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Abstract 5 
This paper focuses on a topic barely considered in the literature: how to improve 6 

the accuracy of a given Digital Elevation Model (DEM) irrespective of its lineage 7 

pointing out to its most suspicious values (also denoted here as outliers). 8 

Certainly, there exist methods tailored to a specific procedure and source (contour 9 

maps, remote sensing image, etc.), but they are not valid for other cases. This is a 10 

delicate problem for both the producer and end user. Here we reported the results 11 

of a comparison of two methods using six DEMs intended to be representative of 12 

different landscapes. Both methods have been applied to each DEM, producing a 13 

prescribed number of height candidates to be analyzed. Assuming that all 14 

candidates are wrong, their elevations have been blindly replaced by interpolated 15 

heights, simulating the behavior of the inexperienced user. The so improved (or 16 

degraded) DEM is compared against the ground truth, and updated accuracy 17 

figures are calculated. The experiment shows that the RMSE diminishes an 18 

amount between roughly 2 and 8 per cent of the original value by changing less 19 

than 1 per cent of the elevations in the dataset. 20 

Keywords: DEM, accuracy assessment of source data, grid data, quality control 21 
 22 
1. Introduction 23 
  24 
There is a large body of current research towards management of uncertainty in 25 

GIS datasets (Lowell and Jaton 1999, Shi et al. 1999). This covers the 26 

characterization of uncertainties (i.e., recognize them and find means to specify 27 

it), the visualization of uncertain data, its storage, and models and strategies able 28 

to appropriately take it into account for GIS operations. This situation is common 29 

for all types of GIS data. Li and Chen (1999) suggested a "hierarchy of needs" of 30 

general applicability but in particular valid for error modeling in DEM. In fig. 1 31 

the author identifies five basic needs, which can be organized in four levels. They 32 

are ordered, in the sense that higher levels are ignored unless all lower ones are 33 
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considered satisfied. According with the author, the bottom level is the one that 34 

has received most attention in the literature. It covers the accuracy of original 35 

data, its density and distribution, the characteristics of the landscape, as well as 36 

the methods used to derive the DEM from the raw data. The second layer is 37 

concerned with errors inherent to such raw data, and its characterization. The third 38 

level analyzes the effects of the errors previously characterized in the DEM after 39 

considering the modeling methods of a particular application. An algorithm able 40 

to produce equally likely instances of the DEM with specified uncertainty might 41 

be in the future the standard way to accomplish this need (see Fisher 1998 for an 42 

example). It should be stressed that we restrict ourselves to the effect on the DEM 43 

itself, and not on derived products (see for example Fortin et al. 1998, Fisher 44 

1991). The fourth level includes two basic needs, which share similar priority. 45 

Error management focuses on methods to deal with errors in output products. It 46 

usually takes the form of a specification of minimum accuracy levels, which are 47 

different for each application. Error reduction is concerned with methods for 48 

reducing or eliminating errors in output products. This paper is devoted to 49 

compare the performance of specific methods to partially achieve such goal. 50 

 51 
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Error detection & measurement 

Error source identification 
Figure 1. A "hierarchy of needs" for error modeling (modified from Li and Chen, 52 

1999). In gray the topic considered in this paper. 53 
 54 
According to Florinsky (1998), a Digital Terrain Model (DTM) can be defined as 55 

a digital representation of variables relating to topographic surface, such as Digital 56 

Elevation Models (DEM) and digital models of gradient, aspect, horizontal 57 

curvature and other topographic attributes. DEM are one of the most popular 58 

datasets in GIS applications, either as such or in derived form. They are used in 59 

visibility analysis, landslide evaluation, erosion, etc. all being different 60 

requirements with also different needs of accuracy.  See Florinsky (1998) for a 61 

review of joint applications with remote sensing data, or Moore et al. (1991) for a 62 

broader range of typical applications. Recent efforts in the GIS community 63 
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focused in the analysis of the propagation of errors for a given operation 64 

(Defourny et al. 1998, Fortin et al. 1998), or the establishment of the knowledge 65 

about how to cope with the inherent uncertainty of the dataset (Fortin et al. 1998). 66 

This will raise concerns among users about the effect of outliers on the final 67 

results, and motivate efforts to use reliable and effective "cleaning" tools (if 68 

available!). 69 

According to Thapa and Bossler (1992) errors can be classified into three types: 70 

(1) gross errors and blunders, (2) systematic errors and (3) random errors. Gross 71 

errors and blunders are caused by carelessness or inattention of the observer in 72 

using equipment, reading scales or writing down readings, etc. Occasional 73 

malfunctioning of the equipment can also cause them. Observations affected by 74 

this kind of errors are useless, and should be eliminated. From a statistical point of 75 

view they cannot be considered as belonging to the same population as the other 76 

observations.  77 

Systematic errors occur in accordance with some deterministic system which, if 78 

known, may be represented by some functional relationship. In a statistical sense, 79 

systematic errors introduce bias in the observations. Unlike gross errors, they 80 

cannot be detected or eliminated by repeated observations (the errors may be 81 

precise, but they will not be accurate). After removal of gross and systematic 82 

errors, differences still exist due to random errors. They cannot be removed by 83 

repeated observation, and they cannot be modeled with a deterministic 84 

relationship. If sufficient observations are taken, random errors posses the 85 

following characteristics: a) positive and negative errors occur with almost the 86 

same frequency b) small errors occur more often than large errors and c) large 87 

errors rarely occur. 88 

Systematic errors have been considered in the literature, and can be attributed to 89 

many sources, including poorly selected control points, parameters and so on. The 90 

techniques to recover the DEM from them are highly dependent on the lineage 91 

(i.e. the methods and algorithms used for produce the DEM) so they are not 92 

generally valid. For example, Brown and Bara (1994) suggested a method for 93 

detect and correct the systematic error of the USGS 7 ½ minute DEMs. 94 
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Some of the references regarding error propagation assume that the DEM is 95 

contaminated with just errors following a normal distribution, which might not be 96 

the case in many particular DEMs. Most of the literature on accuracy 97 

improvement have been designed from the producer side, assuming that the 98 

system "...warns the operator about suspicious values..." and some correction 99 

measure can be taken. End users are left alone, because they do not have access to 100 

the original sources (aerial photographs, control points, etc.) or they lack of 101 

specialized equipment. Error surfaces stating the expected range of variation for a 102 

given confidence level (which are commonplace in the geostatistics community) 103 

are barely presented together with the DEM. Thus, if the application is sensitive to 104 

the accuracy of the DEM, there is little help for the end user, because a) no tool to 105 

pinpoint for unlikely values are available and b) once selected and confirmed that 106 

some elevation points are unrealistic, there is no help to estimate reliable values.  107 

