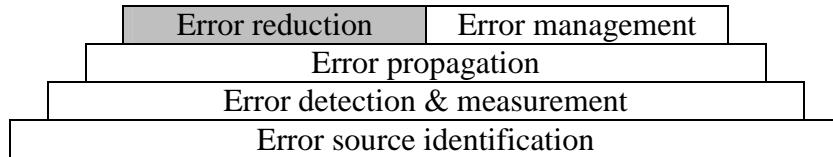


1 **An experiment on the Elevation Accuracy Improvement**
2 **of Photogrammetrically derived DEM**
3
4

5 **Abstract**

6 This paper focuses on a topic barely considered in the literature: how to improve
7 the accuracy of a given Digital Elevation Model (DEM) irrespective of its lineage
8 pointing out to its most suspicious values (also denoted here as outliers).
9 Certainly, there exist methods tailored to a specific procedure and source (contour
10 maps, remote sensing image, etc.), but they are not valid for other cases. This is a
11 delicate problem for both the producer and end user. Here we reported the results
12 of a comparison of two methods using six DEMs intended to be representative of
13 different landscapes. Both methods have been applied to each DEM, producing a
14 prescribed number of height candidates to be analyzed. Assuming that all
15 candidates are wrong, their elevations have been blindly replaced by interpolated
16 heights, simulating the behavior of the inexperienced user. The so improved (or
17 degraded) DEM is compared against the ground truth, and updated accuracy
18 figures are calculated. The experiment shows that the RMSE diminishes an
19 amount between roughly 2 and 8 per cent of the original value by changing less
20 than 1 per cent of the elevations in the dataset.


21 **Keywords:** DEM, accuracy assessment of source data, grid data, quality control
22

23 **1. Introduction**

24
25 There is a large body of current research towards management of uncertainty in
26 GIS datasets (Lowell and Jaton 1999, Shi *et al.* 1999). This covers the
27 characterization of uncertainties (i.e., recognize them and find means to specify
28 it), the visualization of uncertain data, its storage, and models and strategies able
29 to appropriately take it into account for GIS operations. This situation is common
30 for all types of GIS data. Li and Chen (1999) suggested a "hierarchy of needs" of
31 general applicability but in particular valid for error modeling in DEM. In fig. 1
32 the author identifies five basic needs, which can be organized in four levels. They
33 are ordered, in the sense that higher levels are ignored unless all lower ones are

34 considered satisfied. According with the author, the bottom level is the one that
35 has received most attention in the literature. It covers the accuracy of original
36 data, its density and distribution, the characteristics of the landscape, as well as
37 the methods used to derive the DEM from the raw data. The second layer is
38 concerned with errors inherent to such raw data, and its characterization. The third
39 level analyzes the effects of the errors previously characterized in the DEM after
40 considering the modeling methods of a particular application. An algorithm able
41 to produce equally likely instances of the DEM with specified uncertainty might
42 be in the future the standard way to accomplish this need (see Fisher 1998 for an
43 example). It should be stressed that we restrict ourselves to the effect on the DEM
44 itself, and not on derived products (see for example Fortin *et al.* 1998, Fisher
45 1991). The fourth level includes two basic needs, which share similar priority.
46 Error management focuses on methods to deal with errors in output products. It
47 usually takes the form of a specification of minimum accuracy levels, which are
48 different for each application. Error reduction is concerned with methods for
49 reducing or eliminating errors in output products. This paper is devoted to
50 compare the performance of specific methods to partially achieve such goal.

51

52 *Figure 1. A "hierarchy of needs" for error modeling (modified from Li and Chen,
53 1999). In gray the topic considered in this paper.*

54

55 According to Florinsky (1998), a Digital Terrain Model (DTM) can be defined as
56 a digital representation of variables relating to topographic surface, such as Digital
57 Elevation Models (DEM) and digital models of gradient, aspect, horizontal
58 curvature and other topographic attributes. DEM are one of the most popular
59 datasets in GIS applications, either as such or in derived form. They are used in
60 visibility analysis, landslide evaluation, erosion, etc. all being different
61 requirements with also different needs of accuracy. See Florinsky (1998) for a
62 review of joint applications with remote sensing data, or Moore *et al.* (1991) for a
63 broader range of typical applications. Recent efforts in the GIS community

64 focused in the analysis of the propagation of errors for a given operation
65 (Defourny *et al.* 1998, Fortin *et al.* 1998), or the establishment of the knowledge
66 about how to cope with the inherent uncertainty of the dataset (Fortin *et al.* 1998).
67 This will raise concerns among users about the effect of outliers on the final
68 results, and motivate efforts to use reliable and effective "cleaning" tools (if
69 available!).

70 According to Thapa and Bossler (1992) errors can be classified into three types:
71 (1) gross errors and blunders, (2) systematic errors and (3) random errors. Gross
72 errors and blunders are caused by carelessness or inattention of the observer in
73 using equipment, reading scales or writing down readings, etc. Occasional
74 malfunctioning of the equipment can also cause them. Observations affected by
75 this kind of errors are useless, and should be eliminated. From a statistical point of
76 view they cannot be considered as belonging to the same population as the other
77 observations.

78 Systematic errors occur in accordance with some deterministic system which, if
79 known, may be represented by some functional relationship. In a statistical sense,
80 systematic errors introduce bias in the observations. Unlike gross errors, they
81 cannot be detected or eliminated by repeated observations (the errors may be
82 *precise*, but they will not be *accurate*). After removal of gross and systematic
83 errors, differences still exist due to random errors. They cannot be removed by
84 repeated observation, and they cannot be modeled with a deterministic
85 relationship. If sufficient observations are taken, random errors posses the
86 following characteristics: a) positive and negative errors occur with almost the
87 same frequency b) small errors occur more often than large errors and c) large
88 errors rarely occur.

89 Systematic errors have been considered in the literature, and can be attributed to
90 many sources, including poorly selected control points, parameters and so on. The
91 techniques to recover the DEM from them are highly dependent on the lineage
92 (i.e. the methods and algorithms used for produce the DEM) so they are not
93 generally valid. For example, Brown and Bara (1994) suggested a method for
94 detect and correct the systematic error of the USGS 7 ½ minute DEMs.

95 Some of the references regarding error propagation assume that the DEM is
96 contaminated with just errors following a normal distribution, which might not be
97 the case in many particular DEMs. Most of the literature on accuracy
98 improvement have been designed from the producer side, assuming that the
99 system "...warns the operator about suspicious values..." and some correction
100 measure can be taken. End users are left alone, because they do not have access to
101 the original sources (aerial photographs, control points, etc.) or they lack of
102 specialized equipment. Error surfaces stating the expected range of variation for a
103 given confidence level (which are commonplace in the geostatistics community)
104 are barely presented together with the DEM. Thus, if the application is sensitive to
105 the accuracy of the DEM, there is little help for the end user, because a) no tool to
106 pinpoint for unlikely values are available and b) once selected and confirmed that
107 some elevation points are unrealistic, there is no help to estimate reliable values.
108 Regarding the first aspect, there are few references in the literature. A
109 deterministic approach was used in an early paper by Hannah (1981), who detects
110 non-systematic errors by applying constraints to the slopes and to the changes in
111 slope at each point. Felicísmo (1994) analyzed the differences between the
112 elevation and an interpolated value from the neighbors. Assuming Gaussian
113 distribution of the errors, he analyzed the differences by means of a standard
114 Student t test. No experimental results were given. López (1997) described a
115 method based in the decomposition of the regular grid DEM into strips, and
116 consider it as a multivariate table. Standard statistical techniques have been
117 applied to select the unlikely elevations. He illustrated the performance of the
118 method using synthetic errors only. López (2000) extended his previous method
119 and showed results using two independent DEMs of different accuracy,
120 illustrating hilly terrain. Its ability for other landscapes remains unknown. All of
121 the three abovementioned methods are valid disregarding the lineage of the DEM,
122 i.e. irrespective if it has been generated by direct photogrammetric measurements,
123 digitizing contour lines, field survey, etc. In theory they filter out systematic
124 errors, which are usually related with the generation procedure.

125 The problem of the most appropriate interpolation procedure has been extensively
126 considered in the literature for DEM generation, and will not be analyzed here.
127 However, their ability in this context has not been addressed. This paper will
128 compare two of the available methods for detecting outliers in six different
129 landscapes; in some sense, it can be complementary to the work of López (2000).
130 In a recent paper (Durañona and López, 2000) a computer implementation of both
131 methods was presented.

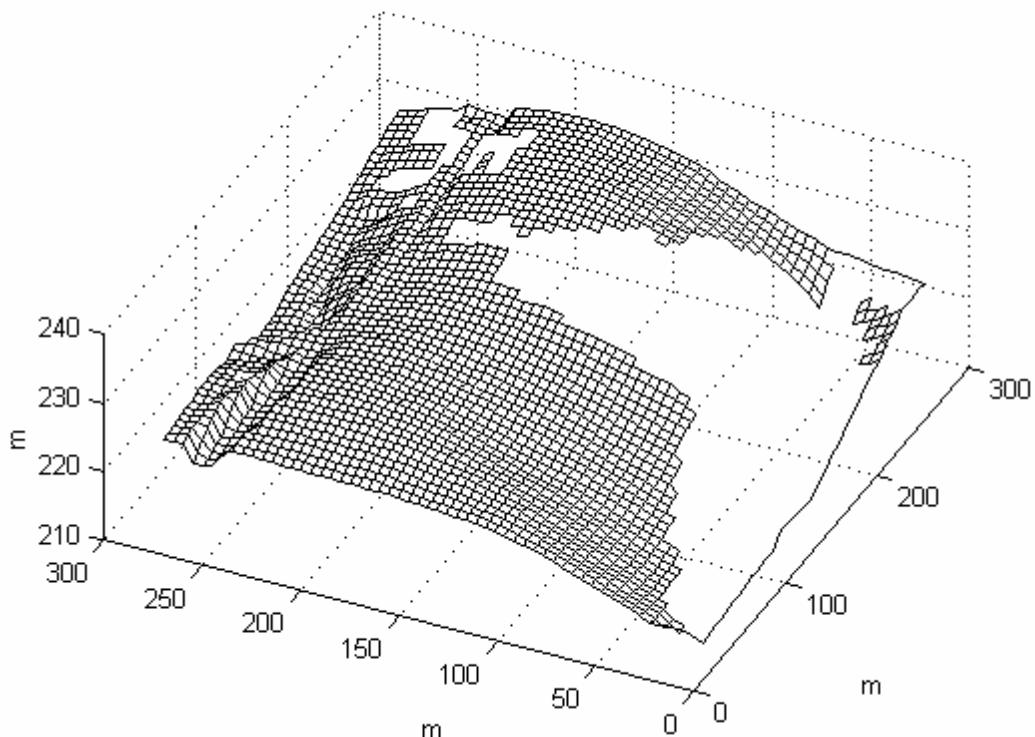
132 The present paper is organized as follows: section 2 describes the DEM data used
133 in the test. Section 3 briefly covers the methods applied, while section 4 presents
134 the numerical results. Section 5 contains the discussion, while acknowledgements
135 and references are included at the end.

136

137 **2. Data**

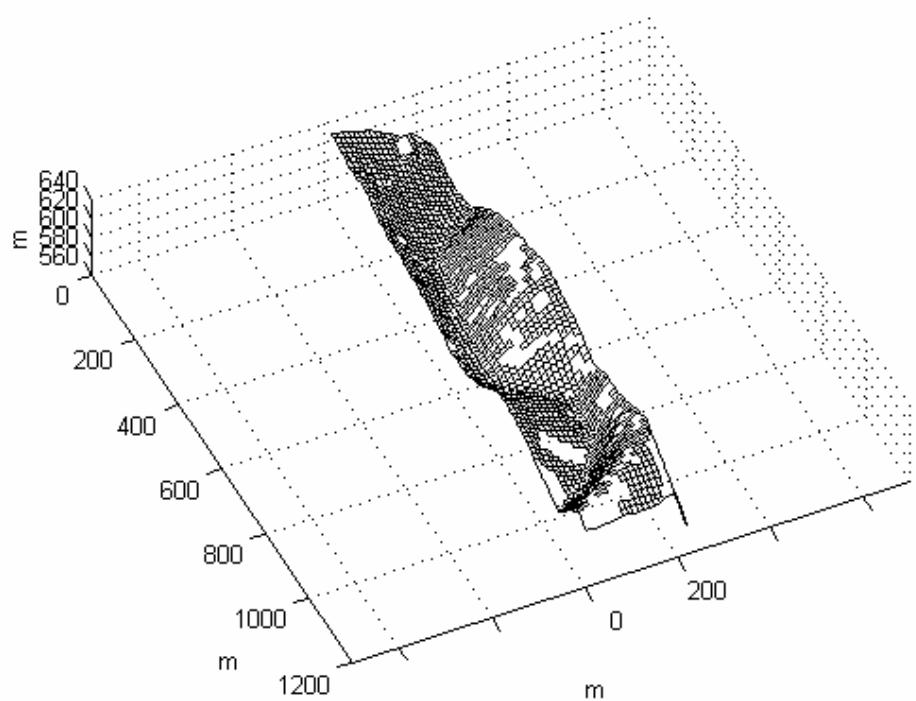
138 We will use the set of DEMs for six test areas (see table 1 and figures 2 to 7)
139 produced by the international working group III of the ISPRS in 1983, described
140 by Torlegård *et al.* (1986). They were chosen to represent a variety of terrain
141 types regarding land use, vegetation and surface roughness. For each of them,
142 participants produced a DEM while the organizer produced one with higher
143 accuracy using larger scale photographs. We will use one of the former as input,
144 and make comparisons using the later as a reference. Despite the elevation data is
145 located in a regular grid, there is no data in forest areas. Table 1 summarize the
146 size (rows and columns) of each DEM, its grid size, the coverage (a measure of
147 completeness) as well as maximum and minimum elevation. In Table 1 some
148 statistics of the errors are reported. The headings *max*, *min*, *mean* stands for the
149 maximum and minimum elevation, and the mean value over the DEM. The other
150 values are related with the accuracy of the DEM relative to the reference one,
151 which *in this experiment* can be calculated and not merely estimated. *RMSE* is the
152 Root Mean Square of the elevation differences, while *p95* is the 95 per cent
153 percentile of the same differences. The heading *outliers* stand for the estimated
154 number of outliers, as defined by Torlegård *et al.* (1986). For each elevation point,
155 they compare the absolute value of the difference between the error and the
156 median of the errors in the 25 surrounding points. If this value is larger than three

157 times the RMSE of the DEM the error is classified as outlier. Since the outliers
 158 affect the RMSE, the procedure is iterated once. The participants produced a
 159 number of DEM for the same area, so the heading *DEM id.* identifies which one
 160 was used in the analysis reported here (see Tolstoy *et al.* 2000 for further details).

