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An experiment on the Elevation Accuracy | mprovement

of Photogrammetrically derived DEM

Abstract
This paper focuses on a topic barely considered in the literature: how to improve

the accuracy of a given Digital Elevation Model (DEM) irrespective of its lineage
pointing out to its most suspicious values (also denoted here as outliers).
Certainly, there exist methods tailored to a specific procedure and source (contour
maps, remote sensing image, etc.), but they are not valid for other cases. Thisisa
delicate problem for both the producer and end user. Here we reported the results
of a comparison of two methods using six DEMs intended to be representative of
different landscapes. Both methods have been applied to each DEM, producing a
prescribed number of height candidates to be anayzed. Assuming that all
candidates are wrong, their elevations have been blindly replaced by interpolated
heights, simulating the behavior of the inexperienced user. The so improved (or
degraded) DEM is compared against the ground truth, and updated accuracy
figures are calculated. The experiment shows that the RMSE diminishes an
amount between roughly 2 and 8 per cent of the origina value by changing less
than 1 per cent of the elevationsin the dataset.

Keywords: DEM, accuracy assessment of source data, grid data, quality control

1. Introduction

There is a large body of current research towards management of uncertainty in
GIS datasets (Lowell and Jaton 1999, Shi et al. 1999). This covers the
characterization of uncertainties (i.e., recognize them and find means to specify
it), the visualization of uncertain data, its storage, and models and strategies able
to appropriately take it into account for GIS operations. This situation is common
for al types of GIS data. Li and Chen (1999) suggested a "hierarchy of needs" of
general applicability but in particular valid for error modeling in DEM. In fig. 1
the author identifies five basic needs, which can be organized in four levels. They
are ordered, in the sense that higher levels are ignored unless all lower ones are
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considered satisfied. According with the author, the bottom level is the one that
has received most attention in the literature. It covers the accuracy of original
data, its density and distribution, the characteristics of the landscape, as well as
the methods used to derive the DEM from the raw data The second layer is
concerned with errors inherent to such raw data, and its characterization. The third
level analyzes the effects of the errors previously characterized in the DEM after
considering the modeling methods of a particular application. An agorithm able
to produce equally likely instances of the DEM with specified uncertainty might
be in the future the standard way to accomplish this need (see Fisher 1998 for an
example). It should be stressed that we restrict ourselves to the effect on the DEM
itself, and not on derived products (see for example Fortin et al. 1998, Fisher
1991). The fourth level includes two basic needs, which share similar priority.
Error management focuses on methods to deal with errors in output products. It
usually takes the form of a specification of minimum accuracy levels, which are
different for each application. Error reduction is concerned with methods for
reducing or eliminating errors in output products. This paper is devoted to

compare the performance of specific methods to partially achieve such goal.

| Errorreduction | Error management |
| Error propagation |
| Error detection & measurement \
| Error source identification |
Figure 1. A"hierarchy of needs’ for error modeling (modified from Li and Chen,
1999). In gray the topic considered in this paper.

According to Florinsky (1998), a Digital Terrain Model (DTM) can be defined as
adigital representation of variables relating to topographic surface, such as Digital
Elevation Models (DEM) and digital models of gradient, aspect, horizontal
curvature and other topographic attributes. DEM are one of the most popular
datasets in GIS applications, either as such or in derived form. They are used in
visibility analysis, landslide evaluation, erosion, etc. all being different
requirements with also different needs of accuracy. See Florinsky (1998) for a
review of joint applications with remote sensing data, or Moore et al. (1991) for a

broader range of typical applications. Recent efforts in the GIS community
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focused in the analysis of the propagation of errors for a given operation
(Defourny et al. 1998, Fortin et al. 1998), or the establishment of the knowledge
about how to cope with the inherent uncertainty of the dataset (Fortin et al. 1998).
This will raise concerns among users about the effect of outliers on the final
results, and motivate efforts to use reliable and effective "cleaning” tools (if
available!).

According to Thapa and Bossler (1992) errors can be classified into three types:
(1) gross errors and blunders, (2) systematic errors and (3) random errors. Gross
errors and blunders are caused by carelessness or inattention of the observer in
using equipment, reading scales or writing down readings, etc. Occasional
malfunctioning of the equipment can also cause them. Observations affected by
thiskind of errors are useless, and should be eliminated. From a statistical point of
view they cannot be considered as belonging to the same population as the other
observations.

Systematic errors occur in accordance with some deterministic system which, if
known, may be represented by some functiona relationship. In a statistical sense,
systematic errors introduce bias in the observations. Unlike gross errors, they
cannot be detected or eliminated by repeated observations (the errors may be
precise, but they will not be accurate). After removal of gross and systematic
errors, differences still exist due to random errors. They cannot be removed by
repeated observation, and they cannot be modeled with a deterministic
relationship. If sufficient observations are taken, random errors posses the
following characteristics. @) positive and negative errors occur with almost the
same freguency b) small errors occur more often than large errors and c) large
errors rarely occur.

Systematic errors have been considered in the literature, and can be attributed to
many sources, including poorly selected control points, parameters and so on. The
techniques to recover the DEM from them are highly dependent on the lineage
(i.e. the methods and algorithms used for produce the DEM) so they are not
generdly valid. For example, Brown and Bara (1994) suggested a method for
detect and correct the systematic error of the USGS 7 ¥2 minute DEMSs.
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Some of the references regarding error propagation assume that the DEM is
contaminated with just errors following a normal distribution, which might not be
the case in many particular DEMs. Most of the literature on accuracy
improvement have been designed from the producer side, assuming that the

system "..warns the operator about suspicious values..." and some correction
measure can be taken. End users are left alone, because they do not have access to
the original sources (aerial photographs, control points, etc.) or they lack of
specialized equipment. Error surfaces stating the expected range of variation for a
given confidence level (which are commonplace in the geostatistics community)
are barely presented together with the DEM. Thus, if the application is sensitive to
the accuracy of the DEM, there islittle help for the end user, because @) no tool to
pinpoint for unlikely values are available and b) once selected and confirmed that
some elevation points are unredlistic, there is no help to estimate reliable values.