Regarding the first aspect, there are few references in the literature. A 108 

deterministic approach was used in an early paper by Hannah (1981), who detects 109 

non-systematic errors by applying constraints to the slopes and to the changes in 110 

slope at each point. Felicísimo (1994) analyzed the differences between the 111 

elevation and an interpolated value from the neighbors. Assuming Gaussian 112 

distribution of the errors, he analyzed the differences by means of a standard 113 

Student t test. No experimental results were given. López (1997) described a 114 

method based in the decomposition of the regular grid DEM into strips, and 115 

consider it as a multivariate table. Standard statistical techniques have been 116 

applied to select the unlikely elevations. He illustrated the performance of the 117 

method using synthetic errors only. López (2000) extended his previous method 118 

and showed results using two independent DEMs of different accuracy, 119 

illustrating hilly terrain. Its ability for other landscapes remains unknown. All of 120 

the three abovementioned methods are valid disregarding the lineage of the DEM, 121 

i.e. irrespective if it has been generated by direct photogrammetric measurements, 122 

digitizing contour lines, field survey, etc. In theory they filter out systematic 123 

errors, which are usually related with the generation procedure. 124 
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The problem of the most appropriate interpolation procedure has been extensively 125 

considered in the literature for DEM generation, and will not be analyzed here. 126 

However, their ability in this context has not been addressed. This paper will 127 

compare two of the available methods for detecting outliers in six different 128 

landscapes; in some sense, it can be complementary to the work of López (2000). 129 

In a recent paper (Durañona and López, 2000) a computer implementation of both 130 

methods was presented.  131 

The present paper is organized as follows: section 2 describes the DEM data used 132 

in the test. Section 3 briefly covers the methods applied, while section 4 presents 133 

the numerical results. Section 5 contains the discussion, while acknowledgements 134 

and references are included at the end.  135 

 136 
2. Data 137 
We will use the set of DEMs for six test areas (see table 1 and figures 2 to 7) 138 

produced by the international working group III of the ISPRS in 1983, described 139 

by Torlegård et al. (1986). They were chosen to represent a variety of terrain 140 

types regarding land use, vegetation and surface roughness. For each of them, 141 

participants produced a DEM while the organizer produced one with higher 142 

accuracy using larger scale photographs. We will use one of the former as input, 143 

and make comparisons using the later as a reference. Despite the elevation data is 144 

located in a regular grid, there is no data in forest areas. Table 1 summarize the 145 

size (rows and columns) of each DEM, its grid size, the coverage (a measure of 146 

completeness) as well as maximum and minimum elevation. In Table 1 some 147 

statistics of the errors are reported. The headings max, min, mean stands for the 148 

maximum and minimum elevation, and the mean value over the DEM. The other 149 

values are related with the accuracy of the DEM relative to the reference one, 150 

which in this experiment can be calculated and not merely estimated. RMSE is the 151 

Root Mean Square of the elevation differences, while p95 is the 95 per cent 152 

percentile of the same differences. The heading outliers stand for the estimated 153 

number of outliers, as defined by Torlegård et al. (1986). For each elevation point, 154 

they compare the absolute value of the difference between the error and the 155 

median of the errors in the 25 surrounding points. If this value is larger than three 156 
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times the RMSE of the DEM the error is classified as outlier. Since the outliers 157 

affect the RMSE, the procedure is iterated once. The participants produced a 158 

number of DEM for the same area, so the heading DEM id. identifies which one 159 

was used in the analysis reported here (see Tolstoy et al. 2000 for further details).  160 

 161 
# AREA (Country) Size Grid size (m) Coverage 

(%) 
Min/Max  

height ASL (m) 
1 Spitze (Germany) 55x53 4.94 72.56 213/240 
2 Sohnstetten (Germany) 20x104 11.37 90.96 576/640 
3 Stockholm (Sweden) 45x46 11.97 91.40 0/27 
4 Bohuslan (Sweden) 35x64 19.80 92.05 0/43 
5 Uppland (Sweden) 69x36 23.20 93.16 12/45 
6 Drivdalen (Norway) 45x57 28.28 80.66 -224/480 

 162 
Table 1 Summary of the characteristics of the available DEMs (from Torlegård et 163 
al. 1986). Size stands for the number of columns and rows, and coverage accounts 164 

for the missing values. 165 
 166 

167 
Figure 2 Mesh plot for Spitze. Missing values are not represented 168 
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169 
Figure 3 Mesh plot for Sohnstetten. Missing values are not represented 170 

171 
Figure 4 Mesh plot for Stockholm. Missing values are not represented 172 
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173 
Figure 5 Mesh plot for Bohuslan. Missing values are not represented 174 

175 
Figure 6 Mesh plot for Uppland. Missing values are not represented 176 
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177 
Figure 7 Mesh plot for Drivdalen. Missing values are not represented 178 

 179 

According to Östman (1987) the Spitze area is a rural one and very smooth. The 180 

Sohnstetten one is also rural, but with undulated hills of moderate height. Sparse 181 

trees dominate the landscape, but few areas with denser cover are also present. As 182 

a mixed urban and natural sparse cover example we have the Stockholm area. It 183 

has also some water bodies in the north. The Bohuslan is an example of rough 184 

terrain, with sparse vegetation cover. The Drivdalen area has vegetation cover 185 

highly correlated with height: over a prescribed level there is almost no coverage.  186 

Area max(m) min(m) mean(m) RMSE(m) p95(m) outliers(%) DEM id.
Spitze 1.135 -2.716 0.075 0.162 0.278 0.51 5 
Sohnstetten 3.465 -2.211 0.150 0.478 0.923 1.83 6 
Stockholm 8.505 -10.636 0.813 1.274 2.370 0.72 5 
Bohuslan 3.946 -5.795 -0.776 1.311 2.551 0.18 6 
Uppland 5.996 -4.741 -0.119 0.973 1.969 1.01 5 
Drivdalen 30.922 -32.151 4.284 6.746 11.514 0.44 6 

 187 
Table 1 Initial values of the traditional accuracy measures. See the text for 188 
explanations 189 
 190 
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The pattern of missing elevations is irregular, being rather isolated spots or 191 

contiguous areas, as illustrated in Fig. 8. In order to apply the methods, the 192 

datasets need to be complete, and thus they have been imputated with bilinear 193 

functions. Such locations have been masked later in order not to select them as 194 

candidates to be outliers. 195 

 196 
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 197 
Figure 8 Example of an isolated (Spitze, left) and contiguous (Bohuslan, right) 198 

pattern of missing elevations, denoted in black. 199 
3. Methods 200 

For the sake of completeness we will describe briefly the methods of Felicísimo 201 

(1994) and López (2000). In addition, we will introduce the metrics of success 202 

applied for both methods. 203 

 204 

3.1  The method of Felicísimo (1994) 205 

This method is based upon very simple ideas. It assumes that outliers are only 206 

locally spatially correlated. Thus, they build a statistics calculated as the 207 

difference between the given value and an estimate from its immediate neighbors. 208 