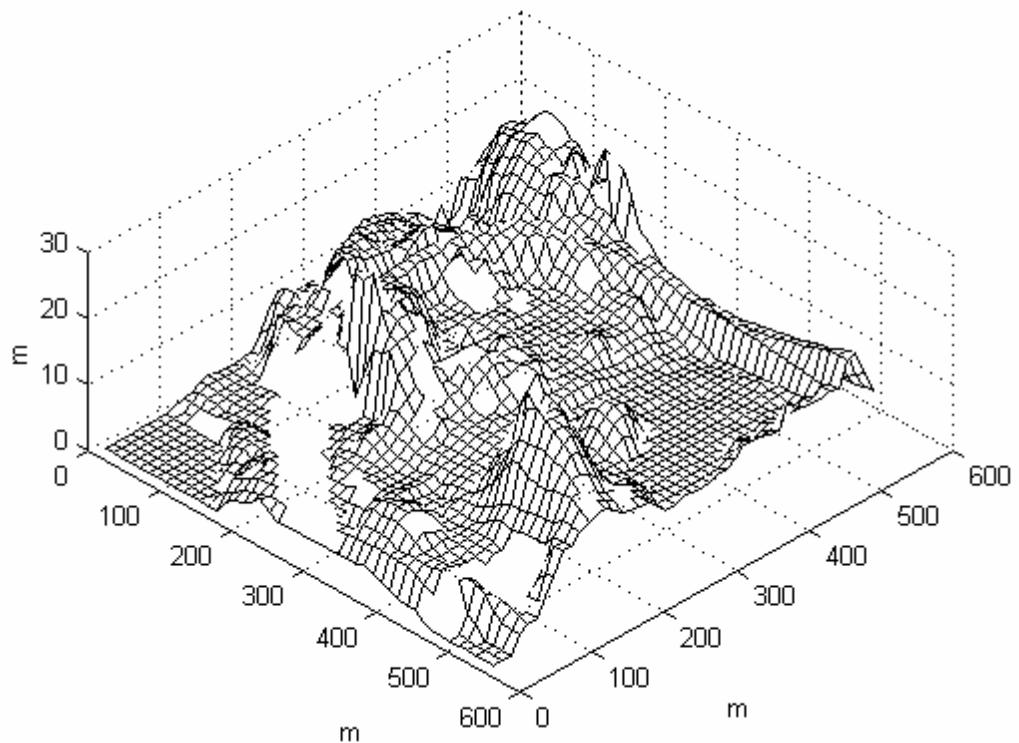

161

#	AREA (Country)	Size	Grid size (m)	Coverage (%)	Min/Max height ASL (m)
1	<i>Spitze (Germany)</i>	55x53	4.94	72.56	213/240
2	<i>Sohnstetten (Germany)</i>	20x104	11.37	90.96	576/640
3	<i>Stockholm (Sweden)</i>	45x46	11.97	91.40	0/27
4	<i>Bohuslan (Sweden)</i>	35x64	19.80	92.05	0/43
5	<i>Uppland (Sweden)</i>	69x36	23.20	93.16	12/45
6	<i>Drivdalen (Norway)</i>	45x57	28.28	80.66	-224/480

162


163 *Table 1 Summary of the characteristics of the available DEMs (from Torlegård et*
 164 *al. 1986). Size stands for the number of columns and rows, and coverage accounts*
 165 *for the missing values.*

166


167

168 Figure 2 Mesh plot for Spitzee. Missing values are not represented

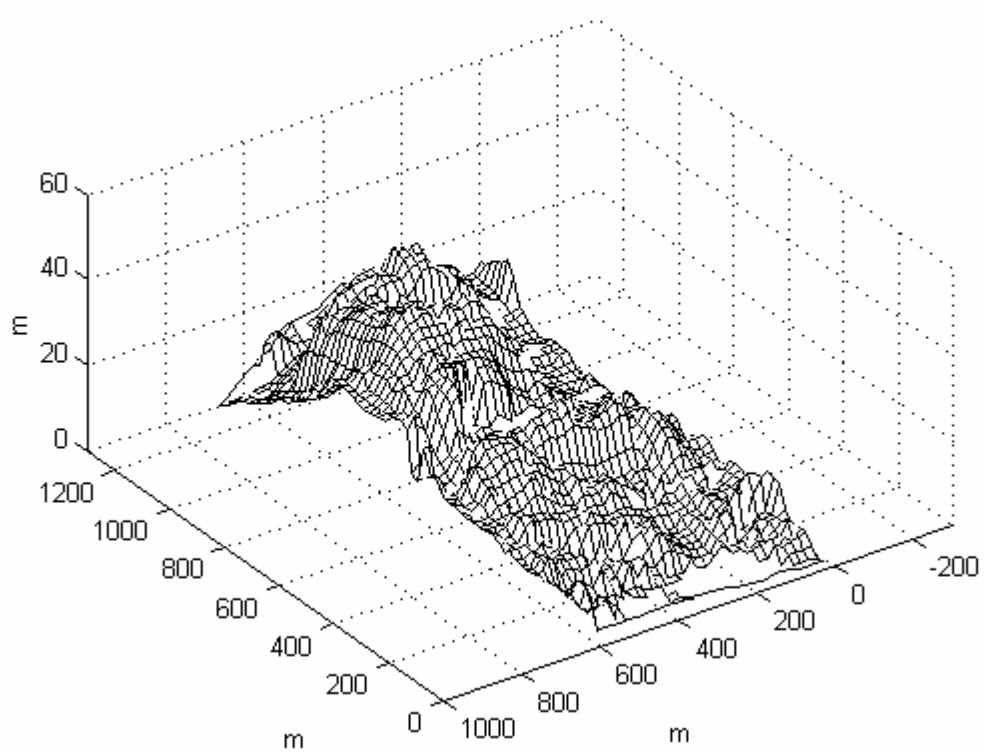

169
170

Figure 3 Mesh plot for Sohnstetten. Missing values are not represented

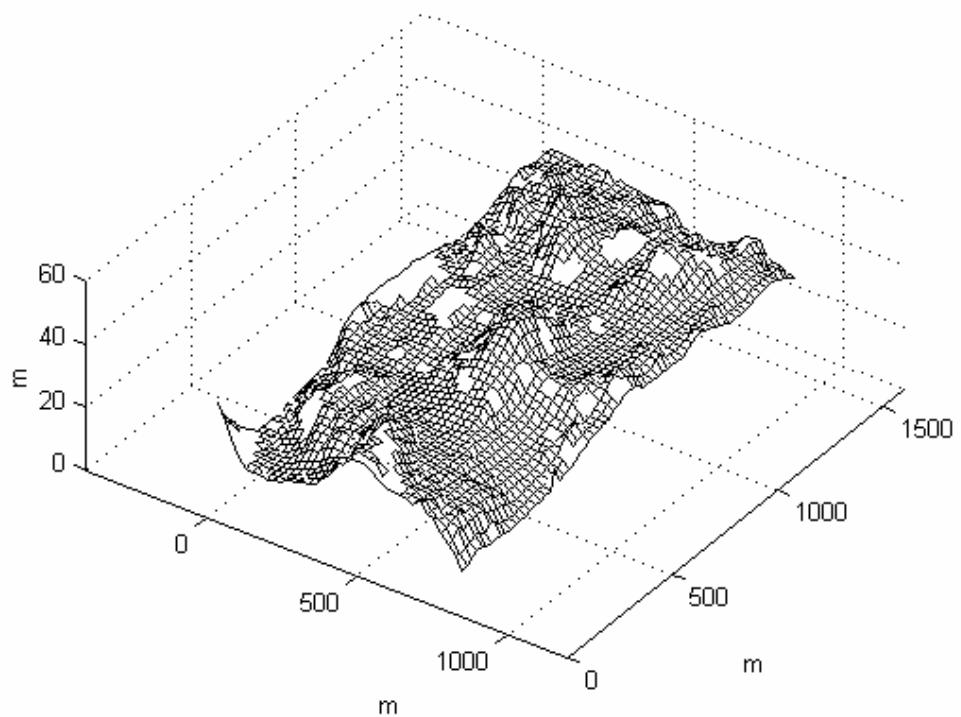

171
172

Figure 4 Mesh plot for Stockholm. Missing values are not represented

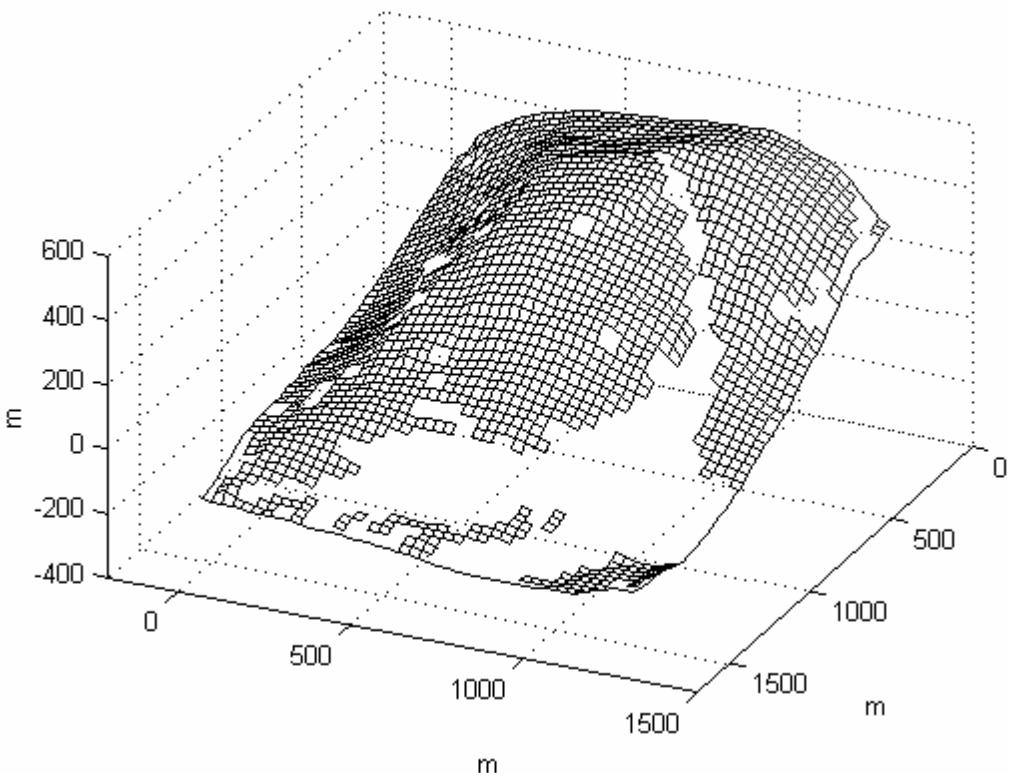

173
174

Figure 5 Mesh plot for Bohuslan. Missing values are not represented

175
176

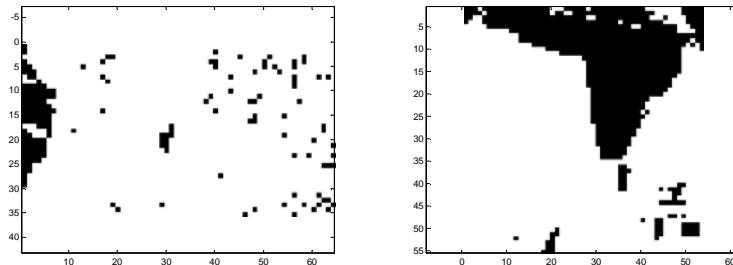
Figure 6 Mesh plot for Uppland. Missing values are not represented

177
178

Figure 7 Mesh plot for Drivdalen. Missing values are not represented

179

180 According to Östman (1987) the Spitze area is a rural one and very smooth. The
181 Sohnstetten one is also rural, but with undulated hills of moderate height. Sparse
182 trees dominate the landscape, but few areas with denser cover are also present. As
183 a mixed urban and natural sparse cover example we have the Stockholm area. It
184 has also some water bodies in the north. The Bohuslan is an example of rough
185 terrain, with sparse vegetation cover. The Drivdalen area has vegetation cover
186 highly correlated with height: over a prescribed level there is almost no coverage.


