hlmn (x,y,z,0) cannot
arbitrarily be chosen, because they must fulfill
identically the boundary conditions.
For the choice of such functions, I shall refer to a
subset of continuous functions defined on the
nodes of a grid. We will not use standard
piecewise linear functions, in order to allow some
manipulations which will be clearer later. We
will require from the basis function the property
of symmetry with respect the azimuth angle, so in
polar coordinates, its shape depends only on
distance from the point (xl,ym). Therefore, a
suitable base to describe the initial condition may
have basis functions that look like a cylindrical
cone with (xl,ym,1) as vertex coordinates, and the
circle with center (xl,ym) and unit radii as a base.
Such function can be precisely defined as
 H (x, y, z,0) = F ( ).G (z)lmn lm nρ , being:
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and assuming ∆x=∆y hereinafter. Any other basis
functions which are continuous, only function of
ρ, which evaluate as 1 if (xi,yj)=(xl,ym), and 0
elsewhere can be used instead. Notice that with
this definition we obtain a set which is an



orthogonal basis for the grid space. However, a
constant pollution field cannot be represented
exactly within grid values. Similarly Gn(z) can be
defined in order to verify identically BC at z=H
or z=0.
Thus, it is observed that if the case of the
homogeneous equation (without sources) (1) is
considered, then, none of the terms depends on
the absolute value of x or y; the parameters are
only a function of z. Therefore, the evolution of a
puff of the Clmn(t)Hlmn(x,y,z,0) type, with a
center (xl,ym,zn) only depends on the height zn
and not on the value of the coordinates (xl,ym).
This assumption precludes consider topography.
Ensuingly, it is possible to calculate a catalogue
of fields Hlmn(x,y,z,∆t), after solving (1)+BC, and
using as initial condition as many functions
Hlmn(x,y,z,0) as levels n are specified in the
workspace. It should be pointed out that the
functional shape of Hlmn at the time ∆t is not
imposed, unlike what would occur at the time 0.
Instead, it results by solving the problem defined
by (1),(4)+BC. The evolution of any puff, which
can be calculated by solving the equation (1)+BC
can be obtained as the linear combination of said
fields Hlmn(x,y,z,∆t), which have been calculated
and previously stored. The costs in terms of
computer time is minimal, once the
Hlmn(x,y,z,∆t) have been generated. This time
consuming operation is performed only once.
Irrespective of the way used in calculating
Hlmn(x,y,z,∆t) its shape will not be stored as point
values defined on a regular grid. Instead, it will
be defined using two-dimensional Bezier curves,
which are based upon control points (see Foley et
al., 1990). This representation is independent
from the underlying coordinate system, in
opposition to polynomial, spline and similar
alternatives. The reason for this uncommon
approach will be evident in the next paragraph.



To sum up, what has been presented is a way of
calculating the evolution of any puff initially
existent at the time t, until the time t+∆t.

AN OUTLINE OF THE NUMERICAL PROCEDURE

Given an initial field at time t, P1(X,Y,Z,t),
advected by a locally unidirectional windfield, it
is intended to find P1(X,Y,Z,t+∆t) through the
solution of the problem defined by (1)+BC with
the initial condition C0=P1(X,Y,Z,t). The
procedure applied is the following:
a) The puff P1(X,Y,Z,t) is expressed as

P (X, Y,Z, t) C (t).H (X, Y,Z,0)     1 lmn lmn
l,m,n

= ∑ using

basis functions defined in the global coordinate
system.
b) The basis functions Hlmn(X,Y,Z,t) are re-
defined in a frame with a rotated angle α calling
it Hlmn(x,y,z,t). α is related with the wind
direction (see fig. 1). If the Hlmn is chosen
appropriately, this step is trivial.
c) With the Clmn(t) found, P1(x,y,z,t+∆t) is
calculated as

 P (x, y,z, t + t) C (t).H (x, y,z, t)     1 lmn lmn
l,m,n

∆ ∆= ∑
d) The sought field P1(X,Y,Z,t+∆t) is defined
afterwards as the image of P1(x,y,z,t+∆t) on the
coordinate frame (X,Y,Z). This requires: 1) rotate
the control points 2) calculate the grid values and
3) adjust the grid values so assure mass
conservation in the transformation. Notice that
the mass prior rotation is known, and the mass
based on grid values varies linearly with them, so
a correction coefficient can be calculated as
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and it can be applied straightforwardly to the grid
values. L,M,N refers to the indexes of the grid
values at t+∆t. It should be stressed that all the
integrals in this equation can be calculated
previously.

