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Abstract
In Geographic Information System (GIS) typical applications data usually comes
from a wide range of providers. Such data has variable quality and typically the end
user has limited access to the original source (if any). Among other problems those
datasets might have missing values and also be affected by outliers. Missing values
are common in tabular datasets (like population census, meteorological records,
etc.) and the end user is forced to apply any methodology in order to fill the gaps.
The data producer cannot recover the missing value and typically does not assign or
suggest alternative values. Outliers might arise from careless measurements,
instrument malfunction, wrong data processing routines, etc. Current systems give
little help to the end user, while the data producer might go back and make another
reading, or check the original records if available.

This thesis is concerned with the development and testing of tools intended for two
purposes: a) given some dataset, point out dubious values and b) suggest a
procedure to assign suitable values for those in doubt or missing. The algorithms
were designed in order to be useful for end users as well as data producers.

Only some of the data types usually found in GIS applications have been analyzed,
namely tabular categorical data, tabular quantitative data and raster quantitative
data. For all of them we suggested new methods and made extensive comparison
with traditional alternatives.

For the problem of outlier detection we applied a number of known and new
techniques to tabular quantitative data. The examples are from daily precipitation
and hourly surface wind records. For raster quantitative datasets we developed and
analyzed a new general method suitable for detecting outliers. Digital Elevation
Models (DEM) were used as an example. Tabular quantitative (categorical) data
(e.g. census data) is also extensively used in GIS applications (opinion polls,
economic surveys, etc.). Unfortunately, the procedure cannot be applied to other
categorical data typically available in GIS (like a geological or land-use map). For
the missing value problem we only treat the case of quantitative tabular data. Most
of the methods considered are general purpose, and can be regarded as
independent of the dataset. They can be used by the end user as well as the data
producer. All the experiment were carried out using MATLAB in UNIX
workstations.

KEY WORDS: outliers, blunders, missing values, precipitation, wind, digital
elevation models, DEM, categorical data, error model, Geographic Information
Systems, GIS.
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1 Introduction

1.1 Motivation for the project: data and geographic information
systems
This thesis is concerned with automated methods for dealing with noisy and/or
incomplete databases in Geographic Information Systems (GIS) environments.

Gandin (1988) classified errors in general into two categories: random errors and
systematic errors. Random errors are inherent in all data. They are caused by many
factors, first of all by the fact that data describe the behavior of the instrument
itself, not of what it is intended to measure. Every instrument is approximate by its
very nature. Variations in some other parameters, influencing the instrument, may
also cause random errors in the measured value of the parameter in question. As
opposed to random errors, systematic errors are distributed asymmetrically with
respect to zero; their mean values (usually called biases) differ significantly from
zero. There are two main causes of systematic errors: a scale shift of the
instrument, and an influence of some more or less persistent factor which is not
accounted for (or accounted for imprecisely). Systematic errors usually persist in
time. This property often allows the determination of even small systematic errors
by the application of some Quality Control method to time averaged data. There is
a third group: the so-called rough (or large) errors. These are caused by the
malfunction of measuring devices and by mistakes during data processing,
transmission and reception. Only a very small part of all data is distorted by rough
errors. However, these distortions may be very large and may therefore
significantly damage analyzed and predicted outputs from models. Very large
rough errors, easily detectable at an early stage of the data processing, are usually
referred to as "gross errors". Not so large errors might have a chance to remain
unnoticed, and may produce significant distortions as well. They are denoted as
outliers, which can be defined as "observations that do not follow the pattern of the
majority of the data" (Rousseeuw and van Zomeren 1990). Regarding outliers, it is
intended to compare different method to locate them in some categories of datasets
usually handled by GIS.

The following definition for GIS is due to Johnsson (1994). GIS are computer
systems to store, analyze and present geographically referenced information, such
as digital maps or point measurements. The information is stored in themes or data
layers. Using the analysis tools in a GIS, new information can be extracted by
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manipulation and combination of existing data layers. The data layers are
commonly stored either in raster format (as values in a regular grid, pixels) or in
vector format (as points, lines and polygons with associated attributes).

Access to GIS software is also very easy, either using freeware options (GRASS)
or commercial ones. Geographic Information Systems is one of the fastest growing
markets in software today (Anon 1994). That implies that more people have access
to proper tools, and then are able to manipulate and produce data. Data availability
will be assured in the future, through the operation of the so called
Clearinghouses, which will distribute existing datasets to government, industry
and the general public (Nebert 1995, 1996).

The combination of widespread data and ready made, easy to use software raises
some critical points. John (1993) stated that "...very wrong answers can be derived
using perfectly logical GIS analysis techniques, if the users are not aware of the
particular peculiarities of data...". For example Openshaw (1989) states that with
manual cartographic methods many of the problems associated with map accuracy
are visible, and the highly skilled operator makes the necessary adjustments and
knows how far the information can be relied upon. With spatial databases (handled
by GIS) the equivalent operations are transparent, the operators are no longer so
knowledgeable in or aware of the limitations of the data, and the problems are
more or less invisible. Despite the fact that Openshaw (1989) focuses mainly on
map production, present GIS capabilities allow end users to use sophisticated
numerical models and algorithms which take advantage of increasing availability
of data to produce answers to complex questions. The problem is that all that
output relies on a myth: data is accurate.

This thesis is concerned with part of that problem. Current research is actively
involved in describing the accuracy (Goodchild and Hunter 1997; Hunter and
Beard 1992; Thapa and Bossler 1992, etc.) and quality of datasets (Buttenfield
1993), while we attempt to design and test tools to improve the accuracy of
existing datasets. In order to do so we have selected some typically used datasets,
review the literature about error detection, and make comparison tests with them.
We prefer general rather than specific-to-the-variable methods, and we will present
results on three cases: quantitative tabular, quantitative raster and qualitative
tabular data.

For the specific case of the quantitative tabular datasets we also attempted to
suggest a solution for the missing value problem, typical for many applications. In
each case we discuss the different situations faced by end users and data
producers; all the tested algorithms will be of use for both.
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The final result of this work is a comparative analysis of a collection of algorithms
suitable to be applied within a GIS environment. All of them were tested using real
world data.

1.2 The modellers problem in a GIS environment
The typical situation is that someone (the modeller) needs to give answers using a
GIS system. In order to solve his problem he can devise or use already known
relationships between input data and requested results. Such relationship between
input and output is named a model.

Some problems are:
• imperfect understanding of the relationships (not all the relevant data is

used; the relationships are not linear as assumed, etc.). As a result, the
model is not accurate enough.

• the lack of available data to test the model make the general validity of
the model for other cases dubious.

• given the model, it is sometimes difficult to assess if there is enough
data, or if the result depend strongly on the quality of the dataset. Of
course it depends!, but the question is how strongly it depends.

√ even if an analysis shows that the output of the model is very sensitive
to errors, only a few tools to find them exist.

√ even if there is a tool to find outliers, the model might still require some
estimates instead of the wrong values. At least a feasible value should
be estimated from the dataset.

√ the model (or the implementation of the model) assumes some
regularities in the dataset, and might not tolerate missing values.

In order to contribute to the solution of some of the problems denoted with the √
symbol, we attempted to develop tools or algorithms to:

• locate errors for some data types typically used in GIS.
• assign suitable values once a dubious one is found, or conversely,

assign values where they are missing.

To situate ourselves in the problem, we present in figure 1.1 a preliminary
classification of typical data used in GIS applications. Data can be divided into
four categories, and some examples are given on the right. Those examples with a
special font are the ones which we have already made some research on.

Once a new method for locating outliers has been developed, it should be
compared with other existing methods. To do so, the easiest strategy is to test a
single database (Eskridge et al. 1995) with known errors previously detected.
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Better methods should detect most of known errors, and hopefully some new ones.
A Monte Carlo experiment is a natural alternative in order to make a reliable
comparison between methods. A tool capable of generating different realizations
of datasets with outliers is requested  because a single noisy dataset is not enough.
There are very few published solutions for this problem. Amrhein and Griffith
(1987) and Keefer et al. (1988) studied the error location of linear features.
Goodchild et al. (1992) reported a model capable of dealing with realizations of
raster categorical data.

examples
Real or integer number SPOT and LANDSAT images,

DEM

Categorical Land use, geology
Streets, boundaries
Epidemiology

Real or integer number METEOROLOGICAL DATA

Categorical CENSUS DATA

Text Phone directory

Mixtures of the Income census data
abovementioned

Figure 1.1 A possible classification of data. In bold those considered in this thesis

1.3 Relevance of the investigations
Much of the available data simply do not have any statement about its accuracy, so
a natural consequence is that the user almost always assumes that the available
data is error free. Even though such hypothesis seems doubtful, none of the
currently available GIS software (either commercial or freeware) have standard
tools to pinpoint at least the worst errors. The same problem is faced by the
data-producer. Also present time GIS software lacks from any built-in capabilities
to provide the user with an estimation of the sensitivity of the result in relation
with the accuracy of the input.

The situation is also challenging for data producers. Standards for quality are
being developed, and they will require to attach information regarding accuracy in
the datasets. In addition new technologies and lower costs for both hardware and
software make possible to find more sources for a given dataset, leading to more
competence among providers. Data collection is still the most expensive part of
any spatial information project, and any mistake/error should be detected and

RASTER

VECTOR
POINT

TABULAR
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corrected in early stages, and with minimum cost. Our conclusion is that the data
producer exposes himself to stay out of the market if he is unable to improve the
accuracy of his product in a safe and cheap way.

This thesis summarizes some work regarding quality control of a variety of data
types. An interesting result is that the same algorithm has been successfully
applied to quantitative raster, qualitative tabular and quantitative tabular datasets.
Extensive comparisons have been made with other methods for quantitative tabular
datasets. The missing value problem has also been considered. The daily
precipitation (quantitative tabular) dataset study have been motivated by early
developments of an hydrological model for hydropower dam operations. The case
of hourly surface wind (quantitative tabular) data was considered while developing
a wind energy atlas Both these efforts have been funded by the National Electric
Company of Uruguay. The census (qualitative categorical) data example was
carried out in the course of the preparatory tasks for the national census of 1996
(Uruguay).

1.4 Objectives
The first objective of this thesis has been to develop and test automatic methods
suitable to help GIS data users and data producers to find as many errors as
possible in their datasets at minimum effort. Only some categories were
considered, namely quantitative and qualitative tabular data, and raster quantitative
data. In order to make our results as general as possible, we disregard methods
specific to the variable. For example, we did ignore that the wind field should be
mass conservative, and we apply to it the same schema used for the daily
precipitation. This topics were covered in papers I and  VII for the case of tabular
quantitative data (daily precipitation and hourly surface wind records
respectively); in papers V and IV for the case of quantitative raster data (digital
elevation models), and in paper IV for the case of qualitative tabular data (housing
characteristics). For the meteorological data case and one of the DEM papers the
methods were also used to find real errors existing in the database. For the
categorical data example the test was applied to detect only simulated errors.

The second objective was to develop and compare algorithms for eliminating
missing values to the case of quantitative tabular dataset. It has been covered in
papers II and VIII for the case of precipitation and wind respectively.

1.5 Organization of the thesis
The thesis is organized into six sections. After this first introductory section, the
background for the approach taken in the thesis is presented (section 2). Section 3
covers data, study areas, systems and software. The methods used or developed in
the conducted research are summarized in section 4, while the results are presented
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in section 5. The full papers are available in appendices 1-9. Section 6 contains a
general discussion of the results, in relation to the issues presented in section 2.
The list of references that follows after section 6 refers to the main text. The
individual papers contain additional references.
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2 Quality, data, models: interaction within a GIS

This section provides the background for the approach to error detection and
correction that has been taken in this thesis. Particular emphasis has been put on
arguments in favour of methods which are general instead to specific-to-the-
variable ones.

2.1 Introduction
This thesis was motivated by the author's early activities developing numerical
models, where large datasets of meteorological data were involved. Those datasets
were of unknown quality and accuracy and the problems faced using them cannot
be considered unique, but a typical example of what is an everyday problem in
complex projects. There are at least two aspects to consider: a) the sensitivity of
output of the mathematical model in terms of the input data and b) the accuracy of
the data. If the model output is insensitive (or robust) to the input data, and if the
accuracy is not too low, the user can be confident about the results. In other cases a
question mark should be included in the results. In this thesis we will present some
results concerning the aspect b) and its closely related counterpart: how to
imputate missing values.

 2.2 Some problems of modeller´s task
The relationship between quality of the model, quality of the input data and quality
of the results is well known, and certainly before the existence of Geographical
Information Systems. However, the present development of GIS applications,
based on good interfaces and taking advantage of all hardware improvements
poses a great concern about the easiness to produce methodologically correct
answers using inappropriate data. John (1993) stated that "...very wrong answers
can be derived using perfectly logical GIS analysis techniques, if the users are not
aware of the particular peculiarities of data...". This situation can be summarized
by the well known phrase "garbage in, garbage out". Data might be inappropriate
due to scale, attribute, etc. as well as accuracy for the particular problem.

We will extend the use of the term model to describe a well defined operation
which is composed of a sequence of steps. So, for example, intersection of
coverages to obtain a new coverage will be considered a model as well. We will
assume that the model can be expressed as a computer program (either
deterministic or stochastic) which using data as an input can produce also data as
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an output. The output could in turn be compared with independent sources. Many
models falls into this category, but not all of them. Once the model and its data is
available, problems still remain to be considered, and we will discuss some of
them in the following paragraphs.

2.2.1 Lack of independent and appropriate data to validate the model
Data availability will be facilitated through the operation of the so called
Clearinghouses, which will distribute existing datasets to government, industry
and the general public (Nebert 1995, 1996). Thapa and Bossler (1992) remarked
that when setting up a GIS, most of the costs (maybe up to 80 per cent) are related
to acquiring and/or collecting data. Sharing data between agencies will in turn
lower costs to end users and the GIS community as a whole, so there are chances
that there will be too much data in the near future to consider in models. But their
accuracy will still be a problem.

2.2.2 Insufficient knowledge of the sensitivity of output to parameters
and data outliers
The quality (hopefully!) and complexity of mathematical models will increase as
soon as more data (even unreliable one) is available. This should not be a concern
by itself. However, few models take into consideration the accuracy of the data,
which is one aspect of its quality. Also, present GIS software lacks tools to warn
the operator about the reliability of the results produced. Goodchild and Gopal
(1989) state: "...No current GIS warns the user when a map digitized at 1:24.000 is
overlaid with one digitized at 1:1.000.000 and the result is plotted at 1:24.000,
and no current GIS carries the scale of the source document as an attribute of the
dataset. Few even adjust tolerances when scale changes. Most vector systems
perform operations such as line intersections, overlay or buffer zone generation at
the full precision of the coordinates, without attention to their accuracy. As a
result, inaccuracy often comes as a surprise when the results of the GIS analysis
are checked against ground truth, or when plans developed using GIS are
implemented. An agency proposing a GIS-based plan loses credibility rapidly
when its proposals are found to be inconsistent with known geographical
truth...We can now produce rubbish faster and with more elegance than ever
before...".

Our opinion is that models can evolve to use accuracy information (provided it
exists) in terms of sensitivity analysis of the output in relation to the input. There
exist programs capable to create FORTRAN, C or C++ source code which
calculate the exact Jacobian of a function defined by other source code (Griewank
et al. 1996). This approach is well suited for models which encompass complex
relationships between the variables, and might help to estimate the uncertainty in
the final result provided the function is derivable and the first order approximation
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is valid (i.e. the uncertainty is small). Some attempts have been made to analyze
error propagation in some simple GIS operations using Interval Analysis (Moore
1968), but this approach might be too conservative (no consideration is given to
compensation of errors) and too complex except for very simple operations.

2.2.3 Where are the outliers that matter?
Provided that we have decided that the problem at hand is sensitive to errors there
is a need for a tool for locating them. We are not aware of general tools for error
detection within GIS environments. Some tools exist in statistical packages like
SAS or Stata, mostly oriented towards tabular quantitative data. To develop new
algorithms, and to test or validate existing ones for application in a GIS
environment is one of the main objectives of this thesis.

Early contacts with tabular quantitative datasets defined to a great extent the
primary strategy for the approach: how to reformulate the problem in order to use
methods developed for tabular quantitative datasets. We do not claim that this is an
universally valid solution, but we will show in chapter 4 that for the considered
cases the reformulations proposed led to good results and even produced fresh
material for further investigation. As examples we might mention analyzing the
DEM without using spatial autocorrelation, or the interpretation of the synaptic
connections within an Artificial Neural Network.

One argument in favour of using those tabular oriented methods is the weak formal
requirements on the data itself. For example, this implies that, provided some
dataset has a gaussian distribution, it is irrelevant if its entries are precipitation
readings, the square root of the precipitation or a difference between the
forecasting from a model and the observed values. The algorithm and its code will
be valid as well. This fact encourages us to look for and test methods as generic as
possible, avoiding using others which rely on some properties unique for the
variable. This is in line with the requirements of a GIS user which might deal with
different variables for the same dataset type.

In early stages Principal Component Analysis (PCA) would have been considered
as the unifying idea of this research. We found that belief too narrow, and instead
we prefer to consider this work as an example of how to extend the applicability of
well studied, well established methods developed in the statistics community to the
emerging, rather young, GIS needs. The case of  PCA is only one possible
example. However, it was useful in order to show how powerful might be to
establish the connection with tabular oriented methods, and use them to different
data types.
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2.2.4 How to fill the gaps?
Some models simply assume that there are no missing values. Some might cope
with them without further damage. The problem of missing values should not be
confused with undersampling. In the former we have defined a measurement
strategy and due to uncontrolled reasons the values are lost; in the latter (also
named missing by design) we obtained the data and we realize later that more data
would have been required.

The missing value problem can be addressed for many applications in GIS with
interpolation techniques (either spatial or temporal). When interpolation is not
feasible nor advisable, maybe some mathematical models might forecast or predict
the missing value. Assign a suitable value can be regarded as a "dual" version of
the quality control; the "best" interpolation method should produce a "typical"
value, thus producing an outlier is unlikely. Many quality control procedures rely
in that fact to pinpoint to errors, by analyzing the difference with the interpolated
value. Another important connection with outlier detection can be devised in order
to provide an answer to: what to do after identifying an outlier, if we do not have
access to the true value?

2.3 Concluding remarks
The increasingly growing availability of data from multiple sources is to be
guaranteed by the availability of specialized services on the Internet, which will
host and deliver existing data with nominal or no cost at all. Improvements in
hardware and software will spread the interest, the need and the use of both data
and existing mathematical models to a non specialized audience, which is not
aware about the uncertainty of the results in relation to the input data. So it is
believed that data quality is emerging as one of the most important issues in GIS
technology for the next years. Its management requires methods to describe,
visualize and measure it properly (see Hunter and Goodchild 1996). Standards to
describe the quality are presently under development.

Different models using the same data might pose different requirements on its
accuracy, which should be clear after a sensitivity analysis. To our knowledge, few
if any models warn the user about the ill-conditioned characteristics of the results.
In addition, present generation datasets lacks from estimates of the uncertainty,
which precludes considering it in most present models. The trend in spatial data
will encourage the specification of uncertainty, and hopefully next generation
models will be able to use it. This topic will not be further considered here.

In any case, once the dataset is obtained (either for the end user or the data
producer himself) further efforts to improve accuracy should be as effective as
possible, because data acquisition is still the most expensive part of setting up a
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GIS. This thesis reports some results on that subject and provides some examples
of how to apply general statistical tools to a sample of typical datasets usually
available or required for GIS applications. The examples and methods have been
chosen in order to be non-specific to the physical meaning of the data itself.
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3 Materials

In this thesis a few different types of data were considered. In this chapter, the
study areas are briefly described along with the data, systems and software that
were used. The reader is referred to the individual papers for more details.

3.1 Study areas and data

3.1.1 Main characteristics of the daily precipitation dataset used in
papers I and II
The weather stations used in the work belong to the Río Tacuarembó catchment. It
comprises an area of about 20.000 km2, and its center is at 32°S 55°W in the NE of
Uruguay. The typical landscape is smooth, with elevations below 500 m, few
canyons and lakes. The typical monthly precipitation is between 74 and 120
mm/month.

Table 3.1 Listing of the available stations for the Tacuarembó river catchment area
N° Name Latitude Longitud Elevation ASL

 1224 Paso Ataques 31°12S 56°21'W 180 mts
 1301 Paso del medio 31°27'S 55°04'W
 1379 Moirones 31°36'S 55°58'W 195 mts
 1405 Tacuarembó 31°42'S 54°58'W 190 mts
 1454 Vichadero 31°47'S 54°41'W 190 mts
 1537 Pueblo Noblía 31°57'S 54°07'W 220 mts
 1565 La Hilera 32°05'S 55°40'W
 1572 Cuchilla Caraguatá 32°07'S 55°54'W
 1617 Paso Mazangano 32°06'S 55°40'W
 1650 Clara 32°13'S 54°43'W
 1653 Paso Laguna 32°15'S 54°25'W
 1658 Paso Aguiar 32°17'S 54°50'W
 1743 Paso Pereira 32°26'S 55°14'W

For the work we selected a subset of 13 stations, located as shown in fig. 3.1,
which have been carefully checked for typing errors by using the algorithms to be
presented later. We restricted ourselves to daily records from Jan 1st. 1975 to Dec
2nd. 1989, covering almost 15 years. Readings are taken usually at 7:00 AM by non
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dedicated operators (mostly Railway Company employees or local police), and
submitted to the county police headquarters by radio. Later in the same day the
information is collected by phone by the national electric utility company, which
uses it for the operation of three important hydropower dams. The observers also
fill in a paper form which is collected once a month.

34 �58' S

55�48'W

URUGUAY

Figure 3.1 Overall location of the pluviometric stations of the Tacuarembó river
catchment used in papers I and II

3.1.2 Main characteristics of the daily precipitation dataset used in
paper III
The Santa Lucía catchment covers an area of  13.600 km2 and is located in the south
of  Uruguay, between the 55°W and 57°W and 33°40’S  34°50’S. The yearly
precipitation is around 1000 mm/year, with little spatial variation. However, there is
a substantial variation in time, with maximum values in 1959 (1600 mm/year) and a
minimum in 1916 (500 mm/year). The dryest month is july, with an average
precipitation of 75 mm/month, and the wettest is March, with 100 mm/month. The
relative humidity ranges from 60 per cent in december (summer) to 78 per cent in
june (winter); the annual mean is around 60 per cent. Ten stations belonging to the
National Weather Service were chosen (see fig. 3.2) for the analysis. Typical records
show that over 80 per cent of the readings are zero; dry days (i.e. zero precipitation in
every station) account for more than 30 per cent of the events. The  collection
procedure is similar to the one in the Tacuarembó catchment, except that the
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information goes directly to the National Weather Service headquarters in
Montevideo.

Table 3.2  Listing of the available stations for the Santa Lucía catchment
N° Name Latitude Longitud Elevation ASL

2436 Puntas de Sauce 33°50'S 57°01'W 120 mts
2486 Pintos 33°54'S 56°50'W 100 mts
2549 Barriga Negra 33°56'S 55°07'W 95 mts
2588 Casupá 34°06'S 55°39'W 124 mts
2662 Cufré 34°13'S 57°07'W 92 mts
2707 Raigón 34°21'S 56°39'W 37 mts
2714 San Ramón 34°18'S 55°58'W 70 mts
2719 Ortiz 34°17'S 55°23'W 115 mts
2816 Joanicó 34°36'S 56°11'W 35 mts
2846 Olmos 34°44'S 55°54'W 40 mts

100 km
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Figure 3.2 Location of the daily precipitation weather stations used in paper III
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3.1.3 Main characteristics of the hourly surface wind data used in
papers VII and VIII
For the experiment described in papers VII and VIII five stations belonging to the
National Weather Service were selected, all located in the south of Uruguay, (see
fig. 3.3): Melo, Paso de los Toros, Treinta y Tres, Carrasco and Punta del Este.
Both papers VII and VIII report partial efforts toward the development of a
National Wind Energy Atlas.

Table 3.3 Listing of the available stations for the wind energy atlas project (from paper VII)
N° Name Latitude Longitud
595 Punta del Este 34°58'S 54°57'W
580 Carrasco 34°50'S 56°00'W
500 Treinta y Tres 33°13'S 55°07'W
460 Paso de los Toros 32°48'S 56°31'W
440 Melo 32°22'S 54°11'W

+
+

+ +Punta del EsteCarrasco

+Treinta y Tres

Melo

Paso de los Toros

BRAZIL
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Figure 3.3 Location of the surface wind stations used in papers VII and VIII

Since it was intended to compare the predicted wind with the observed one, some
independent instruments were installed in the field for a short period. The choice
of the five weather stations were motivated by its geographical localization around
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the target area. The availability of field records also conditions the periods to work
with, including hourly records from part of the years 1990-1991 and the year 1984.

3.1.4 Main characteristics of the DEM datasets used in papers IV and V
The DEM used as a test case in paper IV covers an area of 7.5x5 km in Stockholm
with 150x100 points with a 50 m grid spacing and 1 m elevation resolution. The
area consists mainly of hilly terprecipitation, with elevation values ranging from 0
to 59 m. The DEM has a mean elevation value of 20.83 m and its standard
deviation is 9.47 m. No data describing quality or accuracy were available.

For paper V we have selected two DEM of the Aix-en-Provence region in the
South of France. The extent of both is 12.42 km by 6.9 km with 30 m spacing. We
used a subset of 360 rows and 216 columns for all calculations. Both DEM include
Montagne Sainte Victoire (elevation 1044m). One DEM has been derived from a
set of three SPOT images using a stereo matcher (see Day and Muller 1988 for
details), and further interpolated to the same grid by using values within a window
of size 21 pixels. Elevation values have been kriged using a spheric variogram of
4000 m2 sill and 3000 m range, assuming an accuracy for the window of 11 m S.D.
The other DEM has been produced by manual photogrammetric measurement of
spot elevations from contemporaneous underflight aerial photography. Its accuracy
has been estimated by multiple set-up and observation of several blocks within the
DEM.

3.1.5 Main characteristics of the census dataset used in paper VI
A subset of the raw data collected and processed during the National Census of
1985 in Uruguay were used in paper VI. It includes data on housing characteristics
in the Flores region (located in the center of the country). We considered only
private houses cases without missing values. The final set has 4963 records, but to
decrease computer time requirements, the simulations were carried out over only
2500 records. The dataset is claimed to be typed twice, which implies that two
independent magnetic databases have been created and its discrepancies corrected;
the original paper records are not available.

3.2 Systems and software
All the calculations were performed using Matlab, with the exceptions of paper I
and II and the calculation of the Minimum Volume Ellipsoid (MVE), Minimum
Covariance Determinant (MCD), Least Trimmed Squares (LTS) and Least Median
of Squares (LMS), where FORTRAN was used. Matlab is a package for technical
computing that combines numeric computation, advanced graphics and
visualization, together with a high level programming language. Matlab has been
chosen due to its suitability for analysis, algorithm prototyping and application
development. Matlab's Neural Networks Toolbox have been extensively used, and
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no attempt to modify or complement it has been done. Most of the statistical
routines have been writen from scratch.

The calculations for the work described in the early papers I and II have been
carried out in an IBM 4341 mainframe; the calculations for the other work have
been done in the UNIX environment, using either SUN, DEC-ALPHA and BULL
equipment (in Uruguay) and SUN and Silicon Graphics (in Sweden).
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4 Aim and Methods

In this section the methods developed or applied in the individual studies are
summarized. The methods described in section 4.1 are related to quality control of
quantitative datasets. In section 4.2 we will analyze the methods applied to the
missing value problem. Section 4.3 consider the quality control problem for raster
datasets and finally section 4.4 is devoted to the case of the qualitative tabular
data.

4.1 Quality control of quantitative tabular data

4.1.1 Aim
While developing a deterministic, conceptual hydrological model for the Río
Negro basin in Uruguay using daily precipitation and flow as inputs and predicting
from one day to two weeks ahead flow, it was required that many empirical
coefficients related with soil properties were adjusted in order to fit available flow
data. The robustness of those coefficients against outliers were not known, and the
main source of concern was the daily precipitation records, so we designed a
method suitable to pinpoint unlikely values. After a direct check against available
records on paper, we were able to locate at least those errors arising from typing
and further computer processing. All of this was considered in paper I. As another
example with the same methodology we analyzed hourly surface wind records,
which have been used in the development of a Wind Energy Atlas of Uruguay and
the author's master's thesis. The results were presented in paper VII.

Within the framework of a specific research project we extend our previous results
to compare more methods for outlier detection. A Monte Carlo approach together
with an outlier-generation mechanism was developed in order to validate the
capabilities of the methods.

In early stages of this research we decided to focus on methods which are not rule-
based (which in turn require an expert who provides the rules) and also not model-
based (which explicitely account for mathematical relationships between
variables), because of their lack of generality and the requirements on CPU and
extra data. We preferred general and objective methods; general because they are
not specific to any variable and objective because they can be used independent of
the previous knowledge of the operator. The methods have been tested with some
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datasets believed to be representative of a wider class of variables. In the following
we will describe briefly examples of rule based methods.

4.1.2 Rule-based and model-based methods
Weather is routinely forecasted at a global scale using sophisticated software,
hardware and communication facilities in very few institutions in the world. In all
cases the process of feeding the calculations with the new observations is crucial,
and much attention is drawn not to include wrong values into the calculations.
Data is collected from all over the world every hour or every six hours, and a
quality control is an integral part of the Data Assimilation System. This term
applies for the package which receives and processes the data, and produces grid
values which will be the input of the numerical models. Quality control algorithms
are designed to modify or reject erroneous meteorological data. Some of the
checks have been operative from the beginning and they might require temporal
and/or spatial continuity (or consistency) with the neighbors.  Other checks
depends on feasibility rules among different variables (rain without cloud cover)
which will flag a record as wrong. An important group using dynamic relations
such the geostrophic one (relating the pressure field with surface wind) is also
considered there. We want to mention a couple of examples.

Bruce et al. (1995) applied both simple temporal tests and spatial tests using some
different imputation strategies to monthly precipitation. Every record in the dataset
is compared against the best available interpolated one and it is flagged to fail
either the temporal, the spatial or both tests if the absolute difference exceeds a
prescribed multiple of the interquartile range. The best method is defined after an
analysis of the performance for each month; a possible conclusion is that Optimum
Interpolation might be preferred for May, and not for June for example. Using a
world wide dataset holding 5899 stations for the 1951-1981 period, they claim that
about 90 per cent of the monthly precipitation records passed both tests.

Another realistic example can be quoted from the work of Reek et al. (1992). They
reported on the quality control procedures used on an over 100 years long climatic
database, collected as a collaborative effort from many sources in the U.S.A. The
quality control procedure for this dataset include type all records twice since 1989;
routine key punch started in 1962. The quality control reported by Reek is based
on rules, and once a record fails to satisfy them, an attempt is made to correct it. If
the changes failed to produce a feasible value, the record is submitted for human
analysis. The correction heuristics model typical key-entry errors: for example
shift in the decimal point, zero reading instead of blanks, a "1" in the first digit of
termperature readings (leading to 153°F instead of 53°F) and also wrong sign.
Other rules are specific to the variables handled. They used an expert system to
collect and analyze the output of all tests and to decide what to do.
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4.1.3 Principal Component Analysis based methods (paper I)
The procedure proposed for the first time in paper I is based upon Principal
Component Analysis (PCA). Since it will be used in all the forthcoming examples,
it is fit to give a brief introduction to it. Any tabular dataset with n events (rows)
and w variables (columns) can be represented as a cloud of points in Rw. The
correlation between rows is ignored. PCA attempts to find the direction e1 of the
vector in Rw space which minimizes S, defined as the sum of distances MkHk

squared, taken over all k (fig. 4.1). The origin O is the centroid of the set of points.
For the sake of clarity, points with negative coordinates are not shown in the
figure. The projection OHk, which is also the scalar product of vector Mk-O with
the unit vector e1, is called the score (after Richman 1986).

O Hk

Mk e1

Figure 4.0 Sketch of the first principal component, for w=3  (from paper I)

Thus Mk-Hk is orthogonal to e1. There is one score value associated with vector e1
for each point in Rw. Let us also assume that e1 is unique. If all the values MkHk are
zero, we have reduced the problem of original dimension w, to a one-dimensional
one. All the variability in the observations is explained by a single vector e1. If this
is not the case, we may try to repeat the procedure with the remaining variability
MkHk, which belongs to a (w-1) subspace of Rw orthogonal to e1. The original
measurements Mk - O can be replaced with the difference OMk - OHk, which is
equal to Mk - Hk.
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For the new cloud there should be a vector e2 (orthogonal to e1) which minimizes
the distance S in the Rw space. The process continues until w vectors ep have been
created; each new vector ep being orthogonal to all the previous ones. The vectors
ep are called principal components (PC). Each event Mk - O can be expressed as a
linear combination of the PC's

( ) ( ) ( ) ( )M O e e e ek 1 k 1 2 k 2 3 k 3 w k w- =  a * +  a * + a * +...+a *        (1)

It can be shown that the scores ai(k) associated with vector ei are uncorrelated with
those of vector ej. The vectors ei are the eigenvectors of the covariance matrix of
the data, and its components are named loadings in the literature. The sum of the
corresponding eigenvalues equals the sum of the squares of the distances MkHk

(Lebart et al. 1987).

PCA analysis generates a sequence of principal components, which explains most
(or all, for p=w) of the variance of the data. This implies that the RMS of the error
in approximating the data with a linear combination of their first p vectors is a
minimum for a given p<w; (p=1 in fig. 4.1). It has been shown that in most cases a
good approximation of data is achieved for p<<w. Since for p=w the w PC's form a
basis in Rw space, they can represent without error any of the n points in the set,
using scores as weights. In paper IV we claim that some of the scores contains
essential information on the structure of the cloud, while others are more related
with noise. Once identified, such scores were used to pinpoint those points in Rw

space which are prone to hold an error. The outliers are denoted by unusually large
values for at least one of those scores. So points with arbitrary values for the
structural scores are not regarded as outliers, while a different interval is specified
for each noisy score in order to be considered outlier free.

However, find the point is not the complete answer to the problem because each
point depends on w independent values, and the point might be outlying due to
only one or few wrong values. This situation is common for most methods
available in the literature, which might be considered event oriented, as opposed to
those which are datum oriented which go further in pinpointing the values likely to
be wrong, and not only the points.

The problem is: given an event with w numbers, which one is wrong?. In other
words, once a point in Rw space is selected, the value (or values) which make it
unusual should be highlighted. Notice that in the calculation of the scores all the
data of that event is involved, so it is not trivial to discriminate which particular
value is more likely to be in error. As a solution a sensitivity analysis has been
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sought using a functional S designed to highlight any unusual situation. S(k) is
typically small if all the scores ai(k) are themselves not large.  It is defined as
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ai(k) is the i-th score for the k-th outlying event and wi is a weigth. The index i
varies within a set p pointing to those scores considered as noisy. Hawkins (1974)
used the associated eigenvalues instead of wi, but we used the criteria suggested in
paper II which make every term in de summation of the same order. In order to
isolate the problematic station it is proposed to calculate for the event in question
all the partial derivatives of the functional
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where xj denotes the readings from the j-th station, p the set of noisy scores and
ai(k) the i-th score for the k-th outlying event. The maximum derivative (in
absolute value) will identify the most sensitive station, which will be taken as the
error candidate.

The S statistics have been suggested for the first time by Hawkins (1974). It is a
semi-distance, closely related to the Mahalanobis distance MDi defined as

( )( ) ( ) ( )( )MDk k k
T

= − −−x T X C X x T X1 (4)

being xk the vector with the observed values for the k-th outlying event; T(X)
estimated as the arithmetic mean of the data set X and C(X) estimated using the
usual sample covariance matrix. If the set p includes all the scores, the statistic
S(k) defined by Hawkins (1974) is equal to MDk. The sensitivity calculations are
carried out independently for each k-th outlying point in the Rw space. This
completes the description of our method, first proposed in paper I.

4.1.4 Principal Component Analysis based methods (Hawkins 1974)
Hawkins (1974) directly used his statistics (denoted here as S) as an outlier
detector tool, the larger values being associated with outliers. After some
assumption regarding the multivariate pdf of the population, he is able to show that
the Mahalanobis distance should follow a chi-squared pdf; using confidence levels,
those events which produces MDi values larger than a prescribed number (function
of the dimension w and the confidence level) are considered outliers. Since the
covariance matrix is positive definite, the surface described by MDi=const. is an
ellipsoid in Rw space, and all points inside it will not be considered outliers.
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The non outlier region suggested by our method bounds within an interval only
some of the scores; it can be represented as an hypercilinder, with a "rectangular"
cross section. The open boundaries corresponds with the unrestricted scores. Any
point lying ouside such a hypercylinder is regarded as an outlying point. Hawkins's
criteria also led to a hypercylinder (because some scores not belonging to the set p
are not limited), but with a second order cross section. Figure 4.2 shows the
differences for the case w=3. The projection of both the Hawkins (1974) region
and the Mahalanobis distance coincide in the plane (e2, e3) because only a1 is
unbounded.  Notice that the axis are related with the scores (not the original
values), and that we have shown only positive values for the a1 score; also the
relative size of the rectangular-like region has been changed only for the sake of
the figure.

e2 e3

e1

Figure 4.2 Sketch of the different regions for outlier detection used by the
approach presented in paper I, the Hawkins74 one, and the standard Mahalanobis
distance (from outside to inside) for w=3. Points are not considered outliers if
they are in the inner part of the region. The score a1 is not bounded for the two
outer regions, while a1, a2 and a3 are bounded for the Mahalanobis ellipsoid.

4.1.5 Artificial Neural Networks
All approaches for the error detection considered in this section in one way or
another find a statistics which shows to be non-robust when calculated using
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outlying points. Large values are associated with unusual situations, which in turn
are natural candidates to be outliers. Taking advantage of some aspects of the idea
proposed for the scores we analyzed some results arising from the missing value
problem (to be presented in 4.2) and in particular the Artificial Neural Networks
techniques. ANN methods are rather new and thus we will give a brief outline here
(see Warner and Misra 1996; Stern 1996 for a more thorough presentation).

ANN are based upon simple models of biological neural networks. There are
different designs depending on the application. We have used it to fit a
multivariate time series using available data, where both the inputs and the outputs
are real numbers. In general, the ANN is organized in layers (see fig. 4.3), the first
one being stimulated directly by the observed values. Each neuron of the next layer
is stimulated by a linear combination of the outputs of the previous layers by
means of a simple transfer function. For example, the logsig (Demuth and Beale
1994) function is  given by:
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with parameters aij (named synaptic connections) to be fixed for each neuron. The
ANN requires, like its biological counterpart, a training process which is simulated
here by means of adjusting the aij parameters. A bias term is also added to the
weighted average of the inputs. Cybenko (1989) proves that, under some
hypothesis, an ANN with finite number of neurons and one hidden layer can
approximate any continuos function of n variables to an arbitrary extent, where n
is the number of inputs.

We have designed and compared a number of architectures, which vary depending
on the transfer function, the number of neurons in the hidden layer(s) and the input
data. The terms purelin, logsig and tansig and its transfer functions are defined in
Demuth and Beale (1994). Despite all of them might approximate a given function
using enough neurons in the hidden layer, we want to keep this number low for
practical reasons connected with training requirements. After some analysis of the
problem, we realized that one important case to be covered is the identity function.
In our problem, both input and output are homogeneous (i.e. share the same units)
and at least on principle they might be the same if the measuring stations are close
enough. So at least as a particular case, the ANN should be able to map easily the
identity function. This cannot be achieved trivially with the available transfer
functions in Matlab, because a maybe large number of hidden neurons is required.
So new transfer functions asinh and sinh have been implemented in order to assure
that the ANN can model easily the identity function, i.e. its output is equal to its
input even with a single neuron in the hidden layer.  According to Cybenko (1989)
non linear functions could be also modelled as well.
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Since the daily precipitation has a compound probability density function (pdf)
with nearly 80 per cent of the readings equal 0, we attempted to transform it to
obtain a more regular (nearly uniform) pdf, using its cumulative probability
density function. It should be stressed that for each station a different ANN need to
be trained, using the other stations as inputs. That imply 10 ANN in the daily
precipitation case. For those schemas using data of a single day, there are 9 input
values; where two days are used there are 10+9=19 values. The ANN named bp11
is a special case, because is used as a pure forecasting tool; its inputs are 10 values
of the day before.
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Figure 4.3 Sketch of a typical ANN organization. Information flows from left to
right. There are four inputs p, one hidden layer with five neurons with transfer
function F1 , a second hidden layer with three neurons with transfer function F2

which produces three outputs. The summation symbol indicates a weighted
average of all outputs from the previous layer plus a bias term ni(j).

In order to handle the possibility of more than one missing value for a particular
day, arbitrary initial numbers are assumed. An iteration is performed in order to
satisfy the output for all the ANN involved. All of the ANN were trained using one
third of the available records (without missing values) trying to minimize the RMS
of the error.  This approach is named supervised learning (Warner and Misra
1996). The error is defined as the difference between ANN output and true value.
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Training was done using backpropagation (Rumelhart et al. 1986) and for practical
reasons, the number of iterations was kept below 200. The training cost in terms of
CPU time is high: over 10 hours on SUN 20 for each meteorological station
depending on the complexity of the ANN. This is not unique for this problem:
Nychka and O'Connell (1996) state "...In speeding up the fitting process we have
found that intelligent strategies have failed miserably and brute computational
force seems to carry the day. Currently, our preferred method is to use many
(several thousands) random starting parameters and out of these pick the best
hundred or so for a robust optimization with a fairly large tolerance for
convergence. From this second set, we pick the best 20 for a high tolerance
optimization.... In our experience this shotgun approach works well in providing
high quality fits and anticipating the fact that the sum-of-squares surface has
numerous local minima...". We used almost the same strategy, limiting the random
starts to a few dozens instead of the thousands mentioned. Increasing the allowable
limit for the number of iterations showed little improvement.

The PCA method for error detection can be considered a particular case of ANN,
using one hidden layer with linear transfer functions. The second layer has as
many neurons as input variables, and each neuron is associated with one score. Its
outputs are processed by neurons with binary output: if the i-th score is within a
prescribed interval, the output is zero, implying no alarm. Otherwise, the output is
one, indicating the possible existence of an outlier and the neuron is said to be
activated. The net output of the ANN is obtained by a logical "OR" operator: if
any of the third layer neuron is activated, the net output is one and outliers are
believed to exist.

We have shown in paper I that extreme values for the noisy-related scores are
associated with unlikely events; we detect those events by checking that at least
one of those scores is outside of its outlier region. We applied the same idea to the
general ANN with non-linear transfer functions. We attempted first to find the
noisy neurons looking at the weights themselves. From the population we derive
limits for the outlier region for the scores (i.e. outputs for the noisy neurons in the
hidden layerh) and the method should flag those cases which do not behave like
the overall population. The non linear characteristics of the transfer functions
makes the dispersion of the population of each particular score very wide (even
orders of magnitude), so unlikely events are clearly pointed out.

Assuming that we have 10 values for a particular day, we also have 10 different
ANN which can predict any of those values using the remaining 9. Since we do not
know in advance which is likely to be in error, we will use all 10 ANN and analyze
the output of its hidden layer. Notice that each ANN has at least one hidden layer,
whose weighted outputs are supposed to be added and used to predict the missing
value. We assume that those neurons in the intermediate layer which have the
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highest weights are more related with noise, because typically the output is small.
Thus we decide that a neuron in the intermediate layer explains mostly noise if its
weight in the output layer is more than five times the smallest weight of that layer.
After an analysis of the population we are able to find the outlier region for all
those neurons and classify the event as unusual if at least one of the outputs falls
outside the outlier region.

The "five times" limit has been determined by trial and error. As might be noticed,
at present we are only able to classify the whole event as unusual; some more
research are required in order to pick the value (or values) responsible for this
behavior. This method is also event oriented (as defined in 4.1.3). Using the
described criteria in order to identify the noisy neuron(s) we were able to test most
of the available ANN (designed for an imputation task) for the quality control
purpose. The exception are bp22 and bp23, because they are trained for each event
separately and they will have a variable number of neurons (see 4.2.3 for further
details).

4.1.6 Likelihood based method
The last new method to be described is based on Geostatistical concepts (Samper
and Carrera 1990). The fundamental problem is to find a suitable interpolator
given a finite number of observation points (which might belong to 2D or 3D
space). Under some assumptions, in the classical kriging method (Samper and
Carrera 1990) the interpolated value can be regarded as a weighted average of the
available data, with weights depending on the coordinates. It is assumed that the
data field is homogeneous (i.e. its statistical properties do not vary at least in the
neighborhood) and they can be fully described by means of a variogram function.
The isotropy (i.e. independence to the direction) is usually assumed or obtained via
a transformation of the coordinates (Samper and Carrera 1990).