Area	max(m)	min(m)	mean(m)	RMSE(m)	p95(m)	outliers(%)	DEM id.
Spitze	1.135	-2.716	0.075	0.162	0.278	0.51	5
Sohnstetten	3.465	-2.211	0.150	0.478	0.923	1.83	6
Stockholm	8.505	-10.636	0.813	1.274	2.370	0.72	5
Bohuslan	3.946	-5.795	-0.776	1.311	2.551	0.18	6
Uppland	5.996	-4.741	-0.119	0.973	1.969	1.01	5
Drivdalen	30.922	-32.151	4.284	6.746	11.514	0.44	6

187
188
189
190

Table 1 Initial values of the traditional accuracy measures. See the text for
explanations

191 The pattern of missing elevations is irregular, being rather isolated spots or
192 contiguous areas, as illustrated in Fig. 8. In order to apply the methods, the
193 datasets need to be complete, and thus they have been imputed with bilinear
194 functions. Such locations have been masked later in order not to select them as
195 candidates to be outliers.

196

197
198 *Figure 8 Example of an isolated (Spitze, left) and contiguous (Bohuslan, right)*
199 *pattern of missing elevations, denoted in black.*

200 **3. Methods**

201 For the sake of completeness we will describe briefly the methods of Felicísmo
202 (1994) and López (2000). In addition, we will introduce the metrics of success
203 applied for both methods.

204

205 **3.1 The method of Felicísmo (1994)**

206 This method is based upon very simple ideas. It assumes that outliers are only
207 locally spatially correlated. Thus, they build a statistics calculated as the
208 difference between the given value and an estimate from its immediate neighbors.
209 If such difference has a Gaussian distribution, a Student's t test can be applied to
210 analyze every elevation in the dataset. The mean and standard deviation are
211 estimated from the population, so the outliers themselves might affect them.
212 Given a confidence level, and estimates of the mean and standard deviation, the
213 author describe how to calculate a threshold value in order to decide whether or
214 not the elevation at a given location belongs or not to the overall population. For
215 example, for a confidence level of $\alpha=0.001$, the outliers are highlighted if the
216 given elevation and the estimate differ more than 3.219 times the standard
217 deviation.

218 How to obtain the estimate itself is not part of the method. In this work, we
219 applied a best-fit approximation with a biquadratic polynomial using the eight
220 closest neighbors. The author states that even though a significantly high
221 difference does not necessarily imply an outlier, it is an excellent alarm sign. The
222 method appears to be extremely simple and is parameter free (i.e., no tuning phase
223 is required). The method does not require a DEM described in a regular grid.
224 Since we are analyzing methods to progressively refine the DEM, we must
225 suggest an order among the candidates, being the most unlikely first. Such order is
226 build according the normalized difference $t_{i,j} = (\delta_{i,j} - \bar{\delta})/s_\delta$ being $\delta_{i,j}$ the
227 difference between the given elevation value $z_{i,j}$ and the estimated guess $\hat{z}_{i,j}$,
228 being $\bar{\delta}$ and s_δ the mean and standard deviation of the population of $\delta_{i,j}$. The
229 latter values can be severely affected by gross errors. A possible approach is to
230 correct just the worst values, recalculate the mean and standard deviation, and
231 reevaluate the remaining elevation points. If the worst values cannot be classified
232 as outliers, other candidates could be selected. It should be mentioned that there
233 are better strategies (denoted collectively as high breakdown methods) which have
234 in common the ability to extract the "right" estimate of the mean and standard
235 deviation even with a population severe contaminated with outliers of arbitrary
236 size (see Hadi 1992, 1994).

237

238 3.2 *The method of López (2000)*

239 The author first describes a procedure to find unlikely values in elongated DEMs,
240 with length n and width w , being $w \ll n$. Each one of the n cross sections has w
241 elevation values, which can be regarded as the coordinates of points in R^w space.
242 Each one of the w profiles of length n is associated with a coordinate axis in R^w
243 space. Once described in such way, a number of well known methods from
244 statistics can be applied to highlight those points which do not behave as the rest
245 of the cloud (Hadi 1992, 1994, Hawkins 1974, 1993a, 1993b).
246 Assuming multivariate gaussian distribution, the author uses a modification of the
247 method of Hawkins (1974) based upon Principal Component Analysis (PCA) to

248 calculate a Mahalanobis-like distance from each point to the bulk of the cloud.
249 Those points in R^W (cross sections) with Mahalanobis-like distances larger than a
250 preset value suggest the existence of an outlier in the section.
251 Notice that the error location procedure directly analyzes the cloud of points in
252 R^W , disregarding any order among points. This is an important assumption, since
253 the concept of spatial self-correlation *based upon geometric distance* looses
254 completely all significance in the cloud. Adjacent profiles (of length n) need not
255 to be in any special order, since they are coordinate axes in the space R^W .
256 However, an unique feature of the method is that it captures some sort of
257 *direction-wise correlation*; if the nxw DEM has two or more profiles (of length n)
258 which are very similar, their mutual correlation will be high and any difference
259 due to outliers will be easily detected. Depending upon its lineage and terrain
260 characteristics, some DEMs are more prone to show high direction-wise
261 correlation than others.
262 Once the point in R^W is selected, it is necessary to identify which one of the w
263 elevation values makes it unlikely. There might be more than one value, and they
264 are identified after a sensitivity analysis of the Mahalanobis distance. We refer to
265 the original reference for further details.
266 The requirement $n>>w$ is crucial for having enough points in R^W to properly
267 estimate the correlation matrix. Any given nxm DEM of n rows and m columns
268 might not be so elongated for this method, but it can be divided into strips of size
269 nxw , and the method applied in each one. If m is not an exact multiple of w the
270 strips might overlap in order to consider the whole DEM. The candidates obtained
271 in each strip can be grouped and designated hereinafter as *row-wise* candidates for
272 the whole DEM. The same procedure can be applied to column-wise strips of size
273 wxm , and a different set of *column-wise* candidates can be obtained. The elevation
274 values belonging to both sets are the first ones to be considered as outliers.
275 As before, the method should be applied in steps, because the outliers might
276 adversely affect all the statistics. The process is supposed to stop when some
277 criteria are fulfilled. In this paper, we continue until a prescribed number of
278 elevations are edited, which is a measure of the effort required to improve the

279 DEM accuracy. The overall procedure is clearly more complex than the one of
280 Felicísmo (1994), and it requires some user-supplied parameters described in the
281 original reference. In addition, it can be applied only on DEMs defined over a
282 regular grid.

283

284 3.3 *The metrics of success*

285 Let's define a *perfect inspector* as the one which, given a location, can provide a
286 perfectly accurate elevation value for it. Here *perfectly accurate* should be
287 regarding in reference to the correct value with a given technology; such value is
288 also assumed unique. Notice that, by definition, control points are those obtained
289 by a perfect inspector. This hypothesis has some interesting properties while
290 comparing methods. If a given imputation method behaves as a perfect inspector,
291 after selecting 100 per cent of the elevations the RMSE must decrease 100 per
292 cent also down to zero. Thus, if we select at random which elevation value should
293 be corrected, after editing 1 per cent of the elevations we diminish the RMSE just
294 1 per cent on average. Clever choice of the elevations to edit should render a
295 better improvement, so the relative change of RMSE (in per cent) will be greater
296 than the number of the elevations inspected (also in per cent).

297 A perfect inspector imputation is certainly possible, but is usually expensive. So,
298 the effort required for editing 100 per cent of the elevations is not considered as a
299 choice, but a limited one might be. Thus, we will define as *effort* the fraction of
300 the whole DEM that we might accept to edit/impute (with any method, not
301 necessarily the perfect one) in order to improve the accuracy. The effort is
302 expressed in per cent. In real situations (either in the producer or the user role) we
303 must limit our reprocessing of the DEM due to budget, time or other constraints.
304 Let's consider first the producer side. In some cases we can assign a *monetary*
305 *value* to the accuracy: we have to compare the cost of reworking (usually
306 proportional to the effort) vs. the value of the DEM (usually a decreasing function
307 of the RMSE). The equilibrium point can be calculated, and it will define the
308 effort limit. End users define an effort limit, but for other reasons. They probably
309 are not willing to edit a significant part of the DEM. They might accept at most to

310 be warned by software, and after some inspection, use an estimate instead of the
311 given data. In both cases, the effort limit should be agreed before and will
312 quantify the commitment to make changes in the given DEM.

313 In this experiment we have at hand the perfect inspector elevations. However, to
314 represent a realistic situation, we imputed the elevations using bilinear
315 interpolation from the neighbors of the candidate point. This procedure is
316 available both to the DEM producer and the end user, since it does not require
317 unavailable information. The procedure is not part of the accuracy improvement
318 method: it simply attempts to mimic the behavior of an inexperienced user. Other
319 users will go to every candidate, display the data and the neighborhood, and take a
320 decision whether or not to change the given value. Here, we decided to accept
321 every candidate as suggested by the methods, and change the elevation as
322 described. Notice that, with this imputation method, there is neither no guarantee
323 nor arguments to claim that after 100 per cent effort all the errors will be
324 eliminated, and it is also hard to argue that the RMSE must even decrease. The
325 interpolated value might be worse than the original one.

326 For both methods, we will select up to a prescribed number of elevation spots,
327 related with the effort limit and the size of the DEM itself. As presented before, if
328 the relative change of the accuracy is larger than the effort, we are performing
329 better than mere chance. A similar argument can be raised for the percentile 95
330 per cent of the errors.

331 The process is as follows: the methods were applied, and they selected a small set
332 of candidates representing some effort. Once edited, new accuracy figures can be
333 calculated up to that effort. The process continues until we exceeded the specified
334 effort limit. Then, we interpolate the accuracy figures to prescribed stations, like
335 [0.25, 0.50, 1.00] per cent. Unlike other authors, and since the RMSE is badly
336 affected by even few outliers, we have also considered the percentile 95 per cent
337 of the absolute errors as a significant accuracy figure.

338 The 1 per cent effort limit was chosen following Torlegård *et al.* (1986), and is of
339 the order of the number of outliers found in the DEMs. Their estimate of the
340 initial number of outliers for the six DEM models has been presented in Table 1.

341 **4. Results**

342 We want to summarize some results in Table 2, while more details will be given
343 in Table 3. Almost all the entries in Table 2 are over 1.000 and some clearly over,
344 which shows that both methods are better than the mere chance. Only for the
345 Bohuslan area and for the p95 statistics the values are lower than 1.000, which
346 must be interpreted that (on average) the method behaves worse than random
347 selection of the candidates. Notice that no negative entries arise, so the combined
348 (error detection + simple interpolation) strategy did not degrade the accuracy.

349 It should be stressed that the accuracy in this experiment is always *calculated* (not
350 *estimated*) by comparing against the respective reference DEM for *all* elevation
351 values. In real situations this is not possible; the accuracy is just estimated (not
352 *calculated*), and the estimation is performed by comparing elevations from higher
353 accuracy sources (typically field values) against the given DEM.

354 The worst values correspond to Bohuslan. According to Torlegård *et al.* (1986),
355 this DEM has just 0.18 per cent outliers (as defined by them), which is
356 significantly less than 1 per cent. If they were right, this implies that we are
357 editing not only blunders but also regular errors, which is a situation outside the
358 hypothesis for both methods. The case of Uppland is unique in the sense that, in
359 terms of the RMSE, F1994 is better, but the situation is the opposite for the
360 percentile 95 per cent. This shows that L2000 is more prone to pick in this case
361 the worst values while F1994 picks a bunch of not-too-extremely-large errors. The
362 methods applied to the Stockholm DEM show better performance by F1994. The
363 area is very complex, with a number of roads and urban areas, which might
364 require further analysis. The other DEMs shown better or clearly better
365 performance for L2000, for smooth and rugged terrain as well. However, all the
366 statistics should be analyzed with caution, because the DEM test are rather small
367 (i.e. few elevation points) to derive strong conclusions. The L2000 method is
368 more sensitive than F1994 to this aspect, because it requires an undefined "large"
369 number of rows and columns, which is not the case in any of the samples (for
370 Sohnstetten there are only 20 rows for the analysis!). In addition, the missing
371 elevations have been interpolated, and both methods were applied after the

372 interpolation, deriving statistics that might not reflect well the original variability
373 of the data. This explains why, despite good, the performance is not as good as
374 reported before (López, 2000). For accuracy as RMSE, and for 1 per cent effort,
375 the author reported a RMSE decrease of 4.701 per cent for a rugged mountain
376 area, while for the method F1994 the same figure is 3.675 per cent.

377 We want to stress that both methods were designed to pick just outliers. If a
378 significant part of the initial RMSE error of a given DEM is due to outliers, a
379 substantial improvement can be obtained even by a limited editing effort, as
380 shown in this paper. If the bulk of the errors arise from systematic reasons, the
381 methods will not contribute significantly to any accuracy improvement.

382 Figures 9 and 10 show the evolution of the accuracy vs. effort for the case of the
383 RMSE and the percentile 95 per cent for Drivdalen. The dashed area shows the
384 lower boundary for the behavior of *any possible* method. The limit curve is
385 obtained by selecting one at a time the largest outlier in the DEM, imputating it
386 with the perfect inspector's elevation value and repeating until a given effort is
387 accomplished. No method can do better. All the required information to proceed
388 this way is available for this experiment, but not in real cases. Notice that the
389 perfect method requires both a *perfect outlier location method* and a *perfect*
390 *inspector* in order to impute the values. At the 1 per cent effort, this perfect
391 method is able to decrease significantly the RMSE, showing that there is still
392 room for improvement.