Regarding the first aspect, there are few references in the literature. A
deterministic approach was used in an early paper by Hannah (1981), who detects
non-systematic errors by applying constraints to the slopes and to the changes in
slope at each point. Felicismo (1994) analyzed the differences between the
elevation and an interpolated value from the neighbors. Assuming Gaussian
distribution of the errors, he analyzed the differences by means of a standard
Student t test. No experimental results were given. Lopez (1997) described a
method based in the decomposition of the regular grid DEM into strips, and
consider it as a multivariate table. Standard statistical techniques have been
applied to select the unlikely elevations. He illustrated the performance of the
method using synthetic errors only. Lopez (2000) extended his previous method
and showed results using two independent DEMs of different accuracy,
illustrating hilly terrain. Its ability for other landscapes remains unknown. All of
the three abovementioned methods are valid disregarding the lineage of the DEM,
i.e. irrespective if it has been generated by direct photogrammetric measurements,
digitizing contour lines, field survey, etc. In theory they filter out systematic

errors, which are usually related with the generation procedure.
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The problem of the most appropriate interpolation procedure has been extensively
considered in the literature for DEM generation, and will not be analyzed here.
However, their ability in this context has not been addressed. This paper will
compare two of the available methods for detecting outliers in six different
landscapes; in some sensg, it can be complementary to the work of Lopez (2000).
In arecent paper (Durafiona and Lopez, 2000) a computer implementation of both
methods was presented.

The present paper is organized as follows: section 2 describes the DEM data used
in the test. Section 3 briefly covers the methods applied, while section 4 presents
the numerical results. Section 5 contains the discussion, while acknowledgements

and references are included at the end.

2. Data
We will use the set of DEMSs for six test areas (see table 1 and figures 2 to 7)

produced by the international working group I11 of the ISPRS in 1983, described
by Torlegard et al. (1986). They were chosen to represent a variety of terrain
types regarding land use, vegetation and surface roughness. For each of them,
participants produced a DEM while the organizer produced one with higher
accuracy using larger scale photographs. We will use one of the former as input,
and make comparisons using the later as a reference. Despite the elevation datais
located in a regular grid, there is no data in forest areas. Table 1 summarize the
size (rows and columns) of each DEM, its grid size, the coverage (a measure of
completeness) as well as maximum and minimum elevation. In Table 1 some
statistics of the errors are reported. The headings max, min, mean stands for the
maximum and minimum elevation, and the mean value over the DEM. The other
values are related with the accuracy of the DEM relative to the reference one,
which in this experiment can be calculated and not merely estimated. RMSE is the
Root Mean Square of the elevation differences, while p95 is the 95 per cent
percentile of the same differences. The heading outliers stand for the estimated
number of outliers, as defined by Torlegard et al. (1986). For each elevation point,
they compare the absolute value of the difference between the error and the

median of the errorsin the 25 surrounding points. If this value is larger than three




157  times the RMSE of the DEM the error is classified as outlier. Since the outliers
158  affect the RMSE, the procedure is iterated once. The participants produced a
159  number of DEM for the same area, so the heading DEM id. identifies which one

160  wasused in the analysis reported here (see Tolstoy et al. 2000 for further details).
161

# AREA (Country) Sze | Gridsize(m) | Coverage Min/Max
(%) height ASL (m)
1 | Spitze (Germany) 55x53 4.94 72.56 213/240
2 | Sohngtetten (Germany) | 20x104 11.37 90.96 576/640
3 | Sockholm (Sweden) 45x46 11.97 91.40 0/27
4 | Bohuslan (Sweden) 35x64 19.80 92.05 0/43
5 |Uppland (Sweden) 69x36 23.20 93.16 12/45
6 |Drivdalen (Norway) 45x57 28.28 80.66 -224/480

162

163  Table 1 Summary of the characteristics of the available DEMs (from Torlegard et
164  al. 1986). Sze stands for the number of columns and rows, and coverage accounts
165 for the missing values.
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Figure 7 Mesh plot for Drivdalen. Missing values are not represented

180  According to Ostman (1987) the Spitze area is a rural one and very smooth. The
181  Sohnstetten one is also rural, but with undulated hills of moderate height. Sparse

182  trees dominate the landscape, but few areas with denser cover are also present. As

183  amixed urban and natural sparse cover example we have the Stockholm area. It

184  has also some water bodies in the north. The Bohuslan is an example of rough

185  terrain, with sparse vegetation cover. The Drivdalen area has vegetation cover

186  highly correlated with height: over a prescribed level there is aimost no coverage.

Area max(m) min(m) mean(m) RMSE(m) p95(m) outliers(%) |DEM id.
Soitze 1.135 -2.716 0.075 0.162 0.278 0.51 5
Sohnstetten 3.465 -2.211 0.150 0.478 0.923 1.83 6
Sockholm 8.505 -10.636 0.813 1.274 2.370 0.72 5
Bohuslan 3.946 -5.795 -0.776 1.311 2.551 0.18 6
Uppland 5.996 -4.741 -0.119 0.973 1.969 1.01 5
Drivdalen 30.922 -32.151 4.284 6.746 11.514 0.44 6

187

188  Table 1 Initial values of the traditional accuracy measures. See the text for
189  explanations

190
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The pattern of missing elevations is irregular, being rather isolated spots or
contiguous areas, as illustrated in Fig. 8. In order to apply the methods, the
datasets need to be complete, and thus they have been imputated with bilinear
functions. Such locations have been masked later in order not to select them as

candidates to be outliers.
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Figure 8 Example of an isolated (Spitze, left) and contiguous (Bohuslan, right)
pattern of missing elevations, denoted in black.

3. Methods

For the sake of completeness we will describe briefly the methods of Felicisimo
(1994) and Lépez (2000). In addition, we will introduce the metrics of success
applied for both methods.

3.1  Themethod of Felicisimo (1994)

This method is based upon very ssimple ideas. It assumes that outliers are only
locally spatially correlated. Thus, they build a statistics calculated as the
difference between the given value and an estimate from its immediate neighbors.
If such difference has a Gaussian distribution, a Student's t test can be applied to
analyze every elevation in the dataset. The mean and standard deviation are
estimated from the population, so the outliers themselves might affect them.
Given a confidence level, and estimates of the mean and standard deviation, the
author describe how to calculate a threshold value in order to decide whether or
not the elevation at a given location belongs or not to the overall population. For
example, for a confidence level of « =0.001, the outliers are highlighted if the
given elevation and the estimate differ more than 3.219 times the standard

deviation.