In order to find the variogram function, a number of methods have been proposed.
Samper and Neumann (1989) proposed to find the unknown parameters of the
variogram by maximizing the likelihood of the sample. In its simplest way, it
implies that a) one data point is removed from the dataset b) it is interpolated using
the other available data c) the difference between the original and the imputated
value is stored. Once this procedure is performed for all or many of the data points,
the likelihood of the set for the given parameters can be calculated and (according
to Samper and Neumann 1989) it can be maximized under some general
hypothesis.

In our case, we do not want to interpolate points others than the measuring net, and
we follow the meteorological practice of Objective Interpolation (see section
4.2.2) in assuming that the statistical properties are valid for similar weather
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situations. Thus we can use all available data to calculate the sample covariance
matrix, instead of obtain it via the variogram. As a practical consequence this
implies that the variogram need not to be calculated nor modeled, and thus
apparently we have no need for the likelihood.

Our proposed strategy is to calculate the likelihood for a given date using the
covariance structure derived from the whole event population. We used the linear
method coded as gandin20 (see section 4.2.2), which is standard in meteorology.
The likelihood value itself is a measure of how likely or unlileky is the imputation
obtained: since we are using the available data, one side effect is that low
likelihood values might be connected with outliers on some of the records of the
day. So we calculate the likelihood according to Samper and Carrera (1990), sort
the records and suggest that those with the lowest values are the ones with errors.
As before, the method is event oriented, and suggesting the most unlikely value
within the event is still under research.

4.1.7 Mahalanobis distance-based methods
In addition to the new methods already described, we tested also a number of
methods well known in the literature. For the sake of completeness a brief
summary is included here. As mentioned before, the classical Mahalanobis
distance is used as an indicator of outliers. It is defined for any set X and for any
event xi (Rousseeuw and Van Zomeren 1990) as

( )( ) ( ) ( )( )MDi i i
T

= − −−x T X C X x T X1 (6)

being T(X) estimated as the arithmetic mean of the data set X and C(X) estimated
using the usual sample covariance matrix. The distance MDi tell us how far the xi

is from the center of the cloud. The covariance C(X) is a positive-definite matrix,
so the set of events xi with the same Mahalanobis distance lies on the surface of an
ellipsoid with center T(X). Under some hypothesis large values for the
Mahalanobis distance correspond to outliers; for normal distributions the squared
Mahalanobis distance should follow a chi-square law.

However, calculating C(X) and T(X) with the standard procedure suffers from the
masking effect which appears when a cluster of outliers is present. C(X) and T(X)
are affected and the outliers no longer have a large MDi. To overcome that
problem, some other estimates of C(X) and T(X) have been proposed. The term
"high breakdown" is coined in the statistics literature to express that the results
will be unaffected even by arbitrary large errors in a fraction ε of the population.
The theoretical bound for ε is dependent on the method, but in all cases it should
be slightly less than half the population.
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Among the high breakdown methods, we have considered the Minimum
Covariance Determinant (MCD), the Minimum Volume Ellipsoid (MVE) and the
Hadi's method (Hadi 1992, 1994) as well. All of them produce a robust estimation
of C(X) and T(X). Once they are available, the Mahalanobis distance can be
calculated for all events, and they can be ordered accordingly. Those events with
larger distances will be the first candidates to hold outliers. Hadi (1994) suggested
that under multivariate normal hypothesis, only those events with a Mahalanobis
distance larger than a preset value should be considered as outliers. The preset
value depends on the number of the columns and of a confidence level. In the
simulations we ignored such limit and get new candidates from the ordered list as
requested. In addition, since the estimators are robust, it will be useless to re-
calculate them after removing some errors.

With this procedures we have a means to determine if an event is to be considered
as outlying or not. However we have no suggestion about the individual records of
the event, so we extended the application of the robust distance a bit further in
order to have datum oriented methods. Using the robust distance, we suggest (as
presented in paper I) to calculate the sensitivity of the distance to the data values,
and use the most sensible values as a candidate for being an outlier. We made the
experiments with both cases: the event oriented code check all values in a
suspicious event while only those which are more sensitive are checked for the
datum oriented case.

• Minimum Covariance Determinant and Minimum Volume Ellipsoid
MCD (Rousseeuw and Leroy 1987) searches for a subset of X containing nearly
half of the data, the covariance of which has the smallest determinant. Since part
of the data is ignored in computing this subset, the method can accommodate
nearly 50% of the population with outlying values. Based on an idea exposed by
Hawkins (1993) for regression applications Hawkins made a program for fast
estimation of the MCD wich was used here.

The MVE (Rousseeuw and Van Zomeren 1990) algorithm find T(X) and C(X) in
order than the MDi for half of the population is below a prescribed constant which
under multivariate normal hypothesis only depends on the number of columns of
X. Since C(X) is positive definite, the MVE can be interpreted as an finding the
center and the principal axis of an ellipsoid of minimum volume containing half of
the points of the cloud (see original reference). However, C(X) is not the
covariance of a subset of the data as in MCD but a weighted average of all the
events. Both MCD and MVE are expensive in terms of CPU time: we were forced
to limit the number of trials in our calculations, so our estimate of the true MVE
and MCD might be improved.
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In order to lower computer time, in the precipitation case we excluded from the X
dataset those events with all-zero readings, and forced the ellipsoid to be centered
in the origin. This will assure that all records with all-zero readings will be inside
the ellipsoid, and thus we were able to use the program with substantially less
events. For wind data, we simply subsampled the available dataset in two halves,
and applied the method to one part only. The computations for MVE were carried
out using the program MINVOL, available in statlib.

• S and M-estimate for multivariate location and shape
It can be shown that some of the previous methods are particular cases of more
general estimators. Following Rocke (1996) we will define an S-estimate of
multivariate location and shape as that vector T(X) and positive definite symmetric
matrix C(X) which minimize det(C(X)) subject to

( )( ) ( ) ( )( )n bi i
T− −− −



 =∑1 1

0ρ x T X C X x T X (7)

where ρ is a nondecreasing function on [0,∞]. The function ρ is usually
differentiable (the major exception being the MVE, where  ρ is 0 or 1). For the
case of the multivariate normal distribution ρ(x)=0.5x2, and Rocke (1996) states
that this function should not vary with the number of variables.

The M-estimate can be defined (Maronna 1976) as a vector T(X) and positive
definite symmetric matrix C(X) which is a solution of

( )( ) ( )x T Xi iu d− =∑ 1 0 (8)

( )( ) ( )( ) ( ) ( )n u di i
T

i
− − − =∑1 2

2x T X x T X C X (9)

being u1 and u2 non negative, non decreasing functions for positive arguments, and
di defined as

( )( ) ( ) ( )( )di i i
T2 1= − −−x T X C X x T X (10)

The high breakdown properties of both estimators have been analyzed in a number
of papers (see Rocke 1996 for a review). Rocke and Woodruff (1996) have
implemented a code available in statlib which uses some particular functions u1

and u2 after analyzing choices from Rocke (1996).

• Hadi's method
The method by Hadi (1992, 1994) produces a result formally similar to that of the
MCD. It attempts to find a subset containing nearly half of the population with the
minimum distance to an estimation of the covariance matrix. However it is not
combinatorial, and evolves from an initial estimate by adding a new point until the
required set is obtained. The algorithm is considerably faster than the others, but it
suffer from some drawbacks: it is not affine equivariant (Rocke and Woodruff



4 Aim and Methods

32

1996) which implies that the results are different after a linear transformation of
the data. Hawkins' hypercilinder, MVE and MCD are affine equivariant.

4.1.8 Combined Mahalanobis distance-based and regression methods
Another possibility was described by Rousseeuw (1991) in the context of
regression. He suggests that outliers can be detected by means of their discrepancy
from a robust fit. This procedure is datum oriented, and can be considered a
generalization of the rule valid for 1-D data with normal distribution: look for
those values xi which make |xi-mean(x)|/σ larger than a preset threshold (mean(x)
stands for the sample average, and σ for its standard deviation). In the multivariate
case, 1/σ is substituted by the inverse of the sample covariance matrix, leading to
the square root of the Mahalanobis distance. This procedure suffers from the
masking effect if more than a single outlier is present. Rousseeuw suggests to use
robust estimates of the covariance matrix, like the MCD or the MVE defined
above.

Once a robust estimate is available, we are able to perform a regression for event i
of Xi(j) in terms of Xi(k), k≠j, i=1..n. Let us consider a fixed column j. The robust
residual can be computed as the difference of the Xi(j) and its robust estimate,
divided by some estimator of the residual scale. Independent of the regression
model one can calculate the robust distance to the center of the ellipsoid defined
by MVE or MCD, which gives an event oriented index for outlyingness. If we
define (following Rousseeuw) a regression outlier as the event which violates the
regression model suggested by the majority of the data (Xi(j) is obviously
considered) and a leverage point as a case i in which Xi(k) is an outlier with
respect to the bulk of the data (Xi(j) is not considered) we will have a clear
indication wether or not Xi(j) is an outlier (provided that it is the only one in the
event!). A leverage point in 1-D is one which has a x-value very different from the
population; case (c) in figure 4.4 shows that it is not necessarily also a regression
outlier.

We described this method for the sake of completeness, despite it has not been
considered in our experiment because it requires to analyze visually all Monte
Carlo simulations. However, it is believed that it will be certainly of interest for
GIS users dealing with a single sample.

4.2 The Missing Value Problem in tabular quantitative data

4.2.1 Aim
As mentioned before all mathematical models used in GIS environments rely on
the availability of suitable data i.e. the data should be relevant, accurate and
complete. With the term complete we mean that data has been sampled to an extent
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that makes them useful. For some cases, one might re-sample (interpolate) the
available data to a prescribed grid in order to feed the models with the appropriate
field, despite it is possible (at least on principle) to go to the ground and take a
direct measurement. The interpolation of evenly distributed data with spatial
coordinates is the topic of geostatistics.

(a)

(b)
(c)

(d)

Figure 4.4 Simple Regression Example with (a) regular observations, (b) vertical
outlier, (c) good leverage point, and (d) bad leverage point. Taken from

Rousseeuw and Van Zomeren (1990)

We consider the case of missing records in meteorological data, which are sampled
at carefully defined intervals in time on a limited number of locations. Such time
series have the undesirable property that if a measurement has not been taken, it
cannot be taken anymore. Depending on the mathematical model, it might be
required that the missing value should be substituted with an appropriate estimate.
The older paper II describes early developments on the subject, while paper III
can be regarded as a methodological continuation of the former.

The different methods can be divided into two categories: linear or nonlinear. In
the first case the estimated quantity is a linear combination of the available data.
Its general expression is

yj=wx+b (11)
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being yj the unknown quantity, x a vector which entries are the available data and b
a scalar constant; both the weight vector w and the number b depends on the
method. Typically the vector x holds the values of the same day, and both w and b
are constants for the whole dataset at least for a period; for example, they can take
different values for different seasons. In the second case the value is assigned
using a non-linear formula. They proved to be the most interesting ones, despite
their heavier demand on CPU resources. We compared over 40 different methods,
and due to space constraints we will summarize those who proved succesful.

4.2.2 Linear methods
Due to their simplicity, these methods are widely used. This category includes
among others, the methods of Cressman, Optimum interpolation (also named
kriging), Ordinary least squares, as well as other simpler ones, like the nearest
neighbor.

• Cressman
The requested number is obtained after a linear combination with weights which
are the inverse of squared distance. The method does not require historical
information, but only the station coordinates. The number b is zero and the entries
of  vector w are calculated as

 w
d

di
ij

kj
k N

=

∈
∑

1
1

2

2      (12)

• Optimum interpolation (Gandin 1965; Johnson 1982)
This method is routinely applied for the specification of initial conditions for use
in global weather forecasting programs. Instead of interpolate the desired field, it
interpolates the anomaly or difference with a simple predictor, and the spatial
correlation properties of the anomaly field are analyzed. Usually the anomaly is
assumed isotropic and homogeneous, and it should be modelled at arbitrary (x,y)
in the general case of interpolation. However, if the point where the prediction is
required belongs to the measured point set, its covariance with the other stations is
available. For this particular case this method (also known as kriging) is equivalent
to the Ordinary Least Squares. The covariance might be calculated separately for
winter and summer, or for all together as we did. This procedure allows
information from the day before to be used. The procedure can also consider
information on known accuracy of the dataset, or estimate it as well as described in
Johnson (1982).

For the tested datasets we used different anomaly fields and transformations of the
original values which are summarized in table 4.1. For example, the method coded
as “gandin7” assigns values for the variable xi=sqrt(precipitationi), computing the
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anomaly with respect to the historical mean. In this case b=mean(xi) (mean stands
for average over time). The classic Optimum Interpolation procedure is coded as
“gandin20”. Methods denoted as gandin6 and gandin4 differs in the simple
predictor used for their anomaly.

Because daily precipitation has a very irregular probability density function (pdf)
we designed a transformation xi=f(precipitationi) which makes pdf(xi) nearly
uniform, except for precipitationi=0. The transformation based on the cumulated
density function has an inverse and assures that x belong to the interval [0,1].
Another detail that should be commented is regarding the handling of missing
values. We noticed that around 30 per cent of the events have at least one missing
value. So, in principle, they cannot be included in the calculations of the
covariance matrix. We decided to use as much information as possible and
calculate the covariance matrix in an iterative way. For each of the methods
defined in table  4.1, we first estimate the covariance matrix from the full sampled
events. We then apply the corresponding gandinX method for imputation,
complete the dataset as much as possible, and update the covariance matrix using
all the events now complete. We continue until there is negligible change in the
imputed values. We have considered in early stages to calculate the covariance
matrix componentwise, using all events with data in station i and station j to
calculate the entry (i,j). This procedure led to a non-positive definite covariance
matrix, and the approach was discarded.

Table 4.1 Brief information about the different methods based on climatological functions.
f(precipitation) denotes the transformation which renders a nearly uniform probability density
function(see text). t and t-dt denotes values from the day and the day before

Our coded name Anomaly Variable Using data from days
respect to: to interpolate t t-dt

gandin historical mean precipitation X -
gandintrans historical mean f(precipitation) X -

gandin6 historical mean precipitation X X
gandin7 historical mean sqrt(precipitation) X -

Initial value for the field chosen as zero
gandin_diario 0 precipitation-daily

mean
X X

gandin4 0 precipitation X X
gandin5 0 precipitation X -

Neglecting instrument error
gandin20 historical mean precipitation X -
gandin3a historical mean precipitation-daily

mean
X -
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• Ordinary Least Squares (OLS)
This is a standard method and the theory for it can be found elsewhere (Dahlquist
and Bjork 1974). The weights w are chosen in order to minimize the 2-norm of the
vector M(j)w-m(j) (a scalar proportional to the Root Mean Square of the Errors,
RMSE) where M(j) is the matrix of the available data (as many rows as dates, as
many columns as stations but without the j-th one) and m(j) is a column vector with
the j-th stations values. The version implemented assumes that the data is error
free, so w can be derived from (dropping the index j) MTMw=MTm, b=0. Notice
that this method is prone to suffer from the existence of outliers; the remedy is
either to remove the outliers before the calculations or to use an estimate more
robust like the ones described below. It should be mentioned that for this and the
following methods we used events with no missing values only, as opposed to the
procedure used for the gandin-like methods. The method denoted as "gandin20" is
equivalent to OLS if there are no missing values.

• Least average (Minimum 1-norm)
Here the weights w are chosen in order to minimize the 1-norm (sum of absolute
values) of the elements of the vector M(j)w-m(j), a problem involving the solution
of a non-linear optimization task. For OLS and gandinX it was only required to
solve a linear sistem of equations, so calculate the weights w consumes
substantially more CPU time than all previous methods. However, it is more robust
against outliers.

• Least 95 percentile
Since the population might be affected by a small set of gross errors, it is fit to
minimize a robust statistic, as the 95 percentile of the distribution of absolute
errors. As before, calculation of weights w for this method consumes significant
CPU time.

• Least Median of Squares (LMS)
Rousseeuw (1984) suggested for the first time to use a robust (i.e. outlier resistant)
estimator for regression instead of the sum of squares of the residuals. He
suggested to use the median of the squares of the residuals, and a number of
widely available FORTRAN programs have been developed to calculate it. Such
programs are well suited for small datasets, and the computing time required to
obtain the coefficients in our case is considerable. Hawkins (1993) described an
algorithm to perform the calculations, who also implemented and kindly furnished
the program. The results were 10 different sets of coefficients, assuming that only
one station is missing. For the case of more than one missing value in a particular
event, we proceed in an iterative fashion as sketched in figure 4.5. Any finishing
criteria can be used; we requested that the maximum discrepancy between
estimated and calculated missing values is below a threshold.
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assume an initial value for all missing values
repeat until finishing criteria is satisfied

foreach missing value
calculate the regression using most
recent estimations

end foreach
end repeat

Figure 4.5 Pseudo code for the imputation of more than one missing value

The method is said to have a high breakdown, because its results are insensitive to
arbitrary large outliers, provided they are no more than nearly half of the
population (Rousseeuw and Van Zomeren 1990). To decrease CPU time, we
assumed that there are not more than 10 per cent of outliers in the population. For
the precipitation case we extracted from the dataset those days with all-zero
precipitation readings, and we required that the regression line should go through
the origin (in order to easily accomodate back the case of all-zero readings).

• Least Trimmed Squares (LTS)
This criterion was suggested for the first time by Rousseeuw (1984). The weights
w are chosen in order to minimize a weighted sum of the squares of the residuals,
the weights being either 1.0 or 0.0. There are as many zero weights as the number
of outliers assumed. The method has high breakdown, and its results can be
extended up to a breakdown level similar to that of LMS. Hawkins (1994a)
suggested an algorithm for calculate the coefficients, implemented and kindly
supplied it. Once calculated, weights w were used with similar criteria as of LMS.

• Nearest Neighbor
In all cases the missing value is taken directly from another station following a
given order. All weights are zero, except one which is 1, and the number b is 0. We
considered three criteria for the distance. In the first case, the order is based on
euclidean geometrical distance, and in the second case we used the expertise from
a meteorologist which analyzed qualitative similarity. The third alternative was
due to Gutiérrez (1996) who selected the nearest station taking into consideration
the Kulback-Leibler's (Borovkov, 1987) pseudo distance between the station's
probability density functions.

• Assign a constant value
This is a simple method, which disregards any other information. We applied it
using the modal value and the expected value, and to get an idea about the
characteristics of this dataset.
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• Assign the daily average
This is almost self explanatory; the entries of vector w are all equal and the
number b is 0.

• Univariate time series interpolation
This is simple method uses only data from the station under consideration,
disregarding any correlation with the others. In our implementation, we used the
nearest (in time) available record before and after the missing value, and a linear
interpolation in time is used to predict the missing value.

• Temporal Interpolation of Principal Scores (TIPS)
This method were proposed in paper II and assumes that only those scores related
with the structure of the cloud contain information relevant for recovering it. After
an analysis of its time series properties we realize that those scores has most of its
energy in the low frequency range, while the noisy scores span it through all the
spectra. This fact was observed both for the daily rain and the hourly surface wind
records and is believed that is a general rule. The method will interpolate the time
series of the scores related to structure, and set as zero those scores related with
noise. Once the scores are calculated this way, all the values for such event can be
calculated. The missing values can be recovered from them, and using the
observed values the scores can be recalculated for the same day using now all the
available information. If the time gap is larger than one unit, the procedure can be
used as described in paper II. Notice that this is a multivariate time interpolation
procedure which will be equivalent to the standard univariate case if all the scores
are classified as structural.

• Penalty of the Principal Scores (POPS)
This method were also proposed in paper II. If we analyze the histogram of the
scores ai  it can be observed that the main PC has a pdf which is heavily skewed or
has a significant dispersion around zero. On the other hand, for the weak PC the
histogram is symmetric and the dispersion around zero is very low. Any
imputation procedure should preserve this properties, and then it should produce
scores ai  consistent with this histograms, i.e. very near zero for all weak PC. Such
property might be imposed as a condition, choosing for any given date t all missing
components of vector P(t) in order to minimize some penalty function, like

 S w ai i
i k

i n

( ) .P P=
=

=

∑ 2 ( ) (13)

being the scores ai(P) corresponding to the vector P (now complete) and the
weights wi  selected in order to consider the different absolute value of each score
aj. The sum is taken over those scores previously classified as weak (or noisy) as
described before. Vector P is only partially known, and it is assumed that it has q
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unknowns (or missing values). The optimum of S(P) can be obtained making its
partial derivatives null for all unknowns

∂
∂

S
pm j( )

,= 0  j = 1..q (14)

being pm j( ) the missing records for event t. The so defined linear system can be
easily solved by standard procedures.

4.2.3 Non linear methods
• Hotdeck
The hotdeck procedure is typically used for surveys, and the missing value is
assigned from other survey with the same (or nearly the same) answers in all the
other available fields. The missing answer is taken from that survey which answers
more closely matches the one considered. If there is no other survey which exactly
matches, a distance between surveys has to be defined. If there are more than one
survey which match, a random selection is performed. We simply used the sum of
the squares as distance.

• Artificial Neural Networks (ANN)
In addition to the already described ANN architectures (see 4.1.3), a different
solution inspired by the work of Kanevsky et al. (1996) was implemented as ANN
bp22 and bp23; instead of using fixed values for the weights and bias in the ANN
for all events we attempted to train the ANN in order to provide full interpolation
capabilities (i.e., an output for arbitrary geographical coordinates) with a different
interpolator for each day. In these cases, the input to the net is the x,y coordinate
of the available stations (provided they are not too few) and the training process
attempts to fit the available readings. After training, the ANN is supposed to
approximate the function precipitation(x,y) well, thus it is asked to predict a value
for those coordinates with missing values. We did not attempt to modify the basic
routine available in MATLAB for training, which use a variant of steepest
descend, and minimizes the RMS of the errors.

4.3 Quality control of raster datasets

4.3.1 Aim
Raster datasets are very common in GIS applications. Despite the fact that remote
sensing data fall into this category, we decided to analyze the more classical case
of DEM, mainly for the (at least theoretical) possibility to improve its accuracy to
an arbitrary extent. However, the work of Maronna and Yohai (1995) should be
quoted here, who analyzed 38 pixels on five frequency bands from satellite
measurements in order to find outliers. They noticed that standard methods of
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regression (i.e. neglecting outliers) applied to this dataset will fail in discriminate
between two clusters present there. Each cluster should have a different regression
model, and blind application of the algorithm led to wrong conclusions. Maronna
and Yohai applied two robust methods for outliers detection (one of them MVE)
and showed their ability to separate such clusters.

After a review of the literature we found that blunder location methods typically
are designed to detect errors in the production stage. The situation of the data
producer and/or the end user attempting to locate the worst errors in order to
improve the quality of the dataset at later stages is not considered. The aim of the
study was to develop and test a method suitable for outliers detection in the final
product. We omit any discussion about the genetics of the errors (i.e. its relation
with the particular production procedure), because the end user might not be aware
of the lineage details. The terms outlier, gross error and blunder are used
synonymously throughout this section.

4.3.2 The method for error detection
In paper IV we designed and tested a method using a Monte Carlo procedure. We
seed an available DEM of unknown quality with synthetic errors of low spatial
correlation, and obtained good but preliminary results. The method has some
parameters free, and after the simulation we were able to provide some rules of
thumb in order to proceed in a different case. However the validity of the rules of
thumb still depends on the error model selected. From the beginning we attempted
to use or adapt those methods to the raster case which have proven to be sucessful
with tabular datasets. Clearly, some tricks are required to do so and this section is
devoted to show how it has been done. Clearly once we were able to apply one
method, we could apply all of their equivalents.

Even though our procedure is based upon Principal Component Analysis, our
approach is very different from the one typical in image processing. We devised a
method for selecting unlikely profiles for a narrow DEM (i.e., when its length is
substantially greater than its width) and we were also able to detect the best
candidate within each profile. We then considered any DEM as composed of a
number of narrow DEM (also denoted as strips; see fig. 4.6). Each strip is assumed
to have length n and width w (w<<n). The method considers the strip as points in
the Rw space.

We denote as profile a section of length n, and cross-section as the sections of size
w. The case of w=3 were illustrated in figure 4.1 where each point Mk represents a
cross-section. Since the stripping process can be done row-wise as well as column-
wise, we construct the candidate set of outliers from the intersection of both. The
strip can be directly associated with a tabular dataset, and any of the methods
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already presented in section 4.1 can be used. The procedure can be applied
iteratively, since, once an error is detected and "corrected" the cloud is modified to
some extent, and so the scores. We keep track of the points already checked in
order to avoid to select them twice.
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Figure 4.6 Sketch of the strip notation

The error location procedure directly analyzes the cloud of points in Rw,
disregarding any order among points. This is an important assumption, since the
concept of spatial self correlation completely looses all significance in the cloud.
Adjacent profiles need not to be in any special order, since they are coordinate
axes in the space Rw. The use of the cloud is in line with the common practice in
statistics (Hadi 1992, 1994; Hawkins 1974, 1994a, 1994b, etc.) since the notion of
"spatial correlation" and "precedence" is meaningless in most tabular data. The
procedure involves five actions, and has been outlined in fig. 4.7. In the pseudo
code we have used a single strip width w for rows and columns. We also assume
that w is a divisor of m as well as n; this is not required.

In order to be able to perform a Monte Carlo simulation, some model for the error
is required in order to produce realizations of the DEM  with error. For the case
considered in paper IV errors within [-4 m,+4 m] are typical. Since the data is
rounded to the nearest meter, there will be little chance to pick errors of one meter.
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Any "feasible" error should also be an integer number. The shape of typical (real)
errors (i.e. its spatial structure) have received little attention in the literature,
because common practice reports accuracy as RMSE, mean of the absolute value
or percentiles of the elevation errors. Accuracy in terms of slope might be of help,
but they are barely reported (Giles and Franklin 1996). We follow some authors
(Bethel and Mikhail 1984) in modeling errors as additive and isolated, being the
error elevation chosen from a given set. As a feasible set we have used, as a first
example, the values [-4,-3,-2,-1,+1,+2,+3,+4] meters, with equal probability, which
is considered a difficult case. This is expected to model spatially uncorrelated
errors, and we denote it as spike-like errors (see fig. 4.8, left).

Given a DEM as a matrix of size m*n, subdivide the DEM
in row-wise and column-wise strips of width w
repeat until criteria is satisfied:

a) increment previous  row-wise candidate set:
a.1.- locate the columns likely to have

candidates
a.2.- within each column, find the rows that

identify the candidates
b) increment previous column-wise candidate set:

b.1.-locate the rows likely to have
candidates

b.2.- within each row, find the columns that
identify the candidates

c) intersect both sets
d) evaluate criteria
e) correct all errors

end
Figure 4.7 Sketch of the steps required for the location of outliers in a DEM (from

paper  IV)

We seeded the DEM with this synthetic errors changing 5 per cent of the points;
this value looks somewhat high when compared to the one reported by Östman
(1987). He found a typical value of 0.5 per cent for the number of gross error
occurrences, but here the worst errors are of absolute size 4m and they account for
only 1/4 of the errors. As another alternative for an error shape model, we also
tried a more structured one, which resembles a pyramid; once a point is selected, it
is modified by adding a 2∆  error, and only ∆  to the eight points surrounding it
(see fig. 4.8, right). We have selected ∆  uniformly from the set [-2,-1,+1,+2]. We
named this model pyramid-like, and it is expected to model some degree of spatial
correlation in errors.
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Figure  4.8 Sketch of the spike-like and the pyramid-like error model. An asterisk
indicate modified elevation values (from paper  IV)

4.3.3 The modified error detection method
The generation procedure for DEM usually assures that errors are correlated in
space (see for example Day and Muller 1988). Thus we modified the proposed
procedure (described in paper IV) somewhat in order to handle the correlation in
space. Notice that the procedure of paper IV has been tested with synthetic, weakly
correlated errors. It will be shown that its performance decays as the correlation
increases. The procedure of Felicísimo (described below) suffers from the same
problem, since the error at i,j is highly correlated with the one at the immediate
neighbors. The method of paper IV does not require that the along the strip
profiles are contiguous. Therefore we can skip some of them (the ones most
correlated) for the analysis. The strip is chosen as before, but in the calculations
we consider subsets created using every k-th row, k being related with the range, a
geostatistical property (see Samper and Carrera 1990) of the error field. In paper V
we assumed that the value of the range can be estimated from an independent
analysis: it might depend on the DEM characteristics, method for obtaining it,
scale of aerial photography, etc.
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4.3.4 The method of Felicísimo (1994)
This method is the simplest one available for this problem. Assuming that outliers
are only locally correlated, the method analyzes the differences δi,j between the
elevation value zi,j and an interpolated guess Zi,j obtained from its immediate
neighbors. Assuming that the difference δi,j has a Gaussian distribution with mean
∆ and standard deviation Sδ (both obtained from the sample) a Student t test can be
applied to validate the hypothesis that δi,j belongs to the population of deviations.
Operationally, we analyze the statistics ti,j=(δi,j -∆)/ Sδ  which can be interpreted as
a standardized deviation.

We used a best fit approximation with a biquadratic polynomial using the eight
closest neighbors to calculate Zi,j. Along the borders we assume mirror symmetry,
and in the corners we used a linear interpolation with the three closest values
available. We point out as a candidate error value any δi,j  that makes ti,j>3.219.
Felicísimo states that even though a significantly high value of ti,j does not
necessarily imply an error, it is an excellent alarm sign. The method is very simple
and is also parameter free.

Once an error is located and corrected, both statistics ∆ and Sδ change and new
candidates appear. The method can be iterated and it might stop if no more
"outlying" values remains. This is undesirable because we know that there still are
errors are in the dataset, so we proceed by lowering the significance level at least
once. The new candidates, once corrected, modify the statistics, and new
candidates with the previous significance level appear. We stop the iteration when
a prescribed effort has been achieved.

4.4 Tabular qualitative data: the national census example

4.4.1 Aim
The aim of the study presented in paper VI was to develop a nearly on-line quality
control algorithm suitable to be used in connection with the scanning procedure
task after the 1996 National Census of Population and Housing of Uruguay
(population ~3 million, houses ~200.000). Since scanning of such large amounts of
paper (106  sheets) was attempted for the first time in the world for a national
census, automatic quality control procedures were sought to minimize the typist
correction effort while keeping the number of errors below prescribed values. The
proposed procedure was designed for categorical answers only. Separate routines
were used for the Optical Character Recognition task, where both numerical
(quantitative) answers and handwritten text were expected. Since the automatic
recognition of marks gave good enough error levels, the proposed method were not
used in practice, but the prototype has been tested through a Monte Carlo
procedure using synthetic errors.
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4.4.2 The rule based method
There is little guidance in the statistical literature for this problem. The best known
method is due to Fellegi and Holt (1976). They presented a method specifically
suitable for qualitative or categorical data. It is based upon the existence of rules
which relate the different fields in each record. Such rules should be formulated by
experts, and express their judgment that certain combinations of values or code
values in different fields are unacceptable. If a particular record does not satisfy
one or several of those rules, the field (or fields) that contribute to them are
rejected. Notice that this procedure relies on the existence of explicit rules (and
experts behind them).

4.4.3 The Duplicate Performance Method (DPM)
Following the main idea of this thesis, we focused our research on methods which
are independent of the data description itself. The above mentioned rule-based
method is not suitable, because we need to build new rules for each new dataset. A
general procedure for locating errors in a typing process is the Duplicate
Performance Method. If data are typed (keyed in) twice and independently, and if
the results are compared by a method that can be assumed error free (such as a
computer program comparing files after data entry) and if all the disagreements are
corrected, then the only errors remaining in the data set are those where both staff
members were in error. If the ratio of disagreements to total items is low, then the
individual error rates of both persons are low, and the probability of joint errors
(the product of the probabilities of individual errors) is even lower (Strayhorn
1990). The method is extremely simple, and can be applied to any kind of data,
both quantitative or categorical. Despite its simplicity, it has some desired
properties:

• The probability of locating an error is independent of the error itself, so
gross errors will be corrected as well as subtle ones. This will help in
keeping the statistical properties of the database.

• It is also independent of the order the retyping is performed, so if only
a fraction of the dataset is retyped, typically the same fraction of the
errors will be corrected.

• The  procedure does not require a large database, so it can be applied
also to small ones.

For the sake of simplicity, we will assume that by typing a record twice all errors
are removed ("perfect inspector" hypothesis). This will help us in simplifying
some arguments, and the reader will easily notice that this is not a key hypothesis.

4.4.4 The method proposed in paper VI.
A new method which is able to improve the standard DPM by sorting the records
putting first the most unlikely ones have been presented in paper VI. We will
outline here how we handle tabular qualitative data in order to use tabular
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quantitative methods. As before we will use our workhorse based on PCA
(described in 4.1.3) as an example. We will consider only the problem of selecting
a specific event (a single survey) on the basis that there is something in the
answers that make it unusual. Such an event should be retyped. In a real processing
environment, if the record is still unusual, it will be carefully analyzed by a trained
specialist, which may found (or not) reasons to reject or modify some answers in
the particular survey. The method can be used to give the specialist a smaller
selected set, with higher probability of having errors. Notice that this procedure
will decrease the variability in the data, because "reasonable" errors values are
prone to be ignored. It will be also assumed that all the answers and their
alternatives have the same relative importance.

In categorical data, the codification procedure usually generates a set of valid
values for each question. Those values are usually coded as integers, but the value
itself is meaningless. In order to manage categorical data with our proposed
method, we should translate such integers in a way that the results do not depend
upon changing the order of the alternatives in the question or  changing the codes.

The definition of outlier in categorical data may differ from that for real-valued
data. There are no possibility of arbitrary large errors. It is also assumed here that
the dataset has passed successfully some trivial logical tests, which pointed out for
example, more than one mark in mutually exclusive answers, or similar things.
Also all the coded values are within their prescribed ranges. These logical tests are
very crude, and certainly should not be confused with the edits designed by experts
in the particular data (Fellegi and Holt 1976). It should be regarded more as a
computer specification for the data, rather than a quality control procedure.

Given the data, the corresponding question list and the feasible options, the user
should eliminate those fields which are a priori uncorrelated with the others.
Typical examples for survey data are all the information related with the zip code,
city code, address, etc. Also numerical quantitative data should not be considered
(for example: age, area of the building, etc.) except if a categorization is applied.

The dataset is usually available in table format, one individual per row, and one
question per column. In order to have a numerically useful representation, we will
binarize the dataset, creating a new table containing only 1 or 0. This also make
the data homogeneous (dimensionless). In order to binarize the dataset, one may
think on a multiple choice sheet. For any particular question, there are room to
choose between some (maybe mutually exclusive) alternatives. Instead of  coding a
single number for the answer, we may equally store all the alternatives, putting a 1
or 0 if the option is true or not. In other terms, each column of the original table
expands to as many columns as alternatives in the question, allowing only 0 or 1 as
an answer. After repeated for all questions, the data (without missing values!) is
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binarized and presented in table (or matrix) format, any method suitable for quality
control of quantitative tabular datasets might be used. We applied our workhorse
based on PCA. Notice that the dimension "n" of the covariance matrix is not the
number of controlled questions but the sum of all the options within them. It is
assumed that the population is large enough to represent properly the true
covariance with the sample´s covariance matrix.

It should be pointed out that, even in numerical datasets, usually the mean value
and the Principal Components are real vector values, and so are the projections of
the dataset on the PC, which here are called scores. That holds true even if the data
are integer or binary numbers. For example, in a precipitation dataset, all values
are integer and positive, but the scores are real, i.e., they belong to a different
number category. When considering categorical binary answers a similar situation
arises. Even though they are real, the possible values of the scores are limited due
to a combinatorial constraint. We are implicitly requiring that this finite number is
a big number (in the experiments, 269-1) because if the number "n" is low the
distributions will not look like those of continuous data. Notice that the real valued
scores are not arbitrary because they arise from a finite number of possible
answers.

Since the matrix is range-defective due to the logical interrelationships between
mutually exclusive answers, there will be some zero eigenvalues which imply that
some scores should be (at least theoretically) identically zero. This makes a slight
difference as compared with the situation for quantitative data (Hawkins 1974;
paper I) where the covariance matrix is strictly positive definite. Once the sample
distribution of the scores is created, confidence limits can be calculated. These
values will define the outlier region (Davies and Gather 1993) but without
assuming any particular pdf shape. Why do we claim that this is the outlier
region?. Fig. 4.9 shows the sampled probability distribution function for the given
database of some of the scores and the arrows point to two values: those marked
with an "o" correspond to the original answers for a particular survey; those
marked with an "x" are related to the same survey, but now contaminated by
modifying one of the answers. In this particular case, it was imposed that the house
is equipped both with a color and a black and white TV set, while originally it has
only black and white. Notice that the effect is important mostly in the "weakest"
scores (i.e. those associated with the lower non-zero eigenvalues of the covariance
matrix) and that the ones associated with the "strongest" ones are only minimally
modified. The proper limit between the "weakest" and the "strongest" is to be
determined, and some guidance is given in paper VI.
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Figure 4.9 Example of the effect of a single outlier in a particular survey



5 Experimental setup and results
In this chapter we describe the experimental setup and results of the individual
studies, as well as recent material.

5.1 Quality control of quantitative tabular data: the daily
precipitation example
This example has been considered for the first time in paper I which has some
methodological shortcomings. Further research has not been published before, and
the results will be presented here.

5.1.1 Experimental strategy and measures of success
In paper I we applied the a PCA-based method to a single set of simulated errors
generated by merely mixing the numbers in the dataset. Our conclusions were
based upon a particular case, which might led to wrong conclusions. To produce
statistically reliable results, we decided to perform a Monte Carlo simulation to
generate different realizations of artificial errors, and apply the method under
consideration a number of times. All conclusions will arise only after
consideration of a (large) number of cases. In 5.1.2 we will consider further how to
obtain such realizations of artificial errors, and we will consider now how to
evaluate the results.

Since the usefulness of the methods should be considered from either the user's or
the data producers point of view, we have simulated within the codes the process
of error detection - correction and further detection. We iterate as much as
necessary in this way until some finishing criteria is satisfied. In the real-world
example (described in papers I and II) we stopped when the Type I error was too
high. In the simulation we stopped when a prescribed amount of points have been
corrected or checked.

In order to to simulate a real case of correcting errors, we have provided a number
of figures to analyze the output. It is assumed that once a value is pointed out as
dubious it can be corrected, which in the statistical literature is known as the
"perfect inspector" hypothesis. In the experiment, we seed the dataset with
outliers, apply the methods, and continue until the finishing criteria is satisfied.
Since in the real case the process is also iterative, we provide some intermediate
measure of success. In bold we emphasize those measures of success that might be
calculated during the depuration process. Among them:
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a) RMSE of the remaining population (one possible measure of the
accuracy)

b) RMSE found up to the step
c) Average of the absolute error of the remaining population (another

measure of accuracy usually denoted as MAD in the literature; D stands
for deviation).

d) Average of the absolute error found up to the step
e) Type I and Type II error up to the current step based on individual

errors
f) Type I and Type II error up to the current step based on events

The others require knowing all the errors in advance. In order to allow a direct
comparison between methods we will now introduce the concept of effort. We will
define the effort as the ratio of the already checked or corrected values divided by
the total number of values. So 100 per cent effort is the theoretical limit to find all
errors (provided the inspector is perfect!).

Notice that all the measures mentioned are functions (not numbers!) related to the
effort; this makes it difficult to qualify a method as better than another. Moreover,
depending on the goals of the user, the criteria may be different. One user might
want to locate as many errors as possible (disregarding their size), which
corresponds to minimizing the Type II error for a given effort, while others might
prefer to pick the largest errors in early stages, leading to minimizing either the
RMSE or the MAD for a given effort.

So a more comprehensive statistics was sought, which should summarize the
results. We devised one possible solution by considering that there exist two
extreme possibilities for the methods: the best method will render only errors when
requested and giving the larger errors first, and the worst method which will hide
the errors as much as possible. When the process goes on since there is no
possibility to repeat an error, the best method might be out of candidates, while the
worst method will still hide them up to the end. The larger errors will be suggested
at the end, as presented in  fig. 5.9.

Any other method should operate outside the dashed areas: the top boundary
indicated in fig. 5.9 is the worst possible outlier detection strategy, while the lower
boundary is the best one. Notice that the best method yields accuracy 0 for any
effort over N (equal to the number of errors in the dataset in per cent) impliying
that there are no more errors in the set. The worst method in turn, will not modify
the accuracy up to an effort 100-N, and it will diminish slowly from there on. At
100 per cent effort both lines end at 0, implying maximum accuracy. The line in
the middle represents a possible real operation line; under the perfect inspector
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hypothesis it should be a non-increasing function, starting and ending in the same
points than both the perfect and worst methods.

For a real operation example we will show only a fraction of the effort axis (see
figs. 5.10 and 5.11). Notice that ascertain which are the larger errors depends if the
method is event-oriented or datum-oriented. In the first case, the worst event is
what contributed mostly to the error; however, it might not contain the worst
individual errors.

  0         N                 100-N       100 
 

 

 

 

 

 

o Best

Worst o

Possible o

Figure 5.9 Sketch of the best, worst and a possible valid evolution of the accuracy
in terms of the effort. N stands here for the fraction of the dataset which is wrong

and is equal to the initial Type II error.

Since we are able to define a perfect and a worst method, and we know that any
real method should lie in between, we might try to calculate some relative distance
to the best operation curve considering also the worst one. We did so, and we
define the following distance index function
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which should have a value between 0 and 1, being preferred the larger values.
Using the integral distance has some advantages over other alternatives, like to
evaluate the statistics at a given effort. In figure 5.10 we show the best, the worst,
and three possible operation lines.
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Figure 5.10 Example of best, worst, real and two ideal operation curves up to an
effort of 2 per cent (data value-oriented) for the total numbers of errors found. The
y-axis is related with the Type II error, while the slope is higher for lower values
of the Type I error. Dashed areas indicate the limit of possible operation curves.

The real curve (continuous), the (A) curve and the (B) curve are all valid examples
of possible operation curves. See the text for an explanation.

The last three end at the same value for an effort equal 2 per cent, but the curve
labelled (A) finds mostly errors in early stages, while curve labelled (B) did so at
the end. Using simply the value of the function at 2 per cent effort will led to the
(wrong) conclusion that all three alternatives are equally good. Summing up, since
we will prefer curves which are closer to the best one we suggest to use the
integral distance instead of the mere values at a given effort.
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Figure 5.11 Example of best (at the bottom), worst (at top) and real (in the middle)
operation curves up to an effort of 2 per cent (data value-oriented) in terms of the
accuracy based on MAD (mean absolute deviation). Notice that for an effort of 1

per cent and over the best curve reports a MAD of 0.0 mm/day which is the
maximum accuracy. Dashed areas indicate the limit of possible operation curves.

Figure 5.10 deserves some more comments, because it includes implicitly
information on both Type I and II errors. Type I error is defined as the probability
of misclassify a good value as wrong. Let N denote the initial fraction (in per cent)
of the outliers in relation to the population. The function represented in fig. 5.10 is
denoted as f(x), x being the effort (in per cent).  The Type I error can be calculated
for all x as

e df
dx

N
I = −1

100
(2)

and for the Type II error the relationship is

e f N
II = −





100
100 100

(3)

so steeper functions f(x) will be preferred in order to decrease the Type I error. It
can be shown that the slope of f(x) is strictly bounded with 100/N for any effort
because at most we can find as many errors as candidates.
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In order to allow a simple comparison among methods, we integrated all the
operation curves to a prescribed effort level. The limit is different for event-
oriented and value-oriented methods. We made the calculations up to an effort of
10 per cent in the first case, and up to 2 per cent in the second, which is roughly
twice the number of values contaminated in the simulation.

In previous work we used the Type I error to decide whether to continue or not,
based on the argument that it is one of the few statistics which can be calculated in
the real case (either for the end user or the data producer). The other possibilities
are the RMS and MAD of the absolute errors already found.

5.1.2 The error mechanism model
Before going into the results, it is suitable to analyze a delicate problem: how to
simulate real errors. In order to make a Monte Carlo simulation, a tool to generate
appropriate realizations of the typical errors is needed. The literature in this topic
is scarce, and we found little guidance. One possible method is to simply mix the
numbers in the table (Mixed Completely At Random, MIXCAR hereinafter). This
procedure has the nice property of preserving the statistical characteristics of the
population, but not of the time series. Provided all columns have similar pdf's the
method might give acceptable errors. However, they might have little or no
resemblance to real errors found in practice.