If such difference has a Gaussian distribution, a Student's t test can be applied to 209 

analyze every elevation in the dataset. The mean and standard deviation are 210 

estimated from the population, so the outliers themselves might affect them. 211 

Given a confidence level, and estimates of the mean and standard deviation, the 212 

author describe how to calculate a threshold value in order to decide whether or 213 

not the elevation at a given location belongs or not to the overall population. For 214 

example, for a confidence level of α =0.001, the outliers are highlighted if the 215 

given elevation and the estimate differ more than 3.219 times the standard 216 

deviation.  217 
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How to obtain the estimate itself is not part of the method. In this work, we 218 

applied a best-fit approximation with a biquadratic polynomial using the eight 219 

closest neighbors. The author states that even though a significantly high 220 

difference does not necessarily imply an outlier, it is an excellent alarm sign. The 221 

method appears to be extremely simple and is parameter free (i.e., no tuning phase 222 

is required). The method does not require a DEM described in a regular grid. 223 

Since we are analyzing methods to progressively refine the DEM, we must 224 

suggest an order among the candidates, being the most unlikely first. Such order is 225 

build according the normalized difference ( )t si j i j, ,= −δ δ δ  being ji,δ  the 226 

difference between the given elevation value zi j,  and the estimated guess ,zi j , 227 

being δ  and sδ  the mean and standard deviation of the population of ji,δ . The 228 

latter values can be severely affected by gross errors. A possible approach is to 229 

correct just the worst values, recalculate the mean and standard deviation, and 230 

reevaluate the remaining elevation points. If the worst values cannot be classified 231 

as outliers, other candidates could be selected. It should be mentioned that there 232 

are better strategies (denoted collectively as high breakdown methods) which have 233 

in common the ability to extract the "right" estimate of the mean and standard 234 

deviation even with a population severe contaminated with outliers of arbitrary 235 

size (see Hadi 1992, 1994).  236 

 237 

3.2  The method of López (2000)  238 

The author first describes a procedure to find unlikely values in elongated DEMs, 239 

with length n and width w, being w<<n. Each one of the n cross sections has w 240 

elevation values, which can be regarded as the coordinates of points in Rw space. 241 

Each one of the w profiles of length n is associated with a coordinate axis in Rw 242 

space. Once described in such way, a number of well known methods from 243 

statistics can be applied to highlight those points which do not behave as the rest 244 

of the cloud (Hadi 1992, 1994, Hawkins 1974, 1993a, 1993b). 245 

 Assuming multivariate gaussian distribution, the author uses a modification of the 246 

method of Hawkins (1974) based upon Principal Component Analysis (PCA) to 247 
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calculate a Mahalanobis-like distance from each point to the bulk of the cloud. 248 

Those points in Rw (cross sections) with Mahalanobis-like distances larger than a 249 

preset value suggest the existence of an outlier in the section.  250 

Notice that the error location procedure directly analyzes the cloud of points in 251 

Rw, disregarding any order among points. This is an important assumption, since 252 

the concept of spatial self-correlation based upon geometric distance looses 253 

completely all significance in the cloud. Adjacent profiles (of length n) need not 254 

to be in any special order, since they are coordinate axes in the space Rw. 255 

However, an unique feature of the method is that it captures some sort of 256 

direction-wise correlation; if the nxw DEM has two or more profiles (of length n) 257 

which are very similar, their mutual correlation will be high and any difference 258 

due to outliers will be easily detected. Depending upon its lineage and terrain 259 

characteristics, some DEMs are more prone to show high direction-wise 260 

correlation than others. 261 

Once the point in Rw is selected, it is necessary to identify which one of the w 262 

elevation values makes it unlikely. There might be more than one value, and they 263 

are identified after a sensitivity analysis of the Mahalanobis distance.  We refer to 264 

the original reference for further details.  265 

The requirement n>>w is crucial for having enough points in Rw to properly 266 

estimate the correlation matrix. Any given nxm DEM of n rows and m columns 267 

might not be so elongated for this method, but it can be divided into strips of size 268 

nxw, and the method applied in each one. If m is not an exact multiple of w the 269 

strips might overlap in order to consider the whole DEM. The candidates obtained 270 

in each strip can be grouped and designated hereinafter as row-wise candidates for 271 

the whole DEM. The same procedure can be applied to column-wise strips of size 272 

wxm, and a different set of column-wise candidates can be obtained. The elevation 273 

values belonging to both sets are the first ones to be considered as outliers. 274 

As before, the method should be applied in steps, because the outliers might 275 

adversely affect all the statistics. The process is supposed to stop when some 276 

criteria are fulfilled. In this paper, we continue until a prescribed number of 277 

elevations are edited, which is a measure of the effort required to improve the 278 
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DEM accuracy. The overall procedure is clearly more complex than the one of 279 

Felicísimo (1994), and it requires some user-supplied parameters described in the 280 

original reference. In addition, it can be applied only on DEMs defined over a 281 

regular grid.  282 

 283 

3.3  The metrics of success  284 

Let's define a perfect inspector as the one which, given a location, can provide a 285 

perfectly accurate elevation value for it. Here perfectly accurate should be 286 

regarding in reference to the correct value with a given technology; such value is 287 

also assumed unique. Notice that, by definition, control points are those obtained 288 

by a perfect inspector. This hypothesis has some interesting properties while 289 

comparing methods. If a given imputation method behaves as a perfect inspector, 290 

after selecting 100 per cent of the elevations the RMSE must decrease 100 per 291 

cent also down to zero. Thus, if we select at random which elevation value should 292 

be corrected, after editing 1 per cent of the elevations we diminish the RMSE just 293 

1 per cent on average. Clever choice of the elevations to edit should render a 294 

better improvement, so the relative change of RMSE (in per cent) will be greater 295 

than the number of the elevations inspected (also in per cent).  296 

A perfect inspector imputation is certainly possible, but is usually expensive. So, 297 

the effort required for editing 100 per cent of the elevations is not considered as a 298 

choice, but a limited one might be. Thus, we will define as effort the fraction of 299 

the whole DEM that we might accept to edit/imputate (with any method, not 300 

necessarily the perfect one) in order to improve the accuracy. The effort is 301 

expressed in per cent. In real situations (either in the producer or the user role) we 302 

must limit our reprocessing of the DEM due to budget, time or other constraints. 303 