10
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How to obtain the estimate itself is not part of the method. In this work, we
applied a best-fit approximation with a biquadratic polynomial using the eight
closest neighbors. The author states that even though a significantly high
difference does not necessarily imply an outlier, it is an excellent alarm sign. The
method appears to be extremely ssmple and is parameter free (i.e., no tuning phase
isrequired). The method does not require a DEM described in aregular grid.

Since we are analyzing methods to progressively refine the DEM, we must
suggest an order among the candidates, being the most unlikely first. Such order is

build according the normalized difference t, ; :(di’j —5)/35 being 6, ; the
difference between the given elevation value z ; and the estimated guess Z |,

being & and s; the mean and standard deviation of the population of &, ;. The

latter values can be severely affected by gross errors. A possible approach is to
correct just the worst values, recalculate the mean and standard deviation, and
reevaluate the remaining elevation points. If the worst values cannot be classified
as outliers, other candidates could be selected. It should be mentioned that there
are better strategies (denoted collectively as high breakdown methods) which have
in common the ability to extract the "right" estimate of the mean and standard
deviation even with a population severe contaminated with outliers of arbitrary
size (see Hadi 1992, 1994).

3.2  The method of Lépez (2000)

The author first describes a procedure to find unlikely values in elongated DEMSs,
with length n and width w, being w<<n. Each one of the n cross sections has w
elevation values, which can be regarded as the coordinates of pointsin RW space.
Each one of the w profiles of length n is associated with a coordinate axis in RW
space. Once described in such way, a number of well known methods from
statistics can be applied to highlight those points which do not behave as the rest
of the cloud (Hadi 1992, 1994, Hawkins 1974, 1993a, 1993b).

Assuming multivariate gaussian distribution, the author uses a modification of the
method of Hawkins (1974) based upon Principal Component Analysis (PCA) to

11
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calculate a Mahalanobis-like distance from each point to the bulk of the cloud.

Those pointsin RW (cross sections) with Mahalanobis-like distances larger than a
preset value suggest the existence of an outlier in the section.

Notice that the error location procedure directly analyzes the cloud of points in
RW, disregarding any order among points. This is an important assumption, since
the concept of spatia self-correlation based upon geometric distance |ooses
completely all significance in the cloud. Adjacent profiles (of length n) need not

to be in any special order, since they are coordinate axes in the space RW,
However, an unique feature of the method is that it captures some sort of
direction-wise correlation; if the nxw DEM has two or more profiles (of length n)
which are very similar, their mutual correlation will be high and any difference
due to outliers will be easily detected. Depending upon its lineage and terrain
characteristics, some DEMs are more prone to show high direction-wise
correlation than others.

Once the point in RW is selected, it is necessary to identify which one of the w
elevation values makes it unlikely. There might be more than one value, and they
are identified after a sensitivity analysis of the Mahalanobis distance. We refer to

the original reference for further details.

The requirement n>>w is crucial for having enough points in RW to properly
estimate the correlation matrix. Any given nxm DEM of n rows and m columns
might not be so elongated for this method, but it can be divided into strips of size
nxw, and the method applied in each one. If m is not an exact multiple of w the
strips might overlap in order to consider the whole DEM. The candidates obtained
in each strip can be grouped and designated hereinafter as row-wise candidates for
the whole DEM. The same procedure can be applied to column-wise strips of size
wxm, and a different set of column-wise candidates can be obtained. The elevation
values belonging to both sets are the first ones to be considered as ouitliers.

As before, the method should be applied in steps, because the outliers might
adversely affect all the statistics. The process is supposed to stop when some
criteria are fulfilled. In this paper, we continue until a prescribed number of
elevations are edited, which is a measure of the effort required to improve the

12
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DEM accuracy. The overall procedure is clearly more complex than the one of
Felicisimo (1994), and it requires some user-supplied parameters described in the
original reference. In addition, it can be applied only on DEMs defined over a
regular grid.

3.3  Themetrics of success

Let's define a perfect inspector as the one which, given alocation, can provide a
perfectly accurate elevation value for it. Here perfectly accurate should be
regarding in reference to the correct value with a given technology; such value is
also assumed unique. Notice that, by definition, control points are those obtained
by a perfect inspector. This hypothesis has some interesting properties while
comparing methods. If a given imputation method behaves as a perfect inspector,
after selecting 100 per cent of the elevations the RMSE must decrease 100 per
cent also down to zero. Thus, if we select at random which elevation value should
be corrected, after editing 1 per cent of the elevations we diminish the RM SE just
1 per cent on average. Clever choice of the elevations to edit should render a
better improvement, so the relative change of RMSE (in per cent) will be greater
than the number of the elevations inspected (also in per cent).

A perfect inspector imputation is certainly possible, but is usually expensive. So,
the effort required for editing 100 per cent of the elevations is not considered as a
choice, but a limited one might be. Thus, we will define as effort the fraction of
the whole DEM that we might accept to edit/imputate (with any method, not
necessarily the perfect one) in order to improve the accuracy. The effort is
expressed in per cent. In real situations (either in the producer or the user role) we
must limit our reprocessing of the DEM due to budget, time or other constraints.
Let's consider first the producer side. In some cases we can assign a monetary
value to the accuracy: we have to compare the cost of reworking (usualy
proportiona to the effort) vs. the value of the DEM (usually a decreasing function
of the RMSE). The equilibrium point can be calculated, and it will define the
effort limit. End users define an effort limit, but for other reasons. They probably
are not willing to edit a significant part of the DEM. They might accept at most to

13
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be warned by software, and after some inspection, use an estimate instead of the
given data. In both cases, the effort limit should be agreed before and will
quantify the commitment to make changes in the given DEM.

In this experiment we have at hand the perfect inspector elevations. However, to
represent a redistic dituation, we imputated the elevations using bilinear
interpolation from the neighbors of the candidate point. This procedure is
available both to the DEM producer and the end user, since it does not require
unavailable information. The procedure is not part of the accuracy improvement
method: it simply attempts to mimic the behavior of an inexperienced user. Other
users will go to every candidate, display the data and the neighborhood, and take a
decision whether or not to change the given value. Here, we decided to accept
every candidate as suggested by the methods, and change the elevation as
described. Notice that, with this imputation method, there is neither no guarantee
nor arguments to claim that after 100 per cent effort all the errors will be
eliminated, and it is aso hard to argue that the RMSE must even decrease. The
interpolated value might be worse than the original one.

