

CLOUDMAP2: Quantitative assessment of outlier detection methods with MISR-stereo height measurements of ground topography

Marie-Ange Denis, Jan-Peter Muller[®] and Carlos López Porfessor of Image Understanding and Remote Sensing MODIS & MISR Science Team Member (NASA EOS Project), HRSC Science Team Member (Mars Express 2003)

CLOUDMAP2: The project

Develop the technology, including semi-operational processing systems, to extract cloud parameters from existing and soon-to-be-launched European EO sensors in near real-time (<3 hours) and ground-based remote sensing instruments in real-time.
 Create, based on this technology, a distributed database of cloud measurements
 Validate satellite cloud and WV products using ground-based remote sensing instruments

and through satellite-satellite interco Assess, gualitatively and quantitatively, how this cloud database can be used to improve cy and/or validation of Num ical Weather Prediction and Climate General

Circulation Models, specifically by providing statistical information

"Gotcha"

esponding patch in search v

Rockies: P037 O5525 B58-63

.

.

1

Allows the estimation of the error probability at each pixel
 Assumption; outliers weakly spatially correlated and follow a random gauss

Felicisimo(1994)*

Analysis of the difference between the altitude value and the value obtained by a bi-linear interpolation from the four closest neighbours by means of a standard Student t-test

Implementation

•Assume that errors in our datasets are not so weakly spatially correlated than in Felicis imo •Replace the bi-linear interpolation by a mean filter with a non-fixed kernel size •Application of the method to Stereo-matched Heights retrieved from M4, PGotcha and M23 (Tan function) matchers

Rockies: P037 O5525 B58-63

2TC

Operational MISR matcher uses M2/M3 (Muller et al., 2002)§

-- and sequence Least squares Curretator ("Cottel Normalise grey-levels within corresponding patch in search subtracting mean Cakulate mismatch difference between <u>normalised</u> pixel b image patch and corresponding patch in right search area Comparison to a threshold

M2 (mean of normalised differences) uses a stripped-d

of an Adaptive Least Squares Correlator (

M3 variant uses median rather than mean

A

٠

a

Based on statistical criteria

Ste

s

Datasets

M4

Derived from M2 and developed at UCL/DLR as part of the EU CLOUDMAP project (1997-2000). Muller et al. (2003)§§

Nevertheless, setting the search window for M4 improves the

Stereo-Heights retrieval assessment

Blunder detection techniques

Blunder dete

- 6h for 6 MISR blocks on Linux 5 PE cluster array

Addresses the deficiencies of 2TC by providing a single natcher which does:

Not require disparity range-setting

Provides a good coverage
 Pixel-le vel accuracy.

Is very fast,

ime processing

Histograms show PGotcha has low Heights than M4. grams show that ver St 9 pushbroom cameras
4 spectral bands
275m constant off-nadir,
250m nadir IFoV
Swath≈380km
Repeat time ≈9 days • 7 minutes between foremos and aftmost cameras

.

·Based on Principal Component Analysis

Replaced the remaining (weighted mean filters).

9 pushbroom cameras

PGotcha

·Highly-configurable derivative of Gotcha (Grüen-Otto-Chau

Adaptive Least squares correlation algorithm developed in the Alvey project in the 1980s):

Requires disparity range-setting. Region-growing algorithm Pyramidal technique (random seed points)

Time processing: - 2 days for 6 MISR blocks on SGI

Himalayas: P140 O11837 B65-71

M4 Pgotela 2TC

Lopez(2000)**

Implementation

 Currently it can't handle large arrays and missing values (due to missing data and matcher failure)
 – Selected a maximum of 3 blocks over the highest terrain
 – Selected window-subset (out the missing values at the edges)
 – Replaced the remaining missing values by their interpolated values using different neighbourhood sizes missing values ... values by their in

Himalayas: P140 O11837 B65-71

.

.

Dataset is subdivided into elongated strips (w<<n)
 Blunder candidates found by analysing the cloud points in Rw space

ndidates are the first ones to be considered as blunders Multi-resolution implementation in order to take into account very space-correlated errors

·Technique applied to row-wise and column-wise strips

More complex than Felicisimo's approach for MISR

Adaptive least squares correlation which leads to sub-pixel accuracy.

Anaglyph shows a clear-sky

No Stereo-heights were retrieved for the Cu clouds using **2TC**. Retrieval of Stereo-Heights for the

Retrieval of Stereo-Heights for the Cu clouds using the **Tan** equation and the other matchers. Lower Stereo-Heights for **M4** (7km) vs.**PGotcha** (9km) over the Himalayas plateau (lake, clouds?)