Let's consider first the producer side. In some cases we can assign a monetary 304 

value to the accuracy: we have to compare the cost of reworking (usually 305 

proportional to the effort) vs. the value of the DEM (usually a decreasing function 306 

of the RMSE). The equilibrium point can be calculated, and it will define the 307 

effort limit. End users define an effort limit, but for other reasons. They probably 308 

are not willing to edit a significant part of the DEM. They might accept at most to 309 
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be warned by software, and after some inspection, use an estimate instead of the 310 

given data. In both cases, the effort limit should be agreed before and will 311 

quantify the commitment to make changes in the given DEM. 312 

In this experiment we have at hand the perfect inspector elevations. However, to 313 

represent a realistic situation, we imputated the elevations using bilinear 314 

interpolation from the neighbors of the candidate point. This procedure is 315 

available both to the DEM producer and the end user, since it does not require 316 

unavailable information. The procedure is not part of the accuracy improvement 317 

method: it simply attempts to mimic the behavior of an inexperienced user. Other 318 

users will go to every candidate, display the data and the neighborhood, and take a 319 

decision whether or not to change the given value. Here, we decided to accept 320 

every candidate as suggested by the methods, and change the elevation as 321 

described. Notice that, with this imputation method, there is neither no guarantee 322 

nor arguments to claim that after 100 per cent effort all the errors will be 323 

eliminated, and it is also hard to argue that the RMSE must even decrease. The 324 

interpolated value might be worse than the original one. 325 

For both methods, we will select up to a prescribed number of elevation spots, 326 

related with the effort limit and the size of the DEM itself. As presented before, if 327 

the relative change of the accuracy is larger than the effort, we are performing 328 

better than mere chance. A similar argument can be raised for the percentile 95 329 

per cent of the errors.  330 

The process is as follows: the methods were applied, and they selected a small set 331 

of candidates representing some effort. Once edited, new accuracy figures can be 332 

calculated up to that effort. The process continues until we exceeded the specified 333 

effort limit. Then, we interpolate the accuracy figures to prescribed stations, like 334 

[0.25, 0.50, 1.00] per cent. Unlike other authors, and since the RMSE is badly 335 

affected by even few outliers, we have also considered the percentile 95 per cent 336 

of the absolute errors as a significant accuracy figure.  337 

The 1 per cent effort limit was chosen following Torlegård et al. (1986), and is of 338 

the order of the number of outliers found in the DEMs. Their estimate of the 339 

initial number of outliers for the six DEM models has been presented in Table 1.  340 
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4. Results 341 

We want to summarize some results in Table 2, while more details will be given 342 

in Table 3. Almost all the entries in Table 2 are over 1.000 and some clearly over, 343 

which shows that both methods are better than the mere chance. Only for the 344 

Bohuslan area and for the p95 statistics the values are lower than 1.000, which 345 

must be interpreted that (on average) the method behaves worse than random 346 

selection of the candidates. Notice that no negative entries arise, so the combined 347 

(error detection + simple interpolation) strategy did not degrade the accuracy.  348 

It should be stressed that the accuracy in this experiment is always calculated (not 349 

estimated) by comparing against the respective reference DEM for all elevation 350 

values. In real situations this is not possible; the accuracy is just estimated (not 351 

calculated), and the estimation is performed by comparing elevations from higher 352 

accuracy sources (typically field values) against the given DEM. 353 

The worst values correspond to Bohuslan. According to Torlegård et al. (1986), 354 

this DEM has just 0.18 per cent outliers (as defined by them), which is 355 

significantly less than 1 per cent. If they were right, this implies that we are 356 

editing not only blunders but also regular errors, which is a situation outside the 357 

hypothesis for both methods. The case of Uppland is unique in the sense that, in 358 

terms of the RMSE, F1994 is better, but the situation is the opposite for the 359 

percentile 95 per cent. This shows that L2000 is more prone to pick in this case 360 

the worst values while F1994 picks a bunch of not-too-extremely-large errors. The 361 

methods applied to the Stockholm DEM show better performance by F1994. The 362 

area is very complex, with a number of roads and urban areas, which might 363 

require further analysis. The other DEMs shown better or clearly better 364 

performance for L2000, for smooth and rugged terrain as well. However, all the 365 

statistics should be analyzed with caution, because the DEM test are rather small 366 

(i.e. few elevation points) to derive strong conclusions. The L2000 method is 367 

more sensitive than F1994 to this aspect, because it requires an undefined "large" 368 

number of rows and columns, which is not the case in any of the samples (for 369 

Sohnstetten there are only 20 rows for the analysis!). In addition, the missing 370 

elevations have been interpolated, and both methods were applied after the 371 
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interpolation, deriving statistics that might not reflect well the original variability 372 

of the data. This explains why, despite good, the performance is not as good as 373 

reported before (López, 2000). For accuracy as RMSE, and for 1 per cent effort, 374 

the author reported a RMSE decrease of 4.701 per cent for a rugged mountain 375 

area, while for the method F1994 the same figure is 3.675 per cent.  376 

We want to stress that both methods were designed to pick just outliers. If a 377 

significant part of the initial RMSE error of a given DEM is due to outliers, a 378 

substantial improvement can be obtained even by a limited editing effort, as 379 

shown in this paper. If the bulk of the errors arise from systematic reasons, the 380 

methods will not contribute significantly to any accuracy improvement.  381 

Figures 9 and 10 show the evolution of the accuracy vs. effort for the case of the 382 

RMSE and the percentile 95 per cent for Drivdalen. The dashed area shows the 383 

lower boundary for the behavior of any possible method. The limit curve is 384 

obtained by selecting one at a time the largest outlier in the DEM, imputating it 385 

with the perfect inspector's elevation value and repeating until a given effort is 386 

accomplished. No method can do better. All the required information to proceed 387 

this way is available for this experiment, but not in real cases. Notice that the 388 

perfect method requires both a perfect outlier location method and a perfect 389 

inspector in order to imputate the values. At the 1 per cent effort, this perfect 390 

method is able to decrease significantly the RMSE, showing that there is still 391 

room for improvement. 392 

Four additional curves are shown: one for the method of Felicísimo (1994) and 393 

three for the other method, corresponding to different number of Principal 394 

Components dropped from the Mahalanobis distance calculation (see López, 2000 395 

for further details). As suggested in the reference, we estimated "2" as the best 396 

value for Drivdalen, and Table 3 summarizes the results for such option. If we go 397 

further with the effort (beyond 1 per cent) we might notice that the performance 398 

(RMSE decrease vs. effort) degrades significantly. This fact (not shown in the 399 

figure) confirms the assertion of Torlegård et al. (1986) regarding the small 400 

number of outliers in the dataset.  401 

 402 
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AREA 

(RMSE(1%)-RMSE(0%)) 
RMSE(0%) 

(p95(1%)-p95(0%)) 
p95(0%) 

 F1994 L2000 F1994 L2000 
Spitze 1.235 8.642 1.439 1.439 
Sohnstetten 4.393 4.812 2.600 3.034 
Stockholm 2.198 1.962 5.612 1.350 
Bohuslan 1.144 1.068 0.706 0.510 
Uppland 4.111 2.878 1.574 1.727 
Drivdalen 1.349 2.224 1.181 1.285 