393 Four additional curves are shown: one for the method of Felicísmo (1994) and
394 three for the other method, corresponding to different number of Principal
395 Components dropped from the Mahalanobis distance calculation (see López, 2000
396 for further details). As suggested in the reference, we estimated "2" as the best
397 value for Drivdalen, and Table 3 summarizes the results for such option. If we go
398 further with the effort (beyond 1 per cent) we might notice that the performance
399 (RMSE decrease vs. effort) degrades significantly. This fact (not shown in the
400 figure) confirms the assertion of Torlegård *et al.* (1986) regarding the small
401 number of outliers in the dataset.

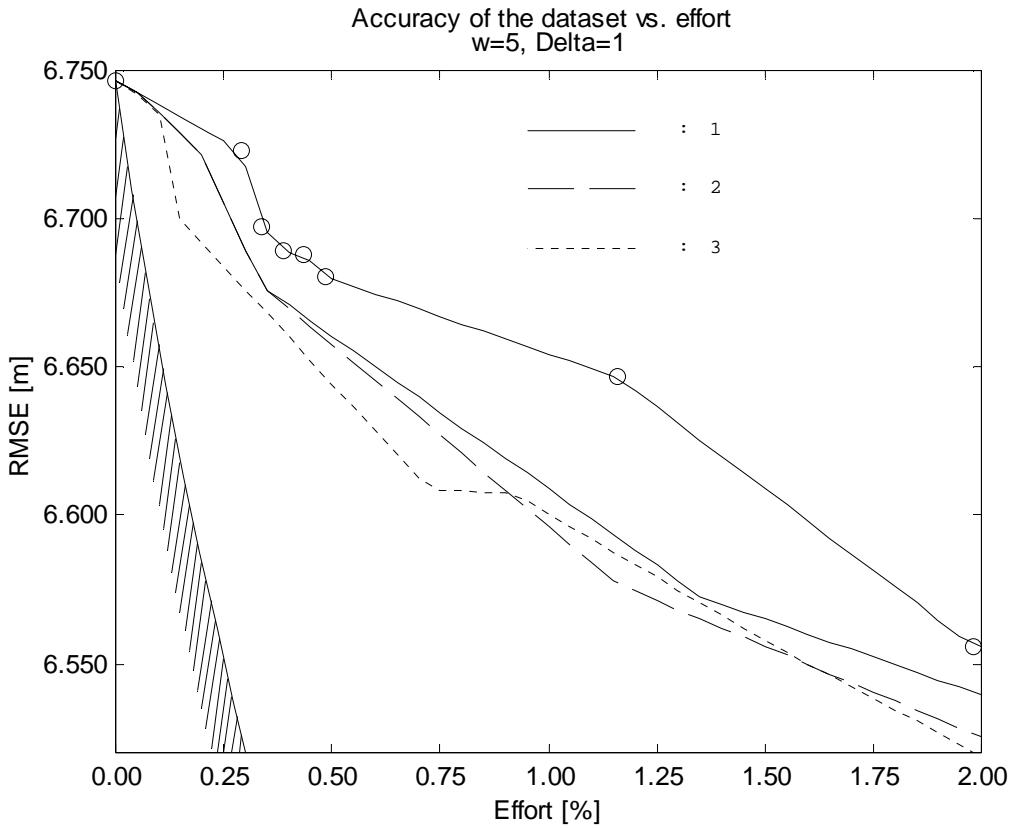
402

AREA	$(RMSE(1\%)-RMSE(0\%))$		$(p95(1\%)-p95(0\%))$	
	$RMSE(0\%)$		$p95(0\%)$	
	<i>F1994</i>	<i>L2000</i>	<i>F1994</i>	<i>L2000</i>
<i>Spitze</i>	1.235	8.642	1.439	1.439
<i>Sohnstetten</i>	4.393	4.812	2.600	3.034
<i>Stockholm</i>	2.198	1.962	5.612	1.350
<i>Bohuslan</i>	1.144	1.068	0.706	0.510
<i>Uppland</i>	4.111	2.878	1.574	1.727
<i>Drivdalen</i>	1.349	2.224	1.181	1.285

403

404 *Table 2 Summary of the results of the test. "RMSE(x%)"* stands for accuracy (as
 405 *RMSE*) after editing $x\%$ of the elevations in the DEM, while " $p95(x\%)$ " stands for
 406 the percentile 95% of the absolute elevation error, etc. *F1994* and *L2000* stands
 407 for the methods applied. In gray those cases where *F1994* outperforms *L2000*.

408


AREA	<i>max (1%) (m)</i>		<i>min (1%) (m)</i>		<i>mean(1%) (m)</i>		<i>RMSE(1%) (m)</i>		<i>p95(1%) (m)</i>	
	<i>F1994</i>	<i>L2000</i>	<i>F1994</i>	<i>L2000</i>	<i>F1994</i>	<i>L2000</i>	<i>F1994</i>	<i>L2000</i>	<i>F1994</i>	<i>L2000</i>
<i>Spitze</i>	1.135	0.728	-2.716	-0.592	0.077	0.076	0.160	0.148	0.274	0.274
<i>Sohnstetten</i>	3.300	3.465	-2.211	-2.211	0.149	0.148	0.457	0.455	0.899	0.895
<i>Stockholm</i>	8.505	6.908	-10.636	-10.636	0.813	0.806	1.246	1.249	2.237	2.338
<i>Bohuslan</i>	3.946	3.946	-5.795	-5.795	-0.773	-0.770	1.296	1.297	2.533	2.538
<i>Uppland</i>	5.357	5.885	-3.923	-4.602	-0.116	-0.111	0.933	0.945	1.938	1.935
<i>Drivdalen</i>	30.922	30.922	-32.151	-29.167	4.308	4.325	6.655	6.596	11.378	11.366

409

410 *Table 3 Accuracy statistics reported after 1 per cent effort discriminated by*
 411 *method and area. Initial values were reported in Table 1*

412

413

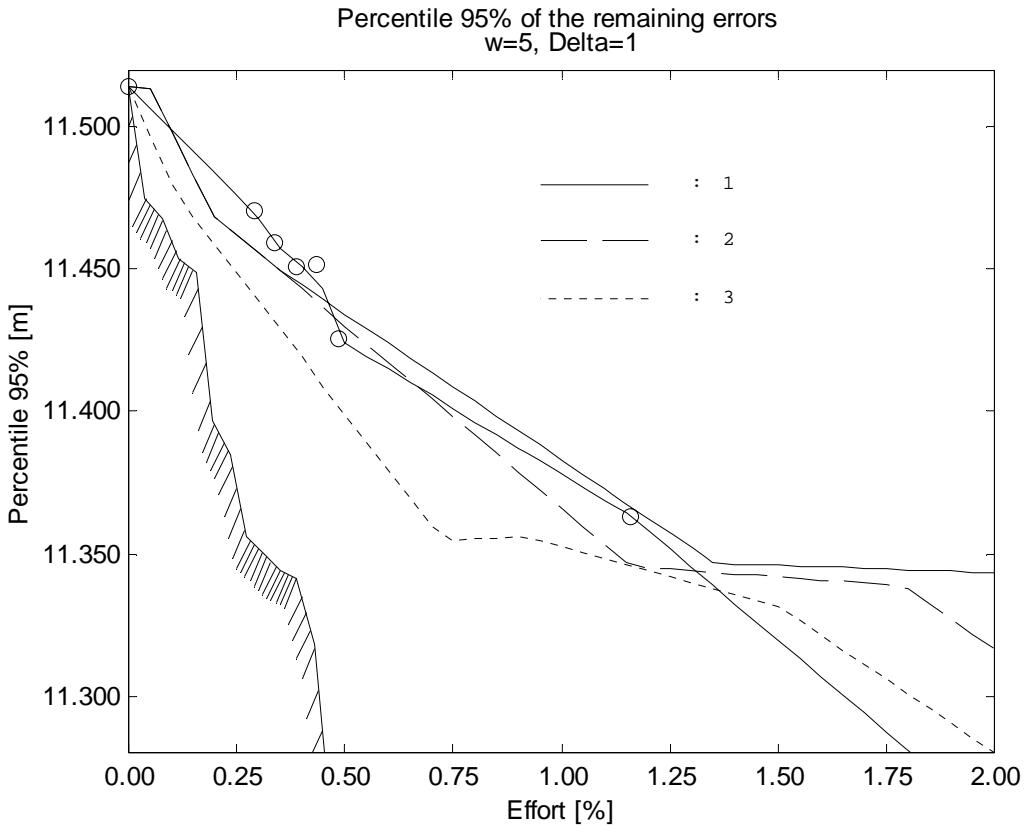
414

415

Figure 9 Evolution of the accuracy as RMSE up to an effort of 2.0 per cent for the case of Drivdalen. Symbol "o" denotes experimental points for method F1994.

416

417


The others are for different parameters of method L2000. The border of the dashed region denotes the best possible operation line. All the curve values were obtained after linear interpolation between experimental points.

418

419

420

421

422
423 *Figure 10 Evolution of the percentile 95 per cent of the error up to an effort of 2.0*
424 *per cent for the case of Drivdalen. Symbol "o" denotes experimental points for*
425 *method F1994. The others are for different parameters of method L2000. The*
426 *border of the dashed region denotes the best possible operation line. All the curve*
427 *values were obtained after linear interpolation between experimental points.*

428

429 **5. Conclusions**

430 Errors in any DEM might adversely affect its usefulness for a particular
431 application, so they need to be modeled and taken into consideration. Usually,
432 both the systematic and random errors are modeled jointly using a Gaussian
433 distribution. Its parameters can be estimated using control points and the DEM
434 itself provided that no outliers are present; otherwise they might be severely
435 affected.

436 In this paper, we have presented preliminary quantitative results of the
437 comparison of two methods for outlier detection for DEM applied over six cases
438 representative of different landscapes. Systematic errors are not considered. Both
439 methods produce an ordered set of location candidates to be outliers. In real cases,
440 the operator will go through the list and decide whether or not a particular

441 elevation is wrong. Here, we blindly imputed the elevation by bilinear
442 approximation using its immediate neighbors, trying to mimic the behavior of
443 automatic equipment or inexperienced operators. In any case, the process is
444 iterative because outliers affect the statistics of the DEM and indirectly the
445 numbers used by the methods themselves and continues until a prescribed fraction
446 of the DEM has been edited. The results in terms of RMSE or percentile 95 per
447 cent of the elevation error demonstrated that a significant improvement in the
448 accuracy for both methods could be achieved. Previous papers on the subject lack
449 for a comparison with different landscapes, which is the main contribution of this
450 one. The best results were for the method by López (2000). In all but one case it
451 diminished the RMSE more than 2 per cent irrespective of the landscape, while
452 the performance of the method by Felicísmo (1994) were more irregular. These
453 results should be taken with caution and can be regarded as conservative for the
454 method described by López (2000) because the DEM samples were not
455 particularly appropriate for its application due to its limited size.

456 For other DEMs, the significance of the accuracy improvement depends upon the
457 number and size of outliers in the dataset: if they are known to contribute
458 significantly to the accuracy, the methods might provide a good strategy for
459 improvement. If most of the accuracy is due to systematic errors, the methods are
460 of little use.

461
462 **Acknowledgments**

463 The author would like to thank Professors Kennert Torlegård of the Royal
464 Institute of Technology, Stockholm, Sweden, Anders Östman of the Luleå
465 Technical University, Luleå, Sweden, Miguel Águila, Ariel Pérez and Rocío
466 Tolstoy of the University of the Republic, Montevideo, Uruguay, for their support
467 while interpreting the ISPRS83 DEM dataset. This paper has benefited from the
468 comments of two anonymous reviewers.

469

470 **References**

471 – Brown, D. G. and Bara, T.J., 1994 Recognition and Reduction of Systematic
472 Error in Elevation and Derivative Surfaces from 7½-minute DEMs,
473 *Photogrammetric Engineering & Remote Sensing*, **60**, 2, 189-194

474 – Defourny, P.; Hecquet, G. and Philippart, T., 1998 Digital Terrain Modeling:
475 Accuracy assessment and hydrological simulation sensitivity, In *Spatial
476 Accuracy Assessment: Land Information Uncertainty in Natural Resources*.
477 ISBN 1-57504-119-7. Eds, Lowell, K. and Jaton, A. 61-70

478 – Durañona, G. and López, C., 2000, DM4DEM: A GRASS-compatible tool for
479 blunder detection of DEM, In *Proceedings of the 4th International Symposium
480 on Spatial Accuracy Assessment in Natural Resources and Environmental
481 Sciences, Amsterdam, The Netherlands, 2000*.

482 – Felicísimo, A., 1994, Parametric statistical method for error detection in
483 digital elevation models, *ISPRS J. of Photogrammetry and Remote Sensing*,
484 **49**, 4, 29-33.

485 – Fisher, P. F., 1991, First Experiments in Viewshed Uncertainty: The accuracy
486 of the Viewshed Area, *Photogrammetric Engineering & Remote Sensing*, **57**,
487 10, 1321-1327

488 – Fisher, P. F., 1998 Improved Modeling of Elevation Error with Geostatistics.
489 *GeoInformatica*, **2:3**, 215-233

490 – Florinsky, I. V., 1998, Combined analysis of digital terrain models and
491 remotely sensed data in landscape investigations. *Progress in Physical
492 Geography*, **22**, 1, 33-60

493 – Fortin, M.; Edwards, G. and Thomson, K. P. B. 1998 The role of error
494 propagation for integrating multisource data within spatial models: the case of
495 the DRASTIC groundwater vulnerability model, In *Spatial Accuracy
496 Assessment: Land Information Uncertainty in Natural Resources*, ISBN 1-
497 57504-119-7, Eds. Lowell, K. and Jaton, A. 437-443

498 – Hadi, A. S., 1992, Identifying Multiple Outliers in Multivariate Data. *J. Royal
499 Statist. Soc. B*, **54**, 3, 761-771

500 – Hadi, A. S., 1994, A Modification of a Method for the detection of Outliers in
501 Multivariate Samples. *J. Royal Statist. Soc. B*, **56**, 2, 393-396

502 – Hannah, M. J., 1981, Error detection and correction in Digital Terrain Models,
503 *Photogrammetric Engineering & Remote Sensing*, **47**, 1, 63-69.