For both methods, we will select up to a prescribed number of elevation spots,
related with the effort limit and the size of the DEM itself. As presented before, if
the relative change of the accuracy is larger than the effort, we are performing
better than mere chance. A similar argument can be raised for the percentile 95
per cent of the errors.

The process is as follows: the methods were applied, and they selected a small set
of candidates representing some effort. Once edited, new accuracy figures can be
calculated up to that effort. The process continues until we exceeded the specified
effort limit. Then, we interpolate the accuracy figures to prescribed stations, like
[0.25, 0.50, 1.00] per cent. Unlike other authors, and since the RMSE is badly
affected by even few outliers, we have also considered the percentile 95 per cent
of the absolute errors as a significant accuracy figure.

The 1 per cent effort limit was chosen following Torlegard et al. (1986), and is of
the order of the number of outliers found in the DEMs. Their estimate of the

initial number of outliers for the six DEM models has been presented in Table 1.
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4. Results

We want to summarize some results in Table 2, while more details will be given
in Table 3. Almost all the entriesin Table 2 are over 1.000 and some clearly over,
which shows that both methods are better than the mere chance. Only for the
Bohuslan area and for the p95 statistics the values are lower than 1.000, which
must be interpreted that (on average) the method behaves worse than random
selection of the candidates. Notice that no negative entries arise, so the combined
(error detection + simple interpolation) strategy did not degrade the accuracy.

It should be stressed that the accuracy in this experiment is always calculated (not
estimated) by comparing against the respective reference DEM for all elevation
values. In real situations this is not possible; the accuracy is just estimated (not
calculated), and the estimation is performed by comparing elevations from higher
accuracy sources (typically field values) against the given DEM.

The worst values correspond to Bohuslan. According to Torlegérd et al. (1986),
this DEM has just 0.18 per cent outliers (as defined by them), which is
significantly less than 1 per cent. If they were right, this implies that we are
editing not only blunders but also regular errors, which is a situation outside the
hypothesis for both methods. The case of Uppland is unigue in the sense that, in
terms of the RMSE, F1994 is better, but the situation is the opposite for the
percentile 95 per cent. This shows that L2000 is more prone to pick in this case
the worst values while F1994 picks a bunch of not-too-extremely-large errors. The
methods applied to the Stockholm DEM show better performance by F1994. The
area is very complex, with a number of roads and urban areas, which might
require further analysis. The other DEMs shown better or clearly better
performance for L2000, for smooth and rugged terrain as well. However, al the
statistics should be analyzed with caution, because the DEM test are rather small
(i.e. few elevation points) to derive strong conclusions. The L2000 method is
more sensitive than F1994 to this aspect, because it requires an undefined "large"
number of rows and columns, which is not the case in any of the samples (for
Sohnstetten there are only 20 rows for the analysis!). In addition, the missing
elevations have been interpolated, and both methods were applied after the

15




372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

interpolation, deriving statistics that might not reflect well the original variability
of the data. This explains why, despite good, the performance is not as good as
reported before (Lopez, 2000). For accuracy as RMSE, and for 1 per cent effort,
the author reported a RMSE decrease of 4.701 per cent for a rugged mountain
area, while for the method F1994 the same figure is 3.675 per cent.

We want to stress that both methods were designed to pick just outliers. If a
significant part of the initial RMSE error of a given DEM is due to outliers, a
substantial improvement can be obtained even by a limited editing effort, as
shown in this paper. If the bulk of the errors arise from systematic reasons, the
methods will not contribute significantly to any accuracy improvement.

Figures 9 and 10 show the evolution of the accuracy vs. effort for the case of the
RMSE and the percentile 95 per cent for Drivdalen. The dashed area shows the
lower boundary for the behavior of any possible method. The limit curve is
obtained by selecting one at a time the largest outlier in the DEM, imputating it
with the perfect inspector's elevation value and repeating until a given effort is
accomplished. No method can do better. All the required information to proceed
this way is available for this experiment, but not in rea cases. Notice that the
perfect method requires both a perfect outlier location method and a perfect
inspector in order to imputate the values. At the 1 per cent effort, this perfect
method is able to decrease significantly the RMSE, showing that there is still
room for improvement.

Four additional curves are shown: one for the method of Felicisimo (1994) and
three for the other method, corresponding to different number of Principal
Components dropped from the Mahalanobis distance cal culation (see Lopez, 2000
for further details). As suggested in the reference, we estimated "2" as the best
value for Drivdalen, and Table 3 summarizes the results for such option. If we go
further with the effort (beyond 1 per cent) we might notice that the performance
(RMSE decrease vs. effort) degrades significantly. This fact (not shown in the
figure) confirms the assertion of Torlegard et al. (1986) regarding the small

number of outliersin the dataset.
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(RMSE(1%)-RMSE(0%)) (p95(1%6)-p95(0%))
AREA RMSE(0%) p95(0%)
F1994 L2000 F1994 L2000
Spitze 1.235 8.642 1.439 1.439
Sohnstetten 4.393 4.812 2.600 3.034
Stockholm 2.198 1.962 5.612 1.350
Bohuslan 1.144 1.068 0.706 0.510
Uppland 4111 2.878 1.574 1.727
Drivdalen 1.349 2.224 1.181 1.285
403
404 Table 2 Summary of the results of the test. "RMSE(x%)" stands for accuracy (as
405  RMSE) after editing x% of the elevations in the DEM, while "p95(x%)" stands for
406 the per centile 95% of the absolute elevation error, etc. F1994 and L2000 stands
407 for the methods applied. In gray those cases where F1994 outperforms L2000.
408
AREA max (1%) (m) min (1%) (m) mean(1%) (m) RMSE(1%) (m) p95(1%) (M)
F1994 | L2000 | F1994 | L2000 | F1994 | L2000 | F1994 | L2000 | F1994 | L2000
Spitze 1.135 | 0.728 | -2.716 | -0.592 | 0.077 | 0.076 | 0.160 | 0.148 | 0.274 | 0.274
Sohnstetten | 3.300 | 3465 | -2.211 | -2.211 | 0.149 | 0.148 | 0457 | 0.455 | 0.899 | 0.895
Sockholm | 8505 | 6.908 |-10.636|-10.636 | 0.813 | 0.806 | 1.246 | 1.249 | 2.237 | 2.338
Bohuslan 3946 | 3.946 | -5.795 | -5.795 | -0.773 | -0.770 | 1.296 | 1.297 | 2.533 | 2538
Uppland 5357 | 5885 | -3.923 | -4.602 | -0.116 | -0.111 | 0.933 | 0.945 | 1.938 | 1.935
Drivdalen | 30.922 | 30.922 | -32.151 [ -29.167 | 4.308 | 4.325 | 6.655 | 6.596 | 11.378 | 11.366
409
410 Table 3 Accuracy statistics reported after 1 per cent effort discriminated by
411 method and area. Initial values were reported in Table 1
412
413
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Accuracy of the dataset vs. effort