 403 
Table 2 Summary of the results of the test. "RMSE(x%)" stands for accuracy (as 404 

RMSE) after editing x% of the elevations in the DEM, while "p95(x%)" stands for 405 
the percentile 95% of the absolute elevation error, etc. F1994 and L2000 stands 406 
for the methods applied. In gray those cases where F1994 outperforms L2000. 407 

 408 
AREA max (1%) (m) min (1%) (m) mean(1%) (m) RMSE(1%) (m) p95(1%)  (m) 

 F1994 L2000 F1994 L2000 F1994 L2000 F1994 L2000 F1994 L2000 
Spitze 1.135 0.728 -2.716 -0.592 0.077 0.076 0.160 0.148 0.274 0.274 
Sohnstetten 3.300 3.465 -2.211 -2.211 0.149 0.148 0.457 0.455 0.899 0.895 
Stockholm 8.505 6.908 -10.636 -10.636 0.813 0.806 1.246 1.249 2.237 2.338 
Bohuslan 3.946 3.946 -5.795 -5.795 -0.773 -0.770 1.296 1.297 2.533 2.538 
Uppland 5.357 5.885 -3.923 -4.602 -0.116 -0.111 0.933 0.945 1.938 1.935 
Drivdalen 30.922 30.922 -32.151 -29.167 4.308 4.325 6.655 6.596 11.378 11.366 

 409 
Table 3 Accuracy statistics reported after 1 per cent effort discriminated by 410 

method and area. Initial values were reported in Table 1 411 
 412 
 413 
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Figure 9 Evolution of the accuracy as RMSE up to an effort of 2.0 per cent for the 415 
case of Drivdalen. Symbol " o " denotes experimental points for method F1994. 416 

The others are for different parameters of method L2000. The border of the 417 
dashed region denotes the best possible operation line. All the curve values were 418 

obtained after linear interpolation between experimental points. 419 
 420 
 421 
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Figure 10 Evolution of the percentile 95 per cent of the error up to an effort of 2.0 423 
per cent for the case of Drivdalen. Symbol " o " denotes experimental points for 424 
method F1994. The others are for different parameters of method L2000. The 425 

border of the dashed region denotes the best possible operation line. All the curve 426 
values were obtained after linear interpolation between experimental points.  427 

 428 
5. Conclusions 429 
Errors in any DEM might adversely affect its usefulness for a particular 430 

application, so they need to be modeled and taken into consideration. Usually, 431 

both the systematic and random errors are modeled jointly using a Gaussian 432 

distribution. Its parameters can be estimated using control points and the DEM 433 

itself provided that no outliers are present; otherwise they might be severely 434 

affected.  435 

In this paper, we have presented preliminary quantitative results of the 436 

comparison of two methods for outlier detection for DEM applied over six cases 437 

representative of different landscapes. Systematic errors are not considered. Both 438 

methods produce an ordered set of location candidates to be outliers. In real cases, 439 

the operator will go through the list and decide whether or not a particular 440 



 20 

elevation is wrong. Here, we blindly imputated the elevation by bilinear 441 

approximation using its immediate neighbors, trying to mimic the behavior of 442 

automatic equipment or inexperienced operators. In any case, the process is 443 

iterative because outliers affect the statistics of the DEM and indirectly the 444 

numbers used by the methods themselves and continues until a prescribed fraction 445 

of the DEM has been edited. The results in terms of RMSE or percentile 95 per 446 

cent of the elevation error demonstrated that a significant improvement in the 447 

accuracy for both methods could be achieved. Previous papers on the subject lack 448 

for a comparison with different landscapes, which is the main contribution of this 449 

one. The best results were for the method by López (2000). In all but one case it 450 

diminished the RMSE more than 2 per cent irrespective of the landscape, while 451 

the performance of the method by Felicísimo (1994) were more irregular. These 452 

results should be taken with caution and can be regarded as conservative for the 453 

method described by López (2000) because the DEM samples were not 454 

particularly appropriate for its application due to its limited size.  455 

For other DEMs, the significance of the accuracy improvement depends upon the 456 

number and size of outliers in the dataset: if they are known to contribute 457 

significantly to the accuracy, the methods might provide a good strategy for 458 

improvement. If most of the accuracy is due to systematic errors, the methods are 459 

of little use. 460 
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band1 
DELTA = 
 
     1 
 
Metodo de Felicisimo. 1994 
  abscisa   SKEW      MU       SD    P95     MAX     MIN accuracy 
   0.000;  0.898;  0.075;  0.144;  0.278;  1.135; -2.716;  0.162         
   0.250;  0.878;  0.075;  0.143;  0.277;  1.135; -2.716;  0.162         
   0.500;  0.857;  0.076;  0.142;  0.276;  1.135; -2.716;  0.161         
   1.000;  0.804;  0.077;  0.142;  0.274;  1.135; -2.716;  0.160         
   2.000;  0.851;  0.078;  0.141;  0.273;  1.135; -2.716;  0.159         
   2.500;  0.844;  0.078;  0.141;  0.273;  1.135; -2.716;  0.159         
   3.000;  0.818;  0.078;  0.140;  0.272;  1.135; -2.716;  0.158         
   5.000;  0.804;  0.078;  0.139;  0.269;  1.135; -2.716;  0.156         
  10.000;  0.570;  0.079;  0.134;  0.260;  0.507; -2.716;  0.147         
1 sin controlar  y w=5 
  abscisa   SKEW      MU       SD    P95     MAX     MIN accuracy 
   0.000;  0.898;  0.075;  0.144;  0.278;  1.135; -2.716;  0.162         
   0.250;  0.964;  0.075;  0.139;  0.277;  1.022; -2.125;  0.158         
   0.500;  1.030;  0.076;  0.135;  0.276;  0.908; -1.534;  0.154         
   1.000;  1.135;  0.076;  0.127;  0.274;  0.728; -0.592;  0.148 
         
   2.000;  1.118;  0.076;  0.127;  0.274;  0.728; -0.584;  0.147         
   2.500;  1.041;  0.077;  0.126;  0.273;  0.728; -0.544;  0.146         
   3.000;  1.054;  0.077;  0.125;  0.272;  0.728; -0.544;  0.145         
   5.000;  1.013;  0.078;  0.123;  0.268;  0.728; -0.544;  0.142         
  10.000;  0.804;  0.080;  0.121;  0.265;  0.728; -0.544;  0.137         
2 sin controlar  y w=5 
  abscisa   SKEW      MU       SD    P95     MAX     MIN accuracy 
   0.000;  0.898;  0.075;  0.144;  0.278;  1.135; -2.716;  0.162         
   0.250;  0.878;  0.075;  0.143;  0.277;  1.135; -2.716;  0.162         
   0.500;  0.857;  0.075;  0.143;  0.276;  1.135; -2.716;  0.161         
 