504 – Hawkins D. M., 1974, The detection of errors in multivariate data, using
505 Principal Components. *J. American Statistical Association*, **69**, 340-344.

506 – Hawkins, D. M., 1993a, A feasible solution algorithm for the Minimum
507 Volume Ellipsoid Estimator in Multivariate data. *Computational Statistics* **8**,
508 95-107

509 – Hawkins, D. M., 1993b, The feasible set algorithm for least median of squares
510 regression. *Computational Statistics & Data analysis*, **16**, 81-101

511 – Li, Z. and Chen, J., 1999, Assessment of the Accuracy of Digital Terrain
512 Models (DTM): Theory and Practice, In *Proceedings of the International*
513 *Symposium on Spatial Data Quality'99, Hong Kong, China*, ISBN 962-367-
514 253-5, 202-209

515 – López, C., 1997, Locating some types of random errors in Digital Terrain
516 Models, *International Journal of Geographic Information Science*, **11**, 7, 677-
517 698.

518 – López, C., 2000, On the improving of elevation accuracy of Digital Elevation
519 Models: a comparison of some error detection procedures. *Transactions in*
520 *GIS*, **4**, 1, 43-64

521 – Lowell, K. and Jaton, A. (eds.), 1999, Spatial Accuracy Assessment: Land
522 Information Uncertainty in Natural Resources, ISBN 1-57504-119-7, 455 pp.

523 – Moore, I. D.; Grayson, R. B. and Ladson, A. R., 1991, Digital Terrain
524 Modelling: A review of hydrological, geomorphological and biological
525 applications. *Hydrological processes*, **5**, 3-30

526 – Östman, A., 1987, Quality Control of Photogrammetrically sampled Digital
527 Elevation Model using an On-line graphical DEM Editor, *Photogrammetric*
528 *Record*, **12**, 69, 333-341

529 – Shi, W.; Goodchild, M. and Fisher, P. F. (eds.), 1999 Proceedings of The
530 International Symposium on Spatial Data Quality'99, 18-20 July 1999, Hong
531 Kong, ISBN 962-367-253-5, 628 pp.

532 – Thapa, K. and Bossler, J., 1992 Review article: Accuracy of spatial data used
533 in Geographic Information Systems, *Photogrammetric Engineering & Remote*
534 *Sensing*, **58**, 6, 835-841

535 – Tolstoy, R.; López, C. and Torlegård, K., 2000, The ISPRS WG III:3
536 International Comparative Test of Photogrammetrically Sampled Digital
537 Elevation Models 1982: Description of the dataset,
538 <http://ia.fing.edu.uy/DeptoFoto/isprs83.html>

539 – Torlegård, K.; Östman, A. and Lindgren, R., 1986, A comparative test of
540 photogrammetrically sampled digital elevation models, *Photogrammetria*, **41**,
541 1, 1-16

Montevideo, April 24th, 2001

Dr. Peter Fisher

Midlands Regional Research Laboratory

Department of Geography

University of Leicester

Leicester LE1 7RH

United Kingdom

Dear Prof. Fisher

Attached you will find a paper for reconsideration. It has been rejected before by reasons I took into consideration in this (new) draft.

I should mention that a significantly shorter paper with the same title has already been presented at the Accuracy 2000 conference, held in Amsterdam last July. No other journal is currently reviewing this material.

Hope to hear from you soon

Best wishes

Carlos

Montevideo, June 6th, 2000

Dr. Peter Fisher
Midlands Regional Research Laboratory
Department of Geography
University of Leicester
Leicester LE1 7RH
United Kingdom

Dear Prof. Fisher

Attached you will find a paper for reconsideration. It has been rejected before. I have considered most of the observations from reviewer 3, as well as made my best regarding opinions of reviewer 2.

I should mention again that significantly shorter paper with the same title has been already been accepted for the conference Accuracy 2000, to be held in Amsterdam in July. The organizers claim that some selected papers will be considered for publication at IJGIS, and for personal reasons I want to review this as soon as possible. No other journal is currently reviewing this material.

Hope to see you again soon

Best wishes

Carlos

Montevideo, February 16th, 2000

Dr. Peter Fisher
Midlands Regional Research Laboratory
Department of Geography
University of Leicester
Leicester LE1 7RH
United Kingdom

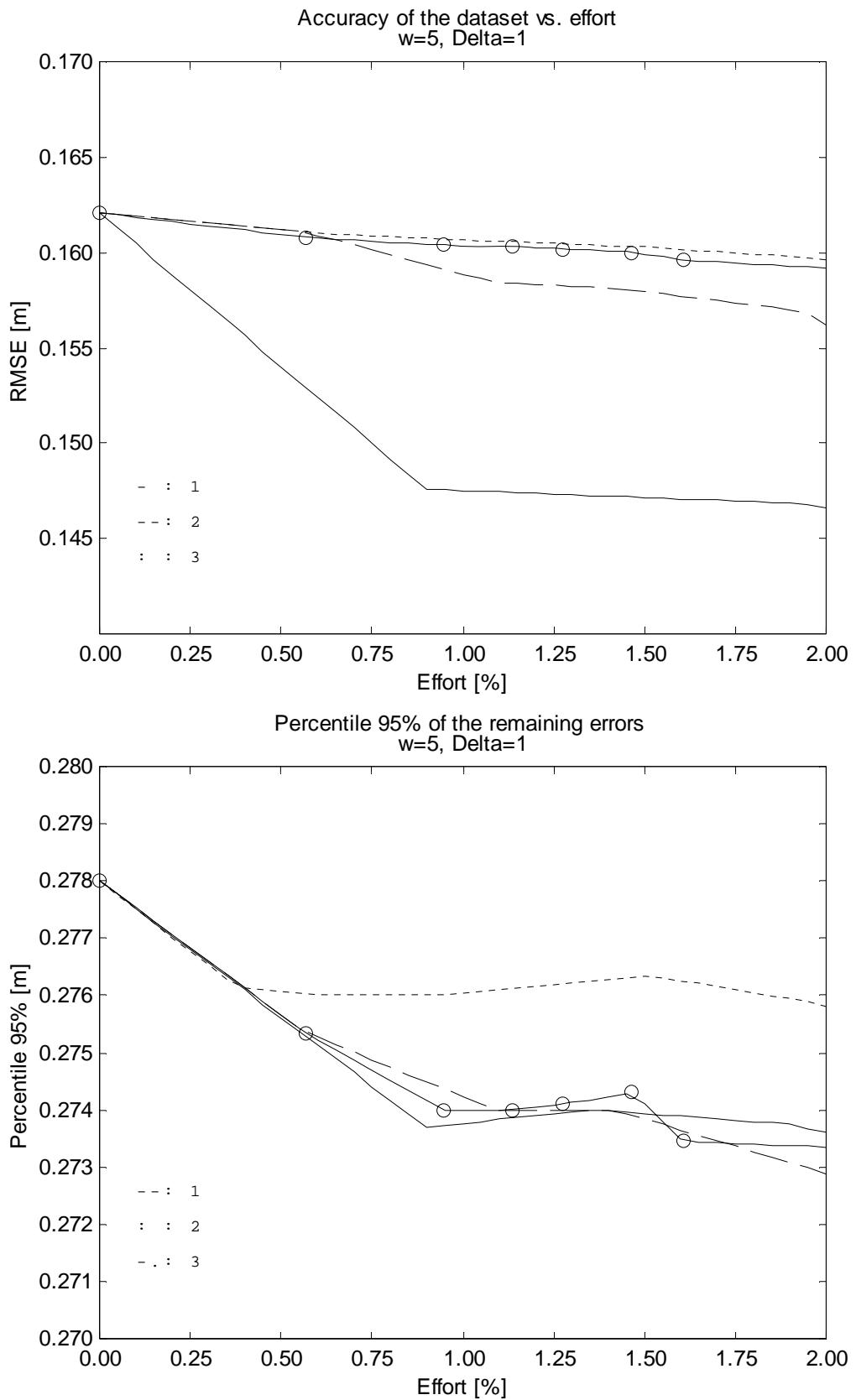
Dear Prof. Fisher

Attached you will find a paper for your consideration. A significantly shorter paper with the same title has been already been accepted for the conference Accuracy 2000, to be held in Amsterdam in July. The organizers claim that some selected papers will be considered for publication at IJGIS, and for personal reasons I want to review this as soon as possible. No other journal is currently reviewing this material.

Hope to see you again soon

Best wishes

Carlos


band1

DELTA =

1

Metodo de Felicisimo. 1994

abscisa	SKEW	MU	SD	P95	MAX	MIN	accuracy
0.000;	0.898;	0.075;	0.144;	0.278;	1.135;	-2.716;	0.162
0.250;	0.878;	0.075;	0.143;	0.277;	1.135;	-2.716;	0.162
0.500;	0.857;	0.076;	0.142;	0.276;	1.135;	-2.716;	0.161
1.000;	0.804;	0.077;	0.142;	0.274;	1.135;	-2.716;	0.160
2.000;	0.851;	0.078;	0.141;	0.273;	1.135;	-2.716;	0.159
2.500;	0.844;	0.078;	0.141;	0.273;	1.135;	-2.716;	0.159
3.000;	0.818;	0.078;	0.140;	0.272;	1.135;	-2.716;	0.158
5.000;	0.804;	0.078;	0.139;	0.269;	1.135;	-2.716;	0.156
10.000;	0.570;	0.079;	0.134;	0.260;	0.507;	-2.716;	0.147
1 sin controlar y w=5							
abscisa	SKEW	MU	SD	P95	MAX	MIN	accuracy
0.000;	0.898;	0.075;	0.144;	0.278;	1.135;	-2.716;	0.162
0.250;	0.964;	0.075;	0.139;	0.277;	1.022;	-2.125;	0.158
0.500;	1.030;	0.076;	0.135;	0.276;	0.908;	-1.534;	0.154
1.000;	1.135;	0.076;	0.127;	0.274;	0.728;	-0.592;	0.148
2.000;	1.118;	0.076;	0.127;	0.274;	0.728;	-0.584;	0.147
2.500;	1.041;	0.077;	0.126;	0.273;	0.728;	-0.544;	0.146
3.000;	1.054;	0.077;	0.125;	0.272;	0.728;	-0.544;	0.145
5.000;	1.013;	0.078;	0.123;	0.268;	0.728;	-0.544;	0.142
10.000;	0.804;	0.080;	0.121;	0.265;	0.728;	-0.544;	0.137
2 sin controlar y w=5							
abscisa	SKEW	MU	SD	P95	MAX	MIN	accuracy
0.000;	0.898;	0.075;	0.144;	0.278;	1.135;	-2.716;	0.162
0.250;	0.878;	0.075;	0.143;	0.277;	1.135;	-2.716;	0.162
0.500;	0.857;	0.075;	0.143;	0.276;	1.135;	-2.716;	0.161
1.000;	0.851;	0.074;	0.141;	0.274;	0.796;	-2.716;	0.159
2.000;	0.864;	0.074;	0.139;	0.273;	0.728;	-2.593;	0.156
2.500;	0.973;	0.075;	0.132;	0.272;	0.728;	-1.595;	0.150
3.000;	1.082;	0.076;	0.126;	0.271;	0.728;	-0.596;	0.145
5.000;	1.033;	0.077;	0.123;	0.269;	0.728;	-0.519;	0.142
10.000;	0.757;	0.080;	0.120;	0.263;	0.728;	-0.501;	0.136
3 sin controlar y w=5							
abscisa	SKEW	MU	SD	P95	MAX	MIN	accuracy
0.000;	0.898;	0.075;	0.144;	0.278;	1.135;	-2.716;	0.162
0.250;	0.867;	0.075;	0.143;	0.277;	1.135;	-2.716;	0.162
0.500;	0.851;	0.075;	0.143;	0.276;	1.135;	-2.716;	0.161
1.000;	0.851;	0.075;	0.143;	0.276;	1.135;	-2.716;	0.161
2.000;	0.804;	0.075;	0.143;	0.276;	1.124;	-2.716;	0.160
2.500;	0.804;	0.075;	0.141;	0.274;	0.733;	-2.716;	0.157
3.000;	0.804;	0.075;	0.140;	0.274;	0.728;	-2.716;	0.157
5.000;	0.749;	0.076;	0.138;	0.272;	0.728;	-2.716;	0.154
10.000;	0.709;	0.078;	0.137;	0.268;	0.728;	-2.716;	0.150