w=5, Delta=1
6.7505 ‘
\‘ 1
\ O
\\ 2
6.700 A |
N 5 e 3
S
\\\\
'S 6.650 - RN Q .
74 N
6.600 TN
. I~ \\\\ 1
NN
\\\\\
\\\\\
6.550 T -
\k

000 025 050 075 100 125 150 175  2.00
Effort [%]

Figure 9 Evolution of the accuracy as RMSE up to an effort of 2.0 per cent for the
case of Drivdalen. Symbol "-e-" denotes experimental points for method F1994.
The others are for different parameters of method L2000. The border of the
dashed region denotes the best possible operation line. All the curve values were
obtained after linear interpolation between experimental points.
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Figure 10 Evolution of the percentile 95 per cent of the error up to an effort of 2.0
per cent for the case of Drivdalen. Symbol "-e-" denotes experimental points for
method F1994. The others are for different parameters of method L2000. The
border of the dashed region denotes the best possible operation line. All the curve
values wer e obtained after linear interpolation between experimental points.

5. Conclusions
Errors in any DEM might adversely affect its usefulness for a particular

application, so they need to be modeled and taken into consideration. Usualy,
both the systematic and random errors are modeled jointly using a Gaussian
distribution. Its parameters can be estimated using control points and the DEM
itself provided that no outliers are present; otherwise they might be severely
affected.

In this paper, we have presented preliminary quantitative results of the
comparison of two methods for outlier detection for DEM applied over six cases
representative of different landscapes. Systematic errors are not considered. Both
methods produce an ordered set of location candidates to be outliers. In real cases,

the operator will go through the list and decide whether or not a particular
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elevation is wrong. Here, we blindly imputated the elevation by bilinear
approximation using its immediate neighbors, trying to mimic the behavior of
automatic equipment or inexperienced operators. In any case, the process is
iterative because outliers affect the statistics of the DEM and indirectly the
numbers used by the methods themselves and continues until a prescribed fraction
of the DEM has been edited. The results in terms of RMSE or percentile 95 per
cent of the elevation error demonstrated that a significant improvement in the
accuracy for both methods could be achieved. Previous papers on the subject lack
for a comparison with different landscapes, which is the main contribution of this
one. The best results were for the method by Lopez (2000). In al but one case it
diminished the RMSE more than 2 per cent irrespective of the landscape, while
the performance of the method by Felicisimo (1994) were more irregular. These
results should be taken with caution and can be regarded as conservative for the
method described by Ldpez (2000) because the DEM samples were not
particularly appropriate for its application due to its limited size.

For other DEMs, the significance of the accuracy improvement depends upon the
number and size of outliers in the dataset: if they are known to contribute
significantly to the accuracy, the methods might provide a good strategy for
improvement. If most of the accuracy is due to systematic errors, the methods are

of little use.
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bandl

DELTA =
1

Met odo de Felicisinp. 1994
absci sa SKEW MJ SD P95 MAX M N accuracy

0.000; 0.898; 0.075; 0.144; 0.278; 1.135; -2.716; 0.162
0.250; 0.878; 0.075; 0.143; 0.277; 1.135; -2.716; 0.162
0.500; 0.857; 0.076; 0.142; 0.276; 1.135; -2.716; 0.161
1.000; 0.804; 0.077; 0.142; 0.274; 1.135; -2.716; 0.160
2.000; 0.851; 0.078; 0.141; 0.273; 1.135; -2.716; 0.159
2.500; 0.844; 0.078; 0.141; 0.273; 1.135; -2.716; 0.159
3.000; 0.818; 0.078; 0.140; 0.272; 1.135; -2.716; 0.158
5.000; 0.804; 0.078; 0.139; 0.269; 1.135; -2.716; 0.156
10. 000; 0.570; 0.079; 0.134; 0.260; 0.507; -2.716; 0.147
1 sin controlar y w=5
absci sa SKEW MJ SD P95 MAX M N accuracy
0.000; 0.898; 0.075; 0.144; 0.278; 1.135; -2.716; 0.162
0.250; 0.964; 0.075; 0.139; 0.277; 1.022; -2.125; 0.158
0.500; 1.030; 0.076; 0.135; 0.276; 0.908; -1.534; 0.154
1.000; 1.135; 0.076; 0.127; 0.274; 0.728; -0.592; 0.148
2.000; 1.118; 0.076; 0.127; 0.274; 0.728; -0.584; 0.147
2.500; 1.041; 0.077; 0.126; 0.273; 0.728; -0.544; 0.146
3.000; 1.054; 0.077; 0.125; 0.272; 0.728; -0.544; 0.145
5.000; 1.013; 0.078; 0.123; 0.268; 0.728; -0.544; 0.142
10. 000; 0.804; 0.080; 0.121; 0.265; 0.728; -0.544; 0.137
2 sin controlar y w=5
absci sa SKEW MJ SD P95 MAX M N accur acy
0.000; 0.898; 0.075; 0.144; 0.278; 1.135; -2.716; 0.162
0.250; 0.878; 0.075; 0.143; 0.277; 1.135; -2.716; 0.162
0.500; 0.857; 0.075; 0.143; 0.276; 1.135; -2.716; 0.161
1.000; 0.851; 0.074; 0.141; 0.274; 0.796; -2.716; 0.159
2.000; 0.864; 0.074; 0.139; 0.273; 0.728; -2.593; 0.156
2.500; 0.973; 0.075; 0.132; 0.272; 0.728; -1.595; 0.150
3.000; 1.082; 0.076; 0.126; 0.271; 0.728; -0.596; 0.145
5.000; 1.033; 0.077; 0.123; 0.269; 0.728; -0.519; 0.142
10. 000; 0.757; 0.080; 0.120; 0.263; 0.728; -0.501; 0.136
3 sin controlar y w=5
absci sa SKEW wMJ SD P95 MAX M N accuracy
0.000; 0.898; 0.075; 0.144; 0.278; 1.135; -2.716; 0.162
0.250; 0.867; 0.075; 0.143; 0.277; 1.135; -2.716; 0.162
0.500; 0.851; 0.075; 0.143; 0.276; 1.135; -2.716; 0.161
1.000; 0.851; 0.075; 0.143; 0.276; 1.135; -2.716; 0.161
2.000; 0.804; 0.075; 0.143; 0.276; 1.124; -2.716; 0.160
2.500; 0.804; 0.075; 0.141; 0.274; 0.733; -2.716; 0.157
3.000; 0.804; 0.075; 0.140; 0.274; 0.728; -2.716; 0.157
5.000; 0.749; 0.076; 0.138; 0.272; 0.728; -2.716; 0.154
10. 000; 0.709; 0.078; 0.137; 0.268; 0.728; -2.716; 0.150
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band2