   1.000;  0.851;  0.074;  0.141;  0.274;  0.796; -2.716;  0.159         
 
   2.000;  0.864;  0.074;  0.139;  0.273;  0.728; -2.593;  0.156         
   2.500;  0.973;  0.075;  0.132;  0.272;  0.728; -1.595;  0.150         
   3.000;  1.082;  0.076;  0.126;  0.271;  0.728; -0.596;  0.145         
   5.000;  1.033;  0.077;  0.123;  0.269;  0.728; -0.519;  0.142         
  10.000;  0.757;  0.080;  0.120;  0.263;  0.728; -0.501;  0.136         
3 sin controlar  y w=5 
  abscisa   SKEW      MU       SD    P95     MAX     MIN accuracy 
   0.000;  0.898;  0.075;  0.144;  0.278;  1.135; -2.716;  0.162         
   0.250;  0.867;  0.075;  0.143;  0.277;  1.135; -2.716;  0.162         
   0.500;  0.851;  0.075;  0.143;  0.276;  1.135; -2.716;  0.161         
   1.000;  0.851;  0.075;  0.143;  0.276;  1.135; -2.716;  0.161         
   2.000;  0.804;  0.075;  0.143;  0.276;  1.124; -2.716;  0.160         
   2.500;  0.804;  0.075;  0.141;  0.274;  0.733; -2.716;  0.157         
   3.000;  0.804;  0.075;  0.140;  0.274;  0.728; -2.716;  0.157         
   5.000;  0.749;  0.076;  0.138;  0.272;  0.728; -2.716;  0.154         
  10.000;  0.709;  0.078;  0.137;  0.268;  0.728; -2.716;  0.150 
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  10.000;  0.756;  0.080;  0.120;  0.263;  0.728; -0.499;  0.136         
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band2 
DELTA = 
 
     1 
llegue para las graficas con los resultados de felicisimo. 1994 
Metodo de Felicisimo. 1994 
  abscisa   SKEW      MU       SD    P95     MAX     MIN accuracy 
   0.000;  1.850;  0.150;  0.454;  0.923;  3.465; -2.211;  0.478         
   0.250;  1.796;  0.151;  0.453;  0.923;  3.466; -2.211;  0.476         
   0.500;  1.799;  0.150;  0.449;  0.918;  3.429; -2.211;  0.473      
   1.000;  1.729;  0.149;  0.435;  0.899;  3.297; -2.211;  0.457 
         
   2.000;  1.691;  0.149;  0.434;  0.898;  3.300; -2.211;  0.454         
   2.500;  1.667;  0.149;  0.433;  0.896;  3.289; -2.211;  0.452         
   3.000;  1.628;  0.150;  0.431;  0.888;  3.317; -2.211;  0.449         
   5.000;  1.524;  0.150;  0.408;  0.831;  2.632; -2.211;  0.424         
  10.000;  1.428;  0.157;  0.397;  0.815;  2.674; -2.211;  0.405         
1 sin controlar  y w=5 
  abscisa   SKEW      MU       SD    P95     MAX     MIN accuracy 
   0.000;  1.850;  0.150;  0.454;  0.923;  3.465; -2.211;  0.478         
   0.250;  1.797;  0.151;  0.453;  0.923;  3.465; -2.211;  0.476         
   0.500;  1.782;  0.150;  0.448;  0.916;  3.417; -2.211;  0.471         
   1.000;  1.732;  0.149;  0.435;  0.900;  3.300; -2.211;  0.457 
         
   2.000;  1.691;  0.149;  0.434;  0.898;  3.300; -2.211;  0.454         
   2.500;  1.661;  0.149;  0.433;  0.894;  3.300; -2.211;  0.452         
   3.000;  1.631;  0.150;  0.431;  0.887;  3.300; -2.211;  0.449         
   5.000;  1.526;  0.150;  0.409;  0.833;  2.674; -2.211;  0.425         
  10.000;  1.427;  0.157;  0.397;  0.815;  2.674; -2.211;  0.405         
2 sin controlar  y w=5 
  abscisa   SKEW      MU       SD    P95     MAX     MIN accuracy 
   0.000;  1.850;  0.150;  0.454;  0.923;  3.465; -2.211;  0.478         
   0.250;  1.749;  0.151;  0.451;  0.910;  3.465; -2.211;  0.475         
   0.500;  1.797;  0.149;  0.441;  0.900;  3.465; -2.211;  0.464         
   1.000;  1.718;  0.148;  0.438;  0.895;  3.465; -2.211;  0.460 
         
   2.000;  1.648;  0.149;  0.435;  0.884;  3.465; -2.211;  0.455         
   2.500;  1.606;  0.149;  0.433;  0.879;  3.465; -2.211;  0.452         
   3.000;  1.565;  0.150;  0.431;  0.875;  3.465; -2.211;  0.450         
   5.000;  1.425;  0.151;  0.424;  0.854;  3.465; -2.211;  0.439         
  10.000;  1.303;  0.157;  0.411;  0.824;  3.465; -2.100;  0.417         
3 sin controlar  y w=5 
  abscisa   SKEW      MU       SD    P95     MAX     MIN accuracy 
   0.000;  1.850;  0.150;  0.454;  0.923;  3.465; -2.211;  0.478         
   0.250;  1.831;  0.149;  0.447;  0.907;  3.465; -2.211;  0.470         
   0.500;  1.745;  0.150;  0.444;  0.902;  3.465; -2.211;  0.467         
   1.000;  1.744;  0.149;  0.442;  0.899;  3.465; -2.211;  0.464         
 
   2.000;  1.701;  0.149;  0.438;  0.890;  3.465; -2.211;  0.458         
   2.500;  1.662;  0.149;  0.436;  0.884;  3.465; -2.191;  0.455         
   3.000;  1.611;  0.150;  0.432;  0.877;  3.465; -2.155;  0.450         
   5.000;  1.533;  0.151;  0.426;  0.866;  3.465; -2.100;  0.441         
  10.000;  1.268;  0.148;  0.417;  0.839;  3.465; -2.100;  0.420 
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BAND3 33 

band3 
Metodo de Felicisimo. 1994 
  abscisa   SKEW      MU       SD    P95     MAX     MIN 
accuracy 
   0.000;  1.321;  0.813;  0.981;  2.370;  8.505;-10.636;  
1.274         
   0.250;  1.329;  0.811;  0.976;  2.361;  8.505;-10.636;  
1.267         
   0.500;  1.350;  0.812;  0.966;  2.351;  8.505;-10.636;  
1.259         
   1.000;  1.359;  0.813;  0.953;  2.327;  8.505;-10.636;  
1.246 
         