As part of the research we conducted an extensive depuration of the dataset using
the outlier detection method described in paper I and denoted hereinafter as
pcacov. After checking all candidates against paper records, we obtained a
population of pairs truth vs. wrong, and we analyze some of its properties. It is
clear that we found only those errors which are prone to be detected by the
method, but we might left others in the dataset. If we plan to compare by Monte
Carlo simulation the ability of different methods to detect errors, the decision of
simulating errors like the ones the pcacov method certainly found will easily led us
to the conclusion that such method is the best. The immediate question is how
strongly depends the errors found population on the pcacov method.

In order to obtain a different error set independent of our procedure we typed twice
a one year dataset. The file obtained were compared with the original one, and any
discrepancy were analyzed; we concluded that pcacov detected almost all existing
errors, so we attempted to simulate the errors located for the whole period. In
paper IX  we proposed an heuristics which produced errors clearly closer to the
real ones than the MIXCAR criteria, and they were used in the final Monte Carlo
experiment for the case of daily precipitation records. In  paper VII we compared
MIXCAR with errors detected by pcacov for the case of wind records, and we
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confirmed that the mere mixing is not good enough when compared with observed
errors.

5.1.3 Results
The Monte Carlo experiment require running a number of simulations using the
outlier generation mechanism quoted above, calculate the statistics and summarize
the results. They are presented in different tables for event-oriented and datum-
oriented methods. Table 5.1 shows the average values of the three different indices
which are valid for event-oriented methods. The artificial neural network (ANN)
based method named bp14 performs very satisfactorily in terms of finding errors
(irrespective of their size). The others based on robust estimations of the
Mahalanobis distance (MVE, MCD) as well as the one due to Hawkins (1974)
show a similar performance. Once considering the size of the errors the picture
changes a bit. On average, Hawkins74 is the best for MAD and RMSE, closely
followed by ours, presented in paper I and denoted here as pcacov. The method
based upon cross validation has a lower performance in all the indices, but close to
the already mentioned methods.

Table 5.1 Average and probability (in per cent) of been the best of the Index-values after 450 runs for
event-oriented methods.  All indices are dimensionless

Method Found vs. effort Accuracy as MAD Accuracy as RMSE

avg best avg best avg best

bp1 52.3297 0.0 71.7055 0.0 63.7345 0.2

bp7 58.4470 3.6 75.2580 0.7 64.1095 0.7

bp14 59.3301 44.2 76.0892 4.0 64.9154 0.7

crossva05 54.2718 0.0 73.4323 10.4 64.6805 16.7

pcacov 56.0469 0.2 75.5096 6.9 65.5949 10.4

Hawkins74 58.4829 20.4 77.7446 70.2 68.6106 68.7

MVE 59.0541 12.7 76.3609 7.8 65.6407 2.7

MCD 59.1978 18.9 75.3159 0.0 63.8466 0.0

Rocke96 49.5981 0.0 55.2424 0.0 34.7747 0.0

Hadi94 55.3678 0.0 44.3686 0.0 30.9342 0.0

The mean value of the index might not give a correct picture, so we attempted to
compare all methods to all methods for each index. This has been done in table 5.2
for the errors found vs. effort curve, in table 5.3 for the MAD index and in table
5.4  for the RMSE index. The entry (i,j) of the table is the probability estimate that
method i will produce an index lager than method j. The three best options are
presented in boldface.



5 Experimental setup and results

56

Table 5.2 Probability estimate (in per cent) that the Index for errors found vs. effort for method i
exceeds those of method j for event-oriented methods. The last row is the probability of not being the
best option. Results after 450 runs.

bp1 bp7 bp14 crossva05 pcacov Hawkins74 MVE MCD Rocke96 Hadi94

bp1 0.0 0.0 14.0 0.9 0.0 0.0 0.0 96.2 2.4

bp7 100.0 9.8 97.3 97.6 47.1 18.9 12.2 100.0 98.2

bp14 100.0 90.2 100.0 99.6 73.8 72.7 62.9 100.0 99.8

crossva05 86.0 2.7 0.0 67.6 2.0 0.4 0.0 86.0 74.0

pcacov 99.1 2.4 0.4 32.4 0.7 0.7 0.7 100.0 65.8

Hawkins74 100.0 52.9 26.2 98.0 99.3 31.1 33.6 100.0 96.2

MVE 100.0 81.1 27.3 99.6 99.3 68.9 34.9 100.0 100.0

MCD 100.0 87.8 37.1 100.0 99.3 66.4 65.1 100.0 100.0

Rocke96 3.8 0.0 0.0 14.0 0.0 0.0 0.0 0.0 0.0

Hadi94 97.6 1.8 0.2 26.0 34.2 3.8 0.0 0.0 100.0

Average 87.39 35.43 11.22 64.59 66.42 29.19 20.99 16.03 98.02 70.71

Table 5.3 Probability estimate (in per cent) that the Index for MAD vs. effort for method i exceeds
those of method j for event-oriented methods. The last row is the probability of not being the best
option. Results after 450 runs.

bp1 bp7 bp14 crossva05 pcacov Hawkins74 MVE MCD Rocke96 Hadi94

bp1 0.7 0.0 14.0 2.4 0.0 0.0 0.0 100.0 100.0

bp7 99.3 20.9 27.6 42.9 12.7 15.1 48.2 100.0 100.0

bp14 100.0 79.1 45.3 60.2 23.1 37.3 89.6 100.0 100.0

crossva05 86.0 72.4 54.7 59.6 21.8 47.8 78.0 92.0 100.0

pcacov 97.6 57.1 39.8 40.4 17.6 34.0 59.1 100.0 100.0

Hawkins74 100.0 87.3 76.9 78.2 82.4 74.7 84.0 100.0 100.0

MVE 100.0 84.9 62.7 52.2 66.0 25.3 99.1 100.0 100.0

MCD 100.0 51.8 10.4 22.0 40.9 16.0 0.9 100.0 100.0

Rocke96 0.0 0.0 0.0 8.0 0.0 0.0 0.0 0.0 100.0

Hadi94 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Average 75.88 48.14 29.49 31.97 39.38 12.94 23.31 50.89 88 100.00

The bp14 method (based upon ANN) is the best in order to detect errors. However,
it is not the best for detect the larger errors. This make evident the high sensitivity
of the ANN to errors, possibly due to the nonlinear characteristics of the transfer
function. In opposition, the crossvalidation method performs better in terms of
RMSE and MAD rather than the first index. Our proposed method based on PCA
have clearly a role to play. It is interesting to notice that among the Mahalanobis-
distance based methods, the method named Hawkins74 typically outperforms all
standard procedures in terms of all the indices. In addition, it requires only a
fraction of time to calculate its parameters (which depends only on the sample's
covariance matrix). If we consider CPU requirements, Hawkins74 is the best
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option; it balance a fairly good performance in all indices with a comparatively
low demand on system. All considered ANN were heavy to train but rather cheap
to use, while the crossvalidation method is more expensive to use. Numbers about
floating point operations and time required for use each method were also
collected during the experiments, and they are summarized in López et al. 1997.

Table 5.4 Probability estimate (in per cent) that the Index for RMSE vs. effort for method i exceeds
those of method j for event-oriented methods. The last row is the probability of not being the best
option. Results after 450 runs

bp1 bp7 bp14 crossva05 pcacov Hawkins74 MVE MCD Rocke96 Hadi94

bp1 40.4 23.8 16.2 23.8 14.0 9.1 46.7 100.0 100.0

bp7 59.6 41.6 18.0 34.7 15.3 31.3 57.3 100.0 100.0

bp14 76.2 58.4 22.0 38.2 22.7 27.6 87.8 100.0 100.0

crossva05 83.8 82.0 78.0 59.6 26.7 71.6 84.9 100.0 100.0

pcacov 76.2 65.3 61.8 40.4 24.7 52.0 76.4 100.0 100.0

Hawkins74 86.0 84.7 77.3 73.3 75.3 74.2 81.6 100.0 100.0

MVE 90.9 68.7 72.4 28.4 48.0 25.8 99.6 100.0 100.0

MCD 53.3 42.7 12.2 15.1 23.6 18.4 0.4 100.0 100.0

Rocke96 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.4

Hadi94 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6

Average 58.44 49.13 40.79 23.71 33.69 16.40 29.58 59.37 89.29 99.60

The method Rocke96 is based upon a high breakdown estimate of the covariance
matrix as described by Rocke and Woodruff (1996). We found no satisfactory
explanation for its poor performance. One possible explanation is related to the
present limitations of the program. The code (available in statlib) presently cannot
handle events with repeated values. Rocke (1997) suggested to use a slightly
randomly perturbed database, and we added to all readings uniformly distributed
perturbations at most of absolute size 0.01 mm/day (one tenth of the data
resolution). This might significantly affect the estimators. Another factor to
explain the relatively poor behavior is the significant deviation of daily
precipitation records from a gaussian pdf (an argument also raised by Hadi (1997),
a situation not considered in the theory behind these methods.

As mentioned before, most of the work in multivariate outlier detection in statistics
is event rather than datum-oriented. Also, most experiments and results are based
on small datasets (less than 30 events) and a limited number of variables. When
faced with the less manageable thousands of events typically handled in
meteorology we cannot merely detect the event, and there is a need to pinpoint the
outlying value(s) within the event. There are also other practical reasons: in our
case the precipitation information is compiled in books by station, so it is
cumbersome to check routinely all the values for a given event, because it requires
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to handle 10 books at the same time. Fortunately, some of the methods outlined
can be tailored to produce a narrower list of candidates within each event event
(using a procedure first suggested in paper I and described in 4.1.3). The list
includes all Mahalanobis-based methods (Hadi94, Rocke96, Hawkins74, MCD and
MVE) as well as our proposed pcacov.

In table 5.5 we compare the results of the simulations of the Mahalanobis-based
methods with and without our procedure for detecting outliers within the event.
The alternatives were to use only the unlikely readings of the event, or all of them.
It is shown that for Hawkins74, MCD, MVE as well as our proposed pcacov
methods the sensitivity based approach improves the results, while for Hadi94 and
Rocke96 it is only of marginal importance.

Table 5.5 Probability estimate (in per cent) that the three different index improves after adding a
sensitivity analysis to the standard event-oriented method for all Mahalanobis-like oriented methods.
Results after 450 runs.

MVE MCD Hadi94 Rocke96 Hawkins74
Index datum vs. event datum vs. event datum vs. event datum vs. event datum vs. event

Found vs. effort 100.0 100.0 70.7 62.9 95.6

MAD 100.0 100.0 44.4 32.4 100.0

RMSE 100.0 98.0 37.8 9.3 100.0

In table 5.6 the first results for the datum-oriented methods shows (surprisingly!)
that the MVE plus our sensitivity approach outperforms the others in terms of the
number of errors found and is the second in terms of both accuracy as MAD and
RMSE. The MCD method (with similar CPU requirements as MVE) shows a
similar behavior, and it is good for detecting errors. For the accuracy as MAD and
RMSE our well known Hawkins74 is the most effective. Again our proposed
pcacov method show better performance for MAD and RMSE (i.e. larger size
errors) and not so good for the first index.

Table 5.6 Average and probability (in per cent) of been the best of the Index-values after 450 runs for
datum-oriented methods. All indices are dimensionless

Method Found vs. effort Accuracy as MAD Accuracy as RMSE

avg best avg best avg best

MVE 17.0613 96.0 27.5818 0.9 21.7291 3.8

MCD 15.3924 0.9 22.6277 0.0 16.5569 0.0

Hadi94 12.1733 0.0 14.8600 0.0 9.0992 0.0

Rocke96 11.2805 0.0 12.6134 0.0 6.7587 0.0

pcacov 12.1098 0.0 26.6347 2.9 19.2210 2.9

Hawkins74 15.0240 3.1 33.0529 96.2 25.9581 93.3
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The equivalent numbers from table 5.1 cannot be compared with those of table 5.6
for two reasons. The first one is that the best and worst operation curves are
different for event and datum oriented process, despite that they can be represented
in the same axis. They will coincide if and only if there is at most one error per
event. If there is more than one, for the event-oriented case the best option is to
choose as the first candidate the event which contributed most to the error
measure, while for the datum oriented case the option will be to choose the largest
error. The second reason is that, despite their similar name, the datum-oriented
methods are in fact different than those reported. In addition, for table 5.1 all
indices have been integrated up to an effort of 10 per cent, while for table 5.6 we
integrated only up to 2 per cent.

In tables 5.7 to 5.9 the results show that the Mahalanobis-distance based method
using the MVE as a kernel plus the our proposed sensitivity leds to the best results
for merely find the errors, but when error size is taken into account, Hawkins74
performs better for both the accuracy measures considered.

Table 5.7 Probability estimate (in per cent) that the Index for errors found vs. effort for method i
exceeds those of method j for datum-oriented methods. The last row is the probability of not being the
best option. Results after 450 runs

MVE MCD Hadi94 Rocke96 pcacov Hawkins74

MVE 99.1 100.0 100.0 100.0 96.9

MCD 0.9 99.8 100.0 99.8 61.1

Hadi94 0.0 0.2 86.9 48.9 2.4

Rocke96 0.0 0.0 13.1 26.0 0.7

pcacov 0.0 0.2 51.1 74.0 2.0

Hawkins74 3.1 38.9 97.6 99.3 98.0

Average 0.80 27.68 72.32 92.04 74.54 32.62

Table 5.8 Probability estimate (in per cent) that the Index for MAD vs. effort for method i exceeds
those of method j for datum-oriented methods. The last row is the probability of not being the best
option. Results after 450 runs

MVE MCD Hadi94 Rocke96 pcacov Hawkins74

MVE 100.0 100.0 100.0 59.3 1.1

MCD 0.0 100.0 100.0 9.3 0.0

Hadi94 0.0 0.0 96.7 0.0 0.0

Rocke96 0.0 0.0 3.3 0.0 0.0

pcacov 40.7 90.7 100.0 100.0 2.9

Hawkins74 98.9 100.0 100.0 100.0 97.1

Average 27.92 58.14 80.66 99.34 33.14 0.80
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Table 5.9 Probability estimate (in per cent) that the Index for RMSE vs. effort for method i exceeds
those of method j for datum-oriented methods. The last row is the probability of not being the best
option. Results after 450 runs

MVE MCD Hadi94 Rocke96 pcacov Hawkins74

MVE 100.0 100.0 100.0 78.2 4.0

MCD 0.0 100.0 100.0 18.9 0.0

Hadi94 0.0 0.0 94.2 0.4 0.0

Rocke96 0.0 0.0 5.8 0.0 0.0

pcacov 21.8 81.1 99.6 100.0 3.1

Hawkins74 96.0 100.0 100.0 100.0 96.9

Average 23.56 56.22 81.08 98.84 38.88 1.42

Just to give an idea about the variability observed in the indices and other
measures of success, we provide some plots with the observed histograms. In
figure 5.12 three histograms corresponding to three different effort levels are
sketched for the case of the Type I error using the ANN bp14 working as event-
oriented detection tool. It is clear that the type I error increases as soon as the
process goes on, because most of the obvious errors are found in the early stages of
the procedure.
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Figure 5.12 Evolution of the Type I error histogram for different effort levels, for
the ANN bp14 (event-oriented method). Results after 450 simulations
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In figure 5.13 we presented the observed histogram for the three Indexes (found vs.
effort, accuracy as MAD and as RMSE) for the method Hawkins74 + sensitivity
(datum-oriented). The plot can be considered typical for other methods also. In
figure 5.14 the histograms for the RMSE found up to a given effort for the same
method confirm our previous comment that larger errors are more prone to be
found in early stages of the depuration process. All of the results have been
obtained after a Monte Carlo simulation of 450 replications. In order to check that
a stationary situation has been reached we applied the Kolmogorov-Smirnov test
(Koroliuk, 1986) using a confidence level of 5 per cent.
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Figure 5.13 Histogram of the three Index considered after 200 simulations using
the Hawkins74 plus sensitivity method (datum-oriented)

5.1.4 Discussion
There are some interesting points to consider. One is the good performance of the
Hawkins (1974) method both for event-oriented and datum-oriented case. The
difference compared with the MVE is important for the Index for the found vs.
effort curve, but of less importance for those based upon measures of the accuracy
in the case of datum-oriented. Calculating the exact MVE is a heavy task; state-of-
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the-art code will require ages to find it (Hawkins 1997) so we used some well
established, public domain software and limited the random trials. The
requirements for the Hawkins74 code are modest: it requires calculation of the
sample covariance matrix, its eigenvectors and the eigenvalues. After a simple
analysis of the loadings in the eigenvectors the number of scores to retain can be
determined (which in turn is considered the limit between the noisy and structural
information of the cloud) and an open region in the Rw space can be defined for a
given confidence level. Any event represented in Rw space with a point inside the
region is considered outlier-free.
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Figure 5.14 Histogram of the RMSE found up to a given effort, for three different
efforts, using the Hawkins74 method+sensitivity. Results after 200 simulations.

It is interesting to note that, as implemented, the method Hawkins74 has a low
breakdown. The definition of breakdown considers completely arbitrary errors,
and due to the nearly-real error generation mechanism we do not allow them to
exist. Low breakdown imply that large errors might severely affect both the
estimate of the location of the cloud (i.e. its centroid) as well as the covariance
matrix, which has not been noticed for this method. Since the dataset is completely
dominated by zeros, even with gross errors the estimate of the location of the cloud
might be only slightly displaced from its "robust" location (close to the origin in
Rw). However, the same argument do not hold for the estimate of the covariance
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matrix. An open question is why, even using a non robust estimator of the
covariance, the rule for separate the noise from the structure of the cloud in terms
of outliers seems robust.

The use of regions is also in line with procedures like MVE and MCD; but such
regions are bounded in Rw. The method proposed in paper I also considers an open
region in Rw space, but slightly different from the one of Hawkins74; it requires
that the noisy scores belong to prescribed intervals, which can be represented as
some hypercylinder with hyperrectangular cross sections, while Hawkins74's cross
section are hyperellipses.

We proposed the application of ANN to this problem. We are not aware of any
published successful interpretation of the intermediate stimuli within the ANN,
because it is claimed that the non-linearity precludes further interpretation. We
gave arguments to consider our PCA-based method (pcacov) as a particular ANN,
with one hidden  layer of linear neurons, one with rectangular window transfer
functions and the output working as a logical OR operator. For the outlier
detection problem all the ANN considered have been trained with supervised
learning, with the imputation of missing values as the objective. In the general
case, the output of the first hidden layer has been considered as a point in RH

space, being H the number of neurons. Some rule has been proposed in order to
distinguish between the structural and the noisy neurons, the latter being those
which are activated only in unusual cases. For those neurons some intervals for
their outputs have been proposed, and any event which produces a stimulus out of
range for any of the noisy neurons is pointed out as outlying. The best results have
been obtained with a rather simple ANN, using our proposed transfer functions
instead of the traditional tansig. Considering the crude reasoning used the results
are more than satisfactory. ANN are, as MVE and MCD, heavy in CPU
requirements. Brute force has been applied in order to train it, so it is possible that
these preliminary figures can be improved.

Two other high breakdown methods were considered. The one proposed by Hadi
(1994) gave satisfactory results for event-oriented outlier detection in terms of
Type I and II errors (both considered in the errors found vs. effort index). Such
performance appears to be independent to the size of the errors, as arises from its
poor performance when considering accuracy measures (i.e. MAD vs. effort and
RMSE vs. effort indices). The code from Rocke and Woodruff (1996)
outperformed Hadi's method in terms of accuracy, but is worse in terms of the first
index. There might be a number of reasons for this: a) the code presently did not
handle events with exactly the same readings, and we needed to perturb the dataset
slightly in order to proceed. Another reason (mentioned independently by Hadi and
Rocke after personal communications) is that both methods assume multivariate
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gaussian pdf. One possible explanation is that these methods might be more
sensitive to deviations from a gaussian pdf than the other procedures considered.

All procedures degrade significantly when dealing with the datum-oriented
problem. For those methods based upon Mahalanobis-like distance we devised a
sensitivity approach which produced better results. However, the compound
method is no longer affine equivariant, which implies that after performing a linear
transformation of the dataset the candidates might be different.

The problem of generating random realizations of the dataset with feasible outliers
is not a minor one. We analyzed the outputs of the original paper correction
process, being the errors detected using the pcacov method (all described in paper
I). We carried out a new, independent re-typing for one year of data in order to
have a different error detection and correction mechanism. It cannot be assured
that the resulting dataset for that year is error free, but it is felt that it is very close.
The statistical properties of the errors observed in such year were similar to those
of the overall period. After a qualitative analysis of the errors, some simple error-
generation mechanism were postulated, and we attempted to model errors using it.
The agreement with errors observed in practice was good, as reported in paper IX.
The pcacov procedure was successfully applied also to surface wind (paper VII),
and surface presure with comparable results.

5.1.5 Conclusions
We have conducted an extensive experiment, the results of which supersede our
previous results presented in paper I. We have included the state-of-the-art
algorithms for the event-oriented multivariate outlier detection problem, others not
longer considered after publication more than 20 years ago, and suggested new
ones. We presented the results by using concepts of distances of functions, which
we believe is a major improvement over our previous results, and appropriate to
handle large datasets as the one considered.

For practical reasons, most of the literature in statistics concentrates on small
datasets, of a few dozens of events and with only few variables. One possible
reason is editorial. Other is the heavy CPU requirements for medium to large size
datasets which precludes extensive analysis. The work of Rocke and Woodruff
(1996) is an exception of that rule. We are not aware of any paper published in the
meteorological literature about an experiment like the one reported here. Large
meteorological datasets are checked with procedures relying either on expert rules
and/or using auxiliary mathematical models, being both variable-dependent. In
additon, they require substantial CPU resources and independent data.
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5.2 Missing value problem in tabular data: the daily precipitation
example

5.2.1 Experiment strategy
In order to make an objective comparison among different methods we decided to
simulate randomly located missing values, and apply the different proposed
methods to fill the gaps. In order to assess whether or not the missing value pattern
depends on the observed variables we applied the test for MCAR (Missing
Completely At Random) described by Little (1988). We ran the test both with the
original and the simulated holes, and in both cases the missing value pattern is
independent from the observed as well as the unobserved values.

After applying the imputation methods some statistics are calculated attempting to
measure the discrepancies among the imputated and the original value. In paper II
we tested four methods, namely: nearest neighbor, ordinary time interpolation and
two new based on PCA analysis and they were applied to one dataset with
randomly generated missing values. The best results were obtained with one of the
new methods.

Further research made evident the need for generate multiple realizations of the
datasets with missing values in order to derive statistically valid conclusions. The
overall process was processed by a Monte Carlo procedure. Also we include in the
test many other methods, both linear and non linear, in order to make a more
comprehensive comparison. All has been accomplished within a research project
(to be described in full in López et al. 1997) and  partially reported here; paper III
can be regarded as a progress report on the topic.

5.2.2 Results
The results obtained after 250 simulations(1) are summarized in tables 5.10 and
5.11. It should be noticed that only slightly improved results have been obtained by
those methods which use information from two days (bp12, bp17, gandin4,
gandin6 and gandin_diario, etc.). Among those which use only information of a
single day, the best results are obtained by the minimum 95 percentile, closely
followed by the Ordinary Least Squares method.

In 4.1.5 we introduced the ANN for quality control, but the different architectures
used have not been presented. They are summarized in Table 5.12 where the prefix
"bp" stands for backpropagation network. Under the heading "layers" the type and

                                                     
1 The figures differ to some extent from those presented in the paper, because they were
derived using an intermediate version of the dataset (prior finishing the real error´s
correction task)
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number of neurons is presented. Sinh and Asinh stands for the hyperbolic sin and
its inverse, and the other types are denoted according to Demuth and Beale (1994).

Table 5.10 Preliminary results in mm/day for the different imputation methods which use and predict
data for the same day. The expected value and the 75, 85 and 95 percentile of the distribution of the
absolute error, and its RMS are presented and compared. A qualitative indication of the required
resources is provided. In connection with Table 5.11 the five best results for each estimator have been
higlighted in bold.

Algorithm
Average 75 per

cent
85 per
cent

95 per
cent

RMSE Resources

mm/day mm/day mm/day mm/day mm/day High Low
bp1 2.45 1.88 4.20 12.17 6.54 *
bp2 2.63 2.23 4.35 12.50 6.67 *
bp7 2.74 1.83 3.57 12.23 7.47 *
bp10 2.44 1.40 4.14 13.52 7.16 *
bp14 2.37 1.55 3.99 12.27 6.53 *
bp22 3.29 2.01 5.80 18.38 9.92 *
bp23 2.81 0.44 3.09 18.08 9.83 *
cressman 2.21 1.18 3.88 12.53 6.62 *
daymean 2.42 1.61 4.42 13.28 6.92 *
expert's distance 2.44 0.00 3.85 15.25 8.02 *
gandin 2.25 1.21 3.76 12.03 6.35 *
gandin20 2.28 1.29 3.78 11.96 6.34 *
gandin3a 2.42 1.38 4.12 13.51 7.16 *
gandin5 2.11 1.11 3.72 12.05 6.35 *
gandin7 1.97 0.42 2.89 11.90 6.52 *
gandintrans 2.82 2.37 4.60 13.13 7.51 *
geometrical distance 2.41 0.00 3.81 15.03 7.94 *
hotdeck 2.77 0.40 4.37 16.84 8.43 *
kulback 2.83 0.06 4.73 17.62 9.06 *
lms 2.19 1.27 3.90 12.22 6.51 *
lts 2.06 0.89 3.31 11.88 6.50 *
POPS 2.37 1.35 3.80 12.03 6.42 *
least squares 2.10 0.52 3.63 11.96 6.33 *
least 95 percentile 2.09 0.60 3.68 11.81 6.29 *
least average 2.03 0.50 3.29 11.94 6.44 *
modal value 2.95 0.00 2.79 20.24 10.41 *
station average 4.95 3.06 3.24 17.28 9.99 *

The number of inputs are the 9 readings from the current day, except for bp12 and
bp17 (which in addition uses 10 readings from the day before) and bp11, which
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only uses the readings from the day before. The results for the ANN were
somewhat poor. Among others, the reasons might be: a) inapropriate architecture
and/or training procedures b) the training algorithm is directed towards minimizing
the sum of squares; a maximum likelihood approach would have been more
suitable and c) the precipitation field might not be smooth enough.

It should be stressed that, since the database used in paper III had many errors, it is
possible that the methods suggest suitable values and the outliers affect some of
the considered statistics. This is unlikely to occur for the 85, 95, etc. percentile,
and that might be an explanation of the different ranking observed for the ANN
denoted bp7 in the paper and in the calculations here presented. The present results
were based on a slightly different dataset because we continued correcting errors
after those preliminary calculations.

Table 5.11 Preliminary results in mm/day for the different imputation methods. The table summarizes
methods which use data from the same day, the day before or both. The expected value and the 75, 85
and 95 percentile of the distribution of the absolute error, and its RMS are presented and compared. A
qualitative indication of the required resources is also provided. In connection with Table 5.10 the
five best results for each estimator have been higlighted in bold.

Algorithm
Average 75 per

cent
85 per
cent

95 per
cent

RMSE Resources

mm/day mm/day mm/day mm/day mm/day High Low
bp11 4.61 4.15 6.75 17.13 9.60 *
bp12 2.75 2.45 4.51 12.25 6.82 *
bp17 2.59 2.12 4.25 12.27 6.62 *
gandin4 2.22 1.55 3.97 11.97 6.30 *
gandin6 2.35 1.66 4.06 12.03 6.31 *

The method denoted as POPS corresponds to the one proposed in paper II. It is
one of the best options among the ones which use only data from the same day. It
also requires modest CPU resources. The results from this simulation support only
partially those discussed in paper II: for the case of daily precipitation records
POPS outperformed the methods based on geometrical distance, but not those of
Optimum Interpolation (gandin and gandin20).

5.2.3 Discussion
The results confirm that, despite the different methods used, the daily precipitation
missing value problem is a very difficult one. The relative differences between the
best values obtained and a reference method like nearest neighbor are low: the
RMSE drops 20.6 per cent, the 95 percentile 20.9 per cent and the MAD 18.3 per
cent.
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All commonly used linear methods have been included in the test. For each
measure of success (i.e. RMSE, p95 or MAD) there are specific choices of the
coefficients oriented to make a linear combination the best. All other linear method
should perform worse. In any case, even the "best-among-linear" methods have
coefficients determined using only a fraction of the dataset with no missing values.
However they were later applied to the whole population. Slight differences
between both sets might explain why the Ordinary Least Squares is not optimal in
terms of RMSE. For the Least 95 percentile and Least Average method we have
solved nonlinear optimization problems and the algorithms might have been
trapped in local minima, or the maximum number of iterations has been defined
too low.

Table 5.12 Brief information about the architecture of the different artificial neural networks used in
the missing value problem for the precipitation. f(precipitation) denotes the transformation which
renders a nearly uniform probability density function. t and t-dt denote values from the day and the
day before. ANN bp22 and bp23 have a variable number of neurons in the hidden layer. The input in
all cases can be regarded as being scaled by its temporal average in order to make the weights and
bias dimensionless

Our
coded Layers Input variable (**)

Using data
from days

name t t-dt
bp1 Tansig(6)/Purelin(1) precipitation X
bp2 Tansig(6)/Purelin(1) precipitation - daily mean X
bp7 Purelin(8)/Logsig(4)/Logsig(1) f(precipitation) X

bp10 Tansig(6)/Purelin(1) precipitation - first guess X
bp11 Tansig(6)/Purelin(1) precipitation X
bp22 Tansig(*)/Purelin(1) precipitation X
bp23 Tansig(*)/Purelin(1) sqrt(precipitation) X
bp14 Sinh(4)/Asinh(1) precipitation X
bp12 Tansig(6)/Purelin(1) precipitation X X
bp17 Sinh(4)/Asinh(1) precipitation X X

In theory, Ordinary Least Squares and gandin20 should render exactly the same
results if all coefficients were determined using the same data. This is not the case,
because we used all the data available for the gandin20 procedure, and limited
ourselves to events with no missing values for the OLS.

The high breakdown methods LTS and LMS produced results similar to those of
OLS (a low breakdown one). We conclude that reason is that the dataset is almost
free from gross errors. It is interesting to notice that our method POPS produced
better results in terms of RMSE and is comparable in this respect to least 95
percentile, despite its very limited CPU requirements.
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Once all the linear methods have been compared we should consider the non-linear
ones. The author is not aware of applications of non linear methods in the field of
meteorology, but they certainly exist in other fields. The ANN approach looks
promising, despite its high CPU requirements. The somewhat different results
obtained in the paper deserve some discussion. One explanation is that we trained
the ANN using the original data (prior to manual correction) and tables 5.10 and
5.11 were derived using a corrected dataset. The figures were in all cases lower
than those presented in paper III, but the ANN were more (unfortunately!) robust.
It should be stressed that once the ANN is trained, its operational cost is very low.
The training itself is a complex task. Despite we have used state-of-the-art
software for the training, it easily get stuck in local minima failing to go to a global
one. This has been proved while analyzing the effect of increasing the number of
neurons in the hidden layer. The ANN should fit the data better but, in some cases,
the training algorithm failed to do so. That poses a question mark about how much
the already obtained results could be improved by using better training procedures.
Some other posibilities are: a) design different ANN architectures, like non-fully
connected nets; b) change the training routine in order to minimize other objective
functions than RMSE. This might provide high breakdown abilities to the training
similar to those described for LTS, LMS, etc.; c) use different neurons which
might change weights with time.

5.2.5 Conclusions
Commonly applied methods based upon mere substitution by a neighbor or by a
constant gave poor results. The least 95 percentile method wast (unexpectedly)
better than optimum interpolation (gandin20) and ordinary least squares method in
terms of RMSE, probably due to the different policy adopted for the original
missing values existing. The ANN methods have been trained in order to minimize
the RMSE, but the training was performed with early (contaminated) versions of
the dataset. The training algorithms have shown problems to escape from local
minima, leading to suboptimal results. Better training strategies are needed.

5.3 Missing value problem in tabular data: the hourly surface
wind example
The methods used for this experiment were well described in 4.2. Some of them
should not be used due to some peculiarities of the wind data. For instance the 0
value is no longer the most probable value, and events with all zero wind are
unlikely. Another point is that wind data is not a scalar, but a vector. All the
methods tested by us work with homogeneous data, thus direction and modulus
cannot be straightforward combined in the same table. Therefore, we transform the
wind data to its components along the E-W and N-S directions, with appropriate
sign. This might make a difference with the precipitation data case.
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Another point is that some methods which use the temporal correlation of the
phenomena might be useful in this case, as opposed to the case of precipitation
data. Among others, the TIPS (Time Interpolation of Principal Scores) method
may render good results. The method has been proposed for the first time in paper
II.

5.3.1 Results
In paper VIII we reported the results of the application of the methods for
systematic and random location of missing values. Most of the dataset consists of
hourly values. However, some data were only acquired three times a day, which
motivated the use of methods for both systematic and random location of missing
values. In table 5.13 the performance of five methods is shown; the fifth method is
simply time interpolation of the individual station records, which results in a
particular case of the TIPS method (the notation 1:10 has been used to consider as
noisy all scores from Principal Component 1 to 10). Our proposed method TIPS
gave the best results, while the standard Gandin's one falls somewhat below.
Except for the case of few interpolated terms, the other results suggest that most of
the information is contained in the first three PC as it was suggested in the paper.
There we attempted to validate these results, removing values at random and
applying the same methods again; the results seem to support the findings in table
5.13. The TIPS scheme outperforms the others, but the number of interpolated
terms is somewhat higher. The good performance of the simple standard
interpolation scheme suggest that the hourly wind field is oversampled in time, at
least in Uruguay.

To test this, we extended our dataset to 6 years (but subsampled to 8 readings per
day), and performed a Monte Carlo simulation in order to obtain more reliable
results. In table 5.14a and 5.14b the preliminary results are shown. We have also
included ANN methods, as well as the best linear estimators for sum of squares,
MAD and 95 percentile. As before, we considered those methods that rely upon
information from more than one event in a separate table. The mere time series
interpolation has been included as a separate method, and two versions of our
proposed TIPS are considered, depending on whether or not the individual
variables are normalized to zero mean and unitary standard deviation. The number
of uncontrolled scores was defined according to Hawkins (1974).
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Table 5.13 RMSE and the mean of the error (not MAD!) of the difference between measured value
and calculated value upon imputation assuming no missing values in Melo and readings only at 8, 14
and 20 hours local time for the other 4 NWS stations. Data from the year 1990-91. In boldface the
most significant outputs. (taken from paper VIII)

TIPS POPS
Interpolated

terms
RMSE
(m/s)

Mean
(m/s)

Penalized
terms

RMSE
(m/s)

Mean
(m/s)

 1:10 2.06 0.09625 10:10 3.41 0.10094
 1:9 2.06 0.09669  9:10 3.41 0.10274
 1:8 2.05 0.09613  8:10 3.39 0.10452
 1:7 2.06 0.09671  7:10 3.28 0.06608
 1:6 2.05 0.08151  6:10 3.26 0.06191
 1:5 2.06 0.09585  5:10 3.23 0.04485
 1:4 2.05 0.09541  4:10 3.21 0.01852
 1:3 2.05 0.08414  3:10 3.40 0.01686
 1:2 2.11 0.08763  2:10 2.97 0.00177
 1:1 2.73 0.07331  1:10 2.84 0.05171

Results obtained assigning the mean value 3.24  0.28839
Results obtained with Gandin´s method 2.84  0.05353

Table 5.14a Preliminary results in m/s for the different imputation methods who uses and predicts
data for the same day. The expected value and the median, 75, 85 and 95 percentile of the distribution
of the absolute error, and its RMS are presented and compared. In bold the six best results for each
estimator.

Algorithm MAD Median 75 per
cent

85 per
cent

95 per
cent

RMSE

m/s m/s m/s m/s m/s m/s

bp1 2.26 1.42 2.94 4.17 7.37 3.50
bp14 2.36 1.45 3.03 4.38 8.02 3.68
gandin 2.53 1.64 3.28 4.66 8.28 3.76
gandin20 2.52 1.64 3.27 4.65 8.27 3.75
gandin5 2.52 1.57 3.26 4.72 8.52 3.85
POPS 3.23 1.84 3.93 5.85 11.17 6.61
ordinary least squares 2.52 1.56 3.27 4.74 8.53 3.84
least 95 percentile 2.52 1.57 3.26 4.72 8.50 3.84
least average 2.46 1.45 3.14 4.64 8.76 3.89
staverage 3.24 2.36 4.43 5.74 10.21 4.53
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5.3.2 Discussion
We have applied a number of alternative methods to a surface wind dataset. Some
of these methods have also been sucessfully applied to a precipitation dataset. The
different temporal properties of the dataset motivate the use of some multivariate
time interpolation methods like the one proposed in paper II and tested in paper
VIII.

ANN have also been tested, but we arbitrarily consider the same architecture used
for the precipitation example. Comparison with other architecture design as well as
to extend training time was unfeasible due to the extremely heavy CPU time
requirements, a fact related with the size of the testing set as well as the number of
input neurons. The set of "optimum" methods in terms of the error measure
(RMSE, MAD, p95, etc.) has parameters which were difficult to calculate. This
was due to the increased size of the unknown vector w and because we used the
same limits for the iterations as for the daily precipitation. Future efforts will
include the use of high breakdown regression methods (LTS, LMS, etc).

Table 5.14b Preliminary results in m/s for the different imputation methods who uses data from other
than the predicted day. The expected value and the median, 75, 85 and 95 percentile of the
distribution of the absolute error, and its RMS are presented and compared. In bold the six best
results for each estimator.

Algorithm MAD Median 75 per
cent

85 per
cent

95 per
cent

RMSE

m/s m/s m/s m/s m/s m/s

bp12 2.26 1.40 2.90 4.15 7.52 3.48
gandin4 2.22 1.34 2.81 4.12 7.66 3.47
gandin6 2.24 1.37 2.84 4.13 7.60 3.45
time_interp 2.26 1.26 2.81 4.35 8.28 3.66
TIPS (Correlation) 2.52 1.50 3.14 4.68 8.84 3.91
TIPS (Covariance) 2.67 1.66 3.44 4.97 8.92 4.03

5.3.3 Conclusions
The results reported here can be divided in two parts: those originating from early
work with the dataset, using a limited number of methods for a single sample of
missing values, and those obtained after a Monte Carlo simulation. In the early
work we also analyzed the situation of missing values not at random, and
concluded that temporal correlation should be taken into account. This result is
supported by the results reported from recent studies. The traditional methods of
Optimum Interpolation performed well in the Monte Carlo experiment, and taking
this into consideration some preliminary conclusions can be drawn:
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• in the case of the wind data, the time series structure is very important,
even considering only values every three hours.

• the POPS method, based upon minimizing some sort of distance to the
center of the cloud, gave poor results.

•  the traditional OI considered in paper VIII (denoted as gandin20 in
table 5.14) is now better than TIPS in terms of the RMSE, but is worse
in terms of the robust statistics Median of the absolute error and MAD.
One possible explanation is that the population might be still affected
by some remaining outliers, which make results in terms of RMSE very
sensitive, but not for the Median or the MAD.

• the weights for the least average, least squares and least 95 percentile
methods (which are chosen in order to minimize the MAD, RMSE and
p95) might also have been affected by poor choice of the parameters of
the solving routine. We have used the same number of iterations, etc. as
applied to the precipitation data, and it is clear that some problems
arise.

• the ANN performed well, despite that they have been trained using
early versions of the dataset (prior and during the correction task) with
some outliers included. However, the training time is significantly
higher than the time required for daily precipitation, and the observed
improvements in the statistics are only of minor significance. Further
effort towards better training methods are required. Our primary goal
was here to introduce this new technique for the case of meteorological
variables.

• use of the historical mean (STAtion aVERAGE) only renders results
clearly worse than the other options

5.4 Quality control of raster datasets: the DEM example

5.4.1 Experimental strategy
Again we have applied a Monte Carlo procedure for testing the method with
synthetic errors, which were modelled uncorrelated in space or weakly correlated
affecting only 1 and 9 pixels in each case. Both cases have been discussed in paper
IV. The measure of success were mostly the Type I error, and only limited results
of the Type II error were reported for the larger errors. Both of them were
presented in terms of the effort required for the editing.

In order to gain better insight into the properties of the method, we applied it to a
DEM assuming that a second available DEM of higher accuracy is error free. In
this case the measure of success was either the RMSE of the errors found or the
RMSE of the remaining errors. Neither the Type I nor Type II error as defined in
paper IV could  be considered, because the first is identically zero, while the
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second decreases linearly with the effort. In both papers a "perfect inspector"
hypothesis was assumed for the correction strategies. Here we will present a
somewhat more realistic assumption: the inspector will correct a given elevation
only once, but he does not have access to the correct elevation. The correction will
be done using an interpolated value from the surrounding elevations.

5.4.2 Results for spike-like errors
We will seed the DEM with known errors, and apply the procedure to detect them.
We will denote as candidates or guessed errors the set of coordinates (i,j)
suggested by any single step of the procedure. The true errors are those candidates
that also belong to the known errors set. Fig. 5.15a shows the average Type I error
evolution up to 5 per cent depuration effort. The y-axis shows the evolution of the
type I error calculated as the number of points misclassified as errors compared
with the number of candidates, averaged after 50 replications of the random error
set. The x-axis shows the effort, defined as the fraction of the dataset already
revised. As before, an effort of 100 per cent implies that all possible points have
been checked.
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Figure 5.15 Evolution of the Type I error (a) and Type I error (b), as a function of
the effort, derived after 50 experiments using spike-like errors. The dotted line in

(a) indicated the expected Type I error for a completely random choice. (from
paper IV)
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We interpolated our results (obtained on a per-step basis) to the prescribed effort
values using splines. Each polyline corresponds to different strip width  for a fixed
number of uncontrolled scores. For w=10, 15 and 25 we left uncontrolled 6 scores.
The number 6 can be considered as the limit between the noisy and physically
meaningfull scores. In the paper we provide some guidance for its estimation.
From this result it is clear that in the first 1 per cent effort the measured Type I
error is low, being below 10 per cent for the lower values of w. The dashed
horizontal line corresponds to the limit of 95 per cent. Obtaining an error rate over
that level is worse than to pick the points at random, since that level is the noise
initially seeded into the DEM. The limit was shown being constant, despite the
fact that such probability grows slightly as soon as an increasing number of errors
has been found. For 2 per cent effort and higher somewhat poorer results may be
achieved, but certainly better than chance. But, good results in the type I error is
not the whole picture. From a DEM producer's point of view, what is more
important is to minimize errors still in the DEM, so the type II error is more
representative. Notice that the type I error in fig. 5.15a only counts the successes
and the failures, but does not reflect the relative importance of the errors. The
absolute value of the error is not considered in the experiment.

We limit our Type II error calculations to errors of absolute size exactly 4m,
because the other cases are less prone to be located and its type II error will be
unaffected. In fig. 5.15b the evolution of the Type II error is presented.

Notice that the best results are obtained for w=25, but for w=15 the results are
similar. The initial Type II error is 1.21 per cent in all cases, so it can be reduced
to 0.64 with only 1 per cent effort. The same behavior was noticed for other
combinations of w and number of uncontrolled scores.

5.4.3 Results for pyramid-like errors
Since pyramid errors (already presented in 4.3.2 and illustrated in fig. 4.8) are
spatially autocorrelated, the chance of locating them is lower. The reason for this
is that our methods are designed to mainly deal with independent errors in space.
We should mention some other details regarding the "accounting" procedure. In
figure 4.7 we presented the simplest possibility: every row-wise candidate being
also a column-wise candidate is evaluated. This might not represent well the
behavior of the operator when faced to spatially correlated errors, because he will
analyze also the neighborhood. We will consider as a candidate not only any point
which is both a row-wise and column-wise candidate, but also its immediate
neighbors. So for every candidate, nine points are checked. However, due to
computational simplicity no effort has been made to take into account the overlap
of candidates  for the same step (i.e. if both a point and its neighbor are selected,
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there are points that count twice). So the results are somewhat pessimistic in terms
of the type I error.