II) The case of the homogeneous initial condition
with sources

Usually when there are point sources, they are
irregularly distributed in the field. Due to the
combined effects of the speed of discharge and
buoyancy, the emission is not considered as
taking place at the stack height, but higher up, at
a virtual height identified as effective height he.
In this case, source i is modeled following the
function
 S (X,Y,Z, t) =  q (t). (Z- h ). (X- X ). (Y-Y )i i e i iδ δ δ
(5)
δ is Dirac's delta function and qi(t) is the strength
of the i-th point source.
If the problem put forward in the equation (1)
considers the i-th source alone, the boundary
conditions, the initial condition C0(X,Y,Z,t)=0
and takes (Xi,Yi) as the origin, the following
solution is obtained:

C(x, y, z, t + t) = q (t).Q (x, y, z, t)i i∆ ∆     (6)
Q (x,y,z,∆t) is only related to the effective stack
height.
Therefore, when dealing with the emission from a
group of stacks, the following procedure is
suggested (see fig. 2):
 a) For each i, the effective height is calculated
and then the pollutant field Qi(x,y,z,∆t) is found.
The system of coordinates is rotated and
displaced so as to express the field Qi as
Qi(X,Y,Z,t+∆t) in the "absolute" coordinate
system. As before, Qi(x,y,z,∆t) is expressed as a
Bezier surface, and mass adjusting is also
required after rotation.



 b) This same procedure is applied to all possible
i, adding up all the values thus obtained.

Q(X,Y, Z, t + t) = q (t).Q (X,Y, Z, t)  i i

I

∆ ∆
i

∑ (7

)
As mentioned above, in the following time step
t+∆t, Q(X,Y,Z,t+∆t) will be considered as a
summation of regular puffs.

In short: if the following field is considered, valid
for t+∆t
C(x,y,z, t + t) = C (t).H (x,y, z, t)  + q (t).Q (X,Y,Z, t)lmn lmn

l,m,n

L,M,N

i i
i

I

∆ ∆ ∆∑ ∑

By mere substitution it may be confirmed that it
is a solution of (1)+BC with initial condition

C (x, y, z, t) = C (t).H (x, y, z, ) 0 lmn lmn
l,m,n

L,M,N

0∑
 The ideas developed so far can be applied to the
case of linear and area distributed sources,
without additional problems.

3. ANALYSIS OF THE CHOSEN
HYPOTHESES

a) "..the windfield is liable to being assimilated
locally almost unidirectional"
Prior to this work, Cisa, Guarga, Briozzo et al,
1990, carried out a study of the windfield applied
to Uruguay in view of wind energy purposes. The
basic methodology used by them was the same as
the one used by Endlich et al, 1982, with few
variants. The Uruguay terrain is nearly flat
(below 500 m ASL). Once analyzed the main
components of the wind field (see fig. 3 as an
example), it was clear that the abovementioned
hypothesis is valid about 97% of the time. For
further details of the calculation of the patterns
and the weighting coefficients mentioned above, I



refer back to Endlich et al, 1982, or Cisa et al,
1990.

b) "..parameters Λ, WD, KH ,KV ,VD have values
that are not a function of travel distance to the
sources ... those parameters are only function of
height z above ground..."

Reynolds et al, 1973, expressed that there are no
systematic measurements that enable the
evaluation of the coefficients KV and KH. They
have used a former formulation by Eschenroeder,
in which KV=KV(u, z/H).
Khairul Alam and Seinfeld, 1981, modeled the
problem, assuming that KH and KV are constant
in the workspace.
Bessemoulin et al, 1974, tried out different
expressions of KV, which could depend or not on
the distance from the source.
Ragland and Dennis, 1975, used a family of
functions, discriminating between the terrain
height, involving also the Monin-Obukov length
L. Consequently, KV=KV(z, L).
Nieuwstadt, 1981, quoted a formulation with a fit
using
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Several formulae mentioned presents a major
shortcoming: that they depend on the system of
units used. Therefore, they are not representations
which are universally valid to solve the problem.
However, I have referred to them because, there
are a good number of examples that fall within
my hypothesis.

c) "..It shall be assumed that KV, w(z=0) and
w(z=H)  and WD  do not vary according to x, y in
what follows...."



This hypothesis does not seem extreme, since
there exists uncertainty among the values of the
parameters themselves.

Conclusions:
As far as I am concerned, the definition of puff is
the portion of space within which our hypotheses
of uniformity, unidirectionality and the state of
steadiness, etc. are fulfilled. It will always be
possible to subdivide the workspace into smaller
zones easily.

SUMMARY:

A methodology that makes the application of the
K-theory possible, lowering computer costs, has
been put forth in this work. In it, the study of the
transient phenomena of the advection of
pollutants is undertaken, considering that
comparable time computer-cost to the algebraic
formulation characteristic of the Gaussian plume,
could be achieved.
The essential idea intended to take advantage of
the linearity of the advection-diffusion equation
and at the same time, generate a catalogue of
cases by means of calculations made on a
powerful computer in a one-time operation. In
real time, a solution through the linear
combination of analyzed cases has been
attempted. The method is based on two
hypotheses: flat topography and instantly locally
unidirectional windfield.
Were the case to apply to urban diffusion, where
usually few meteorological stations are available.
However, these hypotheses do not seem
excessively restrictive. Were the case one of
mesoscale diffusion, a wind pattern analysis
should be done prior and its results carefully
studied.
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Legend for figure 3:
Mass-consistent interpolation of the annual
vector mean of the hourly windfield for 1990.
Grid size is about  60Km