10.000; 0.756; 0.080; 0.120; 0.263; 0.728; -0.499; 0.136

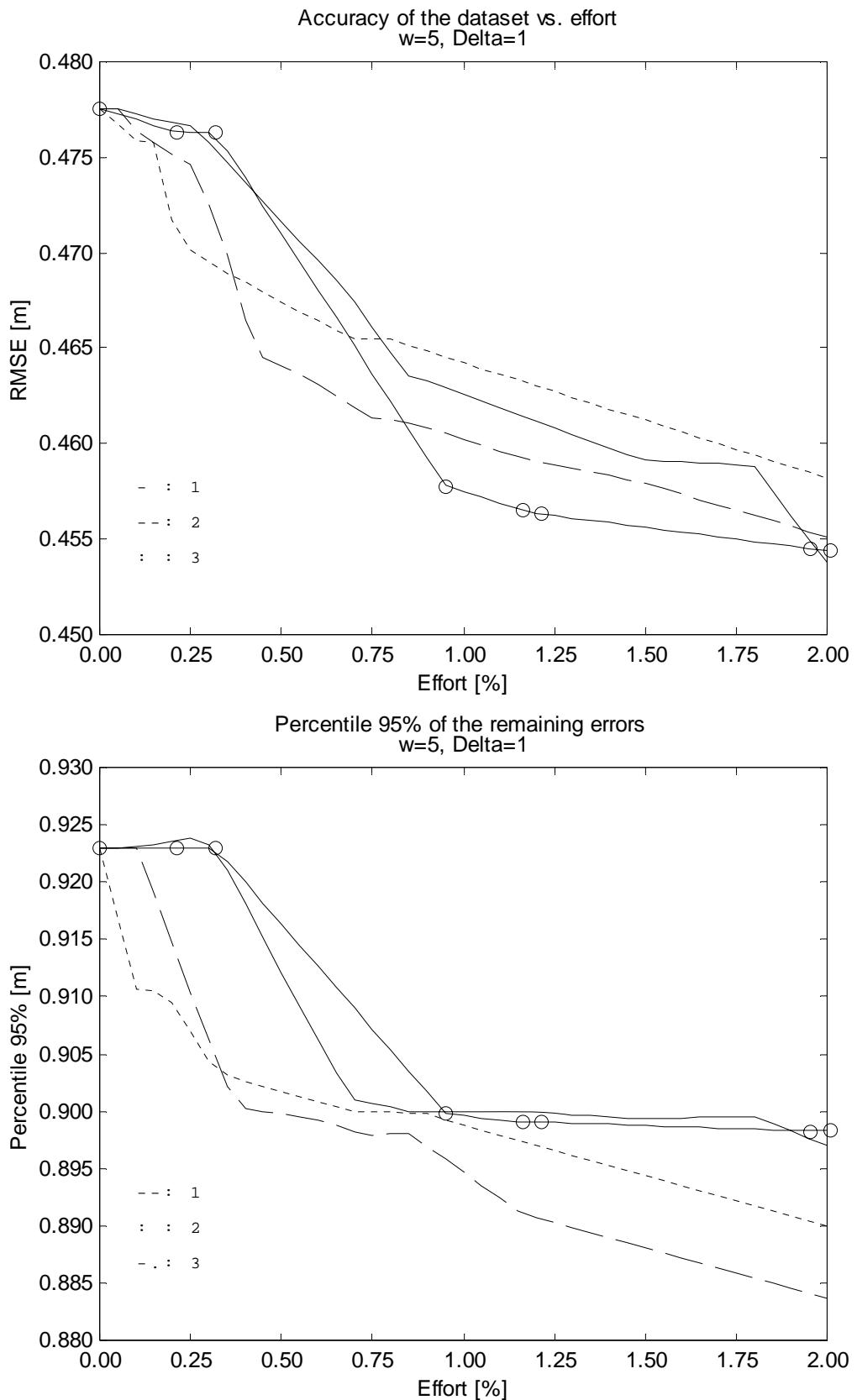
band2

DELTA =

1
llegue para las graficas con los resultados de felicisimo. 1994
Metodo de Felicisimo. 1994

abscisa	SKEW	MU	SD	P95	MAX	MIN	accuracy
0.000;	1.850;	0.150;	0.454;	0.923;	3.465;	-2.211;	0.478
0.250;	1.796;	0.151;	0.453;	0.923;	3.466;	-2.211;	0.476
0.500;	1.799;	0.150;	0.449;	0.918;	3.429;	-2.211;	0.473
1.000;	1.729;	0.149;	0.435;	0.899;	3.297;	-2.211;	0.457
2.000;	1.691;	0.149;	0.434;	0.898;	3.300;	-2.211;	0.454
2.500;	1.667;	0.149;	0.433;	0.896;	3.289;	-2.211;	0.452
3.000;	1.628;	0.150;	0.431;	0.888;	3.317;	-2.211;	0.449
5.000;	1.524;	0.150;	0.408;	0.831;	2.632;	-2.211;	0.424
10.000;	1.428;	0.157;	0.397;	0.815;	2.674;	-2.211;	0.405

1 sin controlar y w=5

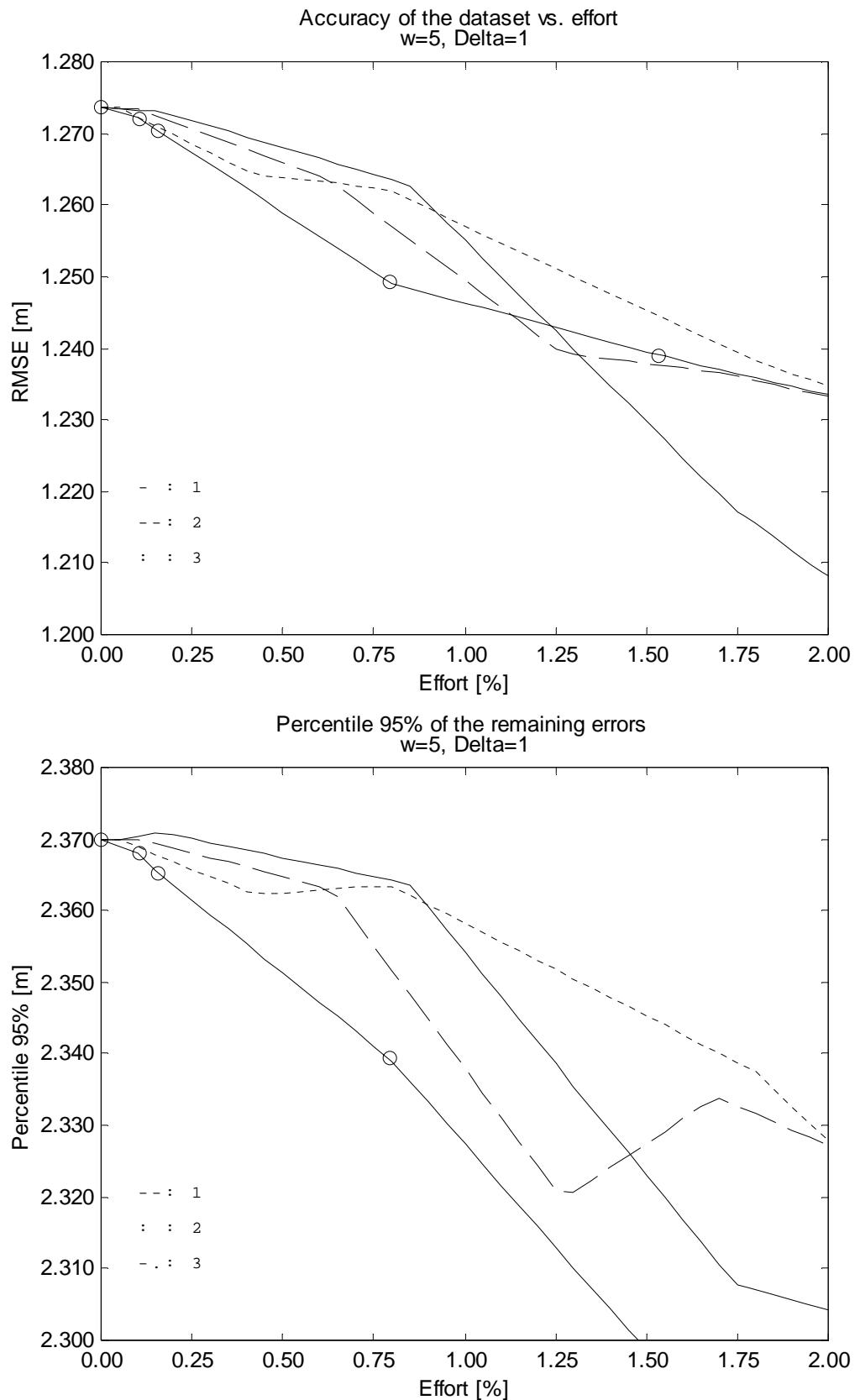

abscisa	SKEW	MU	SD	P95	MAX	MIN	accuracy
0.000;	1.850;	0.150;	0.454;	0.923;	3.465;	-2.211;	0.478
0.250;	1.797;	0.151;	0.453;	0.923;	3.465;	-2.211;	0.476
0.500;	1.782;	0.150;	0.448;	0.916;	3.417;	-2.211;	0.471
1.000;	1.732;	0.149;	0.435;	0.900;	3.300;	-2.211;	0.457
2.000;	1.691;	0.149;	0.434;	0.898;	3.300;	-2.211;	0.454
2.500;	1.661;	0.149;	0.433;	0.894;	3.300;	-2.211;	0.452
3.000;	1.631;	0.150;	0.431;	0.887;	3.300;	-2.211;	0.449
5.000;	1.526;	0.150;	0.409;	0.833;	2.674;	-2.211;	0.425
10.000;	1.427;	0.157;	0.397;	0.815;	2.674;	-2.211;	0.405

2 sin controlar y w=5

abscisa	SKEW	MU	SD	P95	MAX	MIN	accuracy
0.000;	1.850;	0.150;	0.454;	0.923;	3.465;	-2.211;	0.478
0.250;	1.749;	0.151;	0.451;	0.910;	3.465;	-2.211;	0.475
0.500;	1.797;	0.149;	0.441;	0.900;	3.465;	-2.211;	0.464
1.000;	1.718;	0.148;	0.438;	0.895;	3.465;	-2.211;	0.460
2.000;	1.648;	0.149;	0.435;	0.884;	3.465;	-2.211;	0.455
2.500;	1.606;	0.149;	0.433;	0.879;	3.465;	-2.211;	0.452
3.000;	1.565;	0.150;	0.431;	0.875;	3.465;	-2.211;	0.450
5.000;	1.425;	0.151;	0.424;	0.854;	3.465;	-2.211;	0.439
10.000;	1.303;	0.157;	0.411;	0.824;	3.465;	-2.100;	0.417

3 sin controlar y w=5

abscisa	SKEW	MU	SD	P95	MAX	MIN	accuracy
0.000;	1.850;	0.150;	0.454;	0.923;	3.465;	-2.211;	0.478
0.250;	1.831;	0.149;	0.447;	0.907;	3.465;	-2.211;	0.470
0.500;	1.745;	0.150;	0.444;	0.902;	3.465;	-2.211;	0.467
1.000;	1.744;	0.149;	0.442;	0.899;	3.465;	-2.211;	0.464
2.000;	1.701;	0.149;	0.438;	0.890;	3.465;	-2.211;	0.458
2.500;	1.662;	0.149;	0.436;	0.884;	3.465;	-2.191;	0.455
3.000;	1.611;	0.150;	0.432;	0.877;	3.465;	-2.155;	0.450
5.000;	1.533;	0.151;	0.426;	0.866;	3.465;	-2.100;	0.441
10.000;	1.268;	0.148;	0.417;	0.839;	3.465;	-2.100;	0.420