The behavior of the detection procedure (observed in figs. 5.16a and 5.16b) is very
similar that observed for the spike-like error shape model, although the numbers
are more pessimistic. Up to the first 1 per cent effort, the algorithm renders an
acceptable Type I error; however, the error grows slightly with the effort. The
analysis of  the Type II error should take into account that the initial value in this
case is 0.81 per cent, while in fig. 5.15b it was 1.21. This implies that the
procedure reduces the Type II error at most 79 per cent with only 1 per cent effort.
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Figure 5.16 Evolution of the Type I error (a) and Type I error (b), as a function of
the effort, derived after 50 experiments using pyramid-like errors. The dotted line
in (a) indicated the expected Type I error for a completely random choice. (from

paper IV)

As expected for the pyramid-shaped error in most of the cases the 1 per cent effort
still renders a low type I error. In terms of the type II error, about 21 per cent of the
worst errors can certainly be located with only 1 per cent effort of the procedure.
This number can rise to 49 per cent with 5 per cent effort. The best results are
similar to the ones obtained when dealing with isolated errors, being w=25 the best
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option. As presented in paper IV, the best number of uncontrolled scores is again
between 5 and 10, similar to those for the spike-shaped errors.

The conclusion is that the method proves to be effective in identifying a significant
amount (up to one third) of the large errors with limited effort. For better Type I
results, a smaller w is suggested, while for Type II optimization a somewhat
greater w might be the option, irrespective of the shape model assumed. The
number of uncontrolled scores is between 5 and 10 in any case. No special pattern
of the location of the errors found was noticed. Such aspect have been investigated
in the case of real errors as presented below.

5.4.4 Results for real errors
In this case the previously used measures of success are useless. For the simulated
case we declare as error everything which differs from the ground truth, and in
practice nearly all points of the DEM and its "ground truth" are different. An
immediate consequence is that any choice of the locations will succeed in pointing
a "true" error, so the Type I error will be identically zero, and the Type II error will
decrease linearly with the effort. This preclude to compare results with those
presented before, so a different measure of success is required. The most
interesting one will should take into account the evolution of the elevation
accuracy in terms of the editing effort. Normally, the accuracy of a DEM is not
directly known to the user; it can be estimated through sampling in isolated points
if more precise measurements are available.

For practical purposes it might be more meaningful to use statistics from the
distribution of the errors detected while working with the dataset. For example, its
RMS will measure the size of the errors detected by the method up to a given
effort. We disregard the RMSE found for each step, because its variability
precludes for any simple analysis.  Figure 5.17 shows the evolution of the accuracy
measured in terms of the RMSE for a strip width of w=8.

The boundaries of the dashed regions at the top and the bottom show the loci for
worst and best possible operation. The former is obtained by considering first the
smaller errors, while the latter corresponds to selecting the larger errors first.
Under our assumptions both lines should meet at 0 and at 100 per cent. Even
though both limits are hardly of practical interest (because it requires knowing the
errors in advance) they give a better understanding of the process. Lines with the -
o- symbol are for the Felicísimo (1994) method, while the others are for different
controlled scores using our proposed method. Figure 5.17a show more detail in the
low effort region, while figure 5.17b has been extended up to 15 per cent effort.  It
is clear that the Felicísimo's method outperforms ours in the long run, but at the
lower effort region they behave similar. This region is of primary importance for



5 Experimental setup and results

78

two reasons. Firstly, because most users will not want to go too much further. End
users neither have extra data nor the proper tools. They will at most correct the
worst errors. DEM producers might go back and make new measurements, but this
might become an expensive task if the new values do not differ substantially from
the old ones. Secondly, according to Torlegård et al. (1986) blunders typically
account for less than 3 per cent of the dataset, 0.5 per cent being a median value.
Since the methods have been designed for finding gross errors only it is
unadvisable to continue the task over such limit.
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Figure 5.17 Evolution of the accuracy (measured by the RMSE in m) vs. the effort
for the methods of Felicísimo (1994) (with the -o- symbol) and the one proposed in

paper IV. Results for w=8. Different lines correspond to different number of
uncontrolled scores. Left plot shows details of the right one. (from paper V)

It should be noticed that none of the methods shows at 0 per cent effort a slope
comparable to the best possible one, which implies that the most important errors
are not found in the early stages of the procedure. We also tested some other
options for the width parameter w which have not been presented here. The overall
result is considered as poor (compared with the conceptual simplicity of
Felicísimo's method) and the reason was found to be the "high" spatial correlation
of errors. After making the necessary changes (see the paper for further details) to
the software described in 4.4.3 we obtained the results presented in figure 5.18.
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For this calculation, we subdivided the DEM in regions of width 72 rows, building
the strips taking every 9th row within the region. Thus the "strip" width w is again
8. Notice that we skip nearly 10 rows, as suggested by the range of the variogram.
The plot of the Felicísimo's method is again included for comparison.

0 1 2 3
10.0

10.2

10.4

10.6

10.8

11.0

11.2

11.4

11.6

11.8

12.0

Effort [%]

R
M

S
E

 [m
]

- : 0
--: 2
: : 4

Figure 5.18 Evolution of the accuracy (measured by the RMSE in m) vs. the effort
for the methods of Felicísimo (1994) (with the -o- symbol) and the modified one.
Results choosing every 9th row. Different lines correspond to different number of

uncontrolled scores. Left plot shows details of the right one.(from paper V)

The most striking fact is the difference in the slope at 0 per cent effort, which is
markedly closer to the best one. This implies that larger errors are found earlier,
leading to a faster decrease of the RMSE. However, once those important errors
are removed, the remaining errors are difficult to locate, and the simpler
Felicísimo's method is better if the effort exceeds 1.75 per cent.

Neither the end user nor the data producer can draw a plot like fig. 5.18. Instead
they can calculate RMS values of the errors already found like those presented in
figure 5.19. The x-coordinate is the effort defined as before, while the y-coordinate
is the RMSE of the population already corrected. The 0 per cent value is not
defined. The figure illustrates the Felicísimo (1994) approach and the modified
method of paper IV. It is clear that the Felicísimo method finds larger errors in the
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"long" run (over 1.75 per cent effort) but the modified method is better for lower
effort values. Three lines with different number of uncontrolled scores are shown,
and it is clear that the one of 0 value is very similar to the one of 2, except very
close to the 0.0 per cent effort. The number 2 for the uncontrolled scores were
suggested by the empirical rule proposed in paper  IV.
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Figure 5.19 Evolution of the RMSE found of the cumulated errors up to a given
effort vs. the effort, for the methods of Felicísimo (1994) (with the -o- symbol) and
the modified method of paper V. Results choosing every 9th row, resulting in strips

of w=8. Left plot shows details (from paper V)

We also analyzed the spatial location of the errors found when a substantial effort
has been done. Figure 5.20 shows the places where the Felicísimo's method
pointed out the errors up to the 3 per cent effort (in black), and up to 15 per cent
effort (in gray). We noticed that most of them are concentrated along significant
features of the DEM where slope changes abruptly, namely breaklines. In such
points the second order polynomial is not a good approximation of the surface, so
differences larger than expected arise. Once early candidate values are corrected,
such differences are even more evident. Since we do not allow that any point be
corrected twice, its nearest neighbors become candidates. The "clear" image
corresponds to early detected points along breaklines, plus its nearest neighbors;
there are almost no isolated points. Figure 5.21 shows the pattern for the modified
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Figure 5.20 Binary map of the errors located up to the 15 per cent effort with the
method of Felicísimo (1994). Black areas are for the suggested locations up to the

3 per cent effort; gray ones are obtained after 15 per cent effort

Figure 5.21 Binary map of the errors located up to the 15 per cent effort with the
modified method of paper IV. Black areas are for the suggested locations up to the

3 per cent effort; gray ones are obtained after 15 per cent effort
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method of paper IV. The image looks "noisy" since points are randomly located,
and neighborhood is completely ignored.

5.4.5 Results using a "non perfect inspector" assumption
In figures 5.22 and 5.23  we show new results obtained after removing the "perfect
inspector" assumption. Under the new hypothesis, the inspector uses an
interpolation procedure to correct those values which are believed to be wrong.
The procedure  uses the elevations in the neighborhood and finds a best fit using
second order polynomials (as described for the Felicísimo 1994 method). After an
elevation has been corrected, it will not be modified again. If errors are located in
adjacent pixels, they will mutually interact masking each other and if the
procedure detects one of them, the inspector will produce a modified but not
correct interpolated surface. In this case there is no best and worst operation line,
because the procedure might in principle introduce new and worse errors in the
dataset. Both figures 5.24 and 5.25  were calculated as before using the high
accuracy DEM as a reference.
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Figure 5.22 Evolution of the accuracy (measured by the RMSE in m) vs. the effort
for the method of Felicísimo (1994) (with the -o- symbol) and the modified method.
The perfect inspector hypothesis has been removed.  Results are shown choosing

every 9th row. Left plot shows details of the right one.
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The Felicísimo method shows lower performance, mostly due to its preference to
pinpoint clusters of elevations. Once an error is imputated using its neighbors it
will become a "corrected" point; and if the neighboors are wrong, it will be so.
Few improvements in any estimate of accuracy can arise in such case. Our
proposed procedure also shows a degraded performance, but to a lesser extent.
This can be easily explained analyzing the pattern of candidate locations (fig. 5.21)
because our candidates are typically isolated; once imputated (maybe with also
wrong values) the next candidate is usually not close to the previous one, and the
error correction procedure is not trapped in the neighborhood of few candidates.
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Figure 5.23 Evolution of the RMSE found of the cumulated errors up to a given
effort vs. the effort, after removing the hypothesis of the perfect inspector. Plots
are for the methods of Felicísimo (1994) (with the -o- symbol) and the modified

method of paper V. Results choosing every 9th row. Left plot shows details of the
right one

5.4.6 Discussion
The results show that a process can be devised to detect an important part of the
larger random errors in a raster dataset. Further actions strongly depend on which
type of application the user is involved in. In a production environment, some
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action can be taken to check the identified isolated values. In photogrammetric
measurements these checks can be done before removing the stereo pair from the
instrument. The goal here is to improve the accuracy while the effort is less
crucial.

The end user is left alone in most cases, because he may not be able to go to the
original data sources. Therefore, he will be interested in "evident" errors, i.e. those
of relevant size (which are typically few). The results for the synthetic error
experiment show that it can be assumed that up to the 1 per cent effort, most
candidates are errors. The associated Type I error can be less than 10 per cent, as
has been shown for isolated errors, and around 25 per cent for pyramid-like errors
with proper choice of the parameters. The Type II error was defined in the first
experiment only for errors of absolute size 4 m; it can be reduced 64 per cent (for
isolated errors) and 21 per cent (for pyramid-like errors) checking only 1 per cent
of the dataset. It is clear that the overall performance decreases as long as the
spatial correlation increases.

Every step in the procedure creates a candidate set. Once this set is obtained, any
standard procedure can be used to replace the outliers with suitable values. As long
as the dataset is being corrected progressively, the risk that a point classified as an
error is correct grows, and in practice some caution should be taken.

The test area used in paper IV is considered to be a difficult one. Rough terrain,
narrow channels, steep hills, and small water areas are typical, all of them may
easily mask errors. The DEM itself should not be considered as free of errors, and
it has been used "as is". Lack of information about acuraccy is common to most
users of this kind of data, so it is believed that this will not limit the range of
applications of the ideas presented.

In paper V we suggested a modification to the method described in paper IV, and
carried out a comparative test for both methods and the one suggested by
Felicísimo (1994) using real data with known errors. The last method is very
simple, but no results using either synthetic or real errors were previously reported.
One interesting fact is that this method is parameter free. However, it has been
derived under some hypotheses that do not apply to the DEM used in this study. It
relies on a low order polynomial interpolator using only nearest neighbors. We
think that it will work better in smooth terrain. The use of low order polynomials
tends to pinpoint errors which are close to each other, a situation which is more
likely to occur with systematic errors. For further work we suggest considering the
use of a local Universal Kriging interpolator (Samper and Carrera 1990) using
more neighbors.  This is in agreement with the findings of Giles and Franklin
(1996) who also used a window with 11 by 11 elements. The Kriging approach
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also allows to model different spatial correlation scales typical for inhomogeneous
terrain.

In order to handle the spatial correlation of errors, we have proposed a
modification of our method first presented in paper IV. We form the strips by
subsampling the DEM at each k-th row. From the programming point of view this
is a minor change. In real applications, the number k has to be fixed a priori.
Östman (1987) suggested that k is strongly connected with both the DEM and the
acquisition method. The range of the variogram can in practical cases be obtained
from errors at control points, or it might be included in the lineage metadata.

Methods described by Felicísimo (1994), paper IV and paper V have been used in
an iterative fashion. Once some errors were removed, all the calculations have
been carried out again, and a new candidate set was created. If this set is empty,
some parameters are modified automatically (lowering confidence limits, for
example) in order to continue the procedure. We continue until 15 per cent of the
DEM elevation values has been corrected or confirmed. According to Torlegård et
al. (1986) gross errors account for less than 3 per cent of the population, so the 15
per cent limit is well within either the systematic (as defined by Thapa and Bossler
1992) or the random error set, provided the first 3 per cent really were gross errors.

It is appropriate here to comment the computer time requirements: the method of
Felicísimo (1994) is fairly cheap (of the order of m.n operations, where (m,n)
describe the size of the DEM), while both the original and the modified procedure
presented involve, for each step, the computation of (m/w).(n/w) covariance
matrices of size (w,w), which takes [(n/w).O(n2)+(m/w).O(m2)].O(w2) operations.
To calculate the eigenvectors requires [(n/w)+(m/w)].O(w2) operations, and to
project each strip to calculate the scores requires (m+n).w operations. Some other
operations are required but depend linearly on m and n. In our example, for a DEM
of size m=360, n=216, and for w=8, about 5 minutes per step are required using
MATLAB on a SUN Sparc 20. The overall procedure is considered cheap in terms
of computer time.

5.4.7 Conclusions
Some methods to locate gross errors in quantitative raster data have been
presented, and they were tested in two grid-based DEMs. The DEM of unknown
accuracy (analyzed in paper IV) has elevations ranging from 0 to 60 m, and it has
been used "as is". It has been seeded with artificial errors of low spatial
correlation. The DEM with known errors, derived from SPOT data, has elevations
ranging from 181 to 1044 m. A more accurate DEM of the same area is available,
and it has been considered as the ground truth. The hypothesis of errors
uncorrelated in space seems to be wrong at least for this case, as well as the
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assumption of gaussian distribution for the residuals. This poses serious concern
about the usefulness of some previously published algorithms (Felicísimo 1994;
paper IV) and motivated the paper V experiment. The results considering real
errors suggest that Felicísimo's method find mostly what is regarded as systematic
errors, mainly due to the interpolation algorithm (biquadratic polynomial). The
method presented in paper IV show similar results in terms of RMS of errors only
in early stages of the correction process.

In order to handle the significant spatial correlation observed, a modified version
of the second method has been designed and tested with the same dataset. The
results were significantly improved and exceeded those of Felicísimo up to a
certain level of effort, the effort being defined as the fraction of the DEM
elevations corrected or revised. This effort level (1.75 per cent) is of the order of
the number of gross errors typically found in DEM; moreover its location pattern
looks sparse and random, as opposed to the pattern produced by Felicísimo's
method.

The modified method has some free parameters. The most important parameter is
an estimation of the correlation lag (the range of the variogram). It can be
estimated from a limited number of independent control points. Some authors
claim that its value depends on the method for acquisition of the DEM and the
DEM itself. In the experiment, the variogram's parameters were supplied by the
producer.

We assumed for most of the work that once an error is identified, it can be
corrected without error. This is known as the perfect inspector hypothesis. We
have also tested a more realistic assumption: the inspector will imputate the
unlikely value using available tools (usually some interpolation procedure). In the
case of using the error detection procedure in a semi-automatic production
environment, the method warns the operator about possible errors before the
stereopair is unmounted, enabling new measurement. In a fully digital production
environment, some correlation thresholds are usually varied to minimize computer
time. The method may be used to  selectively strengthen the correlation thresholds
in suspicious points. In case there is no possibility to verify the errors, e.g. for end
users, the algorithm will help to locate the most unlikely values; we have simulated
this case under an imperfect inspector hypothesis. Unlikely values were imputated
using a polynomial fit using nearest data, and the results were qualitatively similar
to those obtained using ground truth data for imputation.
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5.5 Tabular qualitative data: the national census example

5.5.1 Experimental setup
A Monte Carlo simulation was performed modifying the answers of a subset of the
raw data described in Chapter 3. The error model used was very simple. A
prescribed number of surveys was chosen at first and then a random number
generator chose a fixed number of questions (out of 20) to modify. For each of
them, the existing answer was changed to a different value, but still belonging to
its feasible set (assuring that they were different from the original one). That was
considered a suitable choice for modeling “true” errors. The total number of
contaminated surveys was fixed as 10, 5, 3 and 1.5 per cent of the subset of 2500
individuals. The figures to be presented correspond to the 3 per cent case, which
implies 75 wrong cases out of 2500 surveys.

5.5.2 Results
Figure 5.26 shows a global summary of the behavior of the method. The x-axis is
the effort level (already defined in 4.1) while the y-axis represent the fraction of
the total errors found. 100 replications of the noisy dataset were used in the Monte
Carlo procedure, changing two answers in each survey.

The straight line indicates the locus of the theoretical evolution of the standard
(blind) duplicate performance method, i.e. by typing the x per cent of the whole
dataset, the same x per cent of the errors were removed (notice that the line goes
through the (20 per cent, 20 per cent) point). The dotted line is the best possible
operation curve: retype first only those surveys that have errors. It should go
through (3 per cent, 100 per cent). Each point of the cloud represents an
intermediate situation in a single replication of the Monte Carlo experiment. The
figure shows that when retyping 5 per cent of the original data (x-axis) we can
locate an amount of the original errors ranging from 25-60 per cent, and when
retyping 10 per cent, 40-75 per cent can be located. Further retyping will show a
degraded performance, because the “worst” errors have already been located. The
limit goal of the procedure will be the (100 per cent, 100 per cent) point, because if
all the data are checked we assume that all the errors will be removed. This
procedure is intended to be applied for partial retyping.

5.5.3 Discussion
Comparing the use of logical edits against the present methodology, some clear
differences arise. When the population is updated using mostly the same questions,
but with changes in some of them, all related rules should be revised. If a question
is ambiguous, the rule can be wrong, while the method proposed in paper VI
probably will flag the answers as “uncorrelated” and will automatically refuse to
control them. The proposed method does not require any expert, since the “rules”
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(if any) are embedded in the population. Even the dichotomic answers (like marital
status, sex, etc.) which are mutually exclusive, are handled gracefully, and need
not to be analyzed separately.
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Figure 5.26 Evolution of the remaining errors against the retyping effort for the
suggested depuration order and the blind retyping. Plots derived after 100
experiments, modifying 3 per cent of the surveys with 2 errors each (from paper
VI)

Since merely retyping is a completely blind methodology, it will locate errors
equally well in “unusual” as well as “typical” events, maintaining the variability of
the dataset. The proposed method and the logical edits are oriented toward
flagging only those errors which make a particular individual “unusual”. Then they
will decrease the variability in the dataset.

The application of either logical rules or merely retyping does not require a large
population of individuals, while the proposed method implicitly does. Another
limitation is that not all the questions can be controlled, either because of  almost
trivial answers or low correlation with other answers. Moreover, it can not
presently handle events with missing values.
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The numerical procedure is quite simple. It requires first to transform all
categorical answers to a “check box” format, where only ones or zeroes will be
admitted as answer. Then, the covariance matrix is constructed and its
eigenvectors calculated, and a new table of projections (scores) of the original
individuals over the eigenvectors is created. The covariance matrix is no longer
positive definite, but is semidefinite. By analyzing the eigenvectors, a critical set
of the scores is chosen in order to calculate an outlier region for each. Every event
with at least one  of  its scores lying in those regions should be retyped. The whole
procedure can be automated. Once the eigenvectors and the critical set are
calculated, they can be applied during the early typing process, allowing for near
real time quality control.

The sensitivity of the results to the margin (related with the number of individuals
to be retyped in each step) was only weakly significant. The method for selecting
the noisy scores to check based on Hawkins (1974) seems feasible, but no further
tests have been carried out. As a limiting case, for perfectly uncorrelated answers
the procedure is equivalent to looking for answers with low probability, which is
also a feasible procedure.

5.5.4 Conclusions
The problem of quality control of categorical data is treated with a method derived
from statistical procedures for quantitative tabular data. Two other alternatives
have been analyzed; the duplicate performance method and the use of logical edits.
The first method is very simple and popular, and requires typing again the same
dataset. Its ability to locate errors for a given typing effort is known to be low. The
use of logical edits strongly relies on the existence of an expert, which should
prepare a set of rules expressed in terms of logical relationships between the
answers. When any of them is not met, the survey is flagged as unusual, and either
an expert should analyze it or a blind retyping is performed. Here an alternative is
proposed in order to carefully reorder what should be retyped.

Some limitations of the proposed procedure are: a large (yet undefined) population
is required as well as a minimum number of options for the answers; it cannot
handle missing data, and depending on the inherent characteristics of the
population, some answers or options for answers are not checked. The users of a
method like this are those which are either collecting or using the raw data. We are
not providing any tool to check derived statistics (like averages in a region, etc.).



91

6 Discussion and conclusions
The results presented in section 5 were discussed individually within that section.
Here, the results are discussed in the context of the underlying ideas for the thesis,
as presented in section 2.

6.1 Where are the outliers that matter?
Most of the effort was directed to adapt methods used to process quantitative
tabular data to handle data of different characteristics. The quantitative tabular
case has been a subject of interest in multivariate analysis and it will be so in the
future. This will assure a continuous flow of new results and methods coming from
the statistics area, which hopefully will reinforce our strategy for their integration
in GIS.

We analyzed a number of typical examples of tabular quantitative data, taken from
the field of meteorology. The datasets consist of measurements taken at regular
intervals in time in a prescribed network of weather stations. Many thousands of
events are typical in this context, and we limited ourselves to a few thousands. In
addition to the widely known, already published methods, we propose new ones,
which proved to be successfull. Throughout the work we tried to compare our
proposed strategies against other methods. Some early work was methodologically
superseded by recent work, and some material has been included in the main body
of this thesis for the first time. We bring into consideration a new technique based
on Principal Component Analysis (PCA), and another based on Artificial Neural
Networks (ANN). The first technique was applied to detect real outliers in a
dataset, going back to the original readings existing on paper. The new method as
well as the ones existing in the literature were compared through a Monte Carlo
experiment. The comparison was made using measures of both the accuracy of the
dataset and the relative success in detecting errors, which will provide useful
information to end users as well as data producers. Some of the measures have
been proposed here for the first time. They measure some kind of distance between
the method, the best possible method and the worst possible method. All our
previous papers (as well as the main body of the literature) presented the results in
terms of the Type I error. We feel that these new measures (valid only for the
Monte Carlo procedure) are more informative than either Type I or II errors.

The second case considered was quantitative raster data. We consider the special
case of DEM for two main reasons: they are widely used in GIS applications, and
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there exists a ground truth which can (in principle) be used to correct the errors.
We suggested a new approach using a table-oriented method, and compare the
results against one of the (few) methods reported in the literature. The experiment
was conducted using two DEM for the same area, one of higher accuracy than the
other. The first DEM was regarded as the ground truth, while the procedure was
applied to the second. The results show that our method results in better accuracy
for a given correction effort, provided we correct less than 2 per cent of the points
in the DEM. This is approximately the order of the number of gross errors found in
practice. Further effort will lead to better performance of the other method. One
interesting fact of the new method is that it ignores spatial autocorrelation, but in
turn relies on some parallell correlation, i.e. correlation between parallell profiles.
The pattern of errors located shows that our method found errors in sparse
locations. The other method finds mostly systematic errors, which are known to
occur where abrupt changes in the slope occur, and are clustered.

The third case considered was tabular qualitative data, like the one collected in
population surveys. We have adapted the dataset in order to use any tabular
quantitative method. We have again used our PCA based method and compare the
results to the traditional duplicate performance method. We performed a Monte
Carlo simulation using housing data from Uruguay and found that our method is
on average five times better for a given effort than the expected results for the
duplicate performance one. From the beginning we discarded methods based on
rules, because they do not fit in our framework. However, they are commonly
applied in practice, and further comparison should be considered for future work.

6.2 How to fill the gaps?
After an error is detected, analyzed and definitely classified as such, some action
need to be taken. The most rational one is to go back and take the measurement
again. However, there might be fundamental or practical problems which preclude
the use of this solution. The alternative is therefore to fill the gap using the
available information. For the case of quantitative raster data the well known
technique of kriging might provide an acceptable solution. Since a number of
suitable methods exist (some general and some particular for DEM) the raster
dataset has not been considered further here.

The qualitative tabular case has also not been addressed as we concentrated on
quantitative tabular datasets. We have worked with daily precipitation datasets and
with hourly surface wind. Daily rain data have received little attention in the
meteorological literature, which mostly considers monthly or even yearly averages
only. We have tested a number of different alternatives. The results have been
presented in a number of papers, and show that this is a difficult problem. The
main reason is that the probability distribution function for the daily precipitation
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is far from been gaussian, which is a default hypothesis in most of the procedures.
Other issues related to the underlying accuracy of the dataset might be raised. It is
extremely difficult to decrease the average error below 2 mm/day, while the
readings are supposed to be valid to tenths of mm/day (even though the
instruments might not be so accurate!). We introduced for the first time non linear
methods based on Artificial Neural Networks to this problem, which despite heavy
demands on computing power during the training stage should be taken into
consideration for future work.

6.3 Concluding remarks
The work presented in this thesis contributes to the development of automated
systems for quality control of typical GIS datasets in two aspects:

• By showing that techniques designed for tabular quantitative datasets
can be used for at least two other typical data types used in GIS: DEM
and qualitative tabular datasets.

• By introducing some new techniques based on PCA and ANN to the
problem of quality control of quantitative tabular datasets.

Further work will be required to extend the present results to vector data. The
ultimate purpose of this work is to help end users and data producers to improve
the accuracy of their datasets, while keeping cost to a minimum.
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Abstract
The techniques used for the treatment of a pluviometric data bank during the development
and calibration phase of a flow-rain, flow hydrological model are presented.
The calibration phase of this type of models is considerably affected by errors (outliers) in
the calibration set. Thus it is mandatory to either correct or eliminate those records. We
applied a variety of methods for this dataset. Among them, the Principal Component
Analysis (PCA) gave the best results.
The developed methodology allows real time quality control of newly acquired data with
minimum computer resources requirements, which makes feasible its application in standard
equipment. For the present paper, we have defined as errors only those records which differ
from the value written down on paper by the observer.
However, it is believed that the PCA is able to detect also other random errors from the
observer and even some type of systematic ones, which are still in the investigation phase.

1. Introduction

1.1 Sketch of the problem
In all datasets it exists at least two sources for errors: those intrinsic to the measurement
operation and those generated either while keying in or during later process of the
information. Both types of errors might have an important effect depending on the particular
problem. According to Husain, 1989, "... the failure of many projects of considerable
budget can be attributed at least in part, to the imprecision of the hydrologic information
available...". In the hydrological model case, the errors propagate themselves in time, and
depending on the particular characteristics of the catchment area, its effect might be
considerable after significant time lags.
In the daily operation of those models, it is fairly simple for the user to notice significant
outliers, because a direct evaluation can be done the day after.

                                                          
1 Centro de Cálculo, Facultad de Ingeniería, CC 30, Montevideo, Uruguay
2 Instituto de Mecánica de los Fluidos e Ingeniería Ambiental, Facultad de Ingeniería, CC
30, Montevideo, Uruguay



2

In turn, during the calibration stage of the model, many empirical parameters must be fixed
by analyzing thousands of values of measured vs. calculated flow; this comparison can only
be made by analyzing global statistics like the standard deviation, etc.
Such fact mix those events obviously erroneous as well as other more subtle ones, which
might lead to significant (and uncontrolled) bias in the parameters. For depuration purposes,
it has been assumed that values written on paper by the observer are error free, so we try to
detect only typing errors. However it will be clear that the method can be easily extended
for handling both random and some systematic errors, due to inappropriate sheltering of the
instrument the latter and careless operation the former.
The present work should be considered as a natural extension of the task performed during
the calibration phase of an hydrologic model of flow-rain, flow type for the Río Negro
catchment area. For further details please refer to Silveira et al. (1992a y 1992b).

1.2 Methodological background
Regarding outlier detection procedures, the single national registered reference is due to the
guidelines produced by the Climatology Department of the Uruguayan National
Meteorological Bureau (DNM, 1988). Those specifically related with rain data are very
wide and they are mostly connected with the specification of an admissible range.
At an international level, some comprehensive meteorological work has been published
(Sevruk, 1982) in order to correct typical systematic errors in each station. In order to do
this, they also require values of the surface wind velocity, rain rate, temperature and
humidity of the air, etc.
Regarding random errors, the trend is to compare the direct measurements with a model of
the phenomena (see for example, Francis, 1986; Hollingsworth et al., 1986). The latter
pointed out that for the case of the surface wind, the differences between observations and
predictions follow approximately a gaussian distribution. In that case it is relatively simple
to detect outlier values in order to analyze them carefully. An important disadvantage of this
approach is the considerable amount of information required, as well as the important
computer resources involved.
If we disregard (or simply it is unknown)  the physical relationship between the variables,
the strictly statistical procedures have to be considered. Barnett et al., 1984 reviewed and
summarizes many techniques which might be of use in this problem. For the multivariate
analysis of data he distinguishes two main methodological trends, depending on the fact
wether the probability density function is assumed or not.
The first group techniques are named Discordancy Tests; they require an estimation of the
parameter of the distribution. There is also some work which assumes that the theoretical
distribution has one shape, and the sample another, as proposed for example by O'Hagan,
1990. He applied the idea for an example involving both a Gaussian and a Student's t
distribution. Some rules might help in those cases to highlight outlying values. Our case of
daily rain rate do not fit readily under such hypothesis, as follows from a simple analysis of
its distribution.
The second group identified by Barnett is named as Informal Methods. They neglect the
formal aspects of the probability density function, and attempt in turn to exploit certain
properties of the distribution. This group includes graphic methods which look for points far
from the data cloud; correlation methods, like those described by Gnanadesikan et al., 1972;
use of representative generalized distances, techniques usually connected with cluster
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analysis (see Fernau et al., 1990) and Principal Component Analysis (PCA) among others,
etc.
A specific reference related to PCA is the one due to Hawkins, 1974. The author compares
four statistics designed to highlight outliers. Hawkins assumed that each observation
belongs to a gaussian distribution, an hypothesis which do not hold for the rain; however the
concepts that can be derived are similar to the one considered here as well as the results
obtained working with coal samples.

2. PCA in brief
PCA is a widely applied multivariate technique (see Richman, 1986 as a general review; Pio
et al., 1989 for air pollution; White, 1991 for rain, etc.). It might transform one set of
correlated measurements into new series of uncorrelated readings, which in turn let consider
each one as an independent variable.
Moreover, the new variables minimize the remaining RMS. which might be helpful to
distinguish the physics from the noise. In this work we did not attempt to rotate the obtained
components, as suggested by Richman, 1986; White, 1991 among others, a process which is
supposed to improve the interpretability of components more related with the physics.

2.1 Theoretical aspects
Hereinafter we will denote as ( )pi kτ  the precipitation value for timeτk  (k=1..r) at station

i (i=1..n). The temporal mean at station i will be denoted with an overbar, pi .

Given a set of rain readings for a given time ( )pi kτ  they can be represented together by a

vector ( )P( ,n k1) τ  which belongs to the Rn  space (fig. 1). Each k-th point of the cloud

corresponds to a dateτk . The origin of coordinates is taken at the baricenter of the cloud,
with components pi  which will be denoted as PM .
It is possible to show that it exists a direction e1 (unique in the general case) which
minimizes the sum of squares S1

S M Hk k
k

r

1 =
=

∑ 2

1

(1)

as sketched in fig. 1. The direction e1 does not depend on timeτk . It will be denoted as

( )a k1 τ the projection OHk , which is also named score in the literature. Each term in S1

can be interpreted as the L2  norm of the vector
 ( ) ( )P PM 1τ τk ka e− − 1 . (2)

This expression shows that for any timeτk  the data vector is explained as the sum of a
constant vector plus a multiple of a constant vector. The statistic S r1  can be interpreted
as the unexplained variance by an approximation by a single term.
Similarly a vector e2 can be found in order to minimize the remaining variance, so

( ) ( ) ( )S P P a e a ek M k k
k

r

2 1 1 2 2
2

1

= − − −
=

∑ τ τ τ. . (3)
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being ( )a k2 τ  the projection over the direction e2 of the vector OMk . Even from

geometric arguments it can be shown that  e e1 2. = 0.
We can apply the procedure up to Sn. Lebart et al.(1977) demonstrates that ei  are
eigenvectors of the covariance matrix, defined as

( )( ) ( )( )C c c p p p pij ij i k i j k j
k

= = − −







∑: .τ τ (4)

and that the eigenvalues λ i  are directly related with the sum Si. It can be shown that the

scores time series ( )ai τ and ( )a i jj τ , ≠ , have null crosscorrelation. If we denote as D
the diagonal matrix with the eigenvalues λ i  in the diagonal, and E  the matrix holding the

eigenvectors ei as columns, we can prove:

C E D E T= . .     (5)
In what follows we will use the term principal components to refer to the eigenvectors ei ,

and as scores the time series of the associated projections ( )ai τ . It should be noticed that
the index i is not related with a pluviometric station.
Summing up, it exists  a lineal transformation which relates the observed time series

( )p i ni τ , ..= 1 , with the scores ( )ai τ  which can be written in matrix form as

 ( ) ( )P P E AMτ τ= + . (6)

being PM  the vector holding the mean precipitation of the period, and ( )A τ  a vector
holding the scores.
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(7)
Except in pathological cases, matrix E  is not singular, thus once the rain measurements

( )p i ni τ , ..= 1  are given, it is possible to obtain the scores ( )A τ  by applying the
expression:

( ) ( )( )A E P PMτ τ= −−1. (8)
It will be useful later to show that Eq. 6 can be rewritten as

 ( ) ( )P P a eM i
i

i n

iτ τ= +
=

=

∑
1

. (9)
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2.2 The need for a progressive depuration
The eigenvectors  ei  (denoted also as patterns) are calculated using an available cloud of
data points. It might exist a small number of unlikely values (outliers) which might affect to
some extent the patterns themselves. In Silveira et al., 1991 it has been shown that even in a
population of r=4000 points, only two outliers might significantly affect the patterns. This
fact makes mandatory that a recursive depuration effort strategy is to be adopted. On early
stages we will look only for those more evident values. As it will be shown, the process can
go later to look for more subtle cases.

3. Application of the technique to a particular case: the
Río Tacuarembó catchment area

3.1 General characteristics of the study area
Despite the work considered a substantially greater area, we restrict ourselves for this
analysis to the Río Tacuarembó catchment area, of 20.000 km2, located at 32° S, 55°W at
400 km of the Atlantic Ocean. The area can be characterized by a smooth orography, with
heights lower than 500 m, few valleys and lakes. The monthly mean for the rain is within 74
and 120 mm/month. The study period is nearly of 15 years, from Jan 1st. 1975 to Dec 2nd.

1989, value clearly over the threshold suggested by Hawkins, 1974.

3.2 A brief description of the compared methods
a) Outlying values of the univariate series
This method is fairly simple, and requires the calculation of a "feasible" range for the values
recorded in each station: whenever any record is outside it, it is pointed out as a candidate to
be in error. In the given dataset it is usual to mistype records taken in mm/day as taken in
tenths of mm/day. This values could be found only if the mistyped record is over 100
mm/day, but the procedure is impractical for other cases.
For the daily rain example this method can detect only events clearly outlying by excess, but
on the other hand it is impossible to suggest a zero value reading as an error, because over
80% of the population is exactly zero.
b) Discrepancy of the Thiessen's spatial mean series
The first stage requires that the mean average of the rain is calculated by the Thiessen
method (Jácome Sarmento et al., 1990) using different subsets of stations taken from the n
available for each day. Thus different time series arise, and when compared if they differ
"too much" the particular day is checked.
The results obtained (not presented here) let say that this method gives a much powerful test
that the one before; true errors exist in nearly 30% of the selected dates (Silveira et al.,
1991). Moreover, the errors themselves need not to be outlying.
c) Outlying values of the multivariate series
For the Río Tacuarembó dataset, typically two out three days have some missing value.
Then, we must distinguish two situations for each time τ:

c.1 ) All n stations have readings
c.2 ) Some values are missing
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In the first case, it is possible to calculate the n scores ( )ai τ . If for some i, ( )ai τ  is not
within the i-th specified range, all n records used for calculate the scores should be checked.
The specified ranges were determined by analyzing the probability density function of the
scores for the whole period.
In the second case, an imputation procedure is required. It might be nearest neighbor or any
other. Using the same dataset López et al., 1994 analyzed the performance of four methods
for missing value imputation are compared, being the most efficient the Penalty of Principal
Components, so we apply it here.
Once imputated the missing values, we are in the position to apply the criteria of c.1) by
checking each of the scores. However, both here and at Silveira et al., 1991 we relaxed the
criteria, and the date was checked if any of the imputated records is negative or bigger than
100 mm/day. For further details, please see López et al., 1994.
In figures 3 and 4 the typical probability density function (pdf) for both the weakest and
strongest scores are shown. For the range determination, we restrict ourselves to symmetric
ones with a single parameter α i . For each i, α i  is selected in order to make valid over
96% of the events. If the pdf is nearly symmetric (as for example patterns 2, 3, ... 17, see
fig. 3 and 4) this rule implies to reject approximately 2% of each tail of the distribution. For
heavily skewed distributions (pattern 1, fig. 3) we reject only from one side of the pdf.

4. Results

4.1 With simulated errors
In order to test the ability of the method for this problem, we select a subset of n = 13
carefully revised stations which have less than 5% of missing records for the period of r =
5450 days (nearly 15 years).
We selected at random a set of 2832 triplets of station-date-value which is around 4% of the
population. The wrong values for rain were generated by a mechanism which attempts to
replicate the pdf of the real data. In fig. 5 we show the distribution for positive values.
We applied the suggested method in order to detect the artificial errors. In tables I and II we
presented the total number of error detected discriminated by step. Between the first and
second column, the difference is in the recalculation of the limitsα i . The detected errors in

the first columns were ignored in order to calculate the newα i , but they are expected to be
detected in the second sweep. Neither the covariance matrix nor the eigenvectors were
recalculated.

First sweep
total detected
total revised

.103

Second sweep
total detected
total revised

.103

First depuration 360
7644

10 413+ =211
+ 6318

. 2065
54067

10 383+ =215
+ 6435

.

Second depuration 151
5798

10 163+ =35
+ 5863

. 1784
50924

10 323+ =40
+ 5837

.
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Third depuration 68
4966

10 83+ =36
+ 7514

. 276
9555

10 193+ =39
+ 7397

.

Table I: Evolution of the depuration process in relation with the data to be checked. Terms in the table follow the
schema (A+B)/(C+D).103, being A: wrong values detected in full days; B: wrong values detected in incomplete
days (in bold); C: number of records revised in complete days and D: number of records revised in incomplete

days (in bold).
Another possibility is detect-correct-recalculate. The results are presented in the first
column. For the second depuration, we eliminate the outlying values detected and both the
covariance and its eigenvectors are recalculated.
We show in bold the results for days with missing values. In table I, we express the results
in relation to the number of revised values checked against paper. In table II, we present the
results in relation with the total number of errors yet in the population.
The results show that it is more convenient to change the limits α i  rather than recalculate
the eigenvectors. Thus for two sweeps it can be found 81% of the wrong values, which
affects 49% of the revised days.
If we want to recalculate the pattern as soon as we detect the first 571 errors, in the second
depuration we found only 186 errors, which account only for 21% of the days to check.
Such behavior was not observed while working with the raw data: even very few errors
affected significantly the patterns, requiring in turn a couple of iterations in order to
stabilize them.

First sweep
total detected

total not yet found

Second sweep
total detected

total not yet found
First depuration 360

2832
571

2832
0 20+ = =211 . 2065

2832
2280
2832

0 81+ = =215 .

Second
depuration

151
2832 571

186
2261

0 08+
−

= =35 . 1784
2261

1824
2261

0 81+ = =40 .

Third
depuration

68
2261 186

104
2075

0 05+
−

= =36 . 276
2075

315
2075

0 15+ = =39 .

TableII: Evolution of the depuration process in relation with the remaining errors. Terms in the table follow the
schema (A+B)/C, being A: wrong values detected in full days; B: wrong values detected in incomplete days (in

bold) and C: wrong values in the database yet to be found.

4.2 Over real errors
In a real situation a table like Table II cannot be created. It is required also a criteria to stop
the procedure: we decided to stop as soon as no new errors (true errors) were found. We
define as true error all those cases which the number in the files do not coincide with the
one written on paper.
In early stages we worked for full days (with no missing values) over a set of 21 stations.
Two phases could also be distinguished.
In the first one, after performing the PCA calculations, we removed the worse errors. They
were identified because even not significantly affecting the mean vector, the first and
second patterns were completely distorted (see Silveira et al., 1991 for details). This stage
corresponds with rows 1, 2 and 3 of Table III.



8

In the second phase we selected those days which scores ( )ai kτ  exceed the allowable
value. The measurements for such day were checked against paper, and corrected if any
discrepancy exist. Then we recalculate the Principal Components and the process start
again.
For each score ai  the limits were estimated either as three times the standard deviation, or
were simply ignored. Despite the criteria of the three times is a well known boundary valid
for the gaussian distribution, the method do not requires neither imply it.
During the task it has been observed that some days were systematically pointed out as
suspicious, even though they agree with the paper. We performed a subjective analysis in a
case per case basis, and we classified further the values as consistent and dubious. The
former were associated normally to heavy rain events concentrated in space; the latter show
very different values even in very near stations. They were temporally removed from the
database in order to not affect the PCA calculations (see González et al., 1991).
The process ends when all dubious values coincide with paper. In table III the evolution of
the depuration process is shown. In the first three stages, we only look for gross errors,
checking essentially the scores associated with the leading patterns, which explains the low
number of days affected.
Another important point is the measurement of efficiency. The column headed with η  in
Tables III and IV shows a number which even being independent of the number of stations
seems to be pessimistic; in practice it is more representative the one indicated by column G
(measured as errors per revised day), because in most cases the error was so obvious that by
merely checking one or two our of the 21 values were enough to locate the error.

Stage A B C E F G η
1 9 21 6 51 34
2 354 326 154 448 186 87
3 222 267 336 475 395 174 83
4 70 83 206 286 219 126 60
5 72 60 8 132 105 106 51
6 41 2 29 111 18 65 31
7 9 1 12 115 13 19 9
8 1 113 2 1 0
9 109 0 0

Table III: Evolution  of the depuration of real errors for the full days (i.e. without missing values). We analyzed 21
stations. Keys to table: A.- Wrong values; B.- The digital value do not exist on paper; C.- Dubious value; E.- Total

number of days checked; F.- Days not considered before; G.- (A+B+C)/E*100 Total number of errors for each
100 days revised; η= (A+B+C)/(21*E)*1000 Total number of errors for 1000 values checked.

Regarding the days with missing values, we applied the Penalty of Principal Components
method (described by López et al. 1994). In those days with zero rain readings we simply
assign zero to the missing values. In other case, we penalized the 10 weakest scores using as
weights the reciprocal of the variance. Table IV shows the work in different stages, being all
percentages to the total number of values revised in each stage.

Stage A B C D E F G η
1 344 314 220 945 457 399 210
2 56 27 65 57 495 94 41 22
3 117 118 138 37 558 179 73 39
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4 52 69 118 21 536 94 49 26
5 17 36 36 10 586 53 17 9
6 21 12 34 6 560 30 13 7
7 19 20 9 1 659 15 7 4
8 659 0 0

Table IV: Evolution of the process of real errors for days with missing values. We analyzed 19 stations. Keys to
table: A.- Wrong values; B.- The digital value do not exist on paper; C.-Dubious value; D.- Data exist on paper

but were not digitized; E.- Total number of days checked; F.- Days not considered before; G.- (A+B+C+D)/E*100
Total number of errors for each 100 days revised; η=(A+B+C+D)/(19*E)*1000 Total number of errors for  1000

values checked

5. Conclusions
We have described and presented a methodology for multivariate quality control based
upon Principal Component Analysis (PCA). The results, considering the effort involved can
be regarded as satisfactory. In a controlled experiment we succeeded in identify one error
every two days checked, finding that way over 80% of the known errors.
The required computer time can be considered minimal. The heaviest part is the calculation
of the covariance matrix and its associated eigenvectors, an operation which is performed a
limited number of times.
Considering that for each event it is only required a linear transformation, it is possible to
apply the method in real time even with hand held computers.
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Figures

Figure 1: Representation in Rn of the data points (page 50, paper I)
Figure 2: Geographic location of the study area (page 51, paper I)
Figure 3: Sampled probability density function for the scores with larger eigenvalues (page

52, paper I)
Figure 4: Sampled probability density function for the scores with lower eigenvalues (page

53, paper I)
Figure 5: Comparison of simulated and real data. Upper caption is for real data; lower one

is for simulated data. x-axis in mm/day  (page 54, paper I)
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Principal Component Analysis of pluviometric data
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Carlos López, Juan F. González and Rosario Curbelo1

Abstract
The missing value problem is well known in all studies related either to natural phenomena
or other areas. The present work has been motivated by the need to fill in the gaps in a daily
pluviometric data bank in order to use it with an hydrological model. The spatial mean over
the sub catchment area is calculated with the Thiessen's method, which on principle do not
require a complete fill in. However, the method is highly sensitive to outliers in the case of
few available measurements. The outlier detection problem has been analyzed in a
companion paper, and here we will concentrate in reporting results for the missing value
problem using some different methodologies. Such methodologies should preserve the main
characteristics of the population, as well as the present quality and accuracy levels.
Results for four methods tested using a 15 year, daily pluviometric measurements are
presented. The methods were the standard nearest neighbor, linear interpolation of the
station time series, linear interpolation of the time series of the Principal Component Scores
and Penalty of the Principal Component Scores. The last one were developed for this
problem and proved to show the best behavior.