   2.000;  1.292;  0.810;  0.947;  2.296;  8.505;-10.636;  
1.233         
   2.500;  1.268;  0.808;  0.946;  2.296;  8.505;-10.636;  
1.228         
   3.000;  1.268;  0.806;  0.946;  2.296;  8.505;-10.636;  
1.224         
   5.000;  1.395;  0.821;  0.898;  2.294;  8.505;-10.636;  
1.186         
  10.000;  1.194;  0.819;  0.824;  2.272;  6.873; -4.683;  
1.102         
1 sin controlar  y w=5 
  abscisa   SKEW      MU       SD    P95     MAX     MIN 
accuracy 
   0.000;  1.321;  0.813;  0.981;  2.370;  8.505;-10.636;  
1.274         
   0.250;  1.314;  0.813;  0.981;  2.370;  8.505;-10.636;  
1.272         
   0.500;  1.295;  0.811;  0.979;  2.367;  8.505;-10.636;  
1.268         
   1.000;  1.278;  0.809;  0.968;  2.354;  8.029;-10.636;  
1.255         
   2.000;  1.385;  0.812;  0.911;  2.304;  5.736; -9.714;  
1.208         
   2.500;  1.510;  0.816;  0.887;  2.297;  5.736; -7.912;  
1.190         
   3.000;  1.511;  0.816;  0.881;  2.293;  5.736; -7.588;  
1.182         
   5.000;  1.406;  0.812;  0.872;  2.280;  5.736; -7.588;  
1.161         
  10.000;  1.216;  0.803;  0.861;  2.252;  5.736; -7.588;  
1.117         
2 sin controlar  y w=5 
  abscisa   SKEW      MU       SD    P95     MAX     MIN 
accuracy 
   0.000;  1.321;  0.813;  0.981;  2.370;  8.505;-10.636;  
1.274         
   0.250;  1.307;  0.812;  0.980;  2.368;  8.505;-10.636;  
1.271         
   0.500;  1.282;  0.809;  0.978;  2.365;  8.505;-10.636;  
1.266         
   1.000;  1.299;  0.806;  0.963;  2.338;  6.908;-10.636;  
1.249         
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   2.000;  1.299;  0.806;  0.950;  2.327;  5.736;-10.636;  
1.233         
   2.500;  1.262;  0.805;  0.948;  2.316;  5.736;-10.636;  
1.228         
   3.000;  1.226;  0.804;  0.946;  2.305;  5.736;-10.636;  
1.222         
   5.000;  1.163;  0.798;  0.941;  2.284;  5.736;-10.636;  
1.202         
  10.000;  1.057;  0.789;  0.923;  2.244;  3.861;-10.636;  
1.152         
3 sin controlar  y w=5 
  abscisa   SKEW      MU       SD    P95     MAX     MIN 
accuracy 
   0.000;  1.321;  0.813;  0.981;  2.370;  8.505;-10.636;  
1.274         
   0.250;  1.293;  0.810;  0.978;  2.366;  8.505;-10.636;  
1.269         
   0.500;  1.268;  0.808;  0.976;  2.362;  8.505;-10.636;  
1.264         
   1.000;  1.279;  0.808;  0.972;  2.358;  7.934;-10.636;  
1.257         
   2.000;  1.309;  0.808;  0.950;  2.328;  5.736;-10.636;  
1.235         
   2.500;  1.277;  0.807;  0.943;  2.304;  5.736;-10.636;  
1.226         
   3.000;  1.243;  0.806;  0.938;  2.296;  5.736;-10.636;  
1.218         
   5.000;  1.216;  0.805;  0.932;  2.290;  5.736;-10.636;  
1.200         
  10.000;  1.057;  0.805;  0.929;  2.283;  5.736;-10.636;  
1.166         
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band4 
 
Metodo de Felicisimo. 1994 
  abscisa   SKEW      MU       SD    P95     MAX     MIN 
accuracy 
   0.000;  1.261; -0.776;  1.057;  2.551;  3.946; -5.795;  
1.311         
   0.250;  1.273; -0.773;  1.054;  2.541;  3.946; -5.795;  
1.305         
   0.500;  1.292; -0.772;  1.052;  2.537;  3.946; -5.795;  
1.301         
   1.000;  1.328; -0.773;  1.048;  2.533;  3.946; -5.795;  
1.296         
 
   2.000;  1.358; -0.777;  1.046;  2.534;  3.946; -5.795;  
1.289         
   2.500;  1.350; -0.776;  1.045;  2.533;  3.946; -5.795;  
1.285         
   3.000;  1.326; -0.774;  1.043;  2.527;  3.946; -5.795;  
1.279         
   5.000;  1.309; -0.770;  1.032;  2.506;  3.946; -5.795;  
1.255         
  10.000;  1.212; -0.778;  1.025;  2.505;  3.946; -5.795;  
1.220         
1 sin controlar  y w=5 
  abscisa   SKEW      MU       SD    P95     MAX     MIN 
accuracy 
   0.000;  1.261; -0.776;  1.057;  2.551;  3.946; -5.795;  
1.311         
   0.250;  1.261; -0.772;  1.055;  2.541;  3.946; -5.795;  
1.306         
   0.500;  1.261; -0.771;  1.055;  2.537;  3.946; -5.795;  
1.303         
   1.000;  1.262; -0.769;  1.054;  2.535;  3.946; -5.795;  
1.298         
   2.000;  1.310; -0.765;  1.047;  2.525;  3.946; -5.795;  
1.284         
   2.500;  1.334; -0.763;  1.043;  2.520;  3.946; -5.795;  
1.276         
   3.000;  1.358; -0.761;  1.040;  2.515;  3.946; -5.795;  
1.269         
   5.000;  1.261; -0.762;  1.023;  2.510;  3.946; -4.743;  
1.244         
  10.000;  1.195; -0.753;  1.000;  2.457;  3.946; -4.381;  
1.187         
2 sin controlar  y w=5 
  abscisa   SKEW      MU       SD    P95     MAX     MIN 
accuracy 
   0.000;  1.261; -0.776;  1.057;  2.551;  3.946; -5.795;  
1.311         
   0.250;  1.261; -0.774;  1.056;  2.547;  3.946; -5.795;  
1.307         
   0.500;  1.261; -0.771;  1.054;  2.537;  3.946; -5.795;  
1.303         
   1.000;  1.253; -0.770;  1.053;  2.538;  3.946; -5.795;  
1.297         
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   2.000;  1.219; -0.769;  1.047;  2.531;  3.946; -5.795;  
1.286         
   2.500;  1.234; -0.768;  1.043;  2.527;  3.946; -5.617;  
1.279         
   3.000;  1.269; -0.767;  1.038;  2.524;  3.946; -5.336;  
1.271         
   5.000;  1.252; -0.769;  1.027;  2.517;  3.946; -5.006;  
1.250         
  10.000;  1.088; -0.769;  0.993;  2.484;  3.946; -4.381;  
1.192         
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band5 
Metodo de Felicisimo. 1994 
  abscisa   SKEW      MU       SD    P95     MAX     MIN accuracy 
  0.000;  0.994; -0.119;  0.966;  1.969;  5.996; -4.741;  0.973         
   0.250;  1.009; -0.120;  0.950;  1.963;  5.778; -4.461;  0.956         
   0.500;  1.027; -0.118;  0.939;  1.957;  5.514; -4.123;  0.944         
   1.000;  1.015; -0.116;  0.931;  1.938;  5.357; -3.923;  0.933         
 