Histograms show that 2TC has consistently higher Stereo-Height

MISR multi-angle sensors for stereo cloud-top height and motion retrieval

Himalayas: P140 O11837 B65-71

Methods

Objectives Assess whether M4 and PGotcha stereo matching methods using a simple and fast height retrieval technique provide for clear-sky scenes over rugged terrain

-more accurate and reliable results than MISR 2TC.

results similar to height measurements of grou

•MISR 2TC Stereo-Height produced for AnAf camera pair on a 1.1km grid include "correction of wind advection effects", irrespective of whether clouds are present. Applied M4 & PGotcha to 275m grid MISR 2TC L1B2 ellipsoid radiance for AnAf camera pair. PGotcha results given at sub-pixel level accuracy. Use simple equation (no wind correction) to retrieve Stereo-Heights:
 Like. . . 1

 $H = \left| \frac{disp_{along-track}}{tan \theta_r - tan \theta_n} \right| \text{ with } \theta_n = 0^\circ \text{ and } \theta_r = 26.1^\circ$

Results

 Blockiness in 2TC due to wind correction. No blockiness when using the **Tan** equation for the height retrieval. when using the 1an equation for the neight retrieval. -M4 provides the best coverage but has more blunders especially in low regions (effects due to thin clouds?) -PGotcha provides the smoothest results. -Histograms show that 2TC has a wider Stereo-height dispersion for both low and high altitude regions. •M4 and 2TC(Tan) show similar results. Scatterplots show that PGotcha has less blunders than the other matchers. Sub-pixel accuracy could explain the differences shown between PGotcha and the other matchers

• The **Tan** function is a simple and fast alternative for 2TC Stereo-Height retrieval than for clear-sky scenes.

Methods

•Improve the Stereo-Heights retrieved for clear by the matchers M4, PGotcha and 2TC(Tan) -sky scene Apply blunder detection strategies initially developed for map contour grid-point interpolated Digital Elevation map con Models

Results

•Blunder detection techniques improved the Stereo-matchee Heights by reducing the number of blunders. However, they did not remove all of them and some good points were deleted

• M4 not affected by the interpolation due to its good coverage and both blunder detection techniques work better for it

. Less blunders for PGotcha - probably due to the sub-pixel accuracy

•Felicisimo shows better results for our scenes than Lopez (lower error values & less false alarms)

• Standard deviation & other parameters reduced but at the cost of an increase in bias

References cited

*Felicisimo, A.M., 1994. Parametric statistical method for error detection in digital elevation models, *ISPRS Journal of Photogrammery and Remote Sensing*, 49(4), pp. 29-33 *t-Lopez, C., 2000, On the improving of elevation accuracy of Digital Elevation Models: a comparison of some error detection procedures, *Transactions in GIS*, 40(1), pp.43-64 §Muller, J-P., A. Mandanayake, C. Moroney, R. Davies, D. J. Diror, S. Paerdina, 2002. MISP, attraspectic imane. al of SMUIRT, J.F., A. Mandanayake, C. Moroney, K. Davies, D. J. Diner, S. Paradise, 2002. MIISR stereoscopic image matchers: techniques and results. *IEEE Transactions on Geoscience and Remote Sensing*, 40(7), pp. 1547-1559 §§Muller, J.P., M-A. Denis, R. D. Dundas, K. L. Mitchell, H. Mannstein, 2003(submitted). Stereo cloud-top heights and amount retrieval from ATSR2, International Journal of Remote Sensing CLOUDMAP special issue.

		Bins	σ	COV	Skewness	Kurtosis	RMS	False Alarr	m %					
2TC(Tan)-DTED0		-0.244	0.72	3.0	18.1	379	0.76					2TC(Tar		
	Felicisimo	-0.259	0.3	1.2	6.1	118	0.40	42		Red (increase) /				
	López	-0.264	0.48	1.8	21.3	610	0.55	71						
PGotcha-DTED0		-0.247	0.14	0.6	0.6	11	0.28			Blue		PGotc		
	Felicisimo	-0.246	0.13	0.5	0.1	2	0.28	80		Less blunders detected				
	López	-0.247	0.247 0.13	0.5	0.3	4	0.28	91		for PG	otcha:	-0.5% vs.		
M4-DTED0		-0.276	0.28	1.0	4.8	126	0.39			1% for the other matchers				M4
	Felicisimo	-0.280	0.22	0.8	0.5	4	0.35	19						
	López	-0.278	0.25	0.9	2.2	37	0.37	66						
Heights – DTF	-D0 statistic	s using	hoth	hlunde	r detection	methods	with th	e internola	and o	foto			Ste	reo Hei

n assessment

		M-	1-DIFI	00	raw	1228/5	-0.582	0.37	0.6	1.6	12	0.69			
-					Interpolated	122880	-0.582	0.37	0.6	1.6	12	0.69			
98	Stere	o-Heigł	nts – L	TED0	statistics u	sing Felic	isimo's	techni	que witi	h raw & in	terpolate	d data			
		Bias	σ	COV	Skewness	Kurtosis	RMS	False /	Ahrm%						
'ED0		-0.516	0.72	1.4	11.1	191	0.89			1					
	Felicisimo	-0.529	0.48	0.9	3.7	33	0.71	4	28	1					
	López	-0.537	0.55	1.0	9.7	204	0.77	57		Red (increase) /					
ED0		-0.551	0.40	0.7	3.1	21	0.68			Blue	(reducti	011).			
	Felicisimo	-0.552	0.38	0.7	2.0	12	0.67	:	55	Less	Less blunders detected for				
	López	-0.557	0.39	0.39	0.39	0.39	0.7	3.0	22	0.68	74		PGotcha: ~1% vs. 1.5-2		
0		-0.573	.573 0.44 0.		5.2	128	0.72			for the other matchers					
	Felicisimo	-0.582	0.37	0.6	1.6	12	0.69	4	28	1					
	López	-0.579	0.39	0.7	2.6	53	0.70	1	57	1					
OT	D0 ototiotic		both	blunde	r dotoction	mothode	with th	o inton	obtod	data					

DEPARTMENT OF GEOMATIC ENGINEERING