1. Introduction
According with Haagenson, 1982, Johnson, 1982, etc. objective analysis of both
hydrological and meteorological fields are common practice. They are designed to
interpolate an observed quantity using only sparse data. For the spatial mean rain field there
exist other methods, like the Thiessen one (see Jácome Sarmento et al., 1990 for example)
which might produce the required result without the need to imputate all missing values.
Both situations led to a comparatively low interest in the research community, which was
related with the scarce literature found in the specialized journals reviewed.
In the author's opinion in the overwhelming majority of the practical applications, the
missing value is simply ignored, under the implicit assumption that those missing records
appear at random, hypothesis which is rarely tested.
On the other hand, the topic is of major interest in statistics and social sciences; working
group reports are mentioned in specific books, like the one of  Rubin, 1987.
Of course somewhat sophisticated imputation methods do exist. For example, the one used
at the US National Bureau of Census is quoted by Rubin, 1987. The idea is to imputate the
missing value using a randomly selected one taken from the events which have an identical
response in all the other answers (the method is originally designed for surveys). If there is
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Application of ANN to the prediction of missing daily precipitation
records, and comparison against linear methodologies1

Carlos López-Vázquez
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Abstract

Depending upon the user, weather records can be used as they are, or they need to be
imputated prior its use. Despite the fact that general methods for meteorological variables
exist, they are difficult to apply for daily rain. A specially difficult feature is that the
overwhelming majority of the records (>80%) are of zero rain, leading to a very non-
gaussian distribution. Other characteristic is the low autocorrelation of the time series.
The test region was the Santa Lucia river catchment area of 13000 km2, at 35°S near the
Atlantic; its yearly accumulated precipitation values are around 1000 mm, without a clear
dry or wet season. The selected subset has 20 years long and 10 stations; 30% of the events
show missing values.
A Monte Carlo simulation was designed, randomly choosing both date and station for the
missing values and afterwards different imputation procedures were successively applied.
Some statistics which characterize the distribution of the absolute error, namely its expected
value, variance and 75, 85 and 95 percentile have been derived in order to compare the
results.
Both traditional linear meteorological interpolation procedures as well as a suite of
Backpropagation Artificial Neural Networks(ANN) has been compared. The present results
are not very good, and show that is possible to imputate with a mean error of 2 mm/day and
a RMS of 7 mm/day using both linear and nonlinear procedures, while ANN seems to be
more robust against outliers.

Introduction

The problem of interpolate a field using sparse data is typical in many areas. In meteorology
the objective analysis method (Haagenson, 1982; Johnson, 1982) is commonly applied
because of its simplicity. It provides indirectly a way for calculating missing values using
available data. However, the significant amount of information required by this method usually
restricts its use to Global Data Assimilation Centers (Gandin, 1988), because they require
historical records for the calculations.
Ideally the availability of all records is preferred, but there are meteorological problems which
do not require a full dataset. For example, to calculate the areal mean value of rain the
Thiessen-Voronoi polygons method (Jácome et al., 1990) can be applied, without requiring
extensive imputation of missing values.

                                                          
1 This work was funded by the Uruguayan CONICYT, under contract 51/94
Presented at the International Conference on Engineering Applications of Neural Networks.
Stockholm, 16-18 June, 1997, pp. 337-340
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Both situations led to a low interest on the topic reflected on the scarce meteorological papers
on it. In most practical cases, either the missing value is ignored (assuming implicitly that the
missing mechanism is random) or some ad-hoc technique is applied (linear interpolation,
nearest neighbor, etc.) without further test or documentation. In any case, the population is
clearly affected in an arbitrary way, under some hypothesis of unknown validity. However, it
should be noticed that the missing value problem is of great interest in the Statistics and Social
Sciences in general (Rubin, 1987).

Considered methods: a) linear

Due to its simplicity, this methods are widely used. They can be grouped together since the
estimated quantity is a linear combination of the available data. Its general expression is
y w x bj = +. being yj  the unknown quantity, x  a vector with the available data and

both the weight vector w  and the number b are depending on the method. Typically vector
x  holds the values of the same day, and both w  and b  are constants for the whole dataset.
This definition covers the methods of Cressman, Optimum interpolation (Gandin, 1965),
Ordinary least squares, as well as other more simple ones, as the nearest neighbor. For the
sake of completeness a brief description of them will follow:
• Cressman
The requested number is obtained after a linear combination with weights which are the
inverse of square distance. The method does not require historical information, but only the
station coordinates.
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• Optimum interpolation (Gandin, 1965; Johnson, 1992)
This method is routinely applied for the initialization of global weather codes. Instead of
interpolate the desired field, it interpolates the anomaly or difference with a simple
predictor, and the spatial correlation properties of the anomaly field are analyzed. Usually it
is assumed both isotropic and homogeneous, and it should be modelled in the general case.
However, if the point where the prediction is required is one of the measuring point, its
covariance with the other stations is available, and it looks very similar to the Ordinary
Least Squares. The covariance might be calculated separately for winter and summer, for
example, or used all together as we did. This procedure allows using information from the
day before.
We used different anomaly fields and transformations for the variable to be interpolated
which are summarized in table 1. For example, the method coded as “gandin7” assigns
values for the variable x raini = , taking the anomaly respect to its historical mean. In

this case, w  is fixed (following Johnson, 1992); b x j=  (the overbar stands for average
over time). The classic Optimum Interpolation procedure is coded as “gandin20”. Because
daily rain has a very irregular probability density function (pdf) we designed a
transformation ( )x f rain=  which makes pdf(x) nearly uniform, except for rain = 0 .
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The transformation based on the cumulated density function is invertible and assures that x
belong to the interval [ ]0 1, .

Our coded name Anomaly Variable to
interpolate

Using data from
days

respect to: t t-dt
gandin historical mean rain X -

gandintrans historical mean f(rain) X -
gandin6 historical mean rain X X
gandin7 historical mean rain X -

Initial value for the field chosen as zero
gandin_diario 0 rain-daily mean X X

gandin4 0 rain X X
gandin5 0 rain X -

Neglecting instrumental error
gandin20 historical mean rain X -
gandin3a historical mean rain-daily mean X -

Table 1 Brief information about the different methods based on climatological functions.
f(rain) denotes the transformation which renders a nearly uniform probability density

function(see text). t and t-dt denotes values from the day and the day before

• Ordinary Least Squares
This method is completely standard and its theory can be found elsewhere. The weights w
are chosen in order to minimize the 2-norm of the vector ( ) ( )M w mj j−  (a scalar

proportional to the RMS) being ( )M j  the matrix of the available data (as many rows as

dates, as many columns as stations but without the j-th one) and ( )m j  is a column vector
with the j-th stations values. The implemented version assumes that the data is error free, so
w  can be derived from (dropping the index j) M Mw M mT T= . . The T stands for
transpose. The number b is 0.
• Least average (Least 1-norm)
Here the weights w  are chosen in order to minimize the 1-norm (sum of absolute values) of

the vector ( ) ( )M w mj j− . This is a much more difficult problem because it does not lead
to a linear system of equations and has to be solved as a non-linear optimization task. Also
it requires substantially more CPU time than all previous methods.
• Least 95 percentile
Since the population might be affected by a small set of gross errors, it is fit to minimize a
robust statistic, as the 95 percentile of the distribution of errors. As before, this problem
requires significant CPU time.
• Nearest Neighbor
We considered two criteria for the distance: euclidean and qualitative similarity. In both
cases the missing value is taken directly from another station following a given order. In the
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first case, the order is due to geometrical distance, and in the second we used the expertise
from a meteorologist. All weights are zero, except one which is 1, and the number b is 0.
• Assign a constant value
This is a simple method, which disregard any other information. We applied it using the
modal value and the expected value. For our dataset, the former is 0 mm/day and the latter
is near to 3 mm/day.

Considered methods: b) Non linear methods (ANN)
Such methods are very new and they are based upon simple models of the biological neural
networks. They have been used for the short term prediction of SO2 concentration (Boznar
et al., 1993), electrical load (Park., 1991), etc. The ANN is organized in layers, being the
first one stimulated directly by the observed values; each neuron of the next layer is
stimulated by a linear combination of the outputs of the previous layers by means of a
simple transfer function, like the logsig (Demuth et al., 1994) given by:

( )out a inputj ij i
i

= + −

















∑
−

1
1

exp * , with parameters aij  to be fixed for each

neuron. The ANN requires, as its biological counterpart, a training process which is
simulated here by means of adjusting the ai  parameters. In this work we compared one
two-layer net, with 6 logsig neurons in the hidden and 1 linear neuron in the output layer,
and one three-layer one, with 8 linear neurons, 4 logsig and one logsig for the output. Both
were trained using one third of the available values trying to minimize the RMS of the error.
The error is defined as the difference between ANN output and true value. For the first case
we substracted rain values in mm/day while for the second case something different has to
be done, since the last neuron has an output belonging to the interval [ ]0 1, . We trained the

net in order to minimize the error with the transformed rain ( )x f rain= . All nets were
trained using backpropagation (Rumelhart et al., 1986) and due to practical reasons the
number of iterations was kept low, so its performance might be improved with more
iterations. Its training cost in CPU time is high: over 10 hours of SUN 20 for each
meteorological station.

Conclusions and results
After 250 simulations, the results are summarized in table 2. It should be noticed the
improved results for those methods using information from the day before (gandin4,
gandin6 and gandin_diario). Among those which use only information of a single day, the
best results are obtaining by the minimum 95 percentile, closely followed by the Ordinary
Least Squares method.
It should be stressed that, since the database still has errors, it is possible that the methods
suggest suitable values and the outliers affect some of the considered statistics. This is
unlikely to occur for the 85, 95, etc. percentile, and then the importance of the ANN
denoted bp7.
As final conclusions:
a) common methods based upon mere substitution by a neighbor or by a constant gave poor
results.
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b) as expected, optimum interpolation methods outperforms the others in terms of RMS,
fairly close to the ordinary least squares and least 95 percentile.
c) non linear methods (very expensive in the training phase) led to slightly more robust
results, but renders similar figures in terms of average and RMS.

Average 75% 85% 95% RMS
bp1 2.65 1.92 4.53 13.03 7.15
bp7 2.51 1.28 3.64 12.54 7.71
cressman 2.63 0.80 4.58 15.75 8.20
gandin 2.64 1.48 4.20 13.57 7.24
gandin3a 2.60 1.83 4.73 13.96 7.42
gandin20 2.68 1.56 4.21 13.42 7.21
gandin4 2.53 1.92 4.59 13.28 7.02
gandin5 2.39 1.25 4.14 13.64 7.25
gandin6 2.71 2.06 4.72 13.39 7.05
gandin7 2.23 0.50 3.11 13.39 7.48
gandin_diario 2.04 0.89 2.99 11.01 7.66
gandintrans 3.06 0.80 4.52 13.46 8.11
least squares 2.34 1.33 4.09 13.13 7.01
least 95's percentile 2.34 1.34 4.10 13.07 7.01
least average 2.26 0.86 3.60 13.23 7.21
modal value 2.79 0.00 1.78 19.04 10.26
expected value 4.73 2.96 3.02 16.25 9.88
geometrical distance 2.76 0.02 4.22 17.37 9.13
expert distance 2.82 0.01 4.31 17.74 9.33

Table 2 Preliminary results in mm/day for the different imputation methods. The expected
value and the 75, 85 and 95 percentile of the distribution of the absolute error, and its RMS

are presented and compared. In bold the five best results for each estimator.
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no other event in such condition, a distance between surveys is defined, and the nearest is
chosen for imputation.
Another typical and simple method is to make a regression over the dataset, fitting a
mathematical model. Usually partial or total least squares as well as principal components
are used, as presented by Stone et al., 1990.
All the abovementioned methods produce a single value for a each missing value. Quoting
Rubin, 1987 "... in general is intuitive that imputating using the optimal value for each
missing value will underestimate variability...". However, the possibility to obtain more than
a single value for each missing one can be considered. Rubin, 1987 described a set of
techniques (some too much specialized to surveys). The general idea is create, for each
missing value, m possible alternative values (with m small) and considering that m different
complete sets are available. If the missing value rate is low, the method might be of use,
requiring however more space (for saving the multiple imputations) and also more
computation time (for processing separately the different sets). For further details please see
Rubin, 1987.

2. The present work

2.1 Motivation
This work can be considered as a natural extension of the preliminary treatment of the
pluviometric data used in the calibration phase of a flow-rain-flow hydrological model for
the Río Negro catchment area. Three hydropower dams operate sequentially there, operated
by the national electrical utility (UTE2 ). For further details please refer to Silveira et al.
(1991, 1992a y 1992b).

2.2 General characteristics of the study area
a) Geographical
Even though we have analyzed a greater catchment area, we restrict ourselves for this paper
to the Río Tacuarembó catchment area, of about 20.000 km2, located at 32° S 55° W, at 400
km from the ocean. The typical landscape is smooth, with heights below 500 m, few
canyons and lakes. The typical monthly rain rate is within 74 and 120 mm/month.

b) Measuring net
The national net defined by the DNM3 is based on a regular grid of size 10 km, sequentially
numbered. The identification for the station is the same of the cell which it belongs; from
time to time two or more stations might be operating within the same cell, so a letter A, B
etc. is appended to the identification code. We coined the term synonym for those stations.
For our purposes, we will consider all the stations belonging to the same cell as the same
station. From the administrative point of view, our net is the sum of four ones,
independently operated by different institutions. Those nets have different spatial density
and reliability. Its structure has been changing during time, and any station might:

• Start operating in any moment during the period

                                                          
2 UTE - Administración de Usinas y Transmisiones Eléctricas
3 DNM - Dirección Nacional de Meteorología
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• Stop operating in any moment during the period
• Start operating to substitute another one which has been withdrawn
• Be replaced by other or not.

For our purposes we will only distinguish those stations that use to be operated by AFE4,
which systematically adds the readings from Sunday and Monday and consider them as
belonging to Monday. In the abovementioned catchment area 21 stations are in operation,
and we selected 13 for this work.

c) Dataset

As mentioned before, the topology of the net usually suffer from transformations.
According to Silveira et al., 1991 it exists at present too many stations. Since many of them
have synonyms we join their records and disregard any distinction within a cell.
For this paper we selected a subset of 13 stations, located as shown in fig. 1, which have
been carefully checked for typing errors by using some algorithms presented in López et al.,
1994. We restrict ourselves to records from Jan 1st. 1975 to Dec 2nd. 1989, covering nearly
15 years.

3. Methods used for the Missing value problem

3.1 Nearest neighbor
The method assigns a list of alternative stations to the one which is intended to imputate; the
missing value will be replaced by a number taken from the first one with measurements for
the particular date. On principle the abovementioned list is ordered according to increasing
distance to the one intended to imputate; however some confidence considerations are taken
into account and the purely geometric order might be altered.

3.2 Time series interpolation
If the value for the day t f  and station j is missing, we search for the  nearest previous and
following reading available at station j, and a simple linear interpolation is performed.
Let us denote as t f  the date of the missing record and as p tj f( ) the unknown value for the

day t f  and station j.

Let us denote also as t f m−  the latest day before t f  with readings, and as t f r+  the first day

after t f  with readings ( )t t tf m f f r− +< < . The interpolation rule for the missing value is

 ( )p t p t
t t

t t
p t p tj f j f m

f f m

f r f m
j f r j f m( ) ( ) ( ) ( )= +

−
−

−−
−

+ −
+ −  (1)

                                                          
4 AFE - Administración de los Ferrocarriles del Estado
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3.3 Time interpolation of the Principal Component Scores series
(TIPS)
This method is based upon Principal Component Analysis (PCA), which have been
presented in the companion paper by López et al., 1994. We will present briefly the
notation and refer the reader to the abovementioned reference.
Let us name as ( )P n t, ( )1 the precipitation vector of the n selected stations for the time t.

Let's define a rectangular matrix M  which rows are the vectors P P( ) , ..t j rm Mj
− = 1 ,

defined for those days without missing values. PM  is the mean vector for the considered
period.
The eigenvectors of matrix ( )C M Mn n

T
, = *  are named principal components or

patterns, and will be denoted as ei . We will assume that the associated eigenvalues are
ordered, and decrease with i. The relationship between the pluviometric records ( )P n t, ( )1

and the scores represented as the vector ( )A n t,1 ( ) is

 P P E.A( ) =   +  ( ) t tM (2)

where PM  stands for the mean vector for the period and ( )E n n,  is the matrix formed by the

eigenvectors ei .
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If ( )C n n,  is non-singular then ( )E n n,  is invertible, so given the readings P( )t f m− y

P( )t f r+ it is possible to obtain vectors A( ) t f m−  and A( ) t f r+ from (2).
Eq. (2) can be expressed as well as

P P a e( ) =  + ( ).  i
i=1

i=n

t tM i∑  (3)
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For any intermediate time ( )t l f m l f rl , ,∈ − + + − 1 the precipitation is calculated by
linear interpolation of vector A( ) t . On principle, all the readings for time t can be
obtained from eq. (2).
By analyzing the scores ai  it is clear that the standard deviation of ai  decreases as i
increases making typically a minor contribution to the summation.
It is then a natural conclusion that for the reconstruction of vector P( ) t all terms with i>q
can be neglected for some q, without substantial loss of information. Then the equation (3)
can be substituted by the following approximate expression

P P a e( ) =  + ( ).  i
i=1

i=q

t tM i∑ (4)

Summing up, if there is at least one missing value of vector P( ) t f corresponding to time

t f  we search for the nearest previous and following without missing values. It should be
stressed that, in opposition with the standard linear interpolation, this method uses all n
stations, and not each one independently.
Let denote as t f  the day to be imputated. Let also be t f m−  the nearest previous day

without missing values and t f r+  the nearest following ( )t t tf m f f r− +< < . Since both

t f m−  and t f r+  are complete days the scores A( ) t f m− and A( ) t f r+ corresponding with

vectors P( ) t f m− y P( ) t f r+ can be easily calculated using eq. (2).

Then, for time t f m l− + , the vector of scoresA( ) t f m l− + can be calculated by linear

interpolation of both vectors A mentioned before. The first guess for the precipitation of
time t f m l− +  can be obtained from eq. (4).

However at time t f m l− +  there are some values recorded. The missing ones can be taken

from the first guess vector, and then we can complete all elements vector P( ) t f using as
much available information as possible.
Once completed the time t f  we are in position for a new interpolation, using now vectors

P( ) t f m l− + and P( ) t f r+ as starting point; this step can be repeated as many times as
necessary, in order to fill all the gaps.
The performance of this approximation is heavily connected with the autocorrelation
properties of the scores ai. For meteorological variables this autocorrelation properties are
very different for different ai, which is another argument to limit the number of terms in eq.
(4).
For example, in the work of  Cisa et al. (1990) it is shown that for the hourly surface wind
in southern Uruguay the time lag Ti required for the autocorrelation of the i-th score time
series to take for the first time the value 0.5 is (25,9,5,3,3,...,1.2,1) for i=1...15, being the
bigger values for the most important PC. Ti is measured in hours.
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Such situation is not the case for daily rain, because all scores have a dramatic drop for Ti=l
day, being 1 day the sampling period (see figs. 2 and 3). This fact explains in part the poor
results obtained with this method, despite it is better than the one obtained with the standard
linear interpolation of station time series.

3.4 Penalty of the Principal Component Scores
If we analyze the histogram of the scores ai  it can be observed that for the main PC it is
heavy skewed (asymmetric?), or has a significant dispersion around zero. On the other
hand, for the weak PC the histogram is symmetric and the dispersion around zero is very
low. As an example see figs. 4 and 5. They have been obtained from a slightly modified
population, because all events with null precipitation in all the stations have been removed
for this plot.  Any imputation procedure should preserve this properties, and then it should
produce scores ai  consistent with this histograms, i.e. very near zero for all weak PC. Such
property might be imposed as a condition, choosing for any given date all missing
components of vector P( ) t f in order to minimize some penalty function, like

 S w ai i
i k

i n

( ) .P P=
=

=

∑ 2 ( ) (5)

being the scores ( )ai P  corresponding to the vector P (now complete) and the weights wi

selected in order to consider the different absolute value of each score ai . Vector P is only
partially known, and it is assumed that it has q unknowns (or missing values). The optimum
of S can be obtained making its partial derivatives null for all unknowns

∂
∂

S
pm j( )

,= 0  j = 1..q

being pm j( ) the missing records for this time. The so defined linear system can be easily
solved by standard procedures.

4. Experimental procedure
We generate at random pairs of time-station which will be regarded as fictitious missing
values. Valid pairs are those which have been measured; all methods should calculate a
value to imputate it. We will denote as real value the measured one, and calculated value as
the one obtained by means of an imputation procedure. If the pair is not valid, it is simply
discarded.
Once a prescribed number of valid pairs have been processed the standard deviation of the
difference between real and calculated values for each method is calculated; it will be the
main statistics to compare within methods.
The total number of pairs is taken as a percentage of the days in the analyzed period (5450
days from Jan 1st. 1975 to Dec. 2nd. 1989) and we restrict the number of missing values per
day to one. We varied the percentage from 20% through 80% and no significant difference
in the results were noticed.
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For all methods we made runs considering all pairs; for the nearest neighbor and Penalty we
made also runs disregarding those events with zero rain in all stations, which account for
80% of the cases. We did it as an attempt to avoid the negative impact of such significant
amount of constants in the estimators. The results in terms of standard deviation increased
two times approximately, but the relative values for different methods remained the same.
We depurated as much as possible the data bank against the original paper records. All 13
stations show less than 5% missing values for the period, which we considered enough for
the purposes of this work.
We also made some sensitivity checks for the parameters of the different methods: for both
methods using scores, we varied the number of terms to consider; for the nearest neighbor
method we varied the list of alternatives (by removing the nearest ones).

5. Results
All figures correspond with an experiment with 2091 days with missing values, implying
53% of the analyzed days approximately.

5.1 Nearest neighbor method
Some calculations using only the list of 13 stations were performed; also we enlarged the set
by using up to 86 stations located in the catchment area as well as in the vicinity. The
precedence order in this case was strictly geometric distance.
We confirmed that the availability of a dense network of stations in a regular topography
like this improves the results. If we delete alternatives from the list increasing the mean
distance between the station to be imputated and its alternatives is clear (see fig. 6) that the
standard deviation increases.
The regularity characteristics of the rain phenomena in this region even up to distances of
150 km apart leads to good results. This mean distance is defined here as the expected value
of the geometric distance weighted by the frequency of substitutions by an alternative. The
maximum distance between any of the 13 stations is 201 km.
The point of fig. 6 with mean distance 33.7 km results from choosing alternatives from the
set of 13 stations. The resulting standard deviation is σ = 5.55 mm/day which has to be
taken into account when comparing the different procedures.
In general the alternative stations have not been corrected at all; one consequence is that
even with a lower mean distance, the alternative set renders a bigger standard deviation than
the abovementioned case of the 13 stations.

5.2 Linear interpolation of the station time series
As mentioned before, good results can be expected for this method if the considered
phenomenon evolves slowly in relation with the sampling interval, or if any contiguous gap
is shorter than the typical time scale of the problem.
The rain in Uruguay shows significant variation in time, and generally the meteorological
event occurs under the form of storms more or less concentrated in time (from hours up to
three or four days). That's why using daily sampling this method is unlikely to produce good
results.
The results for the set of 13 stations show a standard deviation of 12 mm/day.
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5.3 Linear interpolation of the time series of the Principal
Component Scores
As expected this method renders similar results as the standard interpolation of the time
series. Despite it requires more CPU time, the results are not significantly better: the
standard deviation of the error varies from 11.3 and 11.83 mm/day depending on the
number of terms using in the calculation.
The weak effect in using more or less terms in the calculations is not surprising, and it is
related with the extremely low time autocorrelation of the phenomena. In fig. 7 the
evolution of the standard deviation respect to the index q (see eq. 4) is shown.
It is expected that this method will produce significantly better results for other
meteorological variables - like surface temperature, surface wind, etc. - but this extreme
have not been tested yet.

5.4 Penalty of the Principal Component Scores
This method renders the best values in terms of the standard deviation, with a minimum
value of 4 mm/day. To give an indication of the variability of the time series itself we
calculated its standard deviation.  For any station its value is over 15 mm/day for the whole
period.
The value of 4 mm/day has been obtained by using k in the range 8 to 10 (see eq. 5) which
implies 3 to 5 terms in the equation. For example, if k is equal 1 all the scores are taken into
account, so the surface is forced to resemble the historical mean value. For k near n, only
the weakest PC are affected in the summation S, but some others which also explain noise
are left uncontrolled. This fact explains why the results are of poor quality.
The task of fixing the optimum k for each data bank can be accomplished by means of an
experiment like this, or by a subjective analysis of the PC. The shape of the isolines might
easily distinguish from those which are related with noise from those which are related with
the physics. The weakest PC are also very sensitive to outliers (see Silveira et al. 1991).
From fig. 8 it can be analyzed the dependence of the standard deviation of the error in
relation to the number of terms analyzed. It is clear that the optimum is robust in relation
with k.
The weights wi  were chosen in order that all terms w ai i

2  are of comparable order. In early
stages we adopted as wi  the inverse of the RMS. of the time series of the scores ai .
Despite being reasonable this rule revealed soon unsuitable for the main patterns because
they are clearly asymmetric. Thus, we defined the weights as wi i= 1 2α , being the limit
α i  defined in order to

( )a f a dai i

i

i
2 0 96

−
∫ >
α

α

. . .

being fi the probability distribution function for the score ai , i=1..n. It is automatically
verified that for less than 4% of the events, ( )w a ti i. .2 10≥
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6. Conclusions and recommendations
From the results presented it is clear that all methods which rely on the temporal behavior of
the rain might distort significantly the general characteristics of the population, in particular
if the proportion of missing value is important.
Both the Nearest neighbor and Penalty of principal component scores methods which take
into account the spatial behavior of the rain render significantly better results than the ones
based on temporal properties. The main reasons are the characteristics of the rain in terms
of the time sampling strategy and the smooth topography of a small catchment area.
The method named Penalty of Principal Component scores shows a standard deviation 28%
less than the Nearest neighbor one (4.01 vs. 5.55 mm/day), a value which has been obtained
using only measurements of 13 stations.
If one includes more stations, the standard deviation is even bigger, even for lower mean
distances, which can be partly explained by the unknown quality of the extra stations.
Another advantage for this proposed method is the modest computer resources involved.
For instance, even a hand held computer might be enough, since the only requirements is
that it can hold a matrix of size n, a vector of size n for the mean averages, and the
capabilities to solve a linear system of equations. This feature should be considered for
routine operation of any  hydrologic model.
As a further improvement of the procedure, we plan to minimize the joint probability of the
scores ai  which in turn implies the solution of a non lineal problem for each event with
missing values. Despite a (significantly) increased computer time cost this procedure is
theoretically more sound.
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Figures

Figure 1: Geographic location of the study area (page 77, paper II)
Figure 2: Time series analysis of the first score (associated with the largest eigenvalue)

(page 78, paper II)
• Upper left: title Time serie representation of the score; x-axis units in days; y-

axis in mm/day
• Upper right: title Spectra of the module; x-axis units in 1/days; y-axis in

mm/day
• Lower left: title Power Spectrum; x-axis units in 1/days; y-axis in mm2/day3

• Lower right: title Self Correlation; x-axis units in days; y-axis non-dimensional
Figure 3: Time series analysis of the 13th score (associated with the smallest eigenvalue)

(page 79, paper II)
• Upper left: title Time serie representation of the score; x-axis units in days; y-

axis in mm/day
• Upper right: title Spectra of the module; x-axis units in 1/days; y-axis in

mm/day
• Lower left: title Power Spectrum; x-axis units in 1/days; y-axis in mm2/day3

• Lower right: title Self Correlation; x-axis units in days; y-axis non-dimensional
Figure 4: Sampled probability density function for the scores with larger eigenvalues (page

80, paper II). x-axis legend is Scores (measured in mm/day); y-axis is in per cent.
Included text indicated Tacuarembó River catchment area. Caption indicates
scores from 1st to 5th.

Figure 5: Sampled probability density function for the scores with lower eigenvalues (page
81, paper II). x-axis legend is Scores (measured in mm/day); y-axis is in per cent.
Included text indicated Tacuarembó River catchment area. Caption indicates
scores from 9th to 13th.

Figure 6:Evolution of the Standard deviation of the error (in mm/day) as a function of
average distance (in km)  for the nearest neighbor method. (upper figure on page
82, paper II)

Figure 7:Evolution of the Standard deviation of the error (in mm/day) as a function of the
number of terms interpolated for the TIPS method.  (lower figure on page 82,
paper II)

Figure 8:Evolution of the Standard deviation of the error (in mm/day) as a function of the
number of terms interpolated for the POPS method.  (page 83, paper II)
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Abstract:
The increasing use of Geographic Information System applications has generated a strong
interest in the assessment of data quality. As an example of quantitative raster data, we
analyzed errors in Digital Terrain Models (DTM). Errors might be classified as systematic
(strongly dependent on the production methodology) and random. The present work
attempts to locate some types of randomly distributed, weakly spatially correlated errors by
applying a new methodology based on Principal Components Analysis. The Principal
Components approach presented is very different from the typical scheme used in image
processing. A prototype implementation has been conducted using MATLAB, and the
overall procedure has been numerically tested using a Monte Carlo approach. A DTM of
Stockholm, with integer-valued heights varying from 0 to 59 m has been used as a testbed.
The model was contaminated by adding randomly located errors, distributed uniformly
within -4m. and +4m. The procedure has been applied using both spike shaped (isolated
errors) and pyramid-like errors. The preliminary results show that for the former, roughly
half of the errors have been located with a type I error probability of 4.6% on average
checking 1 per cent of the dataset. The associated type II error of the larger errors (of
exactly +4m. or -4m.) drops from an initial value of 1.21% down to 0.63%. By checking
another 1 per cent of the dataset such error drops to 0.34% implying that about 71% of the
±4m errors have been located; type I error was below 11.27%. The results for pyramid-like
errors are slightly worse, with a type I error of 25.80% on average for the first 1 per cent
effort, and a type II error drop from an initial value of 0.81% down to 0.65%.
The procedure can be applied both for error detection during the DTM generation and by
end users, and it might be of use for other quantitative raster data examples.

I Introduction:
Data quality has become an important aspect of Geographic Information Systems (GIS)
applications. John (1993) stated that "...very wrong answers can be derived using perfectly
logical GIS analysis techniques, if the user is not aware of the particular peculiarities of
their data..."
Although this statement holds for any kind of data, we will concentrate here on the case of
Digital Terrain Models (DTM). We will not consider errors in the intermediate steps in the
process of DTM generation, but we will concentrate on the errors in the final product..
Östman (1987) pointed out the fact that there exists no unique criteria or single measure for
the "quality" of a DTM. He suggested that at least, one should consider accuracy in height,
                                                          
1 Published in International Journal of Geographical Information Science, 11, 7, 677-698,
1997
2 Permanent address: Centro de Cálculo, Facultad de Ingeniería, Universidad de la
República, CC 30, Montevideo, Uruguay
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slope and also curvature. In his paper, the performance of an "on line" editor is described. It
attempts to find gross-errors while the DTM is being created. This editor was intended to
correct mainly those errors that affect curvature or slope, so no substantial ability to
improve the height accuracy is reported. He pointed out that gross errors typically account
for less than 0.5% of the whole dataset.
Day et al. (1988), tested three methods for the generation of DTM based on SPOT data.
The three results were compared with a very carefully, manually digitized 30 m. grid DTM,
in terms of height differences. Even though the goal of the work was to compare the
operational behavior of the algorithms, their paper does not propose any solution for the
locations of the errors. The distribution function of the absolute size of such errors is also
presented for each method. Similar results arises from the work of Theodossiou et al.
(1990).
Most of the literature concentrates on the location of gross errors in early stages of the
production process. Bethel et al. (1984) proposed the method of maximum chi-squared ratio
for on line quality control. A dense regular grid of observation is assumed. The method is
restricted to the detection of gross errors in the image matching process, and is based upon
the hypothesis that a least-square adjustment with bicubed spline function may fit locally a
DTM. The occurrence of big residuals suggest the existence of a blunder. He tested the
methodology using spike-like blunders of no more than 10 feet (about 3 m).
Even though the goal of this work is not to analyze the different ways a DTM can be
produced, Ackermann, (1995) points out that the trend in DTM production is towards a
move from interpolation to aproximation, because the new generation equipment is able to
produce many height values, but possibly with less accuracy than traditional equipment. The
surface is aproximated using many points, instead of being interpolated from few carefully
obtained values.
In a review of general statistical methods, Barnett et al. (1984) classify the current
methodologies for error detection in two classes, provided the distribution of the variable is
known a priori, or not at all. The first class includes methods that typically require also the
estimation of the parameters of the distribution. They are unlikely to work properly here.
For DTM applications, only those methods which do not require any particular distribution
(also called Informal Methods) are suitable. Such methods include techniques related to
Cluster Analysis (see for example, Fernau et al., 1990), graphical methods, Principal
Component Analysis, and others. Some of them were originally developed for applications
in social sciences, but are increasingly used in other fields.
Principal Component Analysis (PCA) is a widely known technique, both in digital image
processing and in the treatment of time series. Its ability to extract uncorrelated patterns that
enhance the interpretability of the data, and the possibility to reduce the number of patterns
separating the physics from the noise is well known.
In the field of remote sensing, principal components analysis is used to reduce the number
of image bands of information (Chavez et al., 1989; Eklundh et al., 1993). Essentially, the
remote sensing image data is re-mapped into a new coordinate system reducing the
dimensionality of the data. For example, rather than analyzing data from 7 Thematic
Mapper bands, we can do a principal components analysis to reduce the number of image
bands to 3 or 4 bands of information that contain most of the variance of the data. Normally,
we disregard the information in principal components beyond the third band, as this
information relates to noise in the data set. This direct approach is not suitable for DTM
analysis since at most a single model is usually available.
Summing up, most of the literature uses tailored procedures to locate gross errors. They
concentrate mostly on the DTM production stage, disregarding the problem faced by the
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end user. This paper presents a new methodology for locating not merely gross errors but
also some subtle ones, which can be applied both by the producer and the end user. The
methodology were tested in a real DTM using numerically simulated errors, and the results
are presented.
The paper is organized in eight sections. In section II a description and quick introduction
to the PCA technique is sketched. Section III introduces the methodology for elongated
DTM. In section IV the proposed procedure is described in terms of as a step-by-step
recipe. Section V describes the Monte Carlo experiments designed to test the methodology.
Section VI show the results in a particular DTM test case, using different error shapes.
Finally, section VII contains a discussion and sectionVIII is devoted to conclusions where
the results and proposed future work are discussed. Acknowledgements and References are
included under headings IX and X.

II Principal Component Analysis in brief
The theory of PCA can be found in many textbooks, for example, Lebart et al. (1977). To
make clear both the notation and the terminology, a brief sketch of the major concepts and
results will be presented.
Given a table of n events of w variables, they can be represented as n points in the Rw
space. They are supposed to be homogeneous , i.e., share the same measuring units. Each k-
point (event) corresponds to a point in Rw, and each event is composed of w scalar
observations. The case of w=3 is illustrated in the figure 1, where each point Mk represents
an event. The PCA attempts to find the direction e1 of the vector in Rw space which
minimizes the sum of distances MkHk squared, taken over all k (see fig. 1). The origin O is
the centroid of the set of points. For the sake of clarity in the figure, points with negative
coordinates are not shown.
The projection OHk, which is also the scalar product of vector Mk-O with the unitary
vector e1, is called here the score (following Richman, 1986). Thus Mk-Hk is orthogonal to
e1. There is one score value associated with vector e1 for each point in Rw. Let us also
assume that e1 is unique.
If all the values MkHk are zero, we have reduced the problem of original dimension w, to a
one-dimensional one. All the variability in the observations is explained by a single vector
e1. If this is not the case, we may try to repeat the procedure with the remaining variability
MkHk, which belongs to a (w-1) subspace of Rw orthogonal to e1. The original
measurements Mk - O can be replaced with the difference OMk - OHk, which is equal to
Mk - Hk.
There should be a vector e2 (automatically orthogonal to e1) which minimizes the distance
in the Rw space. The process continues the same way, being each new vector ep orthogonal
to all the previous ones, and there are w such vectors. Those vectors are called principal
components (PC).
Each event Mk - O can be expressed as a linear combination of the PC

( ) ( ) ( ) ( )M O e e e ek 1 k 1 2 k 2 3 k 3 w k w- =  a * +  a * + a * +...+a *        (1)
It can be shown that the scores ai(k) associated with vector ei are uncorrelated with those of
vector ej. The vectors ei are the eigenvectors of the covariance matrix of the data, and its
components are named loadings in the literature. The sum of the corresponding eigenvalues
equals the sum of the squares of the distances MkHk (Lebart et al., 1987).
PCA analysis renders a sequence of principal components, which explains most (or all, for
p=w) of the variance of the data. That implies that the error in approximating the data with a
linear combination of their first p vectors is minimal for a given p<w; (p=1 in fig. 1).
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Typical results show that p<<w for a good approximation in a wide range of applications,
including this one. Since the w PC's form a basis in Rw space, they can replicate exactly any
of the n points in the set, using the scores as weights.

III Locating errors in a single strip
We will concentrate our efforts in locating errors in an elongated DTM defined over a
regular grid of size w*n, w <<n. We will use the term strip to denote such DTM shape, and
it is assumed that w corresponds to rows, and n to columns. Such DTM can be regarded as
being composed of n cross sections (named profiles) each composed of sets of w points.
The height can be referred to as h(i,j), being i bounded by w, and j by n.
In typical situations, strong correlation can be expected between "close" data points, both
within each profile and between adjacent ones. On the other hand, isolated random errors
are assumed to be weakly correlated with its neighbors. So a procedure may be designed to
give a criteria for selecting a candidate h(i,j) as being an error, based upon some index or
statistic that highlights a low correlation situation. Systematic errors might show a
completely different behavior strongly related with the producing method, and they will not
be considered here.
Some authors (Hawkins, 1974; López et al., 1994; López et al., 1993) attempted to locate
errors in tabular datasets using PCA, but their results and methods could not directly be
applied since DTM data cannot be automatically regarded as a time series nor a multiple
replication of an experiment. Some different approach should be suggested.
A procedure with two steps is proposed. First, locate the profiles that are likely to hold an
error, and secondly (within each of them) pick the location of the error itself.

a.1.- locate the columns (profiles) likely to have candidates
In order to highlight an unusual profile some properties of PCA will be exploited. They will
be illustrated using the concepts already presented. What follows is based on the ideas
presented in López et al., 1994.
First question is how PCA is connected with errors. Fig. 1a shows the typical distribution of
the score 1, for a single strip of the DTM test problem (which will be described later), and
fig. 1b, for the second score. The distribution is build from n values of the scores derived
for a DTM of size w*n (25*150 in this case). For this particular strip, the first 10 PC
explain more than 98% of the total variance.
As it can be seen, the distribution does not show any special shape. The mean should be
zero in all cases (figs. 1a to 1d). We want to emphasize that the first score distribution is not
at all symmetric, which is more likely in the second one (fig. 1b).
The progressive evolution towards a symmetric distribution is clear in the fig. 1c and 1d,
which illustrates the 20th. and 25th. scores distribution. Another property that should be
noted is the decay in the "width" of the distribution as an index function. There is no profile
for the fig. 1a and fig. 1b which first or second score has absolute value greater than 40 m.
For the fig. 1c, the same property holds, with limits 0.8 m. for the 20th. score, and 0.9 m.
for the 25th. one (fig. 1d). This decay is also related with the eigenvalues associated with
each PC. Almost the same behavior can be observed for other strips. Notice that the scores
share the units with the DTM data (m), but they have sign.
In all these figures there are two small arrows pointing to an "*" and to an "O". The first
one points to the values of the scores for the profile presented in fig. 2a, and the other does
the same for a slightly modified profile (fig. 2b) which has an isolated "error" pointed by
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the arrow which is not evident by looking at the profile alone, and will be left unnoticed in a
3-D like representation.
However, notice that for both the 20th. and 25th. scores (fig. 1c and 1d) the "O" value
associated with the modified profile (fig. 2b) is now a marginal value, clearly separated
from the rest of the samples.
This result holds in general for other strips. From the figures it can be seen that there are a
few events (profiles, identified by the column) that renders marginally distributed values for
some of the scores. What is the meaning of such events? Those events that behave in such a
way are unusual events, and may contain the errors, as we have shown in the example. So
the method will use some threshold interval for the j-score, and check all the events looking
for the ones that lie outside the bounds (see Davies et al., 1993). This is the first key idea.
The procedure (as sketched) disregard information coming from adjacent profiles. In other
words, the profiles can be mixed, and the results will be the same. This information can in
turn be used for handling some kinds of systematic errors, which is beyond our scope, or to
extend the present method for non-isolated errors, which have not been considered at this
stage.
Not all of the feasible set of scores will be used. Typically, the first ones are more related to
physics (we meant by physics the underlying properties of the DTM) than to noise. That's
why they are robust to single outliers (see the "O" in fig. 1a and 1b). So the first scores will
not be checked. The appropriate limit for physics/noise qualification is subjected to direct
experimentation, as will be presented later.
A related idea was proposed by Hawkins, 1974 who devised a similar approach. Instead of
checking each score against a given (different) threshold, he computes the statistic T2 and
analyzes its distribution. T2 is defined for profile (or sample) k as:

T k a k
j

j
j p

j w

2

21( ) * ( )= ∑
=

=

λ
(2)

being λ i  the eigenvalues of the covariance matrix. In his work he says that the distribution
of T2 is a compound gamma function, assuming that the scores are normally distributed.
Such property looks somewhat restrictive, but it is not strictly required. Any column profile
is flagged if the value of T2 is over a prescribed value.
Summing up, the approaches of both López and Hawkins take advantage of the fact that the
non-systematic noise is likely to be important only in the weakest PC. The assumption that
in this way it is possible to identify the columns containing the errors is important. What is
remaining is how to identify the row for each candidate in any given column.

a.2 within each column (profile), find the rows that identify the candidates
T2(k) is supposed to be "small" in most cases, except under the effect of the outliers, when
at least one of the scores will be bigger than usual. Since each score is a linear combination
of the height values of the column (due to the scalar product), the most-likely error row is
chosen as the one whose variation mostly affects the value of T2(k).
Therefore, a simple sensitivity analysis is carried out for each flagged "k" profile (column).
The row that is responsible for the biggest change in the T2(k) function, will be classified as
an "a" candidate to be an error. Also "b" and "c" candidates are selected, in decreasing
order of priorities. This is the other key idea.
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There exists however some reasons for using a different statistics. We may create a positive
function T k2

* ( )  (slightly different from the one of Hawkins, 1974) which is a weighted
average of the squares of some of the scores aj, for a given column "k".

T k W a k
j j

j p

j w

2

2* ( ) * ( )= ∑
=

=

   (3)

Note that as before the summation starts on the p-th score. The weights Wj can be chosen to
scale the scores so that all terms in the summation have the same order of magnitude. The
scores can be related with the aforementioned eigenvalues, or fixed in another way. We
have used for each j-score, a weight Wj that makes a ( k ) *W 1j j ≤  in 95% of the events.

For example, if aj is normally distributed with standard deviation σ j , Wj will be exactly

σ j *1.95996.. (solution of 1
2 2

0 95erf
W

j

j( ) .
σ

= ). Hereinafter, 100-95%=5% will be called

the penalty margin.
Such definition is more robust against the existence of outliers than the use of the
eigenvalues. If the aj are normally distributed, the statistic T k2

*( )  is equal to the one of
Hawkins except for a scale factor.
It should be pointed that T k2

*( )  is not intended to be a weighted average of all the scores.
Only those associated with the non-physical scores are included, according to the above
mentioned limit p.