DELTA =

1
Il eque para las graficas con |os resultados de felicisinp. 1994
Met odo de Felicisinm. 1994

absci sa SKEW MJ SD P95 MAX M N accur acy
0.000; 1.850; 0.150; 0.454; 0.923; 3.465; -2.211; 0.478
0.250; 1.796; 0.151; 0.453; 0.923; 3.466; -2.211; 0.476
0.500; 1.799; 0.150; 0.449; 0.918; 3.429; -2.211; 0.473
1.000; 1.729; 0.149; 0.435; 0.899; 3.297;, -2.211; 0.457
2.000; 1.691; 0.149; 0.434; 0.898; 3.300; -2.211; 0.454
2.500; 1.667; 0.149; 0.433; 0.896; 3.289; -2.211; 0.452
3.000; 1.628; 0.150; 0.431; 0.888; 3.317; -2.211; 0.449
5.000; 1.524; 0.150; 0.408; 0.831; 2.632; -2.211; 0.424
10. 000; 1.428; 0.157; 0.397; 0.815; 2.674; -2.211; 0.405
1 sin controlar y w=5
absci sa SKEW MJ SD P95 MAX M N accuracy
0.000; 1.850; 0.150; 0.454; 0.923; 3.465; -2.211; 0.478
0. 250; 1.797; 0.151; 0.453; 0.923; 3.465; -2.211; 0.476
0.500; 1.782; 0.150; 0.448; 0.916; 3.417; -2.211; 0.471
1.000; 1.732; 0.149; 0.435; 0.900; 3.300; -2.211; 0.457
2.000; 1.691; 0.149; 0.434; 0.898; 3.300; -2.211; 0.454
2.500; 1.661; 0.149; 0.433; 0.894; 3.300; -2.211; 0.452
3.000; 1.631; 0.150; 0.431; 0.887; 3.300; -2.211; 0.449
5.000; 1.526; 0.150; 0.409; 0.833; 2.674; -2.211; 0.425
10. 000; 1.427; 0.157; 0.397; 0.815; 2.674; -2.211; 0.405
2 sin controlar y w=5
absci sa SKEW MJ SD P95 MAX M N accuracy
0.000; 1.850; 0.150; 0.454; 0.923; 3.465; -2.211; 0.478
0.250; 1.749; 0.151; 0.451; 0.910; 3.465; -2.211; 0.475
0.500; 1.797; 0.149; 0.441; 0.900; 3.465; -2.211; 0.464
1.000; 1.718; 0.148; 0.438; 0.895;, 3.465; -2.211; 0.460
2.000; 1.648; 0.149; 0.435; 0.884; 3.465; -2.211; 0.455
2.500; 1.606; 0.149; 0.433; 0.879; 3.465; -2.211; 0.452
3.000; 1.565; 0.150; 0.431; 0.875; 3.465; -2.211; 0.450
5.000; 1.425; 0.151; 0.424; 0.854; 3.465; -2.211; 0.439
10.000; 1.303; 0.157; 0.411; 0.824; 3.465; -2.100; 0.417
3 sin controlar y w=5
absci sa SKEW MJ SD P95 MAX M N accur acy
0.000; 1.850; 0.150; 0.454; 0.923; 3.465; -2.211; 0.478
0.250; 1.831; 0.149; 0.447; 0.907; 3.465; -2.211; 0.470
0.500; 1.745; 0.150; 0.444; 0.902; 3.465; -2.211; 0.467
1.000; 1.744; 0.149; 0.442; 0.899; 3.465; -2.211; 0.464
2.000; 1.701; 0.149; 0.438; 0.890; 3.465; -2.211; 0.458
2.500; 1.662; 0.149; 0.436; 0.884; 3.465; -2.191; 0.455
3.000; 1.611; 0.150; 0.432; 0.877; 3.465; -2.155; 0.450
5.000; 1.533; 0.151; 0.426; 0.866; 3.465; -2.100; 0.441
10. 000; 1.268; 0.148; 0.417; 0.839; 3.465; -2.100; 0.420
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band3

Met odo de Felicisinp. 1994

absci sa SKEW MJ SD P95 MAX M N
accuracy

0.000; 1.321; 0.813; 0.981; 2.370; 8.505;-10.636;
1.274

0.250; 1.329; 0.811; 0.976; 2.361; 8.505;-10.636;
1. 267

0.500; 1.350; 0.812; 0.966; 2.351; 8.505;-10.636;
1. 259

1.000; 1.359; 0.813; 0.953; 2.327; 8.505;-10.636;
1. 246

2.000; 1.292; 0.810; 0.947; 2.296; 8.505;-10.636;
1. 233
2.500; 1.268; 0.808; 0.946; 2.296; 8.505;-10.636;
1.228
3.000; 1.268; 0.806; 0.946; 2.296; 8.505;-10.636;
1.224
5.000; 1.395; 0.821; 0.898; 2.294; 8.505;-10.636;
1.186
10.000; 1.194; 0.819; 0.824; 2.272; 6.873; -4.683;
1.102
1 sin controlar y w=5
abscisa  SKEW MJ SD P95 MAX M N
accuracy
0.000; 1.321; 0.813; 0.981; 2.370; 8.505;-10.636;
1.274
0.250; 1.314; 0.813; 0.981; 2.370; 8.505;-10.636;