   2.000;  0.994; -0.114;  0.925;  1.898;  5.357; -3.923;  0.922         
   2.500;  1.009; -0.115;  0.923;  1.888;  5.357; -3.923;  0.918         
   3.000;  1.030; -0.118;  0.921;  1.883;  5.357; -3.923;  0.914         
   5.000;  1.087; -0.135;  0.893;  1.858;  4.012; -3.923;  0.880         
  10.000;  0.961; -0.145;  0.867;  1.819;  3.732; -3.923;  0.834         
2 sin controlar  y w=5 
  abscisa   SKEW      MU       SD    P95     MAX     MIN accuracy 
   0.000;  0.994; -0.119;  0.966;  1.969;  5.996; -4.741;  0.973         
   0.250;  0.994; -0.115;  0.960;  1.968;  5.996; -4.666;  0.965         
   0.500;  0.994; -0.112;  0.953;  1.961;  5.996; -4.602;  0.957         
   1.000;  1.005; -0.111;  0.944;  1.935;  5.885; -4.602;  0.945         
 
   2.000;  1.047; -0.112;  0.929;  1.877;  5.560; -4.602;  0.927         
   2.500;  1.099; -0.111;  0.925;  1.869;  5.560; -4.602;  0.920         
   3.000;  1.151; -0.109;  0.921;  1.860;  5.560; -4.602;  0.913         
   5.000;  1.080; -0.112;  0.915;  1.844;  5.560; -4.602;  0.899         
  10.000;  0.850; -0.116;  0.888;  1.793;  5.560; -4.602;  0.850   
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band6 
 
Metodo de Felicisimo. 1994 
  abscisa   SKEW      MU       SD    P95     MAX     MIN accuracy 
   0.000;  1.595;  4.284;  5.213; 11.514; 30.922;-32.151;  6.746         
   0.250;  1.553;  4.294;  5.189; 11.476; 30.922;-32.151;  6.726         
   0.500;  1.547;  4.314;  5.123; 11.424; 30.922;-32.151;  6.680         
   1.000;  1.547;  4.308;  5.117; 11.378; 30.922;-32.151;  6.655         
 
   2.000;  1.498;  4.331;  5.011; 11.258; 30.922;-32.151;  6.556         
   2.500;  1.475;  4.333;  4.986; 11.254; 30.922;-32.151;  6.522         
   3.000;  1.449;  4.334;  4.960; 11.249; 30.922;-32.151;  6.486         
   5.000;  1.125;  4.362;  4.715; 10.955; 30.922;-32.151;  6.260         
  10.000;  0.967;  4.414;  4.585; 10.724; 30.922;-32.151;  6.037                
2 sin controlar  y w=5 
  abscisa   SKEW      MU       SD    P95     MAX     MIN accuracy 
   0.000;  1.595;  4.284;  5.213; 11.514; 30.922;-32.151;  6.746         
   0.250;  1.566;  4.292;  5.164; 11.462; 30.922;-30.985;  6.706         
   0.500;  1.566;  4.308;  5.099; 11.430; 30.922;-29.167;  6.657         
   1.000;  1.478;  4.325;  5.026; 11.366; 30.922;-29.167;  6.596         
 
   2.000;  1.342;  4.345;  4.958; 11.317; 30.922;-29.167;  6.525         
   2.500;  1.314;  4.361;  4.926; 11.264; 30.922;-29.167;  6.495         
   3.000;  1.274;  4.380;  4.885; 11.221; 30.922;-29.167;  6.462         
   5.000;  1.118;  4.443;  4.759; 11.098; 30.922;-29.167;  6.345         
  10.000;  0.931;  4.594;  4.517; 10.941; 30.922;-19.266;  6.111         
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Hola Ana Ines 
Te molesto porque necesitaria que me consiguieras una copia de los siguientes articulos 
(citados en desorden cronologico): 
 
+Ritter. P. A vector based slope and aspect generation algorithm. PHOTOGRAMMETRIC 
ENGINEERING & REMOTE SENSING. 53 (8). 1109-1111. 1987 
 
+Sharpnack. D.A. and Akin. G. An algorithm for computing slope and aspect from 
elevations. PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING 35. pag 247. 
1969 
 
+Hodgson. M.E. What Cell size does the computed slope/Aspect angle represent? 
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING. 61(5). 513-517. 1995 
 
+Bolstad. P.V. and Stowe. T. An evaluation of DEM accuracy: elevation. slope. and aspect. 
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING 60(11). 1327-1332. 
1994 
 
+Lantner. D. and Veregin. H. A research paradigm for propagating error in layer-based 
GIS. PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING 58. 825-833. 1992 
 
+Veregin. H. Integration of simulation modeling and error propagation for the buffer 
operation in GIS. PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING. 60. 
427-435.1994 
 
+Veregin. H. Error propagation through the buffer operation for probability surfaces. 
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING 62. 419-428. 1996 
 
+Kubik. K; Lyons. K and Merchant. D. Photogrammetric Work without blunders. 
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING. 54. 51-54. 1988 
 
+Kubik. K.; Merchant. D. and Schenk. T. Robust estimation in photogrammetry. 
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING. 53. 167-169. 1987 
 
Para los ultimos dos. las paginas aparecen repetidas. lo que no deja de ser curioso (y 
dudoso!). Espero que lo puedas localizar de todas formas. 
 
Caso contrario. intenta ubicar a Mr. Kubik en Internet.  
utilizando el titulo de los trabajos. Usualmente. encontraras 
una pagina con sus publicaciones. y alli la referencia estara 
(casi seguramente) correcta. 
 
La otra cosa es rastrear la tesis de doctorado (PhD) del siguiente fulano: Shyue. S. W. El 
titulo es: High Breakdown point robust estimation for outlier detection in photogrammetry. 
Fue presentada en 1989 en la Universidad de Washington. Lo que habria que hacer. es a) 
intentar localizar la pagina WEB del fulano. No creo que sea un apellido muy popular... b) 
conseguir la tesis (si es que esta disponible en linea) o bien conseguir el e-mail del fulano. 
el que me enviarias. 
Sugiero usar yahoo!. altavista. etc. utilizando el apellido y/o partes del titulo (encerradas 
entre comillas) hasta que tengas suerte. La otra es intentar buscar por la universidad. pero 
eso  puede ser mas problematico.  
 