IV The proposed technique
Once we could locate errors in a strip, we could tackle the problem for a complete DTM.
Given a regular gridded DTM model, with m rows and n columns, it can be viewed as
formed by strips of width w rows and n columns. The union of all the strips is the whole
DTM. In fig. 3 the whole matrix and a single strip is shown, while in fig. 4 the
corresponding part of the DTM is presented.
For each row-wise strip, a set of "a", "b" and "c" error candidates can been selected, and its
union will be called "row-wise candidates". This may be a complete solution for the
problem. But why row-wise strips? There are no reason to discard analyzing the problem
using column-wise strips. So doing the same for all column-wise strips will also cover the
entire DTM and give three new global set of candidates. The union of the three sets can be
called "column-wise candidates".
If the intersection of both sets ("row-wise candidates" and "column-wise candidates") is not
empty, we have located those points in the DTM that behave atypically in both directions.
These will form the candidate set, named also guessed errors.
The procedure involves five steps, and it can be sketched as:
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Some remarks follows. We have used in the pseudo code a single value of strip width w
both for rows and columns. This is not required but simplifies somewhat the tuning process,

as will be presented later.
The method is in fact iterative, since all the distribution functions (covariance matrix, etc.)
are modified as soon as an error is removed. In each iteration, a candidate set is obtained
with the presented methodology. After the candidates are corrected (if they are true errors)
or they have been verified, they will be excluded from the feasible set of "a", "b" or "c"
candidates, and a new iteration takes place. The process is supposed to stop when some
criterion is fulfilled; for example, it stops if the type I error is too big (see below). Each
iteration will be named "step" in the following discussion.

V The experiment:
To test the methodology we have used a Monte Carlo simulation procedure. Using a real
DTM as a test problem we first selected at random about 5% of the points within the
dataset. Then all of them were modified by adding an error, which were also randomly
selected from a given feasible set, and finally the methodology is applied in order to locate
the errors and its results were recorded for later statistical processing.
The DTM used as a test problem covers an area of 7.5x5 km in Stockholm with 150x100
points with a 50 m grid spacing and 1 m height resolution. The area consists mainly of hilly
terrain, with height values ranging from 0 to 59 m. Fig. 5 shows a mesh view of the DTM,
while in fig. 6 its height distribution is presented. The 0 m areas can be seen to the left of
the fig. 5 . The DTM has a mean height value of 20.83 m and its standard deviation is 9.47
m. For this type of DTM, errors within [-4 m,+4 m] are typical. Since the data is rounded to
the nearest meter, there will be little chance to pick errors of one meter. Any "feasible" error
should also be an integer number.
There is scarce guidance in the literature about the spatial distribution of real errors, and
they are strongly related with the generation procedure. Since we have a single replication
of the DTM, we were not able to test the procedure with real errors. We follow some
authors (Bethel et al., 1984) in modeling errors as additive and isolated, being the added
height chosen from a given set. As a feasible set we have used as a first example the values
[-4,-3,-2,-1,+1,+2,+3,+4] meters, with equal probability, which is considered as a difficult

Given a DTM as a matrix of size m*n
subdivide the DTM in row-wise and column-wise strips of width w

repeat until criteria are satisfied:
a) find row-wise candidate set: 

a.1.- locate the columns likely to have candidates
a.2.- within each column, find the rows that identify

     the candidates
b) find column-wise candidate set: 

b.1.-locate the rows likely to have candidates
b.2.- within each row, find the columns that identify

     the candidates
c) intersect both sets
d) evaluate criteria
e) correct all errors

end
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case. This is expected to model spatially uncorrelated errors, and we named it as spike-like
errors (see fig. 7, left).
The selection of 5% as a typical value looks somewhat high when compared to the one
reported by Östman, 1987. He found a typical value of 0.5% for the number of gross error
occurrences, but here the worst errors are of absolute size 4m and they account for only 1/4
of the total.
As another alternative for an error shape model, we also tried a more structured one, which
resembles a pyramid; once a point is selected, it is modified by adding a 2∆  meter error,
and the eight points surrounding it adds only ∆ (see fig. 7, right) We have selected ∆
uniformly from the set [-2,-1,+1,+2]. We named this model pyramid-like, and it is expected
to model some degree of spatial correlation in errors.
Once the model has been contaminated with errors, the described procedure is applied.
Since one possible application for the method is to help locate errors while the model is
being created, various measurements of success have been provided. The most important is
the probability of type I error (Ounping, 1988), which measures the probability of
classifying a correct value as wrong. It is estimated with the quotient between the number of
good points classified as errors, in relation to the number of candidates suggested. This
statistic can be calculated for each step (even in real applications), and the user can take the
appropriate decision to continue the process or to stop.
Also, the relative importance of the errors is important, and not merely how many they are.
Since in this test we know in advance how the original errors are distributed, the distribution
of the identified errors can also be calculated. That will not be possible in the real operation,
but it will render useful information at this stage. We will show results for errors of any
size, but most figures will concentrate on errors of absolute size 4 m. The reason will be
clear later. The number of errors remaining in the dataset (classified as good by previous
steps) in relation with the initial population evolves monotonically as the process continues
but might become stationary (no more errors are found irrespective of the number of
iterations).
The method has some free parameters, and some previous estimations should be done in
order to fix its value. They include

a) which scores will be considered as associated with noise.
b) what threshold interval will be used, to separate the marginal from the typical
values in each distribution.
c) the penalty margin value

The strip width has been kept fixed, that means w has been held constant for all strips (both
row-wise and column-wise). Instead of selecting a different number of scores for each strip,
a single value has been chosen.
Further theoretical guidance for the choice of w for a given m and n has not been
investigated in full. The number w can be assumed as a common divisor of m and n, and the
minimum ratio n/w can be derived following Hawkins (1974). He gives some theoretical
results, assuming that all the scores are normally distributed. Figure 8 gives guideline values
depending on the confidence value α , and they are derived after Hawkins, 1974, 1994. We
used n/w=150/25, 150/15 and 150/10 at best in our examples, which are denoted in the
figure as "+", "o" and "*" respectively. They imply somewhat low values for the confidence
α . Under some assumptions (Hawkins, 1974) these results may indicate that our results
using w=10 should be more reliable than those of w=25.
However, from our results will be clear that given a DTM an appropriate value for w can be
estimated by means of a similar experiment that the one in this paper. Further guidance will
be given later.
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Different and separate series of experiments were carried out, using values for w of 10, 15
and 25 elements and also applying spike-like and pyramid-like shaped errors.
From some runs that were done previously, it became clear that once w was fixed, the most
important parameter is the number of uncontrolled scores, being the limit between the
physics and the noise. This limit may be found in each particular DTM by means of a
simulation like the one described in IV, or by applying some rule of thumb.
The other parameters were initially fixed at 2.5% for the threshold level, and at 5% for the
penalty margin. Increasing the first one renders more candidates to the "a", "b" and "c" sets
by means of selecting more columns (profiles). In order to avoid an empty candidate set, we
increased the threshold level if too few candidates are suggested. The threshold interval is
derived from the cumulative sampled histogram, using appropriate bounds. The penalty
margin, provided it is not too small, is somewhat insensitive to the gross-errors, and so are
the weights Wj.
The goal is to minimize both the probability of type I and II error. However, not both of the
objectives are equivalent, and in some situations one may be more important than the other,
depending upon the user. This will be discussed later.

VI The results from the Monte Carlo simulation
Results for spike-like errors:
We will denote as candidates or guessed errors the group of coordinates (i,j) suggested by
any single step of the procedure. The true errors are those elements in the previous set that
also belong to the known errors set.
Fig. 9a shows the average Type I error evolution up to 5 per cent depuration effort (see
below). The y-axis shows the evolution of the type I error calculated as the number of
points missclasiffied as errors compared with the number of candidates, averaged after 50
replications of the random error set. The x-axis shows the effort, defined as the fraction of
the dataset already revised. An effort of 100 per cent implies that all possible points have
been checked, since the effort per step depends on the number of uncontrolled scores and
the threshold level. We interpolated our results to prescribed effort values using splines.
Each polyline corresponds to different strip width  and also number of uncontrolled scores.
For w=10, 15 and 25 we left uncontrolled 6 scores.
From this result it is clear that in the first 1 per cent effort the measured Type I error is low,
being below 5 per cent for the lower values of w. The dashed horizontal line corresponds to
the limit of 95%. Obtaining an error rate over that level is worse than to pick the points at
random, since that level is the noise initially seeded into the DTM. The limit was shown as
being constant, despite the fact that such probability grows slightly as soon as an increasing
number of errors has been found. For 2 per cent effort and over somewhat poorer results
may be achieved, but certainly better than chance.
But good results in the type I error is not the whole picture. From a DTM producer's point
of view, what is more important is to minimize errors still in the DTM, so the type II error is
more representative. It measures the probability of classifying as good a wrong value. The
type I error in fig. 9a only count the success and the failures, but do not reflect the relative
importance of the errors. The absolute value of the error is not considered.
Table  1 shows the evolution for a single replication of the experiment of the distribution of
the errors. The original distribution of the error size is shown in bold. For example there
were originally 116 points with error +3. The rows below show the remaining errors after
finishing each step of the cleaning process. For example, after step 4 only 49 of the 116
original errors of size +3 remain in the dataset.
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As expected the errors of size +1 and -1 were very difficult to locate, since the original
DTM has a resolution of that size. We omitted the corresponding effort involved.

Size of errors -4 -3 -2 -1 1 2 3 4 Total

Original # errors 93 85 89 82 83 98 116 93 739
# after step 1 36 53 78 82 81 83 72 43 528
# after step 2 21 26 66 82 79 74 56 29 433
# after step 3 20 19 57 81 79 69 52 25 402
# after step 4 18 17 50 80 78 68 49 24 384
# after step 5 18 17 48 80 78 67 47 24 379

Table 1 Error´s size distribution for a single experiment, when 5 terms are left uncontrolled

We limit our Type II error calculations to errors of absolute size exactly 4m, because as
table 1 shows, the other cases are less prone to be located and its type II error will be
unaffected. In fig. 9b the evolution of the Type II error is presented. Notice that the best
results are for w=25, but for w=15 very similar results are achieved. The initial Type II
errors is 1.21% in all cases, so it can be reduced to 0.64 with only 1 per cent effort.
The same behaviour were noticed for other combinations of w and number of uncontrolled
scores; better results are obtained for the Type I error for lower w values, while the opposite
happends for the Type II error.
In fig. 10 the type I error up to the 1 per cent effort is represented as a function of the
number of scores not controlled. The continuos line were obtained by spline interpolation.
Notice that, irrespective of w, the relative minimum lies between 5 to 10, and the absolute
minimum correspond to the option w=15, nearly twice the optimum number of uncontrolled
terms.
In fig. 11 the Type II error up to the 1 per cent effort is analyzed in relation with the number
of uncontrolled scores. The results for w=10 are worse than the other options, but it is not
so evident the differences between w=15 and w=25. So a bigger w is preferred, while the
optimum choice for the scores to be left uncontrolled is less crucial.  On the other hand,
from fig. 10, the w=10 option is worse as far as the type I error is concerned, while w=10
results in similar figures.
This result supports some conclusions:

a) the optimum choice for the number of controlled scores is more or less
independent of the goal (minimize the type I or II error), while the situation for w
is slightly different. In the former, a smaller w is preferred while in the later a
bigger one is better.
b) there seems to be a compromise w value for a given DTM, which can be
estimated from simulations before truly apply the methodology, or in another way.
In this case it should be near w=15.
c) the results for type II error are based only on errors of size 4m. Slightly different
figures can result from considering other categories.

As mentioned before, a crude estimation for the optimum w can be done without performing
a simulation. From the outlined results, the best w is nearly twice the optimum number of
uncontrolled scores. That value should be in turn near the limit  between the physically
meaningfull and the noisy eigenvectors, and to define the former there is no unique rule in
the literature.  We applied the one suggested by Hawkins, 1974 which in our case proves to
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give similar values for different w. See the original reference for a justification. The
procedure might be the following:

1) choose some suitable initial value, based on fig. 8.
2) for each strip, calculate the covariance matrix, and its eigenvectors. We will
assume that they are sorted in ascending order, depending on the corresponding
eigenvalue. Find the p that makes
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Since this value depends on each strip, we select the median of the results for all
strips. In our DTM, for w=10, 15, 20, 25 and 30, we obtain p=3, 4, 4, 3 and 4.
Estimate the optimum number of uncontrolled scores as twice that number and the
proper w as four times. In our case, it will suggest 6 to 8 uncontrolled scores, and
for w something between 12 and 16.
3) choose the definitive w as close as possible to the value obtained in the previous
step, while being a divisor for both m and n.

This will give a rough estimate, while a simulation like the one described in this work will
give more reliable results. Simple or flat terrain will be well represented with less terms, so
w will be smaller, while for complex ones it should be greater.
Results for pyramid-like errors
In previous results, all the calculations have been performed assuming that typical errors are
completely isolated ones, uncorrelated in space. This is not true in practice even though the
shape of the errors has not been analyzed in the literature. Bethel et al., 1984 used spike like
errors only, and we present here the results of a different model: the pyramid-like error.
Since pyramid errors are spatially autocorrelated, the chance of locating them is lower.
That´s due to the underlying design of the methodology, strongly oriented towards
independent errors in space.
There are also some other details regarding the "accounting" procedure. We will consider as
a candidate not only any point which is both a row-wise and column-wise candidate, but
also its immediate neighbors. So for every candidate, nine points are checked. However,
due to computational simplicity no effort has been made to take into account the overlap of
candidates  for the same step (i.e. if both a point and its neighbor are selected, there are
points that count twice). So the results are somewhat pessimistic in terms of the type I error.
The behavior observed in figs. 12a and b are very similar to the ones observed for the spike-
like error shape model, althoug the numbers are more pessimistic. The first 1 per cent effort
renders an acceptable Type I error, but the second and others are somewhat higher. The
analysis of  the Type II error should take into account that the initial value in this case is
0.81%, while in fig. 9b it was 1.21. This imply that the procedure reduces at most the Type
II error in 79% with only 1 per cent effort.
For comparison purposes, fig. 13 shows the type I errors for the first step in terms of the
uncontrolled scores, for different values of w, and for 50 replications of the experiment.
The type II values in fig. 14 shows that (as happened before with isolated errors) the weak
dependence upon the number of uncontrolled scores; the associated error is fairly "high"
(0.64% per cent up to the 1 per cent effort, and 0.42 up to the 5 per cent effort, starting with
an initial value of 0.81%,) when compared with the other error shape model. This imply that
79% of the gross errors remain in the dataset with 1 per cent effort, and 51% cannot be
located even with a 5 per cent effort. So again, as expected this results are worse than those
for isolated errors, but still might be of use.
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Summing up, as expected for the pyramid error shape, for most of the cases the 1 per cent
effort still renders a low type I error, being rather insensitive to the number of uncontrolled
terms (but in the range 4 to 8) and to the alternative w=10 or w=15.
In terms of the type II error, about 21 per cent of the worst errors can certainly be located
with only 1 per cent effort of the procedure, and it may go up to 49% with 5 per cent effort.
The best results follow the ones obtained with isolated errors, being w=25 the best option.
The number of uncontrolled scores is again between 5 and 10.
The conclusion is that the method proves to be effective in identifying a significant amount
(up to one third) of the big errors with limited effort. For better Type I results, a smaller w
is suggested, while for Type II optimization a somewhat greater might be the option
irrespective of the shape model assumed. The number of uncontrolled scores is between 5
and 10 in any case.
No special pattern of the location of the errors found were noticed during the runs. Such
aspect may be investigated in the future, with a wider set of DTM.

VII Discussion:
From the results obtained, a process can be devised to pinpoint an important part of the
larger random errors in a raster dataset. Further actions strongly depend on the application
the user is involved with.
In a production environment, some action can be taken to check these identified isolated
values. In photogrammetric measurements these checks can be done before removing the
stereopair. The goal here is to remove most of the errors, i.e. diminishing the type II error,
while the type I error is less crucial.
On the other hand, the end user is left alone in most cases, because he may not be able to go
to the original data sources. Therefore he should be worried by the risk of modifying a value
that is correct, so the type I error is more important.
The results show that it can be assumed that up to the 1 per cent effort, most candidates are
errors. The associated Type I error can be less than 5%, as has been shown for isolated
errors, and around 25% for pyramid-like ones for proper choice of the parameters. The
Type II error is defined here only for errors of absolute size 4 m, and it can be reduced 64%
(for isolated errors) and 21% (for pyramid-like errors) checking only 1 per cent of the
dataset.
Every step produces a candidate set, and once this set is obtained, any standard procedure
can be used to replace the outliers with suitable values. As long as the dataset is
progressively being corrected the risk that a point classified as an error is correct is higher,
and some caution should be taken.
The procedure may be unable to locate non random errors, i.e., if a region has been affected
by an improper choice of the control points, or there are edges along the rows or columns
that arise from an improper matching of a partial DTM, for example. Further studies will be
necessary to clarify this aspect.
The test area is considered to be a difficult one. Rough terrain, narrow channels, steep hills,
and small water areas are typical, all of them may easily mask errors. The DTM itself
should not be considered as free of errors, and it has been used "as is". This fact is common
to most users of this kind of data, so it is believed that such a situation will not limit the
range of applications of the ideas presented.
It should be noticed that there are two integer parameters free: the strip width and the
optimum number of scores that should be left uncontrolled. Here we have taken a fixed strip
width w for both row-wise and column-wise strips, and we have considered a single value
also for the optimum number of scores for all strips.
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Loosely speaking, the optimum number of uncontrolled scores should be somewhat stable,
provided that w is not too small. This assertion comes from a weather analogy. In that case,
increasing w is the same as adding a new weather station to the set. The optimum value is
related with the number of typical weather systems, and that is certainly independent of the
number of observations being taken.
If w is less than this (unknown) optimum value, poor results will be achieved. We noticed it
using w=10. On the other hand, if w is too big, the number of events will be small compared
with w, and unstable results may appear. In the extreme case of w>number of events, the
covariance matrix will be no longer positive definite, and zero eigenvalues will appear. This
optimum may serve as an objective number which characterize terrain complexity being
lower for smooth terrain. Further work with other DTM may render a closer relationship
between roughness and this number, also linked with grid size. We provide some rough
estimation rule, which has to be tested in other cases.
There are two other non-integer parameters: the penalty margin and the threshold level to be
considered. Some calculations have been carried out and the penalty margin value has been
found to have a rather low influence on the final result.
The threshold level is the key for the amount of work to be done. If its value is too low, only
very few values will be chosen as candidate errors. They certainly have a good chance to be
true errors (i.e., the Type I error is lower). But some others, which are also errors, may not
be picked even in further steps (i.e., the Type II error will stay high). This should be the
choice for an end user.
On the other hand, if its value is higher, more candidate errors will be selected, but the
efficiency will be lower. That also implies that the type I error may be higher, and that may
be unacceptable. In an automatic production environment, where there is a chance to check
the values, this may not be a problem. In a semi-automatic one, the operator may quickly
become bored of checking points that are correct, and the overall procedure may be
considered as poor, even if most of the errors are in fact removed.
The end-user has limited ways to check the values. Maybe he can use a three-dimensional
plot of the interpolated surface near the candidates, or a contour plot, or something else to
get an idea of the surroundings. But taking into account that a) he certainly will not check
that way too many candidates, and b) he also has no definitive way to find the true value, he
will limit the search to a small set, where may be included the "worst" errors. So he will
choose a somewhat lower threshold.
A comment about the computer time requirement: the procedure involves for each step, the
computation of (m/w).(n/w) covariance matrices of size (w,w), which takes
[ ](n / w).O(n ) + (m / w).O(m ) .O(w  )2 2 2 operations, find its eigenvectors after

[ ](n / w) + (m / w) . O(w )  2 operations, and project each strip to calculate the scores (which
in turn requires (m+n).w operations). Some other operations are required but depend
linearly on m and n. In our example, for a DTM of size m=150, n=100, and for w=10, it
requires about 3 seconds in a PC486 (and 2 in SUN Sparc 10) per step, both working with
MATLAB, so the overall procedure is considered cheap in terms of computer time.

VIII Conclusions:
A new methodology to locate random errors in quantitative raster data has been presented,
and tested in a grid-based DTM as an example. The methodology is iterative, and proves to
be robust, rendering type I error rates near 5% for isolated errors. Roughly speaking, it also
located half of the 4 m isolated errors checking only 1 per cent of the database.
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The process involves the decomposition of the DTM into strips, and requires a Principal
Component Analysis (PCA) of each one. That is not the usual way of using the technique in
image processing. Further simple calculation renders three sets of candidates to be
considered. The stripping process is done both row-wise and column-wise as a cross check,
and a even more reduced set of candidates is obtained.
Some experiments were performed using a DTM with heights between 0 and 59 m seeded
with randomly located additive errors, with amounts up to 4 m. This value was considered
to be on the order of the errors in the model. Two error shape models were considered: one
completely isolated (like a spike) and the other with some arbitrary regular shape (pyramid
like). Even though it has been assumed that those shapes are typical, their
representativeness for real DTM errors is still to be investigated.
The method has some parameters left free to the user, and some guidance is provided.
However, at least for the first candidates, the high rate of success obtained proved to be
fairly insensitive to some of the parameters.
In the case of using the algorithm in a semi-automatic production environment, the method
warns the operator about possible errors before the stereopair is unmounted, enabling a new
measurement. In a fully digital production environment, some correlation thresholds have
been usually fixed weakly to diminish computer time. This method may help in selectively
strengthening the correlation thresholds in unlikely points.
In the case that there is no possibility to verify the errors, e.g. for end users, the algorithm
will help to locate the most unlikely values; they may be replaced with the aid of some
suitable interpolation method. If there are some independent sources (cartographic maps,
etc.) they could be used for checking.
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Figures

Figure 1 Sketch of the first principal component, for w=3
Figure 1 Sketch of the score distribution, for a typical profile. The "*" and the "O" points to

a particular profile, and to a modified one.
Figure 2 Example of an original and modified profile
Figure 3 Sketch of the strip notation
Figure 4 Mesh view of a single strip of the test Digital Terrain Model
Figure 5 Mesh view of the test Digital Terrain Model
Figure 6 Histogram of the height distribution in the test model area
Figure 7 Sketch of the spike-like and pyramid-like error model. An asterisk indicate

modified height values
Figure 8 Required length to width ratio for the strips as a function of width, for a given

confidence level (following Hawkins, 1974, 1994)
Figure 9 Evolution of the Type I error (a) and Type I error (b), as a function of the effort,

derived after 50 experiments using spike-like errors.The dotted line in (a) indicated
the expected Type I error for a completely random choice.

Figure 10 Comparison of the type I error up to 1.0 per cent effort, for different number of
uncontrolled terms, using spike-like errors. Results derived after 50 experiments.

Figure 11 Comparison of the type II error up to 1.0 per cent effort, for different number of
uncontrolled terms, using spike-like errors. Results derived after 50 experiments.

Figure 12 Evolution of the Type I error (a) and Type I error (b), as a function of the effort,
derived after 50 experiments using pyramid-like errors. The dotted line in (a)
indicated the expected Type I error for a completely random choice.

Figure 13 Comparison of the type I error up to 1.0 per cent effort, for different number of
uncontrolled terms, using pyramid-like errors. Results derived after 50 experiments.

Figure 14 Comparison of the type II error up to 1.0 per cent effort, for different number of
uncontrolled terms, using pyramid-like errors. Results derived after 50 experiments.
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Abstract: The widespread availability of powerful desktop computers, easy-to-use
software tools and geographic datasets have raised the quality problem of input data to
be a crucial one. Even though accuracy has been a concern in every serious application,
there are no general tools for its improvement. Some particular ones exist however, and
we are reporting here results for a particular case of quantitative raster data: Digital
Elevation Models (DEM). We tested two procedures designed to detect anomalous
values (also named gross errors, outliers or blunders) in DEM, but valid also for other
quantitative raster datasets.
A DEM with elevations varying from 181 to 1044 m derived from SPOT data has been
used as a contaminated sample, while a manually derived DEM obtained from aerial
photogrammetry has been regarded as the ground truth. That allows a direct
performance comparison for the methods with real errors.
We assumed that once an outlier location is suggested, a "better" value can be measured
or obtained through some methodology.  The options are different depending upon the
user (end users might only interpolate, while DEM producers might go to the original
data and make another reading). In this experiment we simply put the ground truth
value.
Preliminary results show that for the available dataset, the accuracy might be improved
to some extent with very little effort. Effort is defined here as the percentage of points
suggested by de methodology in relation with its total number: thus 100 per cent effort
implies that all points have been checked.
The method proposed by López (1997) gave poor results, because it has been designed
for errors with low spatial correlation (which is not the case here). A modified version
has been designed and compared also against the  method suggested by Felicísimo
(1994).
The three procedures can be applied both for error detection during the DEM generation
and by end users, and they might be of use for other quantitative raster data. The choice
of the best methodology is different depending on the effort involved.

KEYWORDS: DEM, quality control, blunder location, gross error location, accuracy

1. Introduction
Geographic Information Systems (GIS) is one of the fastest growing markets

in software today (Anon 1994). That implies that more people have access to
proper tools, and then are able to manipulate and produce data. Data availability
will be assured in the future, through the operation of the so called
Clearinghouses, which will distribute existing datasets to government, industry
and the general public (Nebert 1995, 1996).

The combination of widespread data and ready made, easy to use software
raises some critical points. John (1993) stated that "...very wrong answers can be
derived using perfectly logical GIS analysis techniques, if the users are not aware
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of the particular peculiarities of data...". Data quality is emerging as one of the
most important issues in GIS technology for the next years. Its management
requires methods to describe, visualize and measure it properly (see Hunter et al.
1996). Standards for describe the quality are presently under development.

Thapa et al. (1992) remarked that when setting up a GIS, most of the costs
(maybe up to 80 per cent) are related to acquiring and/or collect data. Once the
dataset is obtained further efforts to improve accuracy should be as effective as
possible. This paper reports some results on that subject. We will concentrate here
on Digital Elevation Models (DEM). We will not consider errors in the
intermediate steps in the process of DEM generation, but we will concentrate on
the errors in the final product. According to Thapa  et al. (1992)  errors can be
classified into three types: (1) gross errors and blunders, (2) systematic errors and
(3) random errors. Gross errors and blunders are caused by carelessness or
inattention of the observer in using equipment, reading scales or writing down
readings, etc. They can also be caused by malfunctioning of the equipment.
Observations affected by this kind of errors are useless, and should be eliminated.
From a statistical point of view they cannot be considered as belonging to the same
population as the other observations. Systematic errors occur in accordance with
some deterministic system which, if known, may be represented by some
functional relationship. In a statistical sense, systematic errors introduce bias in the
observations. Unlike gross errors, they cannot be detected or eliminated by
repeated observations (the errors may be precise, but they will not be accurate).
After removal of gross and systematic errors, differences still exist due to random
errors. They cannot be removed by repeated  observation, and they cannot be
modeled with a deterministic relationship. If sufficient observations are taken,
random errors posses the following characteristics: a) positive and negative errors
occur with almost the same frequency b) small errors occur more often than large
errors and c) large errors rarely occur.

Östman (1987a) pointed out the fact that there exists no unique criteria or
single measure for the "quality" of a DEM. He suggested that one should at least,
consider accuracy in elevation, slope and also curvature.  However, accuracy
reports in terms of slope are very unusual. An exception can be found in the work
of Giles et al. (1996) who compared a 20 m resolution DEM derived from SPOT
images with field measurements in terms of slope. They recognized that the
elevation error might have two components at different scales. To filter out the
small scale error they simply applied a 3 by 3 median filter and to remove the
larger errors they used a 11 by 11 window, with a different filter. They claim that
such filtering improve to some extent the accuracy in slope, without significantly
degrading the accuracy in elevation.  This has also been reported by  Östman
(1987a). He found that the RMS error in elevation decreases with decreasing grid
size (as expected) but the effect in RMS error in slope is very limited. Förstner
(1983) gave theoretical arguments for this fact.
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Accuracy of photogrammetrically sampled DEM depends on the data sources
and the procedures involved. It has been a considered an important problem which
led to collective efforts like the one summarized by Torlegård et al. (1986). They
reported the results of DEM derived independently by a number of organizations
working on the same set of aerial photographs. Six different terrain types have
been chosen, ranging from smooth terrain to steep and rugged mountains. They
found that the errors of the elevations in photogrammetrically measured DEM
consist to a large extent of systematic components. Regarding error location, they
applied a "rule of thumb" based on recursive filtering using a 5 by 5 window, and
declared that everything located is an error. They conclude that the number of
those so defined errors typically varies between 0 and 3 per cent. They noticed that
error size is independent of terrain type and that errors are more frequent in
difficult terrain.

A similar (deterministic) approach was used in an early paper by Hannah
(1981), who detects errors by applying constraints to the slopes and to the changes
in slope at each point. Felicísimo (1994) analyzed the differences between the
elevation and an interpolated value from the neighbors. Assuming gaussian
distribution of the errors, he analyzed the differences by means of a standard
Student t test.

Using the Torlegård  et al. (1986) dataset, Li (1992) analyzed the dependence
of the final accuracy on the sampling interval. His starting point is the gridded data
and he degrades it by subsampling. He used several measures of accuracy: the
RMSE (root mean square error), the mean µ, standard deviation σ and maxima of
the difference between "truth" and data. "Truth" is available at selected
checkpoints derived from larger scale photography. He found positive correlation
among the RMS error in elevation and the slope of the terrain.

Day et al. (1988) tested three methods for the generation of DEM based on
SPOT data. The three results were compared with a very carefully, manually
digitized 30 m grid DEM, in terms of elevation differences. Even though the goal
of the work was to compare the operational behavior of the algorithms, they do not
propose a solution for the location of the errors. The distribution function of the
absolute size of such errors is also presented for each method. They also reported
how many checkpoints lie outside the limit |error-µ|>3σ.

Any method for locating the errors should make assumptions about size,
location and spatial self correlation. Bethel et al. (1984) proposed the method of
maximum chi-squared ratio for on line quality control, and tested the methodology
using uncorrelated in space, spike-like blunders of no more than 10 feet (about 3
m). López (1997) used two error models: one uncorrelated in space (spike-like
blunders) and another weakly correlated (pyramid-like).

In the field of Image Processing the term salt-and-pepper has been coined for
weakly self correlated errors. They are routinely corrected using filters. The most
popular and simple one is the median filter (Mitra et al. 1994) but it has the
fundamental inconvenience that it smoothes out all the DEM; current efforts are
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directed towards a division of the problem: to separate error detection from error
correction, and to use state variables for error detection (Abreu et al. 1996).

We will not discuss here the methods for obtaining the DEM itself. There are
well established procedures based on photogrammetry, GPS, etc. However, if the
equipment or the methods are at their limit today, there will be little chances to
improve the final results by merely pointing out some locations likely to be in
error. Fortunately, this is not the case. Ackermann (1995) points out that the trend
in DEM production is towards a move from interpolation to approximation,
because the new generation equipment is able to produce many elevation values,
but possibly with less accuracy than traditional equipment. The surface is
approximated using many points, instead of being interpolated from few, very
carefully obtained values.

Summing up, accuracy is a concern for the data producer as well as for the end
user. Accuracy is usually described using different statistics of the distribution of
elevation error at some checkpoints.

This paper presents test results of some recently proposed methodologies for
locating errors which can be applied both by the producer and the end user. The
methods were tested in a DEM with real errors, and the results are presented. Also
some guidelines for the error model for this particular case are presented.

The paper is organized in eight sections. Section 2 has a brief outline of both
the already existing techniques and the modified technique. Section 3 describes the
data and summarizes some of its statistics. In section 4 the performance of the
three methods is compared for the test DEM. Finally, section 5 contains a
discussion and section 6 is devoted to conclusions, where the results and proposed
future work are discussed. Acknowledgments are included under headings 7 and
References appear at the end.

2. The error detection procedures in brief
For the sake of completeness we will describe briefly the methods of

Felicísimo (1994) and López (1997), and a modification of the latter.

2.1 The method of Felicísimo (1994)
This is the simplest method available for this problem. Assuming that outliers

are only locally correlated, the method analyzes the differences δi,j between the
elevation value zi j,  and an interpolated guess ,zi j  obtained from its immediate

neighbors. Assuming that the difference has a Gaussian distribution with mean δ
and standard deviation sδ  (both obtained from the sample) a Student's t test can be
applied to validate the hypothesis that δi,j belongs to the population of deviations.
Operationally, we analyze the statistics ( )t si j i j, ,= −δ δ δ  which can be

regarded as a standardized deviation. Since the number of data points are usually
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large, we can assume a distribution [ ]tα ∞  for ti j, . For α =0.001, the statistical

[ ]tα ∞  has a value of 3.219 for a two-tail test, where the null hypothesis is

H i j0 , ,δ δ=  and the alternative is H i j1 , ,δ δ≠ .
We used a best fit approximation with a biquadratic polynomial using the

eight closest neighbors to calculate ,zi j . Along the borders we assume a mirror
symmetry, and in the corners we used a linear interpolation with the three closest
values available. We point out as candidate to be in error any δi,j that makes.
|ti,j|>3.219. The author states that even though a significantly high value of ti j,

does not necessarily imply an error, it is an excellent alarm sign. We will analyze
this topic later.

Once an error is located and corrected, both statistics δ  and sδ  change and
new candidates appear. The method can be iterated and it might stop if no more
"outlying" values remains. This is undesirable because we know that there still are
errors in the dataset, so we proceed by lowering the limit 3.219 to 3.0 at least once.
The new candidates once corrected modify the statistics, and new candidates with
the limit 3.219 appear.

The method appears to be extremely simple and is parameter free. In section 3
we will investigate if the test DEM fulfills the assumptions under which the
Felicísimo's method can be applied (Gaussian distribution, etc.). Also the
relationship of  ti,j  and real errors (available in this experiment) will be presented.

2.2 The method suggested by López (1997)
The author proposed that any given raster dataset can be analyzed by means of

subdividing it into elongated strips (figure 1). Each strip is assumed to have length
n and width w (w<<n). The method considers the strip as a set of points in the Rw
space. Each cross-section is represented by a point, where the original elevation
values establish the w coordinates. The case of w=3 is illustrated in the figure 2,
where each point Mk represents a cross-section.

The error location procedure directly analyzes the cloud of points in Rw,
disregarding any order among points. This is an important assumption, since the
concept of spatial self correlation looses completely all significance in the cloud.
Adjacent profiles (of length n) need not to be in any special order, since they are
coordinate axes in the space Rw.

The use of the cloud is common practice in statistics (Hadi 1992, 1994,
Hawkins 1974, 1993a, 1993b), since the notion of "spatial correlation" and
"precedence" is meaningless in most tabular data.
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Figure 1 Sketch of the strip notation

The procedure is based upon Principal Component Analysis (PCA), which
attempts to find the direction e1 of the vector in Rw space which minimizes S,
defined as the sum of distances Mk-Hk squared taken over all k (figure 2). The
origin O is the centroid of the set of points. For the sake of clarity, points with
negative coordinates are not shown in the figure.

The projection O Hk, which is also the scalar product of vector Mk-O with the
unitary vector e1, is called the score (after Richman 1986). Thus Mk-Hk is
orthogonal to e1. There is one score value associated with vector e1 for each point
in Rw. Let us also assume that e1 is unique.

If all the values MkHk are zero, we have reduced the problem of original
dimension w, to a one-dimensional one. All the variability in the observations is
explained by a single vector e1. If this is not the case, we may try to repeat the
procedure with the remaining variability MkHk, which belongs to a (w-1) subspace
of Rw orthogonal to e1. The original measurements Mk - O can be replaced with
the difference OMk - OHk, which is equal to Mk- Hk.

For the new cloud there should be a vector e2 (orthogonal to e1) which
minimizes the distance S in the Rw space. The process continues until w vectors ep

have been created; each new vector ep being orthogonal to all the previous ones.
The vectors ep are called principal components (PC).
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O Hk

Mk e1

Figure 2 Sketch of the first principal component, for w=3

Each event Mk - O can be expressed as a linear combination of the PC's
( ) ( ) ( ) ( )M O e e e ek 1 k 1 2 k 2 3 k 3 w k w- =  a * +  a * + a * +...+a *        (1)

It can be shown that the scores ai associated with vector ei are uncorrelated
with those of vector ej. The vectors ei are the eigenvectors of the covariance
matrix of the data, and its components are named loadings in the literature. The
sum of the corresponding eigenvalues equals the sum of the squares of the
distances MkHk (Lebart et al. 1987).

PCA analysis generates a sequence of principal components, which explains
most (or all, for p=w) of the variance of the data. This implies that the RMS error
in approximating the data with a linear combination of their first p vectors is a
minimum for a given p<w; (p=1 in figure 2). It has been shown that in most cases a
good approximation of data is achieved for p<<w. Since the w PC's form a basis in
Rw space, they can replicate exactly any of the n points in the set, using the scores
as weights. López (1997) claims that some of the scores contain essential
information on the structure of the cloud, while others are more related to noise.
Following Hawkins (1974) he suggested a rule to identify the noisy scores. Once
identified, such scores were used to pinpoint those points in Rw space which are
prone to hold an error.
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However this is not the complete answer to the problem because each point
depends on w elevation values. Which one is wrong?. Once a point in Rw space is
selected, the elevation (or elevations) which make it unusual should be indicated.
This is done using a weighted sum of the squared scores which are related to noise.
Such statistics have been suggested for the first time by Hawkins (1974). It is a
semi-distance, closely related to the Mahalanobis distance. Its sensitivity in terms
of the elevations values is calculated and those elevations which generate the most
important contribution to the distance value are considered as errors. The
calculations are carried out independently for each outlying point in the Rw space.

We have briefly presented the procedure to find an error in a single strip. The
method can be applied for all row-wise strips to cover the entire DEM. The
candidates obtained can be grouped and designated here in after as row-wise
candidates. However, the same procedure can be applied to column-wise strips,
and a different set of column-wise candidates can be obtained.

The candidates belonging to both sets (row-wise and column-wise) represent
the final result. The procedure can be applied iteratively, since, once an error is
detected and "corrected", the cloud is modified to some extent, and so are the
scores. We keep track of the point already checked in order to avoid to select them
twice; we form the candidate set as the intersection of all previous row-wise
candidates and all previous column-wise candidates.

The procedure involves five actions, and it can be outlined as follows:
Given a DEM as a matrix of size m*n
subdivide the DEM in row-wise and column-wise strips of width w
repeat until criteria are satisfied:

a) increment the previous  row-wise candidate set:
a.1.- locate the columns likely to have candidates
a.2.- within each column, find the rows that identify the candidates

b) increment the previous column-wise candidate set:
b.1.-locate the rows likely to have candidates
b.2.- within each row, find the columns that identify the candidates

c) intersect both sets
d) evaluate criteria
e) correct all errors

end
Some remarks follows. In the pseudo code we have used a single strip width w

for rows and columns. This simplifies the tuning process, as will be shown later.
The process is supposed to stop when some criterion is fulfilled. For his

experiment, López (1997) suggested to stop if the type I error is too big (defined as
the probability of missclassify as error a good value). This criterion is useless for
real errors and as will be shown below. Each iteration will be named "step" in the
following discussion.
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This procedure is more complex than the one of Felicísimo (1994), but it does
not require that adjacent profiles appear "together". We will discuss this further in
the next paragraphs.

2.3 The modified version
This variant has been specially designed in order to handle the problem of

heavily correlated errors in space. Notice that the procedure of López (1997) has
been tested with synthetic, weakly correlated errors. Its performance decays as the
correlation increases. The procedure of Felicísimo suffers from the same problem,
since the error at i,j is highly correlated with the one at the immediate neighbors.
López's procedure does not require that the along the strip profiles are contiguous.
Therefore we can skip some of them (the ones most correlated) for the analysis.
The strip is chosen as before, but in the calculations we consider subsets created
using every k-th  row, k being related to the range, a geostatistical property
(Samper et al. 1990) of the error field. In this paper we assume that the range can
be estimated from an independent analysis: it might depend on DEM
characteristics, method for obtaining it, scale of aerial photography, etc. The
modified method resembles the multigrid approach (Strang 1989) used  in
scientific computing packages for the solution of differential equation.

3. The experiment
To test the method with real data we have selected two DEM of the Aix-en-

Provence region in the South of France, both of 12.42 km by 6.9 km, 30 m spacing.
A subset of 360 rows and 216 columns was used for all calculations. Both DEM
have been described elsewhere (Day et al. 1988), and include as a significant
feature Mount Sainte Victoire. The first DEM has been produced by
photogrammetric measurement of spot elevations from aerial photography. Its
accuracy has been estimated by multiple set-up and observation of several blocks
within the DEM. An analysis of 830 duplicate points (i.e. set up and measured
twice) is presented in table 1. The second DEM has been derived from a set of
three SPOT images using an stereo matcher. It has been interpolated to a 30 m grid
by using values within a window of size 21 pixels. Elevation values have been
obtained using kriging with a spheric variogram of 4000 m2 sill and 3000 m range,
assuming an accuracy for the window of 11 m S.D. Table 2 shows the statistics for
the difference between the interpolated DEM (obtained from the stereo matcher's
output) and the one manually generated.

Figure 3 illustrates the main features of the DEM, and figure 4 shows the
probability density function of the differences in elevation. It should be noticed
that the probability of exactly zero error is negligible: only 6 out 95865 points
have exactly the same elevation in both datasets.
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Table 1 Comparison of 830 duplicate
points of the manually derived
DEM (From Day et al. 1988)

Mean abs. error -0.026 m
S.D. error 1.837 m

RMSE 12.70 m
Max. (abs. size) 14.66 m
|error-µ|>3σ 1.7 %

Table 2 Comparison of 95865 points of
the SPOT derived DEM against
the manually derived one

Mean abs. error 0.93 m
S.D. error 12.67 m

RMSE 12.70 m
Max. 193.83 m
Min. -86.22 m

|error-µ|>3σ 1.43 %

1.38
1.4

1.42
1.44

1.46

x 105

8.55

8.6

8.65

8.7

x 105

0

200

400

600

800

1000

1200

Figure 3 Illustration of the test DEM obtained using only every tenth grid value.

This leads to a paradox: since any choice for the locations will succeed in
pointing a true error, the error type I will be identically zero disregarding the
procedure, and the error type II will decrease linearly with the effort. This preclude
to compare results with those presented in López (1997), since the author used
such statistics to decide whether to stop the procedure or to continue. For real
datasets a possible measure will be the RMSE between the original and the
corrected elevations, and the procedure might go on as long as the RMSE exceeds
a preset threshold.

Another interesting result regards some properties of the discrepancy field,
i.e., the difference between both DEM. We used geostatistical techniques (Samper
et al. 1990; Cressie 1993) to describe it. Figure 5 shows a plot of the sampled
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variogram. Even though the goal of the present paper is not to model the variogram
itself, it can be noticed that the range can be roughly estimated as 300 m, i.e., 10
times the grid spacing. This numerical result is in agreement with results obtained
by visual analysis of the discrepancy field and can be interpreted as a measure of
the spatial correlation of the error field. Clearly, the occurrence of errors cannot be
regarded as a local phenomenon, a hypothesis assumed by Felicísimo (1994) and
López (1997).
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Figure 4 Sampled probability density function of the discrepancies in elevation between
both DEM

Most errors are found in a smooth neighborhood regardless if they occur along
breaklines or as isolated values. The errors typically influence the data over a
distance of 10 pixels. At breaklines the decay should be considered across the line.

Before analyzing the accuracy results, we want to go a bit further into some
hypothesis by Felicísimo (1992) a) Gaussian distribution of the errors and b)
relationship between outlying values of the ti,j population and the true errors. We
show in figure 6 a QQ-plot of the distribution of the original ti,j population. The
QQ-plot produces a linear relationship when two distributions are of the same type
(even though with different parameters). In this case the target distribution is
Gaussian. The x-coordinate corresponds to the normal cumulative error function,
with no units, while the y-coordinate is the sampled cumulative density function of
δi,j, measured in m. As it can be seen, Gaussian distribution is hardly achieved.
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On the other hand figure 7 shows a QQ-plot comparing the distribution of the
δi,j against the real errors. In this case the similarities are evident, and this might
lead to the wrong conclusion that δi,j is heavily correlated with real errors (which
in turn offers a tool to locate big errors finding big values of δi,j). Unfortunately
this is not the case. What can be concluded from figure 7 is that both populations
belong to the same (unknown) class, but they might be completely independent. In
fact the linear correlation coefficient is 0.0858.
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Figure 5 Sampled variogram of the difference of both DEM vs. distance. Results obtained
from the GEOEAS software

4. Results
We may analyze the results using different statistics. The most interesting one

will take into account the evolution of the elevation accuracy in terms of the
editing effort. For our purposes we measure the editing effort as the number of
elevation values checked divided by the total number of points in the DEM. We
assumed that the user has a correction procedure and that procedure is perfect.