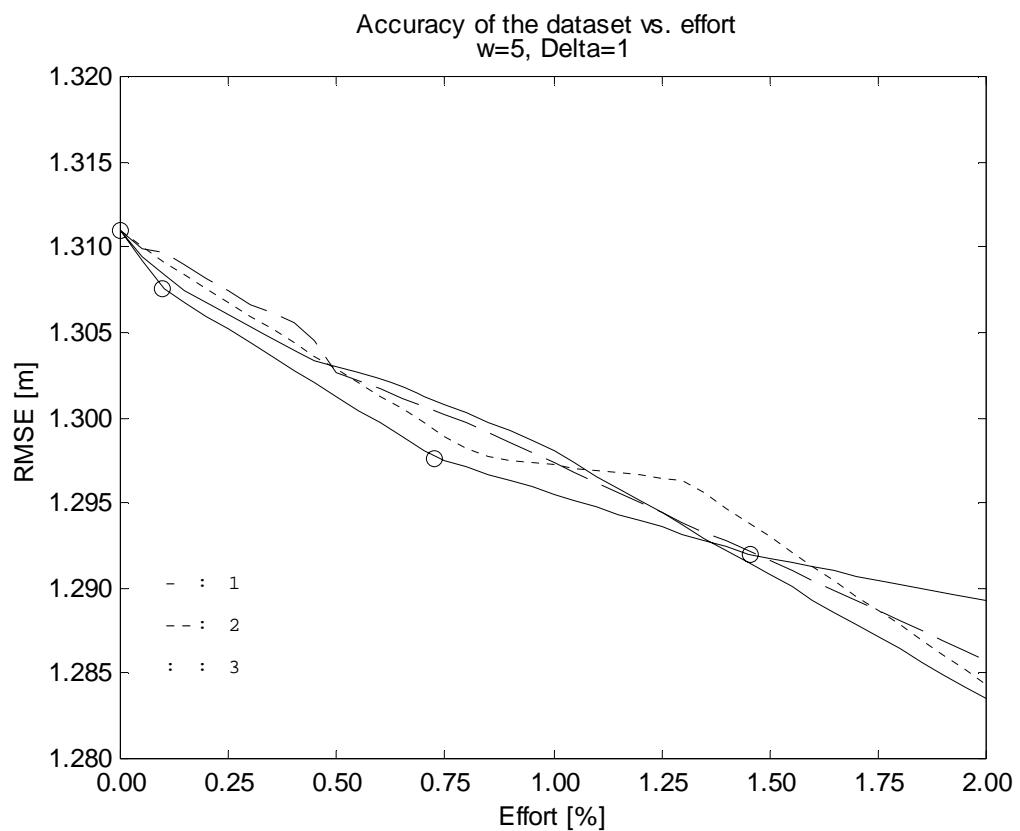
band3

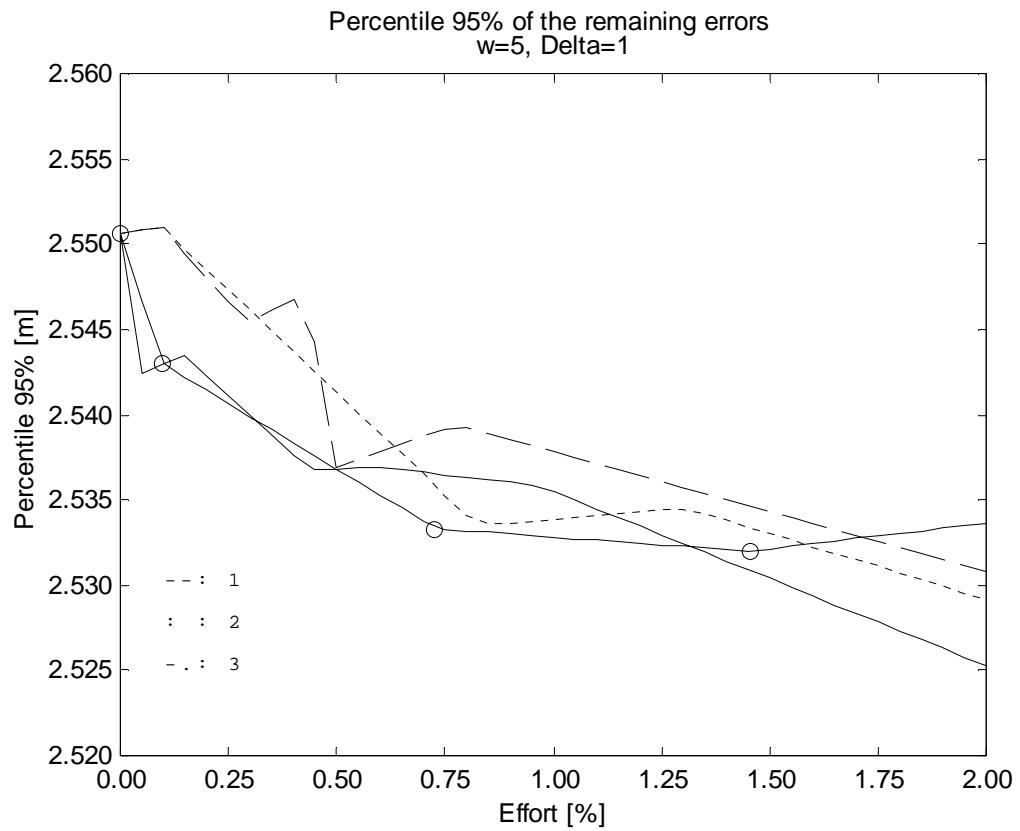
Metodo de Felicisimo. 1994

	abscisa	SKEW	MU	SD	P95	MAX	MIN
accuracy							
1.274	0.000;	1.321;	0.813;	0.981;	2.370;	8.505;	-10.636;
1.267	0.250;	1.329;	0.811;	0.976;	2.361;	8.505;	-10.636;
1.259	0.500;	1.350;	0.812;	0.966;	2.351;	8.505;	-10.636;
1.246	1.000;	1.359;	0.813;	0.953;	2.327;	8.505;	-10.636;
1.233	2.000;	1.292;	0.810;	0.947;	2.296;	8.505;	-10.636;
1.228	2.500;	1.268;	0.808;	0.946;	2.296;	8.505;	-10.636;
1.224	3.000;	1.268;	0.806;	0.946;	2.296;	8.505;	-10.636;
1.186	5.000;	1.395;	0.821;	0.898;	2.294;	8.505;	-10.636;
1.102	10.000;	1.194;	0.819;	0.824;	2.272;	6.873;	-4.683;
1 sin controlar y w=5							
accuracy							
1.274	0.000;	1.321;	0.813;	0.981;	2.370;	8.505;	-10.636;
1.272	0.250;	1.314;	0.813;	0.981;	2.370;	8.505;	-10.636;
1.268	0.500;	1.295;	0.811;	0.979;	2.367;	8.505;	-10.636;
1.255	1.000;	1.278;	0.809;	0.968;	2.354;	8.029;	-10.636;
1.208	2.000;	1.385;	0.812;	0.911;	2.304;	5.736;	-9.714;
1.190	2.500;	1.510;	0.816;	0.887;	2.297;	5.736;	-7.912;
1.182	3.000;	1.511;	0.816;	0.881;	2.293;	5.736;	-7.588;
1.161	5.000;	1.406;	0.812;	0.872;	2.280;	5.736;	-7.588;
1.117	10.000;	1.216;	0.803;	0.861;	2.252;	5.736;	-7.588;
2 sin controlar y w=5							
accuracy							
1.274	0.000;	1.321;	0.813;	0.981;	2.370;	8.505;	-10.636;
1.271	0.250;	1.307;	0.812;	0.980;	2.368;	8.505;	-10.636;
1.266	0.500;	1.282;	0.809;	0.978;	2.365;	8.505;	-10.636;
1.249	1.000;	1.299;	0.806;	0.963;	2.338;	6.908;	-10.636;

	2.000;	1.299;	0.806;	0.950;	2.327;	5.736;-10.636;
1.233	2.500;	1.262;	0.805;	0.948;	2.316;	5.736;-10.636;
1.228	3.000;	1.226;	0.804;	0.946;	2.305;	5.736;-10.636;
1.222	5.000;	1.163;	0.798;	0.941;	2.284;	5.736;-10.636;
1.202	10.000;	1.057;	0.789;	0.923;	2.244;	3.861;-10.636;
1.152	3 sin controlar y w=5					
	abscisa	SKEW	MU	SD	P95	MAX
accuracy	0.000;	1.321;	0.813;	0.981;	2.370;	8.505;-10.636;
1.274	0.250;	1.293;	0.810;	0.978;	2.366;	8.505;-10.636;
1.269	0.500;	1.268;	0.808;	0.976;	2.362;	8.505;-10.636;
1.264	1.000;	1.279;	0.808;	0.972;	2.358;	7.934;-10.636;
1.257	2.000;	1.309;	0.808;	0.950;	2.328;	5.736;-10.636;
1.235	2.500;	1.277;	0.807;	0.943;	2.304;	5.736;-10.636;
1.226	3.000;	1.243;	0.806;	0.938;	2.296;	5.736;-10.636;
1.218	5.000;	1.216;	0.805;	0.932;	2.290;	5.736;-10.636;
1.200	10.000;	1.057;	0.805;	0.929;	2.283;	5.736;-10.636;
1.166						

band4

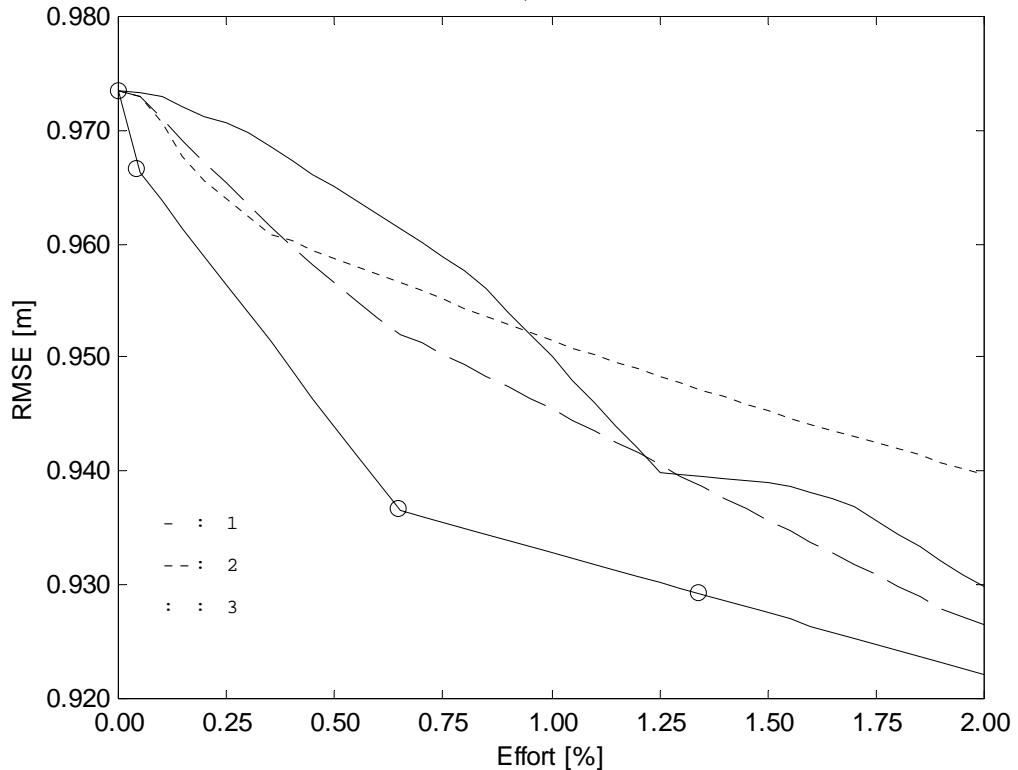

Metodo de Felicisimo. 1994

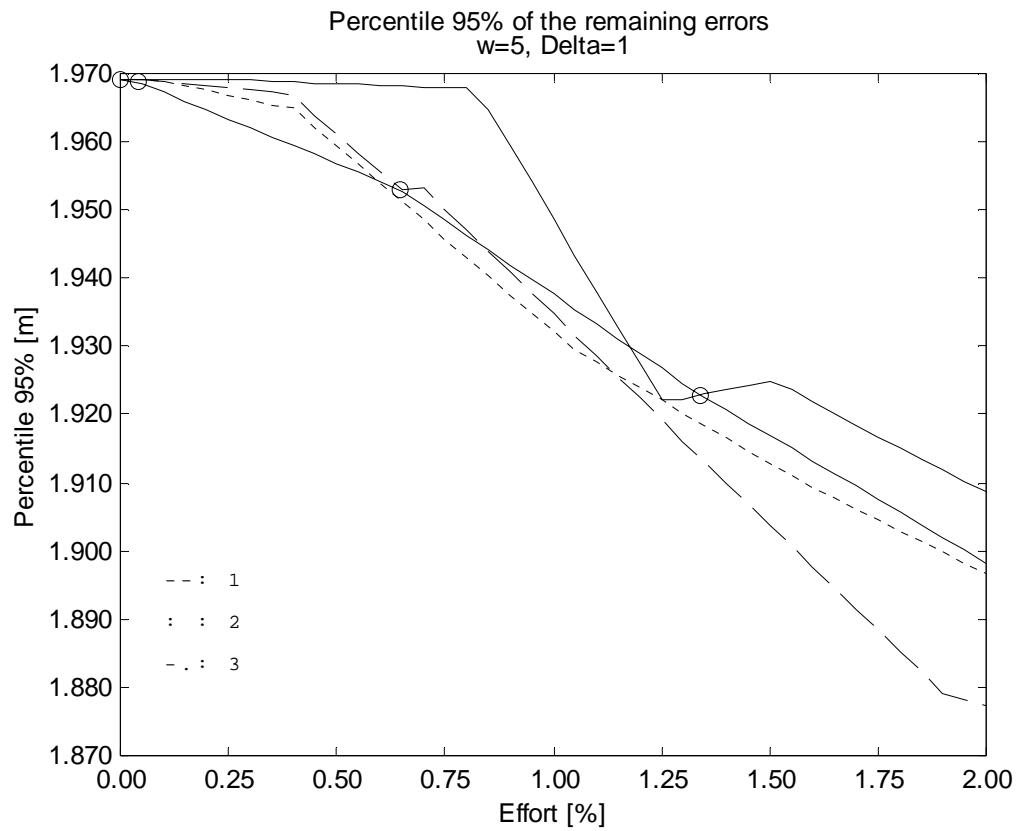

	abscisa	SKEW	MU	SD	P95	MAX	MIN
accuracy							
1.311	0.000;	1.261;	-0.776;	1.057;	2.551;	3.946;	-5.795;
1.305	0.250;	1.273;	-0.773;	1.054;	2.541;	3.946;	-5.795;
1.301	0.500;	1.292;	-0.772;	1.052;	2.537;	3.946;	-5.795;
1.296	1.000;	1.328;	-0.773;	1.048;	2.533;	3.946;	-5.795;
1.289	2.000;	1.358;	-0.777;	1.046;	2.534;	3.946;	-5.795;
1.285	2.500;	1.350;	-0.776;	1.045;	2.533;	3.946;	-5.795;
1.279	3.000;	1.326;	-0.774;	1.043;	2.527;	3.946;	-5.795;
1.255	5.000;	1.309;	-0.770;	1.032;	2.506;	3.946;	-5.795;
1.220	10.000;	1.212;	-0.778;	1.025;	2.505;	3.946;	-5.795;
1 sin controlar y w=5							
accuracy							
1.311	0.000;	1.261;	-0.776;	1.057;	2.551;	3.946;	-5.795;
1.306	0.250;	1.261;	-0.772;	1.055;	2.541;	3.946;	-5.795;
1.303	0.500;	1.261;	-0.771;	1.055;	2.537;	3.946;	-5.795;
1.298	1.000;	1.262;	-0.769;	1.054;	2.535;	3.946;	-5.795;
1.284	2.000;	1.310;	-0.765;	1.047;	2.525;	3.946;	-5.795;
1.276	2.500;	1.334;	-0.763;	1.043;	2.520;	3.946;	-5.795;
1.269	3.000;	1.358;	-0.761;	1.040;	2.515;	3.946;	-5.795;
1.244	5.000;	1.261;	-0.762;	1.023;	2.510;	3.946;	-4.743;
1.187	10.000;	1.195;	-0.753;	1.000;	2.457;	3.946;	-4.381;
2 sin controlar y w=5							
accuracy							
1.311	0.000;	1.261;	-0.776;	1.057;	2.551;	3.946;	-5.795;
1.307	0.250;	1.261;	-0.774;	1.056;	2.547;	3.946;	-5.795;
1.303	0.500;	1.261;	-0.771;	1.054;	2.537;	3.946;	-5.795;
1.297	1.000;	1.253;	-0.770;	1.053;	2.538;	3.946;	-5.795;

```

2.000; 1.219; -0.769; 1.047; 2.531; 3.946; -5.795;
1.286
2.500; 1.234; -0.768; 1.043; 2.527; 3.946; -5.617;
1.279
3.000; 1.269; -0.767; 1.038; 2.524; 3.946; -5.336;
1.271
5.000; 1.252; -0.769; 1.027; 2.517; 3.946; -5.006;
1.250
10.000; 1.088; -0.769; 0.993; 2.484; 3.946; -4.381;
1.192