1.272

0.500; 1.295; 0.811; 0.979; 2.367; 8.505;-10.636;
1.268

1.000; 1.278; 0.809; 0.968; 2.354; 8.029;-10.636;
1. 255

2.000; 1.385; 0.812; 0.911, 2.304;, 5.736;, -9.714,
1.208
2.500; 1.510, 0.816; 0.887;, 2.297;, 5.736; -7.912;

1.190

3.000; 1.511; 0.816; 0.881; 2.293; 5.736; -7.588;
1.182

5.000; 1.406; 0.812; 0.872; 2.280; 5.736; -7.588;
1.161

10. 000; 1.216; 0.803; 0.861; 2.252; 5.736; -7.588;
1.117
2 sin controlar y w=5

abscisa  SKEW MJ SD P95 MAX M N
accuracy

0.000; 1.321; 0.813; 0.981; 2.370; 8.505;-10.636;
1.274

0.250; 1.307; 0.812; 0.980; 2.368; 8.505;-10.636;
1.271

0.500; 1.282; 0.809; 0.978; 2.365; 8.505;-10.636;
1. 266

1.000; 1.299; 0.806; 0.963; 2.338; 6.908;-10.636;
1. 249
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2.000; 1.299;
1.233
2.500; 1.262;
1.228
3.000; 1.226;
1.222
5.000; 1.163;
1.202
10. 000; 1.057
1.152
3 sin control ar
absci sa SKEW
accuracy
0.000; 1.321;
1.274
0.250; 1.293;
1.269
0.500; 1.268;
1.264
1. 000; 1.279;
1. 257
2.000; 1.309;
1.235
2.500; 1.277;
1.226
3.000; 1.243;
1.218
5.000; 1.216;
1. 200
10. 000; 1.057
1.166

BAND3

0.

0.

0.

0.

0.

806;
805;
804,
798;

789;

y w=5

0.

0.

0.

MJ
813;
810;

808;

. 808;
. 808;
. 807;
. 806;
. 805;

. 805;

. 950;
. 948;
. 946;
. 941,

. 923;

SD

. 981;
. 978;
. 976;
. 972;
. 950;
. 943;
. 938;
. 932;

. 929;

. 327,
. 316;
. 305;
. 284,

. 244;

P95

. 370;
. 366;
. 362;
. 358;
. 328;
. 304;
. 296;
. 290;

. 283;
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Accuracy of the dataset vs. effort
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band4

Met odo de Felicisinp. 1994

absci sa SKEW MJ SD P95 MAX M N
accuracy

0.000; 1.261; -0.776; 1.057; 2.551; 3.946; -5.795;
1.311

0.250; 1.273; -0.773; 1.054; 2.541; 3.946; -5.795;
1. 305

0.500; 1.292; -0.772; 1.052; 2.537; 3.946; -5.795;
1.301

1.000; 1.328; -0.773; 1.048; 2.533; 3.946; -5.795;
1.296

2.000; 1.358; -0.777; 1.046; 2.534; 3.946; -5.795;
1.289

2.500; 1.350; -0.776; 1.045; 2.533; 3.946; -5.795;
1.285

3.000; 1.326; -0.774; 1.043; 2.527; 3.946; -5.795;
1.279

5.000; 1.309; -0.770; 1.032; 2.506; 3.946; -5.795;
1. 255

10. 000; 1.212; -0.778; 1.025; 2.505; 3.946; -5.795;
1.220
1 sin controlar y w=5

absci sa SKEW MJ SD P95 MAX M N
accuracy
0.000; 1.261; -0.776; 1.057; 2.551; 3.946; -5.795;
1.311
0.250; 1.261; -0.772; 1.055; 2.541; 3.946; -5.795;
1. 306

0.500; 1.261; -0.771; 1.055; 2.537; 3.946; -5.795;
1. 303
1.000; 1.262; -0.769; 1.054; 2.535; 3.946; -5.795;
1.298
2.000; 1.310; -0.765; 1.047; 2.525; 3.946; -5.795;
1.284
2.500; 1.334; -0.763; 1.043; 2.520; 3.946; -5.795;
1.276
3.000; 1.358; -0.761; 1.040; 2.515; 3.946; -5.795;
1. 269
5.000; 1.261; -0.762; 1.023; 2.510; 3.946; -4.743;
1. 244
10.000; 1.195; -0.753; 1.000; 2.457; 3.946; -4.381
1.187
2 sin controlar y w=5

absci sa SKEW MJ SD P95 MAX M N
accuracy
0.000; 1.261; -0.776; 1.057; 2.551; 3.946; -5.795;
1.311
0.250; 1.261; -0.774; 1.056; 2.547; 3.946; -5.795;
1. 307
0.500; 1.261; -0.771; 1.054; 2.537; 3.946; -5.795;
1. 303

1.000; 1.253; -0.770; 1.053; 2.538; 3.946; -5.795;
1.297
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2.000; 1.219; -0.769; 1.047; 2.531; 3.946; -5.795;
1. 286
2.500; 1.234; -0.768; 1.043; 2.527; 3.946; -5.617;
1.279
3.000; 1.269; -0.767; 1.038; 2.524; 3.946; -5.336;
1.271
5.000; 1.252; -0.769; 1.027; 2.517; 3.946; -5.006;
1. 250
10.000; 1.088; -0.769; 0.993; 2.484; 3.946; -4.381;
1.192

Accuracy of the dataset vs. effort
w=5, Delta=1
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band5