Normally the accuracy of a DEM is not directly known to the user; it can be
estimated through sampling in isolated points if more precise measurements are
available.

For practical purposes it might be more meaningful to use statistics from the
distribution of the errors detected while working with the dataset  For example, its
RMSE will measure the size of the errors detected by the method for a given
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effort. We disregard the RMSE for each step, because its variability precludes any
simple analysis.
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Figure 6 QQ-plot of the N(0,1) cumulative density function vs. the sampled cumulative
density function of δi,j, for the available DEM.

We believe that a clear measure of the effort involved should be included. The
effort per step (in turn) depends strongly on the choice of the margin level. It
regulates how much of the tail of the distribution of the noisy scores will be
regarded as being in error. Cutting out the tails might produce an empty set of
candidates. In order to avoid this we slightly increased the margin level to assure
that there will be candidates to check in each step.

Figure 8 shows the evolution of the accuracy measured in terms of the RMSE
for a strip width w=8. The boundaries of the dashed regions at the top and  the
bottom show the worst and best possible operation locus. The former is obtained
by considering first the smallest discrepancies, while the latter corresponds to
selecting the largest discrepancies first. Under our assumptions both lines should
meet at 0 and at 100 per cent. Even though both limits are hardly of practical
interest (because it requires knowing the errors in advance) they give a better
understanding of the process. Lines with the -o- symbol are for the Felicísimo
(1994) method while the others are for different controlled scores as of López
(1997) method. Figure 8a has more detail in the low effort region, while figure 8b
has been extended up to 15 per cent effort.  It is clear that the Felicísimo's method
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outperforms the López's method in the long run, but at the low effort they are
similar. This region is of primary importance for two reasons. Firstly because most
users will not go too much further. End users neither have extra data nor too much
tools, so they will correct at most the worst errors. DEM producers might go back
and make another measurement, but this might become a boring task if new values
do not differ substantially from the old ones. Secondly, according to Torlegård  et
al. (1986) blunders typically account for less than 3 per cent of the dataset, 0.5 per
cent being a median value. Thus pursuing the task over such limit might be
misleading, because the methods have been designed for finding gross errors only.
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Figure 7 QQ-plot of the sampled cumulative density function (cdf) of the true errors vs. the
δi,j cdf for the available DEM.

It should be noticed that none of the methods shows at 0 per cent effort a slope
comparable to the best possible method, which implies that the most important
errors are not found in the early stages of the procedure.

We also tested some other options for the width parameter w which will not
be presented here. Figure 9 compares the accuracy performance of the modified
method vs. Felicísimo's one. The figure was obtained after subdividing the DEM in
regions of width 72 rows, and building the strips taking every 9th row within the
region. Thus the "strip" width is again 8. Notice that we skip nearly 10 rows, as
suggested by the range of the variogram. The plot of the Felicísimo's method is
again included for comparison. The most striking fact is the difference in the slope
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at 0 per cent effort which is markedly closer to the best one. This implies that
larger errors are found earlier, leading to a faster decrease of the RMSE. However,
once those important errors are removed, the remaining ones are difficult to locate,
and the simpler Felicísimo's method is better if the effort exceeds 1.75 per cent.
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Figure 8 Evolution of the accuracy (measured by the RMSE in m) vs. the effort for the
methods of Felicísimo (1994) (with the -o- symbol) and López (1997). Results for
w=8. Different lines correspond to different number of uncontrolled scores. Left plot
8a shows details of the right one 8b.

The end user can calculate RMS values of the errors already found like those
presented in figure 10. The x-coordinate is the effort defined as before, while the
y-coordinate is the RMSE of the population already corrected. The 0 per cent
value is not defined. Plots correspond to the Felicísimo (1994) approach and the
modified method of López (1997). It is clear that the former finds larger errors in
the "long" run (over 1.75 per cent effort) but the latter is fairly better for lower
effort values. Three lines with different number of uncontrolled scores are shown,
and it is clear that the one of 0 value is very similar to the one of 2, except very
close to the 0 per cent effort.

We also analyzed the spatial location of the errors found when a substantial
amount of work has been done. Figure 11 shows the places where Felicísimo's
method pointed out the errors up to the 3 per cent effort (in black), and up to 15
per cent (in gray). We noticed that most of them are concentrated along significant
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features of the DEM, namely breaklines where slope changes abruptly. In such
points the second order polynomial is not a good approximation of the surface, so
differences larger than expected arise. Once some values are corrected, such
differences are even more evident, but since we do not allow any point to be
corrected twice, its closer neighbors become candidates, explaining the "clear"
image. Figure 12 shows the pattern for the modified method of López. The image
looks "noisy" since points are located randomly. Due to space limitations we
cannot go further in the comparison of both patterns.
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Figure 9 Evolution of the accuracy (measured by the RMSE in m) vs. the effort for the
methods of Felicísimo (1994) (with the -o- symbol) and the modified of López
(1997). Results choosing every 9th row. Different lines correspond to different
number of uncontrolled scores. Left plot 9a shows details of the right one 9b.

5. Discussion
We have compared two published methods for locating errors (also named

outliers or blunders) in raster datasets. We also suggested a modification for one of
them, and we carried out a comparative test for all three methods using real data
with known errors. The method suggested by Felicísimo (1994) is very simple, but
no results using either synthetic or real errors were previously reported. One
interesting fact is that this method is parameter free. However it has been derived
under some hypotheses that do not apply to the DEM used in this study. It relies on
a low order polynomial interpolator using only nearest neighbors. We think that it
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will work better in smooth terrain. The use of low order polynomials tends to
pinpoint locations which are close to each other, a situation which is more likely to
occur with systematic errors. For further work we suggest considering the use of a
local Universal Kriging interpolator (Samper et al. 1990) using more neighbors,
which is in line with the findings of Giles et al. (1996) who also used a window
with 11 by 11 elements. The Kriging approach also allows to model different
spatial correlation scales.
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Figure 10 Evolution of the RMSE found of the cumulated errors up to a given effort vs. the
effort, for the methods of Felicísimo (1994) (with the -o- symbol) and the modified
of López (1997). Results choosing every 9th row, resulting strips of w=8. Left plot
shows details of the right one

The overall results show that if  better elevation values can be derived using
the same raw data, this approach leads to higher accuracy, provided that they there
are no systematic errors.

The method outlined by López (1997) has been designed for and tested with
synthetic errors with very low spatial correlation. For our case, where errors show
heavy spatial correlation, it performs only slightly better than Felicísimo's for low
effort, but it is outperformed in any other case. We consider the performance of
López's method as poor.

In order to handle the spatial correlation of errors, we have proposed a
modification of the method by López. We form the strips by subsampling the DEM
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at each k-th row. From a programming point of view this is a minor change. In real
applications, the number k has to be fixed a priori. Östman (1987b) suggested that
k is strongly connected with both the DEM and the acquisition method. We
estimated the range from the sampled variogram. López (1997) describes a rule
how to determine how many scores are considered describing the structure of the
cloud. This rule suggest a value of 2. Slightly better results were obtained using 0.
However, in a first approximation the rule is still valid.

Figure 11 Binary map of the errors located up to the 15 per cent effort with the method of
Felicísimo (1994). Black areas are for the suggested locations up to the 3 per cent
effort; gray ones are obtained after 15 per cent effort

All three methods have been used in an iterative fashion. Once some errors
were removed, all the calculations have been carried out again, and new candidates
appear. If this is not the case, some parameters are modified automatically
(lowering confidence limits, for example) in order to continue the operation. We
continue until 15 per cent of the DEM elevation values have been corrected or
confirmed. According to Torlegård  et al. (1986) gross errors account for less than
3 per cent of the population, so the 15 per cent limit is well within either the
systematic (as defined by Thapa et al. 1992) or the random error set, provided the
first 3 per cent were really gross errors.

We assumed that, once an error is located, it can be replaced by a "better"
value. In real applications the procedure will be different depending on the user. In
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a DEM production environment, some action can be taken to check these
identified isolated values. In photogrammetric measurements these checks can be
done before removing the stereopair. The goal here is to improve the overall
accuracy, while the effort is less crucial. On the other hand, the end user is left
alone in most cases, because he may not be able to go to the original data sources.
Therefore he will be interested in "evident" errors, i.e. those of relevant size
(which are typically few).

Figure 12 Binary map of the errors located up to the 15 per cent effort with the modified
method of López (1997). Black areas are for the suggested locations up to the 3 per
cent effort; gray ones are obtained after 15 per cent effort

A comment about the computer time requirements: the method of Felicísimo
(1994) is fairly cheap (of the order of m.n operations, being (m,n) the size of the
DEM), while the method of López (1997) and the modified procedure presented
here involve, for each step, the computation of (m/w).(n/w) covariance matrices of
size (w,w), which takes [(n/w).O(n2)+(m/w).O(m2)].O(w2) operations; to calculate
the eigenvectors requires in turn [(n/w)+(m/w)].O(w2) operations, and to project
each strip to calculate the scores requires (m+n).w operations. Some other
operations are required but depend linearly on m and n. In our example, a DEM of
size m=360 and n=216, for w=8, about 5 minutes per step are required using
MATLAB in a SUN Sparc 20. The overall procedure is considered cheap in terms
of computer time.
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6. Conclusions
Some methods to locate gross errors in quantitative raster data have been

presented, and they were tested using a grid-based DEM with known errors. The
DEM, derived from SPOT data, has elevations ranging from 181 to 1044 m. A
more accurate DEM of the same area is available; it has been considered as the
ground truth. The hypothesis of errors uncorrelated in space seems to be wrong at
least for this case, as well as the assumption of gaussian distribution for the
residuals. This poses serious concern about the usefulness of some previously
published algorithms (Felicísimo 1994; López 1997) and motivated this work.

The results suggest that Felicísimo (1994) method find mostly what is
regarded as systematic errors, mainly due to the interpolation algorithm
(biquadratic polynomial). López (1997) show similar results in terms of RMS of
errors only in the early stages of the correction process.

In order to handle the significant spatial correlation observed a modified
version of the method of López (1997) has been designed and tested with the same
dataset. The results were significantly improved and exceeded those of Felicísimo
up to a certain level of effort, the effort being defined as the fraction of the DEM
elevations corrected or revised. This effort level (1.75 per cent) is of the order of
the number of gross errors typically found in DEM; moreover its location pattern
looks sparse and random, as opposed to the pattern produced by Felicísimo's
method.

The modified method has some free parameters; the most important is an
estimate of the correlation lag (or the range of the variogram). It can be estimated
from a limited number of independent control points; some authors claim that such
value depends on the method for acquisition of the DEM and the DEM itself.

We assumed that once an error is identified, it can be corrected. In the case of
using the algorithm in a semi-automatic production environment, the method
warns the operator about possible errors before the stereopair is unmounted,
enabling new measurements. In a fully digital production environment, some
correlation thresholds are usually varied to minimize computer time. The method
may be used to selectively strengthen the correlation thresholds in suspicious
points. In case there is no possibility to verify the errors, e.g. for end users, the
algorithm will help to locate the most unlikely values; they may be replaced with
the aid of some suitable interpolation method. If there are some independent
sources (maps, etc.) they could be used for checking.
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OUTLIER DETECTION IN CATEGORICAL MULTIVARIATE SURVEYS1
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Abstract: The detection of errors and outliers is an important step in data processing,
specially those errors arising from the data entry operations because they are of the entire
responsability of the data processing staff. The duplicate performance method is commonly
used as an attempt to detect such type of errors. It implies typically typing twice the same
data without any special precedence. If the errors are uniformly distributed among
individuals, retyping a fraction of the total will also remove typically the same fraction of
the errors. A new method which is able to improve that procedure by sorting the records
putting first the most unlikely ones is presented. The ability of the present methodology has
been tested by a Monte Carlo simulation, using an existing database of categorical answers
of housing characteristics in Uruguay. At first, it has been randomly contaminated, and after
that, the proposed procedure applied. The results show that if a partial retyping is done
following the proposed order about 50% of the errors can be removed while keeping the
retyping effort between 4 and 14% of the dataset, while to attain a similar result with the
standard methodology 50% (on average) of the database should be processed. The new
ordering is based upon the unrotated Principal Component Analysis (PCA) transformation
of the previously coded data. No special shape of the multivariate distribution function is
assumed or required.

Some keywords: Data checking, Census data management, Outlier detection, Principal
Component analysis, Categorical data

I.- Introduction

A recurring problem in the creation or maintenance of a large computerized data base is the
correctness of the information entering the base. If high volumes of data are involved, then
data entry operation tends to be carried out by less qualified personnel, and verification is
less extensive. Thus, action is required to maintain the base's integrity, and the fact that
large volumes of machine-readable material are involved suggests that, as far as possible,
this screening action should be automated. Clearly typing errors is not the single source of
errors existing at the machine level; however on principle they can be kept under control.
There are many classical examples of typing errors, even from the early days of computer
development. A classic one is described by Coale et al. (1962) who reported an error in the
1950 U.S. census figures that resulted when a small fraction of computer cards were

                                                          
1 Published in the Journal of the Italian Statistical Society, 1996, 5, 2, 211-228
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punched one column to the right of the proper position, so that an unusually high number of
14-year-old widows was reported. Only after discovering the reason for that error, they were
able to anticipate errors in the age-distribution of Indians individuals. Even though the total
amount of erroneous records was fairly small (below 1/100 of one per cent) certainly rare
categories might be greatly affected by such spurious cases. Notice that all the fields in the
record have values within their own feasible range.
A general procedure for locating typing errors in a data entry process is the duplicate
performance method. If a data typing operation is performed twice, independently, and if
the results are compared by a method that can be assumed error free (such as a computer
program comparing files after data entry), and if all the disagreements are corrected, then
the only errors remaining in the data set are those where both staff members were in error. If
the ratio of disagreements to total items is low, then the individual error rates of both
persons are low, and the probability of joint errors (the product of the probabilities of
individual errors) is lower still (Strayhorn (1990)). The method is extremely simple, and it
applies for any kind of data, both quantitative or categorical. Despite its simplicity, it has
some desired properties: the probability of locating an error is independent of the error
itself, so trivial errors will be corrected as well as subtle ones. This will help in keeping the
statistical properties of the database. It is also independent of the order the retyping is
performed, so in principle, if only a fraction of the dataset is retyped, typically the same
fraction of the errors will be corrected. Another advantage is that the  procedure does not
require a large database, so it can be applied also to small ones.
The literature about editing survey data is considerable, but somewhat scarce regarding
quality control of categorical data. Fellegi et al. (1976) presented a methodology
specifically suitable for qualitative or categorical data. It is based upon the existence of
rules which relate the different fields in each record. Such rules should be given by experts,
and express the judgment of them that certain combinations of values or code values in
different fields are unacceptable. If a particular record does not satisfy one or more of those
rules, the field (or fields) that contribute to them are rejected or modified in order to attain a
feasible record. Notice that this procedure relies on the existence of explicit rules (and
experts behind them) and requires some manipulation of the rules before application. No
experimental results are presented in the paper.
Paradice et. al. (1991) presented a methodology for controlling incoming data to a database.
Their approach focuses in minimizing the time a wrong record stays in the system, basically
by limiting its chances to pass some logical tests created by experts, and tailored for the
particular application. Not all the attributes of a record are important for all applications, so
new tests may be required for different users of the same data. For the applications the
authors are involved in, individual records should be handled also individually and not "in
aggregate" so errors will have significant effect for one particular record, but possible not
for the whole database. The paper also gives a performance evaluator for the overall error
diagnostic procedure, which gives an enterprise measure of success. They claim this
benchmark gives a clear measure for evaluating current verification procedures and
proposed changes. Even though we could not apply this methodology for an already existent
database, or even one that is created in a single task (a national census, for example) it will
give us the chance to qualify the procedures used in a continuously updated process (like
economical data).
Apart from the methods specially devised for categorical data, we want to mention some of
the methods available for quantitative data, since we will adapt some of them for the former
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case. Typically the authors rely on assumptions about the data distribution. For example,
Little et. al. (1987) presented a methodology based upon multivariate normality of the data.
They used a log-transformed population, and look for linear relationships between the new
variables. Using the squared Mahalanobis distance as an estimator, the author analyzed its
sampled distribution exploring graphically the departure from a transformed chi-squared
distribution. All instances that renders values that are "far" in some sense to the theoretically
assumed behavior are flagged and edited by experts. They also extend their methodology
for incomplete datasets, limiting for each individual the Malahanobis distance to the
available data.
A related approach has been presented by Hawkins (1974) based upon Principal Component
Analysis (PCA) of the data. Instead of using the Mahalanobis distance, he proposed to use
other statistics which are intended to be more sensitive and to have better performance when
compared with standard statistics (χ2, etc). However, some problems arise while calculating
the eigenvalues of the covariance matrix in real data. The existence of outliers may affect its
values, so more robust procedures should be preferred, and not all the data can be regarded
as normally distributed.
López et al. (1994) presented a methodology that overcomes some of these drawbacks.
Instead of  using the distribution of a single number like the Mahalanobis distance or the
Hawkins´s statistic for flagging an instance, they proposes to use k independent tests applied
over the projections of the given data on the eigenvector´s basis. No fitting with any
distribution is required. The rest of the paper is devoted to show a connection of
quantitative data procedures to categorical ones, and to present some simulated results.
The work is organized in nine sections. Section I Introduction, has discussed some work
representing the state-of-the-art on the subject. Section II Motivation and assumptions
introduces the main ideas. Section III Experimental test design describes the simulation
carried out to examine the performance of the method with a particular dataset. Section IV
Methodology describes the steps required to apply the procedure. Section V Results
summarizes the success by means of some performance indicators and finally section VI
Discussion compares the results and analyzes advantages and drawbacks, while section VII
states the Conclusions. Acknowledgments and References are included as sections VIII
and IX.

II.- Motivation and assumptions

For the sake of simplicity, we will assume hereinafter that by typing twice a record all errors
are removed. This will help us in simplifying some arguments, and the reader will easily
notice that this not a key hypothesis.
We mentioned before that the duplicate performance method ability is independent of the
order the records are retyped. If we assume that the wrong individuals are uniformly
distributed in the population, retyping a fraction of the dataset will most likely correct the
same fraction of errors. This paper is devoted to find a reordering in the data, designed to
put first the records that are prone to hold some errors, so partial retyping will eliminate
more errors than without any reordering.
To do so, we will try to locate outliers in the dataset. What is meant by outlier in categorical
data may differ from the concept for real-valued data. It is also assumed here that the
dataset has passed successfully some trivial logical tests, which pointed out for example,
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more than one mark in mutually exclusive answers, or similar things. Also all the coded
values are within their prescribed ranges. These logical tests are very crude, and certainly
should not be confused with the edits designed by experts in the particular data (Fellegi et.
al. (1976)). It should be regarded more as a computer specification for the data, rather than
a quality control procedure.
So we will consider only the problem of selecting a specific record (a single survey in the
example) on the basis that there is something in the answers that make them unusual. Such
record should be retyped. Notice that this procedure will diminish the variability in the data,
because “feasible” errors are prone to be ignored.
In a real processing environment, if the record is still unusual it will be carefully analyzed
by a trained specialist, which may found (or not) reasons to reject or modify some answers
in the particular record. This fact will not be considered here, but the methodology is in fact
devoted to give the specialist a smaller selected set, with higher probability of holding true
errors.
It should be stressed that errors arising from the the typing stage is one among others
sources of errors; however they are important in the sense that they can be kept under
control. Significant errors can be introduced in earlier stages (like the coding of non-
categorical answers) which cannot be controlled by the duplicate performance method, but
can be handled by the procedure to be presented below.
In categorical data, the codification procedure usually generates for each question a set of
feasible values. For technical reasons, those values are frequently coded as integers, but the
integer value itself is meaningless. In order to manage categorical data with PCA, one
should translate such integers in a way that the results do not depend upon :

a) changing the order of the alternatives in the question
b) changing the integer codes

It will also be assumed that all the answers have the same relative importance. The
technique to be presented, was designed to be applied for processing the 1996 National
Census of Population and Housing  in Uruguay (population ~3 million, houses ~200.000) to
check only categorical answers. The data was not be typed, but scanned and processed via
automatic recognition routines, handling handwritten text, number and marks. Even though
automatic recognition of marks are known to be very reliable, it is intended to flag and
check dubious data while keeping the manual typing effort low.

III.- Experimental test design

A Monte Carlo simulation is performed, modifying the answers of a subset of the raw data
collected and processed during the 1985 National Census in Uruguay, and testing the ability
of the methodology to locate them. The subset chosen reports housing characteristics in the
Flores region and has been typed twice. Only private houses cases, without missing values
were considered. The final set has 4963 events, but to diminish computer time requirements,
the simulations were carried out over only 2500 individuals.
The dataset is claimed to be typed twice, and the original records are not available. This fact
makes it difficult to properly model a pattern of "rule" for real errors, so only reasonable
assumptions could be made.
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In order to obtain a contaminated set, a prescribed number of records were chosen at first
and then a random number generator choose a fixed number of questions (out of 20) to
modify. For each of them, the existing answer was changed to a different value, but still
belonging to its feasible set  (assuring that they were different with the original one). That
was considered a suitable choice for modeling “true” errors. The total number of
contaminated records were fixed as 10,  5, 3 and 1.5% of the subset of 2500 individuals.
The figures to be presented correspond to the 3% case, which implies 75 wrong cases.

IV.- Methodology

In this section, all steps required for processing a categorical dataset are described. Given
the data, the corresponding question list and the feasible options, the user should eliminate
those fields which are a priori uncorrelated with the others. Typical examples for survey
data are all the information related with the zip code, city code, address, etc. Also numerical
quantitative data should not be considered (for example: age, size of the building, etc.)
except if a categorization is applied.
The dataset is usually available in table format, one individual per row, and one question
per column. In order to have a numerically useful representation, we will binarize the
dataset, creating a new table containing only 1 or 0. This also make the data homogeneous
(dimensionless ). In order to binarize the dataset, one may think on a multiple choice sheet.
For any particular question, there are room to choose between some (maybe mutually
exclusive) alternatives. Instead of  coding a single number for the answer, we may equally
store all the alternatives, putting a 1 or 0 if the option is true or not. In other terms, each
column of the original table expands to as many columns as alternatives in the question,
allowing only 0 or 1 as an answer. After repeated for all questions, the data are transformed
into binary format, and the covariance matrix can be calculated.
Since the methodology to be applied relies upon exploiting the empirical relationships
between the answers, all the questions that are weakly correlated with the other data will not
be considered by this procedure. In early stages of the work it has been found that also
"almost trivial" answers were a source of problems, because they behave like uncorrelated
answers. For example, in the test dataset more than 96% of the population has direct
connection with the electrical power supply. So the corresponding answer  has trivially
nothing to do with the others answers. That was also the case for the questions "do you have
a freezer?", "do you have telephone at home" and others which almost always have been
answered "no" in this particular dataset. So, if more than 95% of the population answers are
the same for any binary option, the option will be removed for the final test. A second
criteria was applied trying to eliminate uncorrelated answers. If the off-diagonal elements of
the correlation matrix are very close to 0, the corresponding option is also removed. The
threshold has been chosen as 10 times the machine ε. (defined as the largest number which
satisfies 1+ε=1 in finite precision arithmetic). Those questions were removed before
applying the outlier detection process. The final dataset has 20 questions, with 69
alternatives (options).
To highlight unusual records, a PCA derived method is being proposed. PCA is a well
known methodology that transform the original (mutually correlated) data in another
uncorrelated but equivalent presentation. Usually such transformation is performed in order
to reduce the dimensionality of the problem. Only the first Principal Components (PC) are



IMPROVEMENTS OVER THE DUPLICATE PERFORMANCE METHOD

6

retained, and most of the variance in the original set is explained through them. The
remaining PC are usually neglected.
Hawkins (1974) pointed out that those neglected PC may serve as outlier detectors. PCA
transforms the covariance matrix Σ  to diagonal form, so E E TΣ Λ= . Any instance of the
data X i  is also transformed to ( )W E Xi i= − µ , being µ  its sampled mean value.

Obviously the elements wij  are a linear combination of the components of X i .

The ( )w X wj i ij=  components are mutually uncorrelated, and have variance λ j  (the
associated eigenvalue). The PCA residual test statistic is defined by Hawkins as

( )T X wi
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being k limited for only some of the terms in the vector wi  . When the summation takes
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Hawkins proposed to flag any instance i that renders values for ( )T Xi2  inside a so called
outlier region (Davies et. al. (1993)). López et. al. (1994) applied a closely related
procedure also based upon PCA, to handle daily rain datasets. They proposed to flag an
instance when for any one [ ]j K K∈ 1 2, ,  the projection ( ) [ ]w X LB UBj i j j∉ ,  being

LBj  andUBj  lower and upper bounds which define the non-outlier region for projection

( )w Xj i . Those limits are derived from the distribution of ( )w Xj  . The eigenvalues
themselves are not required as well as any specific distribution for the data.
This paper follows almost the same idea, but since we are now working with categorical
data some details need to be discussed.
It should be pointed out that, even in numerical datasets, usually the mean value and the
Principal Components are real vector values, and so are the projections of the dataset on the
PC, which are called here scores. That holds even if the data are integer or even binary
numbers. For example, in a rain dataset, all values are integer and positive, but the scores
are real, i.e., they belong to a different number category. When considering categorical
binary answers a similar situation arises. However, even real, the possible values are limited
due to a combinatorial problem. We are implicitly requiring that this finite number is a large
number (in the experiments, 269-1) and the reason is presented below.
Once the data (without missing values!) are binarized and presented in table (or matrix)
format, the PCA can be performed straightforwardly. Principal components can be derived
as the eigenvectors of the covariance matrix (Lebart et. al. (1977)). Let’s call E the square
nxn matrix whose columns are the eigenvectors, which satisfy E E TΣ Λ= , being Σ the
sample’s covariance matrix, and Λ  a diagonal matrix which holds the (sorted in ascending
order) eigenvalues. "n" is not the number of controlled questions but the sum of all the
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options within them. It is assumed that the population is big enough to represent properly
the true covariance with the sample´s covariance matrix.
Other subtle requirement should be stated: the procedure will not be of use if the number of
options for the answers is low, because the distributions won´t look like those of continuous
data. Notice that the real numbers wij  are not arbitrary because they arise from a finite
number of possible answers.
Anyway, since the matrix is range-defective due to the logical interrelationships between
mutually exclusive answers, there will be some zero eigenvalues. This makes a slight
difference with the situation for quantitative data (Hawkins (1974), López et. al. (1994))
where the Σ  matrix is positive definite. The matrix of scores is defined here as:

 W E X= −( )µ
being X  the binary data (one row for each record) and µ  the arithmetic mean (among
columns) of the matrix X .  Matrix W  has the same dimensions as matrix X , and its
column-wise mean is zero. This is a linear transformation of the original data, and so each
element wij  depends directly upon all the elements xim , where m ranges from 1 to n. This
is an important fact, because the discrete distribution of the linear combination is
completely different from the dichotomic one for xij  , as it is shown in fig. 1.
Two facts should be remarked:

a) the sampled probability density function looks like the one of an ordinary
continuous variable, even though it is based on a linear combination of dichotomic
terms.
b) Its shape is different depending on the index of the score, following the same
behavior noticed for scores derived from continuous variables, being more
symmetrical as the index increases.

That's why we claim that the same procedures reported there could be used from now on.
Once the sample distribution is created, confidence limits can be calculated. These values
will define the outlier region (Davies et. al. (1993)) but without assuming any particular
distribution shape. Why do we claim that this is the outlier region?. Fig. 2 shows the
sampled probability distribution function for the given database of some of the scores and
the arrows point to two values: those marked with an "o" correspond to the original answers
for a particular record; those marked with an "x" are related to the same record, but now
contaminated by modifying one of the answers. In this particular case, it was imposed that
the house is equipped both with a color and a black and white TV set, while originally it has
only black and white. Notice that the effect is important mostly in the "weakest" scores (i.e.
those associated with the lower eigenvalues of matrix Σ ) and that the ones associated with
the "strongest" ones are only minimally modified. The proper limit between the "weakest"
and the "strongest" is to be determined, and some guidance is given below.
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Figure 1 Example of the distribution of the 18th. score

A known fact is that each of those Principal Components associated with low eigenvalues
have significant weights only with few variables in the original data. That implies that
controlling the outlier region of one or two weak scores protects only some of the variables,
which may be unadvisable. Those Principal Components associated with larger eigenvalues
are typically insensitive regarding outliers, as it can be seen in fig. 2, so they should be
avoided for our purposes. Summing up, neither too few or too many scores should be
checked, and the appropriate number is a matter that is not uniquely solved in the literature.
Some rule of thumb suggest to neglect those terms whose associated eigenvalues are over a
previously defined threshold. Hawkins (1974) suggests a more refined criteria, which
chooses the limit in order to protect all the variables by proper inspection of the elements of
matrix E . He did not formalize the criteria, so we will propose some objective one. The
rows of matrix E are related with the original variables. Assume that K1 is the index of the
first non-zero eigenvalue, and K2 is another integer index to be determined, (K1< K2
because we assumed that the eigenvalues are sorted). In order to assure that at least once the
variable Xj  significantly affects some score, at least one of the eigenvectors with index
ranging from K1 to K2 (i.e. columns in matrix E ) should have a non negligible weight. The
weights are the elements e jk  of row j of matrix E while k∈[K1,K2], and they should be
considered in absolute value for this purpose. The limit for negligible-not negligible is
based upon a threshold value. If any abs( e jk ) is larger that such threshold for some

k∈[K1,K2], the variable is said to be protected. The threshold value cannot be chosen as a
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fixed constant like 0.17, because (due to normalization) the e jk are related with the size n of

matrix E . So the proper threshold should take this fact into account. Since a

mathematically valid eigenvector could be( )111 11, , ,..., , n , we choose as a threshold

value a multiple of 1 n , now independent of size n itself. In the simulations the chosen
multiple was 0.15, and the resulting range [K1,K2]  was [21,45].
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Figure 2 Example of the effect of a single outlier in a particular record

Once the limits K1 and K2 are defined, the sampled probability density function can be
created for each score, and limits for the outlier region arise for each k, k∈[K1,K2]. The
procedure is now straightforward, and it implies:

a) for each k-th score, look for records with values aik in the corresponding kth

outlier region, k∈[K1,K2]
b) once those records (rows) are retyped (and maybe modified or not), they can be
included back in population X  and new values for µ, E  and outlier regions are
calculated.
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The procedure is iterative, and some stop criteria should be given. In each step, the dataset
is classified in two categories. The first one holds the records which are likely to have an
error, and the second one holds the ones accepted. When such a decision is made, it is
certainly possible to reject good quality as poor or classify nondefective items as defectives;
then, the associated error is called Type I. When a decision is made to accept poor quality
as good (classify defective items as nondefectives), the error is called Type II  (Minton
(1969)).
We will denote as  number of contaminated records found the successfully identified
records which belong to the candidates set. That set is suggested by the algorithm, and its
size (the number of candidates analyzed) depends strongly on the parameters, as will be
pointed out later. Its quotient is an estimate of the complement of the Type I error:

CE EI I= − =1 (number of contaminated surveys found)
(number of  candidates analized)

 

and it measures the rate of success looking from the point of view of the reviewing process.
It should be noted that in a production environment CEI  can be measured by the end user
without knowing the total number of errors (i.e., without retyping twice the whole dataset).
Another important number is the probability associated with a purely random choice, i.e.
without using any rule in selecting the candidate set. As long as the procedure goes forward,
an accepted set is created. The Type II error associated is defined by the quotient

EII = (number of  contaminated surveys not found)
( total number of  "classified as acceptable"  surveys)

This quotient can be expressed in more rigorous terms, as:

EII =







initial number of 
contaminated surveys

  -  
accumulated number of

contaminated surveys found
 

( total number of surveys -  accumulated number of  candidates analized)

The EII  value also measures the probability to locate an error in the acceptable dataset
with any blind (or random) procedure like the standard duplicate performance. Instead of
presenting the evolution of the EII  index, a clearer measure of success is used, and it was
defined as

η2 = (accumulated number of contaminated surveys found)
(initial number of  contaminated surveys)

This statistic monotonically increases from step to step, and it is bounded by 100 %, which
implies that all the contaminated values have been located. It will also allow to compare
directly the improvement over the standard duplicate performance method.
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V.- Results

The calculations were carried out for 1, 2 and 3 wrong answers per record. Figure 3 shows
the results for the first three steps in terms of the ratio η2   for 100 replications of the
experiment. The best results arise for a marginal value of  0.10%, where the methodology
were able to locate 25% of the original errors (and in some cases, nearly 50%) in a single
step of the procedure. The case of 0.01% looks very striking, because it represents two
different bimodal, bell shaped distributions. This behavior is connected to some extent to
the small number of records involved, as it will be shown later, and the picture is still
incomplete because it does not show the effort involved in each step.  Again, the value
chosen for the marginal value is not crucial.
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Figure 3 Distribution of the accumulated fraction of the total errors located up to the first three steps. Plots
derived after 100 experiments, modifying 3% of the records with 2 errors each.

Figure 4 is itself a global summary of the behavior of the method. The x-axis is the fraction
of the total dataset retyped, while the y-axis represent η2 , the fraction of the total errors
found. We should emphasize that the continuous line indicates the locus of the theoretical
evolution of the standard (blind) duplicate performance method, i.e.: by typing the x% of
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the whole dataset, the same x% of the errors were removed (notice that the line goes
through the (20%,20%) point). For any choice of the marginal value, the methodology
proves to be better than the standard duplicate method, and since the behavior was very
similar, only the case of 0.10% is shown. The dotted line is the best you can attain: retype
first only those records that have errors. In the figure while retyping only 5% of the original
data (x-axis) we can locate an amount of the original errors ranging from 25-60%, and when
retyping 10%, 40-75% can be located.
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Figure 4 Evolution of the remaining errors against the retyping effort for the suggested depuration order and the
blind retyping. Plots derived after 100 experiments, modifying 3% of the records with 2 errors each.

Further work will show a degraded performance, because the “worst” errors have already
been located. The limit goal of the procedure will be also the (100%,100%) point, because
if all the data are checked we assume that all the errors will be removed.  This procedure is
intended to be applied for partial retyping.
The previous figures have presented the results with the records contaminated with 2 errors
each. As expected, with 3 or more errors per record the results will be better while with 1
error they will be worse. For the 3 errors per record case, figure 5 show that after retyping
10% of the database, 50-85% of the errors have been corrected. For the case of a single
error per record, fig.  6 shows that after retyping 10% of the database, only 25-50% of the
errors have been corrected at most. The reader may notice that the cloud do not show any
point over 16%; that's because we limit ourselves to 10 steps in the procedure. Even in this
difficult case, the method is typically 4 times better than the blind retyping.
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Some results regarding the initial number of  erroneous records (not presented) show that
the behavior of the best fit curve is almost independent of such value, but the dispersion is
lower for larger initial number of erroneous records. This fact is a very desirable property,
because poor quality dataset can be handled without loosing performance.
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Figure 5 Evolution of the remaining errors against the retyping effort for the suggested depuration order and the
blind retyping. Plots derived after 100 experiments, modifying 3% of the records with 3 errors each.

VI.- Discussion

Comparing the use of logical edits against the present methodology, some clear differences
arise. The methodology proposed in this work does not require any expert, since the “rules”
(if any) are embedded in the population. Even the dichotomic answers (like marital status,
sex, etc.) which are mutually exclusive, are handled gracefully, and need not to be analyzed
separately. Moreover, when the population is updated using mostly the same questions, but
with changes in some of them, all related rules should be revised. If a question is
ambiguous, the rule can be wrong, while the proposed methodology probably will flag the
answers as “uncorrelated” and will remove automatically from the feasible set.
Since the mere retyping is a completely “blind” methodology, it will locate equally well
errors in “unusual” as well as “typical” individuals, keeping the variability of the dataset,
while both the proposed methodology and the logical edits are oriented toward flagging
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only those errors which make a particular individual “unusual”. Then they will diminish the
variability of the dataset.
However, it should be admitted that the application either of logical rules or mere retyping
do not require a large population of individuals, while this methodology implicitly does.
Other limitation of  the reported methodology is that not all the questions can be controlled,
either because of  almost trivial answer or low correlation with other answers. Moreover, it
cannot handle individuals with missing values.
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Figure 6 Evolution of the remaining errors against the retyping effort for the suggested depuration order and the
blind retyping. Plots derived after 100 experiments, modifying 3% of the records with 1 errors each.

The numerical procedure is quite simple. It requires first to transform all answers to a
“check box” format, so only ones or zeros will be admitted as answer. Then, the covariance
matrix is constructed and its eigenvectors calculated, and a new table of projections (scores)
of the original individuals over the eigenvectors is created. By analyzing the eigenvectors, a
critical set of the scores is chosen in order to calculate for each an outlier region. Every
individual with at least one  of  its scores lying on those region should be retyped. All the
procedure can be automated. Once calculated the eigenvectors and the critical set, it can be
applied even during the first typing process, allowing for near real time quality control.
The sensitivity to some parameters have been tested during the work, and for others not.
Among the first, the margin (related with the number of individuals to be retyped in each
step) was only weakly significant. The methodology for selecting the principal components
to check seems feasible, but no further tests have been done.
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For perfectly uncorrelated answers as a limiting case, the procedure is equivalent to looking
for answers with low probability, which is also a feasible procedure.

IX.- Conclusions

The problem of quality control of categorical data is treated with a methodology derived
from statistical procedures for quantitative data. Two other alternatives can be analyzed, the
duplicate performance method and the use of logical edits. The first is very simple and
popular, and requires typing again the same dataset. Its ability in locating errors for a given
typing effort is known to be low. The use of logical edits strongly rely on the existence of an
expert, which should prepare a set of rules, expressed in terms of logical relationships
between the answers. When any of them is not met, the record is flagged as unusual, and
retyping is performed. Here an alternative is proposed in order to reorder carefully what
should be retyped.
Some limitations of this procedure are: a somewhat large (yet undefined) population is
required as well as a minimum number of options for the answers, it cannot handle missing
data, and depending on the inherent characteristics of the population, some answers or
options for answers are not checked. The users for a methodology like this are still those
which are either collecting or using the raw data; we are not giving any tool to check
derived statistics (like averages in a region, etc.).
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Abstract:The techniques employed in the treatment of an hourly surface wind  database
during the development and calibration phases of an objective wind field interpolator
model are presented. The model itself has been applied to estimate the regional wind
energy resource creating a layer in a GIS environment.
Any model is affected to some extent by both random and sistematic errors (outliers) in
the input data. So it is advisable to remove them prior to use the data bank, while
keeping at lowest the required effort.
For this case, some different methodologies have been applied. The most succesfull was
based in Principal Component Analysis (PCA). It was able to locate outliers with an
associated type I and II errors of 49.16 per cent  and 6.44 per cent , respectively, in a
single step.
The methodology is liable to be used in real time, involving minimum computer
resources. For the stages described here, only errors coming from manually digitizing
are considered. However, it is suggested that PCA may help in detecting random errors
from the observer himself, and also some kind of sistematic errors, all of which is still in
an investigation phase.

1. Introduction

1.1 Presentation of the problem
In all experimental data banks two sources of errors exist: those inherent to

the measuring operation, and those generated in the time of data keying or
processing. Both types of error could have an effect more or less important
depending to the problem in study. According to Husain, 1989, "..The failure of
many capital intensive projects througout the world can be attributed in part to an
inadequate record length, the sparseness of the network, or the inaccuracy of the
information..". In our problem, the wind energy resource proved to be robust
against outliers because the hourly values are simply averaged over time.
However, this might not be the case for time-dependent models, like evolving
atmospheric pollution. There the errors spread in the time, and depending on the
characteristics of the problem itself, their effect is more or less persistent and
significant.

For some of these models (in the daily operation) it is easy for the user to note
important errors, since he is evaluating the kindness of the prediction in the
following day or hour.But in the empirical parameters calibration stage it is not
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possible to analyze manually a sequence of thousands of measured vs. calculated
values. Typical procedures rely on hypothesis about the distribution of their
difference and use simple estimators like the standard deviation as an attempt to
locate unusual differences.

Such procedure might help in locating events clearly erroneous, but it is
unable to point out other more subtles, affecting the value of the automatically
adjusted parameters in an uncontrolled way. In order to debugg the data bank, the
data in paper taken by the observer have been assumed as error free, and counting
as errors only those arising in the process of keying.

1.2 Methodological background
For the location of anomalous data, the only national registered antecedent

consists in the recommendations developed by the Climatologic and
Documentation Office of the National Weather Service (DNM, 1988). The rules
for wind are typically a check for acceptable range, both for direction and velocity.
Also some simple independent temporal and spatial checks are sketched.

With concerning the random errors, the trend is to compare the measurements
with a model of the phenomenon (Francis, 1986; Hollingsworth et al. 1986, etc.).
The last one asseverates that for the case of the wind, the differences between
observations and predictions have a normal distribution approximately. In that
case, it is relatively easy to detect the anomalous data and separate them for a later
analysis. As a disadvantage, it should be pointed the important volume of
information required, as well as the high computational costs involved in creating
and operating a model.

If you are unable or do not want to exploit the underlying physics that connect
the variables, the pure statistical methods are an alternative to evaluate. Barnett et
al. 1984 summarizes the different applicable techniques for tackling this problem.
In the case of the multivariate data analysis, it can be distinguish two main
methodological lines, depending if the distribution function is known or not.The
first group includes the so called Discordance Tests, a set of techniques strongly
based on hypothesis about the distribution of the sampled data and which requires
prior knowledge or estimation of the distribution parameters. Antecedents also
exist tied to the case in that the theoretical distribution responds to a type of law
and the sampled data  to another, as in the case reported by O'Hagan, 1990, where
the fact that one of the distributions is normal and the other is of Student´s type
enables the use of certain methodology in order to put the anomalous data in
evidence.

The second group identified by Barnett are the Informal Methods. They
disregard the formal aspects of the data distribution, and aim to exploit other
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properties. This group includes among others: a)univariate marginal methods,
which derives from the sample a valid range; b) graphic methods, based on looking
for isolated points lying far from the data cloud; c) the application of methods of
correlation (Gnanadesikan et al. 1972); d) the search of generalized representative
distances, e) techniques related with cluster analysis (see for example, Fernau et
al. 1990) and principal components analysis (PCA) (Hawkins, 1974; López et al.
1994a, etc.), among others.

2 The Problem
Since 1988 our team was involved in evaluating the National Wind Energy

Resource. Although it was not an explicit objective of the project a comprehensive
quality control was performed. Such control was carried out both on the data
originated routinely at the DNM (National Weather Service) as well as those of the
automatic anemometers of the DNE (National Department of Energy) which were
the target locations. On the other hand, in order to have a better evaluation of the
wind energy resource, it was necessary to complete the time series to the longest
available period. The latter is presented in a companion paper. With these goals
some algorithms have been implemented in order to detect anomalous data. Even
though we have at hands a model of the phenomena, we preferred an statistical
approach.

Five stations were selected for the test, all located to the south of the country,
(see fig. 1): Melo (440), Paso de los Toros (460), Treinta y Tres (500), Carrasco
(580), Punta del Este (595).  They were chosen due to its geographical localization
around the automatic stations of the DNE. This also conditions the periods to work
with, including part of the years 1990-1991 and the year 1984.

The work carried out consisted then in picking dates (and data  for such dates)
which behave unusually with respect to the population, then going to the original
paper records at the DNM and check there against the files in paper. The value is
qualified as erroneous only when the registration in paper doesn't coincide with the
magnetic registration available. The process continues with a new step and
consultation in the file in paper. Up to eight successive steps were carried out for
the same period.

It must be clear that we do not excluded the possible existence of another
sources of errors, occurred so much in the process of capture of the data or their
transcription to the paper. Some other possibilites are: a) Inadequate exposition of
the anemometer to the surroundings, b) lacking in maintenance of the instrument,
flaws, etc. c) bad habit in the methodology from taking of measuring, d) physical
characteristics of the instrument (speed threshold, characteristic length, etc.). Such
problems (which probably exist to some extent in all the stations) are of difficult
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correction, in the sense that although they could be recognized after an inspection,
the original value has already been lost.