```

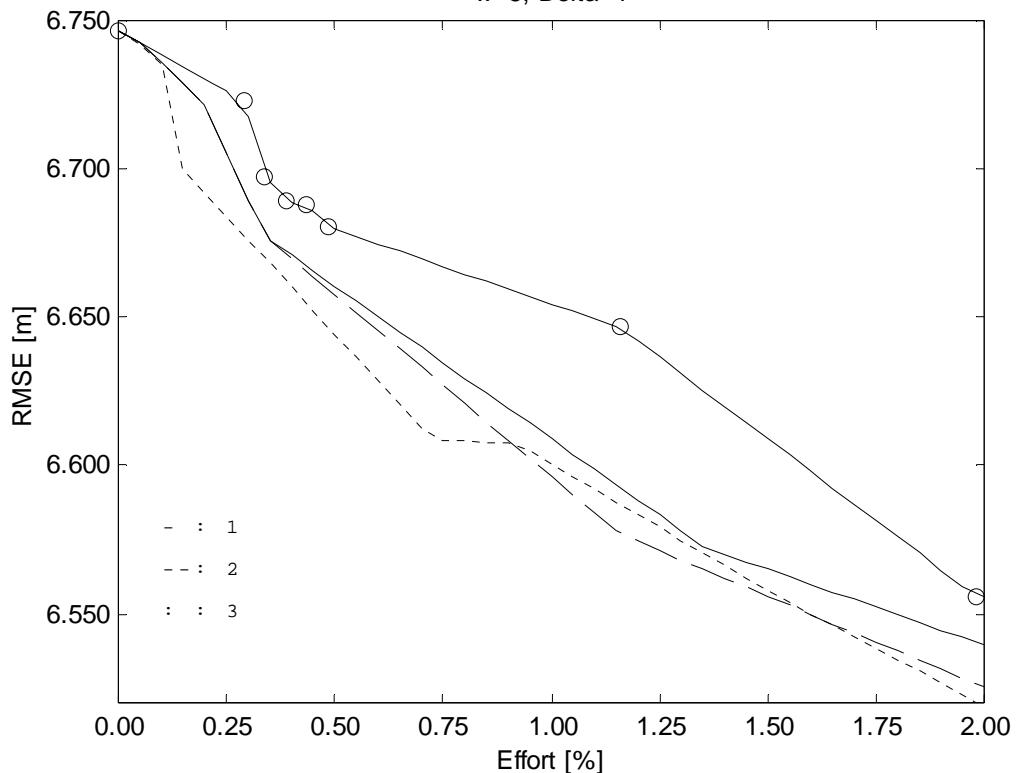




band5

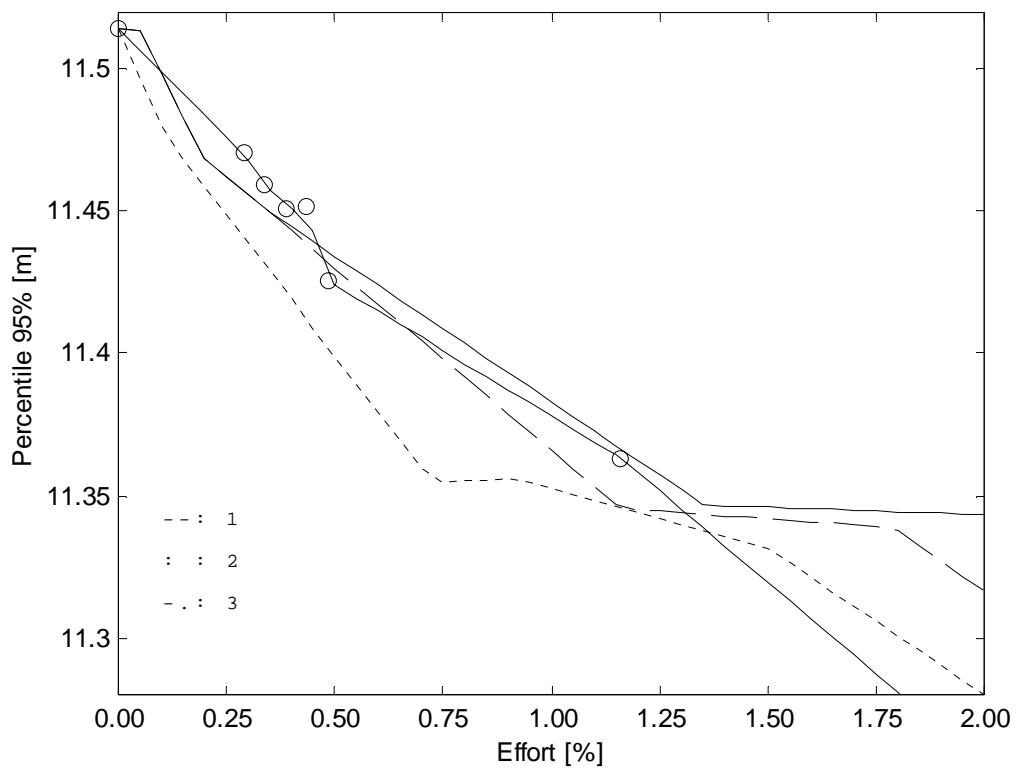
Metodo de Felicisimo. 1994

abscisa	SKEW	MU	SD	P95	MAX	MIN	accuracy
0.000;	0.994;	-0.119;	0.966;	1.969;	5.996;	-4.741;	0.973
0.250;	1.009;	-0.120;	0.950;	1.963;	5.778;	-4.461;	0.956
0.500;	1.027;	-0.118;	0.939;	1.957;	5.514;	-4.123;	0.944
1.000;	1.015;	-0.116;	0.931;	1.938;	5.357;	-3.923;	0.933
2.000;	0.994;	-0.114;	0.925;	1.898;	5.357;	-3.923;	0.922
2.500;	1.009;	-0.115;	0.923;	1.888;	5.357;	-3.923;	0.918
3.000;	1.030;	-0.118;	0.921;	1.883;	5.357;	-3.923;	0.914
5.000;	1.087;	-0.135;	0.893;	1.858;	4.012;	-3.923;	0.880
10.000;	0.961;	-0.145;	0.867;	1.819;	3.732;	-3.923;	0.834
2 sin controlar y w=5							
abscisa	SKEW	MU	SD	P95	MAX	MIN	accuracy
0.000;	0.994;	-0.119;	0.966;	1.969;	5.996;	-4.741;	0.973
0.250;	0.994;	-0.115;	0.960;	1.968;	5.996;	-4.666;	0.965
0.500;	0.994;	-0.112;	0.953;	1.961;	5.996;	-4.602;	0.957
1.000;	1.005;	-0.111;	0.944;	1.935;	5.885;	-4.602;	0.945
2.000;	1.047;	-0.112;	0.929;	1.877;	5.560;	-4.602;	0.927
2.500;	1.099;	-0.111;	0.925;	1.869;	5.560;	-4.602;	0.920
3.000;	1.151;	-0.109;	0.921;	1.860;	5.560;	-4.602;	0.913
5.000;	1.080;	-0.112;	0.915;	1.844;	5.560;	-4.602;	0.899
10.000;	0.850;	-0.116;	0.888;	1.793;	5.560;	-4.602;	0.850

Accuracy of the dataset vs. effort
w=5, Delta=1



band6


Metodo de Felicisimo. 1994

abscisa	SKEW	MU	SD	P95	MAX	MIN	accuracy
0.000;	1.595;	4.284;	5.213;	11.514;	30.922;	-32.151;	6.746
0.250;	1.553;	4.294;	5.189;	11.476;	30.922;	-32.151;	6.726
0.500;	1.547;	4.314;	5.123;	11.424;	30.922;	-32.151;	6.680
1.000;	1.547;	4.308;	5.117;	11.378;	30.922;	-32.151;	6.655
2.000;	1.498;	4.331;	5.011;	11.258;	30.922;	-32.151;	6.556
2.500;	1.475;	4.333;	4.986;	11.254;	30.922;	-32.151;	6.522
3.000;	1.449;	4.334;	4.960;	11.249;	30.922;	-32.151;	6.486
5.000;	1.125;	4.362;	4.715;	10.955;	30.922;	-32.151;	6.260
10.000;	0.967;	4.414;	4.585;	10.724;	30.922;	-32.151;	6.037
2 sin controlar y w=5							
abscisa	SKEW	MU	SD	P95	MAX	MIN	accuracy
0.000;	1.595;	4.284;	5.213;	11.514;	30.922;	-32.151;	6.746
0.250;	1.566;	4.292;	5.164;	11.462;	30.922;	-30.985;	6.706
0.500;	1.566;	4.308;	5.099;	11.430;	30.922;	-29.167;	6.657
1.000;	1.478;	4.325;	5.026;	11.366;	30.922;	-29.167;	6.596
2.000;	1.342;	4.345;	4.958;	11.317;	30.922;	-29.167;	6.525
2.500;	1.314;	4.361;	4.926;	11.264;	30.922;	-29.167;	6.495
3.000;	1.274;	4.380;	4.885;	11.221;	30.922;	-29.167;	6.462
5.000;	1.118;	4.443;	4.759;	11.098;	30.922;	-29.167;	6.345
10.000;	0.931;	4.594;	4.517;	10.941;	30.922;	-19.266;	6.111

Accuracy of the dataset vs. effort
w=5, Delta=1

Percentile 95% of the remaining errors
w=5, Delta=1

Hola Ana Ines

Te molesto porque necesitaria que me consiguieras una copia de los siguientes articulos (citados en desorden cronologico):

+Ritter. P. A vector based slope and aspect generation algorithm. PHOTOGAMMETRIC ENGINEERING & REMOTE SENSING. 53 (8). 1109-1111. 1987

+Sharpnack. D.A. and Akin. G. An algorithm for computing slope and aspect from elevations. PHOTOGAMMETRIC ENGINEERING & REMOTE SENSING 35. pag 247. 1969

+Hodgson. M.E. What Cell size does the computed slope/Aspect angle represent? PHOTOGAMMETRIC ENGINEERING & REMOTE SENSING. 61(5). 513-517. 1995

+Bolstad. P.V. and Stowe. T. An evaluation of DEM accuracy: elevation, slope, and aspect. PHOTOGAMMETRIC ENGINEERING & REMOTE SENSING 60(11). 1327-1332. 1994

+Lantner. D. and Veregin. H. A research paradigm for propagating error in layer-based GIS. PHOTOGAMMETRIC ENGINEERING & REMOTE SENSING 58. 825-833. 1992

+Veregin. H. Integration of simulation modeling and error propagation for the buffer operation in GIS. PHOTOGAMMETRIC ENGINEERING & REMOTE SENSING. 60. 427-435.1994

+Veregin. H. Error propagation through the buffer operation for probability surfaces. PHOTOGAMMETRIC ENGINEERING & REMOTE SENSING 62. 419-428. 1996

+Kubik. K; Lyons. K and Merchant. D. Photogrammetric Work without blunders. PHOTOGAMMETRIC ENGINEERING & REMOTE SENSING. 54. 51-54. 1988

+Kubik. K.; Merchant. D. and Schenk. T. Robust estimation in photogrammetry. PHOTOGAMMETRIC ENGINEERING & REMOTE SENSING. 53. 167-169. 1987

Para los ultimos dos. las paginas aparecen repetidas. lo que no deja de ser curioso (y dudos!). Espero que lo puedas localizar de todas formas.

Caso contrario. intenta ubicar a Mr. Kubik en Internet.
utilizando el titulo de los trabajos. Usualmente. encontraras
una pagina con sus publicaciones. y alli la referencia estara
(casi seguramente) correcta.

La otra cosa es rastrear la tesis de doctorado (PhD) del siguiente fulano: Shyue. S. W. El titulo es: High Breakdown point robust estimation for outlier detection in photogrammetry. Fue presentada en 1989 en la Universidad de Washington. Lo que habria que hacer. es a) intentar localizar la pagina WEB del fulano. No creo que sea un apellido muy popular... b) conseguir la tesis (si es que esta disponible en linea) o bien conseguir el e-mail del fulano. el que me enviarias.

Sugiero usar yahoo!. altavista. etc. utilizando el apellido y/o partes del titulo (encerradas entre comillas) hasta que tengas suerte. La otra es intentar buscar por la universidad. pero eso puede ser mas problematico.