Met odo de Felicisinp. 1994

absci sa SKEW MJ Sb P95 MAX M N accuracy
0.000; 0.994; -0.119; 0.966; 1.969; 5.996; -4.741; 0.973
0.250; 1.009; -0.120; 0.950; 1.963; 5.778; -4.461; 0.956
0.500; 1.027; -0.118; 0.939; 1.957; 5.514; -4.123; 0.944
1.000; 1.015; -0.116; 0.931; 1.938; 5.357; -3.923; 0.933
2.000; 0.994; -0.114; 0.925; 1.898; 5.357; -3.923; 0.922
2.500; 1.009; -0.115; 0.923; 1.888; 5.357; -3.923; 0.918
3.000; 1.030; -0.118; 0.921; 1.883; 5.357; -3.923; 0.914
5.000; 1.087; -0.135; 0.893; 1.858; 4.012; -3.923; 0.880
10. 000; 0.961; -0.145; 0.867; 1.819; 3.732; -3.923; 0.834
2 sin controlar y w5
abscisa  SKEW MJ SD P95 MAX M N accur acy
0.000; 0.994; -0.119; 0.966; 1.969; 5.996; -4.741; 0.973
0.250; 0.994; -0.115; 0.960; 1.968; 5.996; -4.666; 0.965
0.500; 0.994; -0.112; 0.953; 1.961; 5.996; -4.602; 0.957
1.000; 1.005; -0.111; 0.944; 1.935; 5.885; -4.602; 0.945
2.000; 1.047; -0.112; 0.929; 1.877; 5.560; -4.602; 0.927
2.500; 1.099; -0.111; 0.925; 1.869; 5.560; -4.602; 0.920
3.000; 1.151; -0.109; 0.921; 1.860; 5.560; -4.602; 0.913
5.000; 1.080; -0.112; 0.915; 1.844; 5.560; -4.602; 0.899
10. 000; 0.850; -0.116; 0.888; 1.793; 5.560; -4.602; 0.850

Accuracy of the dataset vs. effort
w=5, Delta=1
0.980 ‘
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0.950

RMSE [m]

0.940

0.930

0.920 ‘ ‘ ‘ ‘ ‘
000 025 050 075 100 125 150 175  2.00

Effort [%]

BAND5 40




Percentile 95% of the remaining errors
w=5, Delta=1
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Met odo de Felicisinp. 1994

absci sa SKEW MJ Sb P95 MAX M N accuracy

0.000; 1.595; 4.284; 5.213; 11.514; 30.922;-32.151; 6.746
0.250; 1.553; 4.294; 5.189; 11.476; 30.922;-32.151; 6.726
0.500; 1.547; 4.314; 5.123; 11.424; 30.922;-32.151; 6.680
1.000; 1.547, 4.308; 5.117; 11.378; 30.922;-32.151;, 6.655
2.000; 1.498; 4.331; 5.011; 11.258; 30.922;-32.151; 6.556
2.500; 1.475; 4.333; 4.986; 11.254; 30.922;-32.151; 6.522
3.000; 1.449; 4.334; 4.960; 11.249; 30.922;-32.151; 6.486
5.000; 1.125; 4.362; 4.715; 10.955; 30.922;-32.151; 6.260
10. 000; 0.967; 4.414; 4.585; 10.724; 30.922;-32.151; 6.037
2 sin controlar y w5
absci sa SKEW MJ Sb P95 MAX M N accuracy
0.000; 1.595; 4.284; 5.213; 11.514; 30.922;-32.151; 6.746
0.250; 1.566; 4.292; 5.164; 11.462; 30.922;-30.985; 6.706
0.500; 1.566; 4.308; 5.099; 11.430; 30.922;-29.167; 6.657
1.000; 1.478; 4.325; 5.026; 11.366; 30.922;-29.167, 6.596
2.000; 1.342; 4.345; 4.958; 11.317; 30.922;-29.167; 6.525
2.500; 1.314; 4.361; 4.926; 11.264; 30.922;-29.167; 6.495
3.000; 1.274; 4.380; 4.885; 11.221; 30.922;-29.167;, 6.462
5.000; 1.118; 4.443; 4.759; 11.098; 30.922;-29.167; 6.345
10. 000; 0.931; 4.594; 4.517; 10.941; 30.922;-19.266; 6.111
Accuracy of the dataset vs. effort
w=5, Delta=1
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Percentile 95% of the remaining errors
w=5, Delta=1
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Hola Analnes
Te molesto porque necesitaria que me consiguieras una copia de los siguientes articulos
(citados en desorden cronologicoy):

+Ritter. P. A vector based sope and aspect generation algorithm. PHOTOGRAMMETRIC
ENGINEERING & REMOTE SENSING. 53 (8). 1109-1111. 1987

+Sharpnack. D.A. and Akin. G. An agorithm for computing slope and aspect from
elevations. PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING 35. pag 247.
1969

+Hodgson. M.E. What Cell size does the computed slope/Aspect angle represent?
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING. 61(5). 513-517. 1995

+Bolstad. P.V. and Stowe. T. An evaluation of DEM accuracy: elevation. slope. and aspect.
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING 60(11). 1327-1332.
1994

+Lantner. D. and Veregin. H. A research paradigm for propagating error in layer-based
GIS. PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING 58. 825-833. 1992

+Veregin. H. Integration of simulation modeling and error propagation for the buffer
operation in GIS. PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING. 60.
427-435.1994

+Veregin. H. Error propagation through the buffer operation for probability surfaces.
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING 62. 419-428. 1996

+Kubik. K; Lyons. K and Merchant. D. Photogrammetric Work without blunders.
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING. 54. 51-54. 1988

+Kubik. K.; Merchant. D. and Schenk. T. Robust estimation in photogrammetry.
PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING. 53. 167-169. 1987

Para los ultimos dos. las paginas aparecen repetidas. 10 que no degja de ser curioso (y
dudoso!). Espero que lo puedas localizar de todas formas.

Caso contrario. intenta ubicar a Mr. Kubik en Internet.
utilizando € titulo de los trabajos. Usualmente. encontraras
una pagina con sus publicaciones. y alli lareferencia estara
(casi seguramente) correcta.

La otra cosa es rastrear la tesis de doctorado (PhD) del siguiente fulano: Shyue. S. W. El
titulo es: High Breakdown point robust estimation for outlier detection in photogrammetry.
Fue presentada en 1989 en la Universidad de Washington. Lo que habria que hacer. es a)
intentar localizar la pagina WEB del fulano. No creo que sea un apellido muy popular... b)
conseguir latesis (si es que esta disponible en linea) o bien conseguir el e-mail del fulano.
el que me enviarias.

Sugiero usar yahoo!. atavista. etc. utilizando el apellido y/o partes del titulo (encerradas
entre comillas) hasta que tengas suerte. La otra es intentar buscar por la universidad. pero
eso puede ser mas problematico.
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