The typing error is the only one that could be documented and corrected, and
therefore the indexes that will be introduced should be evaluated keeping in mind
that they might also be detecting other errors which exist before the transcription
to the paper. The efficiency of the method would be yet better.
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Figure 1 Location of the weather stations

3 The test procedure

The methods were presented in full in López et al. 1994a and 1994b applied to
the case of pluviometric data (daily values). Here only a brief synthesis will be
introduced. It will be referred as event the set of data values for a particular hour.
As indicated in López et al. 1994b, the population could be divided in a) hours
with data in all the considerate stations and b) hours with any absence in them. The
process will require measured data, or estimates for the considerate event, in all
the stations. So an imputation for the missing values is required as part of the
process.
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The first stage of the method requires performing a Principal Components
Analysis (PCA) (see for example, Lebart et al. 1977) While considering events
without missing values, it is straightforward to find the principal components of
the population. They are a property of the group of events, and not of any event in
particular.

Any event has associated 2n measurements (components u and v in each one
of the n considerate stations), and it can be sought as a vector in the space R n2 . The
principal components are a base of that space and we named after scores the
projection of the space in that base. The scores are also 2n numbers. It is
equivalent to manage the temporal series of the original measurements or the
temporal series of the scores, there being between both series a mere lineal
transformation.

The time series of the scores are mutually uncorrelated, an important
difference with the original values. Such fact enables us to consider each
component separately, knowing that there is no redundant information in the
others. In the figures 2 to 4 some of the distributions of the observed scores are
introduced.

It should be noticed that except for the first three components ("the most
important") the observed distribution is relatively concentrated around the zero, as
it was pointed out in López, 1993. As indicated in López et al. 1994a, it is possible
to identify anomalous events comparing all or some of the scores of a particular
hour with its distribution in all the population. For each score's probability
function distribution, its percentiles 5 and 95 per cent  can be determined, giving
an objective criteria to classify a particular event as marginal. So, if for an event,
the j-th score is marginal, it is considered that in that event there is something
abnormal, and it should consequently be checked.

In Silveira et al. 1991 some cases of "abnormal" events detected by the
procedure described before were individually analyzed, for the case of rain. One
could be noticed that this criterion not only detects errors, but rather also they
mark some atypicall events , like heavy convective rain episodes very concentrated
in the space. Even though in that cases it was verified that they were not errors, it
doesn't contradict that they were abnormal events.
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Figure 2 Sketch of some properties of the scores 1 (left) and 2 (right). On top the
probability density function; on the middle the power spectrum and on bottom the self
correlation against the lag.

Not all the j-th scores should be passed for the criterion. López et al. 1994b
justifies that there should be an optimal q value, that makes controlling only from
the q-th score through the 2n the best option. Such q could only be determined by
means of experiments like the one that will be introduced later.

As it was explained, it is possible to detect the anomalous events and identify
their date and hour. Notice that in the calculation of the scores all the data of that
event is involved, so it is not trivial to discriminate which particular station in
particular is more likely to have an error. As a solution a sensitivity
analysis has been sought using a functional S  designed to highlight any unusual
situation. S  is typically small if all the ai are themselves not marginal.  It is
defined as
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being ai the i-th score, and wi is a weighting coefficient.  Hawkins (1974) uses the
associated eigenvalues instead of wi, but we used the criteria suggested in López et
al. (1994a), which make every term in de summation of the same order. The index
i vary within a set p, which in turn depends of an integer parameter k. The S
functional neglects the information of the temporal self correlation of the scores.
In order to isolate the problematic station it is proposed to calculate for the event
in question the partial derivative of the functional ( )S , , , , . . . , ,u v u v u vn n1 1 2 2
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where xj denotes indistinctly the component u or v in the j-th station and being p
the set of weighted scores (ranging from 4...10 for example) and ai is the i-th
score. The j that produces the maximum derivative (in absolute value) will identify
the most sensitive station, which will be taken as the error candidate. Also the
second and third in importance will be taken into account, and they will be
qualified as "a", "b" or "c" candidate stations (see Table 1).
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Figure 3 Sketch of some properties of the scores 3 (left) and 4 (right) as presented in fig. 2.
Notice the change in scale for the power spectrum. The peak near 0.04 is due to daily
variations.
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Figure 4 Sketch of some properties of the scores 9 (left) and 10 (right) as presented in fig.
2. Notice again the change in scale for the power spectrum, and also in the x-scale for the

pdf.

4 Results

4.1 Error location on the original data
In figures 5 and 6 he compared performance of the methods in the case of

hourly wind for the year 1984 is presented. As it was explained before, no missing
values are allowed for calculating the Principal Components. The available dataset
has less than 30 per cent  of the events complete, so imputation is mandatory. In
order to do so, two different methods were used, named Temporal Interpolation of
the Principal Scores (TIPS) and Penalty of the Principal Scores (POPS). The
reader is referred to López et al. 1994a, 1994b for further details.

In figure 5 the performance of the TIPS imputation plus error detection is
compared against the POPS imputation plus error detection. The original
population analized (from year 1984), has 8784 events, rendering 87840 numbers
upon multiplying for the 5 stations and keeping in mind that there are two
components u and v for each.
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The results show that for the TIPS with percentile limits of 0.5 per cent  and
99.5 per cent  (figure 6, Table 1), 592 events (13.5 per cent  of the population) are
selected in the first run. Once contrasted with the data "in paper", 301 (50.84 per
cent) of the candidates (see Table 1, in boldface) have errors. The rms between the
erroneous data and the corrected one is 4.19 m/s. Of these 301 events, 83 (27,57
per cent  of the 301) were marked with probability "a" of being the error  (column
" per cent a_ok", Table 1), 49 (16.28 per cent ) with "b" and 41 (13.62 per cent )
with  "c". A similar table can be devised for the POPS method.

We have also analyzed the intersection of both sets as a separate alternative
(i.e., collecting those events which behave atipically after two different imputation
methods) but the results are very similar as those presented.

Table 1 Typical results of the application of the TIPS interpolating three of the principal scores. Data
from 1984. P indicates step, N indicates new step data, ACU indicates the total accumulated until that
step. In boldface values commented in the text.

candidates % corrected % a_ok % b_ok % c_ok RMSE mean

P N ACU N ACU N ACU N ACU N ACU [m/s] [m/s]
1 592 592 50.84 50.84 27.57 27.57 16.28 16.28 13.62 13.62 4.19 -0.87
2 774 1366 28.29 38.07 18.72 23.85 16.44 16.35 10.96 12.50 2.44 -0.47
3 505 1871 17.43 32.50 6.82 21.38 19.32 16.78 9.09 12.01 2.20 -0.50
4 508 2379 16.14 29.00 18.29 21.01 9.76 15.94 20.73 13.04 2.32 -0.10
5 367 2746 31.34 29.32 20.87 20.99 19.13 16.40 14.78 13.29 3.11 -0.00
6 530 3276 7.36 25.76 20.51 20.97 15.38 16.35 15.38 13.39 1.95 -0.41
7 424 3700 5.42 23.43 21.74 20.99 17.35 15.92 16.12 13.03 2.56 -0.67

The marginal percentile was incremented 0.5 per cent  in each step. In the
second run said percentile was between 1 per cent  and 99 per cent , etc. until the
3.5 per cent  and 96.5 per cent  of the seventh. This policy allows to select for
every step around 500 to 600 new events in order to check with the data "in
paper." In the synthetic experiment that will be introduced later, such percentile
stayed constant between steps.

The task of checking against the data "in paper" could be regarded as a
calibration phase of the method. It is the first stage towards an automatic quality
control of incoming or existing data for other years. The results differ greatly as
the process goes on. From table 1 can be noticed that the rate of success in the
error location of errors varies from 50.84 per cent in the first step, to 5.42 per cent
in the seventh one.

By the mere classification as "wrong" - "not wrong" it is not possible to
indicate the importance of the detected error. The root mean square (RMS)
between the original and corrected value has been used as an estimator. It could be
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calculate for each run giving an idea about the incremental effect, or once finished
the operation illustrating about the size of the remaining errors.

The process was finished when the procedure found less than 5 per cent  of
erroneous data among the candidates. The observed incremental RMS was around
2 m/s, implying that the wrong and correct values were too similar. Once checked
a total of 3,700 events (containing 37,000 values) the procedure found 867 events
with errors in at least one of the stations, that is to say a 23.43 per cent  of success
in the suggested dates, affecting a 9,9 per cent  of the total of events in the year
1984. The associated type I error, defined as the probability of classify as wrong a
correct value (Minton, 1969) is estimated as 76.57 per cent . The standard
deviation of the discrepancy between the values initially in the files and those on
paper resulted 3.5 m/s for the year 1984. If one limit oneself to a single step, the
results are a type I error of 49.16 per cent , and an estimated type II value of 6.44
per cent . The type II value is defined as the probability of classify as good a
wrong value (Minton, 1969) which in turn require estimate the total number of
errors in the dataset. We assumed that we located all the errors after the seven
steps.
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Figure 5 Experimental values of the RMS obtained while depurating the original
database. X-axis stands for the fraction of the total database already checked. Y-
axis stands for the RMS of difference between wrong values and correct ones on

paper.

4.2 Error detection on the already purified data bank
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The implemented algorithms were evaluated in controlled experiments in
order to confirm the kindness of their acting both for detect anomalous data and
for imputate missing values in the series.

The experiment consisted in sowing erroneous data and detect them. In an
attempt to mimic the behaviour of real errors, it was assigned to the element vi j,  of
the data table with i and j at random, an element vk l,  (multiplied by 2) from the
same data table with k and taken l also at random. The cited data table has 10
columns (5 stations for 2 components u and v) and 10171 lines  (424 days of the
the years 1990-91 for 24 hours) implicating 101710 values as a whole. The factor
2 used with vk l,  was used as a crude attempt to resemble the errors observed with
real data.
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Figure 6  Total number of errors found for a given effort..

They were carried out several tests varying different parameters for the
identification of the suspicious data. As an example, in figures 7  to 9 the results
with a marginal percentile of 0.5 per cent  are shown. We penalized only the
prescribed number of terms (those which corresponds to the weakest scores), of
the total of 10 scores. The best and robust results of maximal RMS were obtained
while using all the terms.
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For 13760 erroneous values (13.5 per cent  of the total data) the method
detected (after imputation with POPS using 1:10 out of 10 scores) 6075 of the
artificial errors (44.5 per cent ). It was necessary to check 33 per cent  of the total,
attaining a success rate of 18 per cent  (6075 of the 33800) in the revision of
candidates.
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Figure 8 Evolution of the RMS found for the same initial noisy dataset in terms of
the effort

Another aspect to keep in mind is the reduction in the remaining standard
deviation of the error between original data and erroneous data values. The initial
deviation was 4.66 m/s, and after correcting  the 6075 erroneous detected values it
was reduced to 2.83 m/s. The incremental standard deviation decreases from 9.06
m/s in the first step until 6.24 m/s in the last one. Going further with the
calculations for this case (1:10 penalized terms) it can be  appreciated that the
remaining standard deviation decrease down to 0 (ideal limit that would be
attained upon checking the 100 per cent  of the data) while the measured
incremental deviation stay near 4.66 m/s. The attained value of the remaining
standard deviation (2.83 m/s) seems reasonably, since the rms of the database
values is 3.98 m/s before correcting them and 3.26 m/s after correcting the
erroneous data.
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Figure 8 Simulated evolution of the remaining RMS vs. the effort

5 Conclusions

From the performed experiments it could be inferred that:
a) The data should be carefully verified, with the proposed criteria or with

another. About 10 per cent  of the events have some error.
b) The algorithms employed in order to detect errors performed very

satisfactorily.
c) The simulated results in the controlled cases suggest that the real errors

could not be simulated by means of the procedure of mixture and multiplication by
2 at random. The performance on real data overcome 23 per cent  and the
simulated ones 18 per cent .
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Abstract:The techniques employed in the treatment of an hourly surface wind database during the development and calibration phases of
an objective wind field interpolator model are presented. The model itself has been applied to estimate the regional wind energy resource
creating a layer in a GIS environment.
The outlier detection phase is presented in a companion paper, and here the different techniques applied in order to imputate the missing
values are described. The comparative results obtained with an hourly dataset of 15 years long are also presented. Two different
problems have been simulated numerically: systematic missing values (i.e. at fixed hours) and non systematic ones.
Five different criteria were applied: imputation with the historical mean value; linear time interpolation within single station records;
optimum interpolation (kriging) and the two newly developed Penalty Of the Principal Scores and linear Time Interpolation of the
Principal Scores which considers all station records in a multivariate fashion; they prove to be the most accurate for this particular wind
dataset. There is also some evidence of oversampling in time.

1. Introduction
1.1 Presentation of the problem
Since 1988 the Team was involved in evaluating the National Wind Energy Resource. Although it was
not an explicit objective of the project, it was necessary to complete the time series to the longest
available period. With these goals some algorithms have been implemented for imputation of missing
values in the series. Some test have been carried out that confirm the kindness of their performance in
controlled cases.
Three different methods have been tested: a) Time interpolation of the principal scores (TIPS)
(includes standard time series interpolation as special case) b) Penalty of the principal scores (POPS)
and c) Optimum interpolation (Gandin, 1965).
The first two were developed in López et al. (1994b). The third is a standard interpolation procedure in
the inicialization of mathematical models in meteorology (Johnson, 1982) that allows to find estimates
not only in the stations of measuring, but also in another points of the domain of work. In this case
their performance has been analyzed in the case in that the point to interpolate is one of the measuring
stations.  In the work of López et al. (1994b) on rain data, the TIPC resulted to be a poor method, while
for the case of wind it was the best one.

1.2 Methodological background
Objective analysis methods are very common in meteorology (see Haagenson, 1982, Johnson, 1982,
etc.) since they have been designed to produce an interpolated field using only data observed in
irregularly distributed networks. This situation gives, on principle, a way to overcome the problem of
missing values, because they can be estimated using available information.
For some applications the missing values are not a problem (for example, find the extreme values,
calculate an annual average, etc.) while for others they are critical. The existence of well established
procedures led in the past to a marginal interest for the problem, clearly observed in the scarcity of
specific work found in the literature. We believe that, in most cases, missing values are simply ignored,
under the implicit hypothesis that those errors appear at random. Such hypothesis is rarely tested nor
verified.
Missing values are extremely important in statistics and social sciences, where even books on the topic
can be found (Rubin, 1987) mentioned results from international working groups.  In such areas there
exist both crude and sophisticated imputation methods. For example, the one suggested by the U.S.
Census Bureau (Rubin, 1987) assigns a randomly chosen value among those events which other values
coincide, or are below a so defined "distance" from the target one.
Another simple method is to make a linear regression using available data. Usually such model is build
up least squares criteria, principal component analysis, etc. (Stone et al. 1990) All of the above produce
for each missing value, a single candidate. Following Rubin, 1987 "..it is intuitively clear that by



A new technique for imputation of multivariate time series
imposing an "optimum" value, the variability will be underestimated". The author suggests that more
than one candidate might be produced, and he described the techniques typically used for surveys. The
general idea is to create, for each missing value, a small number m of candidates, and consider that you
have m datasets. The method is workable if there are a low number of missing values; its results are
usefull, but require more computing time and also more space (to store the multiple imputed values).
We refer to Rubin (1987) for further details.

2 Testing Methodologies
Five stations were selected for the test,
all located to the south of the country,
(see fig. 1) :Melo (440), Paso de los
Toros (460), Treinta y Tres (500),
Carrasco (580), Punta del Este (595).
They were chosen due to its geographical
localization around the automatic
stations of the National Department of
Energy (DNE) Wind Energy Program.
This also conditions the periods to work
with, including part of the years 1990-
1991 and the year 1984.
The work carried out consisted in:

a) removing temporarily those values
to be imputed

b) for each method
b.1) eliminating all missing values
b.2) calculating RMS and mean

between new and true values

+
+

+ +Punta del EsteCarrasco

+Treinta y Tres
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Paso de los Toros
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Figure 1 Location of the weather stations
The methods were presented in full in López et al. (1994a and 1994b) applied to the case of
pluviometric data (daily values). A synthesis will be introduced pointing out the differences among rain
vs. wind here managed. It will be referred as event the set of data values for a particular hour. As
indicated in López et al. (1994b), the population could be divided in a) hours with data in all the
considerate stations and b) hours with some absence in them. The quality control process requires
either measured or estimated data for the considerate event, in all the stations, so an imputation for the
missing values is required.
The Principal Components Analysis (PCA) was already used for the same wind dataset in Cisa et al.
(1990). While considering events without missing values, it is straightforward to find the principal
components of the population. They are a property of the group of events, and not of any in particular.
Any complete event has associated 2n measurements (components or and v in each one of the n
considerate stations), and it can be sought as a vector in the space R n2 . The principal components are a
base of that space and the principal scores are the projection of the space in that base (Lebart et al.
1977). Since both bases relates each other by means of a linear relationship, it is equivalent to manage
the temporal series of the original measurements in the stations or the temporal series of the principal
coefficents.
The time series of the principal coefficents are mutually uncorrelated, an important difference with the
original values. Such fact enables us to consider each component separately, knowing that there is no
redundant information in the others. In figures 2 to 4 some of the distributions of the observed
coefficents are introduced as well as its power spectrum.



It should be noticed that
except for the first three
components ("the most
important") the observed
distribution is relatively
concentrated around the zero,
as it was pointed out in Cisa
et al. 1990. From the
analysis of the figures 2 to 3
is deduced that the series of
the corresponding scores 1 to
3 varies smoothly, in
opposition to the registered
in the subsequent figures.
The spectrum shows a noisy
pattern, and the
selfcorrelation decreases
more sharply with the lag. It
can be that, in the case of
existing any missing values,
it would be reasonable to
perform a linear interpolation
in time for the scores of
minor index. The other
scores are typically of minor
or greatly minor importance
(compare the dispersion of
the figure 4 with the one of
the figure 2) and they can be
neglected. So after
interpolation of the main
scores and setting to zero the
remaining ones the complete
set of scores can be obtained
for the event with missing
values. By means of the
linear mentioned
transformation the tentative
registrations are calculated,
but only those that were
lacking are incorporated. A
more precise estimate of the
interpolated scores is now
possible upon incorporating
the values indeed measured
corresponding to the event.
For more detail, the reader
refers to López et al. 1994a,
1994b.
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Figure 2 Sketch of some properties of the scores 1(left) and 2(right). On
top the probability density function; on the middle the power spectrum

and on bottom the self correlation against the lag.
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Figure 3 Sketch of some properties of the scores 3 (left) and 4 (right) as
presented in fig. 2. Notice the change in scale for the power spectrum.

The peak near 0.04 is due to daily variations.

This procedure of temporal interpolation will be named Time interpolation of the principal scores
(TIPS) hereinafter. As a particular case, the standard linear interpolation between registers of the same
stations is an special case, when all the principal scores are included in the interpolation.  The method
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of Penalty of the principal scores (POPS) was also used, as introduced in López et al. 1994b. It is based
upon the fact that the weakest patterns have associated usually very small scores; so the functional
(suggested for the first time by Hawkins, 1974)

( )S , , , ,..., , a
w

i ..i
2

ii p

u v u v u v k nn n1 1 2 2 2= =
∈
∑

will be also small. ai is the i-th score, and wi is a weighting score. The key idea is that any missing
value uj or vj can be estimated directly by minimizing the S  functional.
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where uj, vj denotes the missing component u and v in the j-th station and being r the set of stations
with missing values for the event. The system of equations is linear in uj, vj and of moderate size. It
may happend that the optimum values still are unacceptable, by application of the criteria documented
in López et al. 1994a, but such constraint has not been imposed in our experiments. The particular case
k=1 corresponds to minimize the Mahalanobis distance to the mean value.
As a final point, it should be stressed that this procedure neglects the information of the temporal self
correlation of the coefficents. For details, again the reader refers to López et al. 1994b.

3 Results
Two experiments were carried out, depending on the systematic nature or not of the missing values.
The dataset corresponds to the years 1990-91 after removing errors

3.1 Systematic location of missing values
Typically in the northern
zone of the country most
stations take readings at 8, 14
and 20 hours, as some
stations from Southern Brazil
and the Argentina do. Only
the stations of Artigas,
Rivera, Salto and Paso de los
Toros in Northern Uruguay
take hourly wind values. It
has been evaluated the
possibility of imputate such
systematic holes. In order to
have a frame with what
compare, we have analyzed
again the five stations of the
southern zone: four of them
were considered with data
only at 8, 14 and 20 hours
local time, while Melo was
taken as fully hourly. The
three above mentioned
methods were applied to this
case, being the results
presented in Table 1.
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Figure 4 Sketch of some properties of the scores 9 (left) and 10 (right)
as presented in fig. 2. Notice again the change in scale for the power

spectrum, and also in the x-scale for the pdf.



As a reference, it has been evaluated the error when every component x j  was imputed simply with its
mean value for the period, and by application of the Optimum interpolation, which renders in this case
for each hour, the same value for every station. The outputs are consistent in that the TIPC performs
the better, without a clear difference between interpolating the 4 first scores or all of them. The
experiment simulates a population of 60924 absences in 4 of the 5 considerate stations, leaving only
the hours 8, 14 20 like well-known data, being the total usable population in the calculation of the
eigenvectors of 83724 values (corresponding to the hours with mensurements in all the stations). The
critera adopted imputated the missing values with a mean error of 0.10 m/s and a RMS of 2.05 m/s,
calculated in relation with the original data (Table 1). The procedures were also evaluated in that the
absences are at random. The results also support as a suitable choice interpolating all of the 10
coefficents, and will be presented in the next section

3.2 Non systematic location of missing values
15197 absences in the population of 83728 were created at random dates and stations, being
approximately 20% of the total. In this case the selected criterion of interpolate with all the terms
(terms 1:10) renders a mean error of 0.03 m/s and RMS of 1.67 m/s between the calculated data and
the original values (Table 2).
The results from Table 2 are valid for a single random set. Other independent runs revealed that in
some cases a minimum in k = 7 could be noticed, more in accordance with the previous results for rain.
However, the corresponding optimum RMS error was not very different from the value for k = 10. The
objective (goal) function was the RMS of the population of differences between the calculated value
and the one indeed measured. The optimum value is approximately 2 m/s, which is acceptable for wind
speed. It should be noticed that interpolating with all 10 terms is equivalent to an independent
interpolation of each station's time series.

4 Conclusions
From the performed experiments it could be inferred that:

a) The algorithms employed in order to imputate values performed very satisfactorily. They
outperform the standard procedures.

b) The near optimum value obtained using the standard interpolation of the time series suggests
that, at least in Uruguay, the wind records are oversampled in time. When an artificial undersample is
introduced the optimum number of interpolated terms decreases. We provided a physical explanation
of the phenomena based upon the spectrum of the score's time series.

Table 1 Calculation of the root mean square (RMS) and the mean
of the error (measured value - calculated value) upon imputation

assuming complete Melo and the another 4 stations with
registrations in the hours 8, 14 20 only. Data from the year 1990-

91. In boldface the most significant outputs.
Interpolation Penalization

Interp.
terms

RMS
(m/s)

Mean
(m/s)

Penalized
terms

RMS
(m/s)

Mean
(m/s)

 1:10 2.06 0.09625 10:10 3.41 0.10094
 1:9 2.06 0.09669  9:10 3.41 0.10274
 1:8 2.05 0.09613  8:10 3.39 0.10452
 1:7 2.06 0.09671  7:10 3.28 0.06608
 1:6 2.05 0.08151  6:10 3.26 0.06191
 1:5 2.06 0.09585  5:10 3.23 0.04485
 1:4 2.05 0.09541  4:10 3.21 0.01852
 1:3 2.05 0.08414  3:10 3.40 0.01686
 1:2 2.11 0.08763  2:10 2.97 0.00177
 1:1 2.73 0.07331  1:10 2.84 0.05171

Results obtained assigning the mean value 3.24  0.28839
Results obtained with the Gandin´s method 2.84  0.05353

Table 2 Calculation of the root mean square (RMS) and the mean
of the error (measured value - calculated value) upon imputation

assuming 20% of the data with missing values.
Data from the year 1990-91. In boldface the most significant

outputs.
Interpolation Penalization

Interp.
terms

RMS
(m/s)

Mean
(m/s)

Penalized
terms

RMS
(m/s)

Mean
(m/s)

 1:10 1.67 0.03193 10:10 6.83 0.19072
 1:9 1.67 0.03092  9:10 7.78 0.09796
 1:8 1.68 0.03401  8:10 7.99 0.13297
 1:7 1.68 0.03286  7:10 8.27 0.14827
 1:6 1.70 0.04416  6:10 7.02 0.02573
 1:5 1.73 0.04740  5:10 5.34 0.03002
 1:4 1.76 0.02857  4:10 3.33 0.10016
 1:3 1.79 0.03594  3:10 2.73 0.06495
 1:2 1.89 0.03005  2:10 2.35 0.04825
 1:1 2.57 0.00417  1:10 2.33 0.07813

Results obtained assigning the mean value 2.76 0.03141
Results obtained with the Gandin´s method 2.37 0.07596
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Abstract
Removing outliers from records prior of its use is a major concern in any technical or
scientific field. Meteorology is not an exception, and an important effort in devise methods
has been made to locate them despite the fact that it has been misconsidered as a purely
technical task. The currently applied methods are very crude because they are mostly
computerized versions of traditional criteria, failing to exploit the capabilities of modern
computer systems. Extensive comparison among methods have not been done, no reliable
statistical comparison among different outlier detection strategies can be made without a tool
for generate instances of a database contaminated with artificial errors. This paper describes a
heuristic model suitable to simulate the usual errors observed in a 30 years, ten stations, daily
rain dataset, which has been carefully checked against typing errors. We will restrict ourselves
to simulate only such errors. Some methods are discussed, namely: a) choosing at random
other value in the same dataset b) choose at random other value for the same station c) model
imperfectly some driving mechanism for the errors. The results will be compared with the
observed problem, and from them we were able to show that options a) and b) underpredicts
the difference between errors and true values, while even imperfect, option c) renders
satisfactory results.
1. Introduction
Most of the literature related to observation errors in meteorology are devoted to systematic and
random errors before the data is put on paper. Typical problems is representativeness of the
measurements in relation to the surroundings, and measuring device problems.
A suitable error model (i.e. an algorithm) should address two problems: a) provide rules to
select a date and a station candidate to be in error and b) assign an outlier for it. Since we are
considering existing records, we are not concerned with systematic errors: the outlier should
suffer from them as well. The literature on random errors in meteorology analyzed mostly the
distribution of the differences between truth and observation, solving to some extent the phase
b). However, typical analysis make comparisons between instruments of different accuracy,
etc. which might not be the most important source of concern here, because we attempt to
handle errors produced after the observation is put on paper for the first time. We will now
review some previous work disregarding the particular meteorological variable considered.
One standard and possible approach suitable for random errors is to compare the observations
against the outputs of a conceptual model of the phenomena (if it exists!). See for example
Francis (1986); Hollingsworth et al. (1986). The latter reported that for the hourly wind, the
differences between observations and predictions follow a gaussian distribution with zero mean
and σ standard deviation (shortly N(m, σ2 )). However since he analyzed the operation of
automatic equipment, he did not report any rule to assess when the errors are more prone to
appear. Anyway, such procedure is suitable for only a limited number of meteorological
variables, since a different and specialized mathematical model is required for each one.
Requirements in computer time are also important, as well as availability on other data for use
within the model.

                                                
1 Presented at the 10th Brazilian Meteorological Conference. Brasilia, Brazil 26-30 October, 1998
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The strategy of compare the output of a mathematical model with the observed values is
common at Global Data Assimilation Centers (Gandin 1988; Di Mego 1988; Parrish 1992).
Gandin (1988), asserts that the most significant part of the errors detected are those collected in
developing countries, partly due to the fact that there are certainly less resources affected to data
collection than those affected in developed countries. Unfortunately no reference to patterns of
occurrences are reported.
For the case of homogeneous (i.e. same measurement units) variables one particularly simple
model is the linear one, which is a first order approximation of the parameter(x,y) function.
Hawkins (1993), declares that true errors are traditionally been assumed to be distributed as
N(0,σ2 ). However, regarding the outlier identification problem and the robust regression one
there is concern about the correctness of this part of the model, specifically that the error may
come from a distribution with heavier tails than the normal. In his paper he analyzed some well
known datasets, but none of them are of meteorological variables. Rocke and Woodruff (1996)
demonstrated that in order to detect outliers assuming multivariate normal distribution the most
difficult case is the one with shifting outliers but the same covariance matrix.
To some extent the task of modeling the pattern of missing values occurrences can be considered
as similar to the objective a) of this problem. For example, Little (1992) addressed the problem
in the regression framework. He differentiates among four mechanisms: 1) the missing value is
independent on the data values 2) depends only on the value of X1  for that case 3) depends on
X2, X3, .. Xn for that case or 4) depends on X2, X3, .. Xn  and Y for that case. We found that this
problem is strongly dependent on the available data for the day, so mechanism 4) was finally
adopted.
Reek et al. (1992) reported results using a climatological database collected through a
cooperative network. The database has over 100 years long, an has been collected by volunteer
weather observers. The database was progressively transferred to punch cards in order to help in
prepare publications. The storage media started to be the magnetic tape in the late 1960s. In our
opinion this datasets has many similarities with the one which will be described, and both the
collection and typing procedure might be considered as representative for other countries as
well. They describe also the set of rules which allow both for recognition and correction of
erroneous data. The rules are predetermined, systematic, and empirically derived. Some of them
might apply only to that dataset, but illustrates common situations.
As a final remark, we want to quote Gandin (1988). He said "...for a long time, however, the
Quality Control development was considered as a purely technical task, and no further
investigations on rough errors were performed...". That explains why the topic addressed in this
paper has received little or very few attention.
2. The available dataset
The description to be presented has been taken from Bidegain and Fontana (1996 personal
communication). We have used data from 1960 to 1990 taken in the Santa Lucía catchment
area, of 13600 km2, located in the Southern Uruguay approximately between 55° - 57° W,
33°40’ - 34°50’ S (see Fig. 1). The natural boundaries are low hills ("cuchillas") of height below
300 m. Grass is the main coverage and most of the trees lie in the margins of rivers. The most
important one is the Santa Lucía river, with  225 km length, being its main contributions from
the San José river, of 111 km length, and the Santa Lucía Chico river, of 122 km.
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Fig. 1 Location of the pluviometric stations considered

The region has no dry season,
and can be classified as
Koeppen´s Cfa category. The
average mean temperature is
17°C. The extreme values on
annual basis are 43°C and -8°C.
Total annual precipitation are
1000 mm. There are a somewhat
large interannual variability,
from 1600 mm (1959) to 500
mm (1916). The difference
between the extreme monthly
average is 100 mm (march) and
75 mm (july) which shows a
regular pattern of precipitation
during the year. Relative
moisture ranges around 70%,
being the maximum 78 % (june)
and the minimum 60% (january).

The measurement network consists of 50 stations, mostly operated by non-technical staff from
the police and the National Railway Company. The spatial arrangement suffer from such fact,
because the stations have been located along railways lines, or in small villages. With a
reorganization of the National Railway Company in the mid eighties, many of the railway
stations in the area were shutdown, resulting in many missing records since them. We have
selected 10 pluviometric stations out of 50, for the abovementioned period. Their name, code
and location are given on table 1,
and its layout in Fig. 1. The data taken
by the operator go in two different
ways to the National Weather Service.
The data is collected at 7:00 AM and
paper records are prepared in-situ. They
are submitted by surface mail once a
month. For other purposes, the
information is collected by radio or
telephone (where available) by the
Police Department of the province, and
transmitted later in the same day to the

N° Name Latitude Longitude Height ASL
852436 Puntas de Sauce 33°50'S 57°01'W 120 mts
852486 Pintos 33°54'S 56°50'W 100 mts
852549 Barriga Negra 33°56'S 55°07'W 95 mts
852588 Casupá 34°06'S 55°39'W 124 mts
852662 Cufré 34°13'S 57°07'W 92 mts
852707 Raigón 34°21'S 56°39'W 37 mts
852714 San Ramón 34°18'S 55°58'W 70 mts
852719 Ortiz 34°17'S 55°23'W 115 mts
852816 Joanicó 34°36'S 56°11'W 35 mts
852846 Olmos 34°44'S 55°54'W 40 mts

Table 1 General information of the pluviometric stations considered
for the period 1960 - 1990

National Weather Service main office at Montevideo. Magnetic records are taken from this
daily report, in a process which started some years ago. No routine check is made against the
original records, even though they have been regarded as the "true" ones. The dataset have
been collected, from the instrument to the paper, with almost the same routine for the whole
period. The first computer appears in 1977 and records back to the beginning of the century
were digitized in a short period. The task was carried out following a station order rather than
a time order. So mistakes for the same day in different stations are less prone to occur.
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3. The tested mechanisms
Any mechanism to be considered might fulfill some requirements. For instance, we assume
that outliers are not out of the observable range. Our situation is that we have a previously
recorded database, which must have passed successfully the most trivial requirements for
consistency (no negative records, etc.). So we are trying to model errors like those still remain
in the dataset.
Another trivial requirement is that an error should be different from its true value. We define
here the true value as the one which is hand written by the operator. We disregards other
errors source, like malfunctioning of the instrument, threshold, etc. because we cannot going
so far into the data.
Those before are strong requirements. We can state also weak requirements. For example we
will prefer to use non parametric procedures based on available data in order to simulate
outliers.
However, the error generation mechanism is strongly connected with the routines used for
collection. Notice also that in many cases such routines might have changed over time. As an
example, errors in the card punch process (see Coale et al., 1962) might not occur while
typing in terminals Also automatic collection equipment (no typing!) are not error free as well,
because they suffer from other mechanisms not considered here.
So this paper might be of use for datasets collected with well known, well established
procedures, which might have undertaken the task of typing the paper records mostly at once
and afterwards they continue keying with the same procedures (even the same software).
That´s the situation in many of the third world meteorological offices. To make things worse,
they collect data to be used by themselves in a) aggregated form or b) as extreme values,
which are statistics very robust to non gross errors, which might stay unnoticed for long time
within the dataset. Gross errors are not prone to occur because they might affect the extreme
value report. No sophisticated data assimilation procedure has been available in the past, and
even powerful computers are still a dream. Such National centers provide useful data which is
analyzed at the global level by well skilled personal and well proven algorithms, but at the
local scale most records remain as keyed, after very crude range controls.
With strong and weak requirements in mind, we can devise some different simple algorithms.

a) for random date and station, select a second random date and station until its record
is different from the destination one.
b) for random date and station, select a random date for the same station until its
record is different from the destination one.

We applied both mechanisms and found that the results are not satisfactory. We should notice
that in the available records most (around 80.5 per cent; see table 2 for this and other summary
statistics) of the values are zero. So the method will select with 80.5 per cent probability as a
destination a zero rain value, and will assign there a non-zero one. This is not observed in
practice, because the true zero values appear at a somewhat lower rate (24.3 per cent). We will
denote as the correct value the one written on paper, and as wrong value the one available in
magnetic form. So b definition there should be the same number of wrong and correct values.
In case where either the wrong or the correct value is a missing one we did not include them
into consideration.
In 99.8 per cent of the cases the wrong value is greater or equal than the minimum daily value.
In 91.6 per cent of the cases, the wrong value is bounded by the maximum of the observations
of the day, day before and day after for all the available stations. This fact was due to one-day
time shift error, a somewhat typical situation due to unscheduled changes in the observation
time from early morning to night. It has also  been noticed that the distribution of the wrong
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values has longer tails than the station probability density function (pdf). So we discard the
possibility of  choice at random one of the neighbor values (which automatically will be
between both extreme cases) and turn to choose them from a distribution of "extreme" values.
Such extreme value set was built using some heuristics which will be presented later.
The days where to put the error are also not at random. The zero rain as a correct value has a
substantially lower probability (24.3 per cent) than the overall population. We suggest that an
error is more likely to occur in a "rainy" day than in a "dry" day, because the operator might be
more aware of the typical values. We found that the probability of having less than 2.5
mm/day average rain is 81 per cent in the population, but when errors arise, such probability is
around 24.0 per cent. On the other side, heavy rain events are unlikely to occur: the average is
over 25 mm/day less than 2.8 per cent of the events, but when exist errors, such percentage
grows up to 29.3 per cent, so we devised different mechanisms provided the daily average is
below 2.5, within 2.5 and 25 and over 25 mm/day.
Summing up our model will consider some error mechanisms supported by empirical rules:

a) the wrong value is larger than the day minimum and typically is less than the
observed maximum for the day, day before and day after in the catchment area.

b) we distinguish three situations "dry day", "heavy rain day" and the others, and use
different sets for selecting the wrong value as well as the correct one

4. The heuristics
Despite the availability of the abovementioned rules there is still the need to specify either a
pdf (probability density function) or sets where to choose randomly the correct value (to be
substituted) and the wrong value (to be used instead).  We add other rules in order to make the
model operational, while keeping its outputs close to the observed ones. The most important
rules are those regarding where to put the errors, and how many zeros to change. We divided
the population in three cases according to its mean rain: (A) between 0 and 10; (B) from 10 up
to 25 and (C) over 25 mm/day. From the sampled errors and for each case, we calculated the
probability that the errors appear in that case, and how many of them are zero. With only such
information we were able to select a day as candidate to hold an error, and to suggest within
the day a specified number of non-zero readings in order to put a zero, and conversely, a
number of zero readings to be substituted from values taken from other distribution.
Notice that, despite one typical mechanism for error generation is to mix the values from the
day with those of the day before, we were unable to reproduce observed patterns considering
directly such fact, because the errors were smaller than observed. Thus we decided to use
errors obtained from a set created as follows. It contains all the minimum readings for each
event, as well as all the maximum values for the current day, the day before and the day after
considered for the overall population. This population has more low rain values than
observed, so at random we reduced to one fourth the readings belonging to the first quartile of
the non-zero values, and adjust the proportion of the zero values in order to follow the
observed one. Let's denote as error set the result of this operation, which is created using
information of the available dataset.
When assigning an outlier, we disregard the information of the maxima from the day before,
current day and day after, and simply pick a value from the error set. What it is strictly forced
is that the error should be larger than the minimum of the day (as observed in over 99 per cent
of the errors).
5. Results
In table 2 some comparative results between observed/simulated are presented. It is clear from
them that a perfect simulation has not been achieved. The most significant deviations were
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with the exactly zero rain readings. For example, on heavy rain events the model selects zero
as correct value only 3.5 per cent of the conditional sample, while it has been observed 6.4 per
cent. The model assigns a wrong zero value only in 29.3 per cent of the cases, while the
observed conditional probability is 75 per cent. In addition to this preliminary numbers, the
failure of the error
model to mimic
observed error
behavior are also
supported by the
negative results of the
Wald-Wolfowitz test
(Gibbons and
Chakraborti 1992)
which analyzes two
sets of numbers for

Probability of events with Population With-errors events
little rain (average <10) 90.8 29.1/30.5
heavy rain (average >25) 2.8 29.3/28

Probability of readings with: Correct values Wrong values
exactly zero rain 80.5 24.3/25.1 68.8/51.8
zero rain in little rain events (avg. < 10) 86.9 58.3/59.9 42.4/59.8
zero rain in heavy rain events (avg. > 25) 7.0 6.4/3.5 75.0/29.3
rain over the day minimum 99.8/99.6
rain below three day's maximum 91.6/80.5
Table 2 Some statistics of the simulated and observed population. The X/Y denotes observed
X and simulated Y values.

the null hypothesis of belonging to the same population. Despite such pessimistic result we
show the QQ-plot on figure 2 of the observed vs. simulated differences between correct and
wrong values. The QQ-plot should render a linear relationship if both populations follow the
same distribution but maybe with different parameters. The results are remarkably linear,
except for the large differences. Figure 3 shows a comparison between the population of
wrong values. The deviation is again more evident in the larger rain events, despite the cases
are rather few. Figure 2 compares the population of the correct values (i.e. those values which
will be replaced), and as before, the discrepancies arise with the larger rain values. So the
model failed mostly with the heavy rain events, which are underestimated.
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Figure 2 QQ-plot of the differences between observed  vs.
simulated realizations of the (correct - wrong value)

population. The simulated population has 6792 events, while
the observed one has 478.
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Figure ¡Error!Marcador no definido. Observed  vs.
simulated QQ-plot of  the wrong values. The simulated

population has 6792 events, while the observed one has 478.

For the sake of completeness, we have also make some runs with a direct implementation of
MIXCAR (MIXed Completely At Random) which in practice requires to choose the wrong
value from any other station and date; the only strong requirement was that the wrong value
should be different from the correct one. This procedure has the nice property that the
distribution of the overall population is barely affected. The results were comparable with
those presented here in terms of the correct value (i.e. where to put the outlier) but they were
deceptive in terms of the difference between wrong and correct, and also the distribution of
the wrong values, which were very different from the quasi-linear appearance of the
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abovementioned figures. The alternative of using values from the same station selected at
random were also tested, and it performed even worse.
6. Discussion and conclusions
The problem of generate random replications of a daily rain database with similar outliers
observed in practice has been addressed. Using empirical facts regarding some of the typical
outlier-generation mechanism we described both the schema and its results. The model
underpredicts the occurrence of heavy rain readings, which are not so common but occurs in
practice, which led in turn to fail in passing some statistical tests. However, from a visual
comparison of the QQ-plots which should be linear for perfect fit, the results are clearly of
use, and no major effort towards improvement were done. The procedure classifies the events
in three categories A, B and C ranging from light to heavy daily mean rain, and forces to
honor the proportion of observed outlier occurrence for each category, as well as the
proportion of errors appearing in zero rain correct values. The wrong values are chosen at
random from a set created using the available information, which allow to apply this
procedure to different databases. Such set is tailored in order to produce results as similar as
possible with the ones observed. Two more alternatives have also been evaluated:
MIXCAR(MIXed Completely At
Random) and simply mix the records for the
station. Despite that both generate errors
without modifying the overall pdf of the
population, they failed to model properly the
wrong value and the difference with the
observed one, so they should be discarded.
Since the observed errors have appear after
the application of error detection procedures
(López et al. 1994) it has been investigated to
which extent the errors found were an artifact
of the procedure itself. This has obvious
implications, because the error generation
code will be used to test the ability of the
error detection procedure. So one year were
carefully typed once more, and all
discrepancies were corrected; this is denoted
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Figure 2 Observed  vs. simulated QQ-plot of the wrong
values. The simulated population has 6792 events, while the

observed one has 478.

as Duplicate Performance Method (Minton 1969) and is assumed that it will highlight both
gross and subtle errors as well. The conclusions show that few errors still exist for that year
after the previous depuration process, so we were confident about the representativeness of the
observed errors.
References
Di Mego, 1988, “The National Meteorological Center Regional Analysis System” Mon Wea Rev 116,
977-1000
Francis, P. E., 1986, "The use of numerical wind and wave models to provide areal and temporal
extension to instrument calibration and validation of remotely sensed data" In Proceedings of A
workshop on ERS-1 wind and wave calibration, Schliersee, FRG, 2-6 June, 1986 (ESA SP-262)
Gandin, L. S., 1988, “Complex Quality Control of Meteorological Observations” Mon Wea Rev, 116,
1137-1156
Gibbons, J. D. and Chakraborti, S., 1992, “Nonparametric Statistical Inference” 3rd. Edition. Marcel
Dekker Inc. ISBN 0824786610.



AN ERROR MODEL FOR DAILY RAIN RECORDS

8

Hawkins, D. M., 1993, “The feasible set algorithm for least median of squares regression”
Computational Statistics & Data Analysis, 16, 81-101.
Hollingsworth, A.; Shaw, D.B.; Lonnberg, P.; Illari, L.; Arpe, K. and Simmons, A.J., 1986,
"Monitoring of observation and analysis quality by a data assimilation system" Mon Wea Rev, 114, 5,
861-879.
López, C.; González, E.; Goyret, J., 1994, "Análisis por componentes principales de datos
pluviométricos. a) Aplicación a la detección de datos anómalos" Estadística 46, 146-147, pp.25-54.
Minton, G., 1969, “Inspection and correction error in data processing” JASA, 64, 328, 1256-1275
Parrish, D.F. and Derber, J.C., 1992, "The National Meteorological Center`s Spectral Statistical
Interpolation Analysis System". Mon Wea Rev, 120, 1747-1763.
Reek, T.; Doty, S. R. and Owen, T. W., 1992. “A Deterministic Approach to the Validation of
Historical Daily Temperature and Precipitation Data from the Cooperative Network” Bull. Amer. Met.
Soc., 73, 6, 753-762
Rocke, D. M. and Woodruff, D. L., 1996, “Identification of outliers in Multivariate Data” JASA, 91,
435, 1047-1061


