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Abstract

The bootstrap is a simple but versatile technique for the statistical analysis of random
simulations. This tutorial explains the basics of that technique, and applies it to the
well-known M/M/1 queuing simulation. In that numerical example, different
responses are studied. For some responses, bootstrapping indeed gives better

statistical results than parametric statistical techniques do.

Keywords: Bootstrapping; normality; robustness; queuing simulation; statistics

1. Introduction

This paper is a tutorial that explains the basics of the statistical analysis technique
known as the bootstrap, and illustrates the application of the bootstrap through the
derivation of confidence intervals for various responses of an M/M/1 queuing
simulation. The M/M/1 is a well-known building block in discrete-event simulation;
see Law and Kelton [6].

Bootstrapping implies resampling - with replacement — of a given sample. In
our numerical illustration, this sample consists of the responses of (say) m simulation
runs or replicates. For example, the response is the average waiting time per
simulation run, and the sample consists of this average response observed for ten runs
that use ten different pseudorandom number (PRN) streams - but the same traffic rate.
In practice, much computer time (for example, five hours) is often needed to obtain
the response for a single simulation run. However, once these data are obtained,

bootstrapping is a fast analysis technique, which requires only seconds to compute
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statistically sound conclusions. Bootstrapping does not assume a specific distribution
— such as the normal (Gaussian) distribution - for the response of interest.

Conceptually, the bootstrap may be explained as follows. Suppose that a
sample of size mis available (for example, m average waiting times per simulation
run). Now suppose that by chance one of these data elements gets lost. To keep the
sample size constant at m, another data element is then counted twice. Obviously, the
value of the sample average now changes. By repeating this chance experiment many
times, the bootstrap gives many different average values — all computed from the
same original sample. We shall define and illustrate the bootstrap more precisely, in
Section 3.2.

Our main conclusion will be that bootstrapping can give valid statistical
results even if the standard statistical assumption of normality does not hold. So, the
bootstrap is a simple non-parametric (distribution-free) technique. Moreover, the
statistic to be studied may be more complicated than the mean and variance, which we
focus on in the illustrations; for example, Kleijnen and Van Groenendaal [5] use
bootstrapping to classify journals into distinct quality classes.

This tutorial is written because the bootstrap technique is simple and versatile,
but is not well known among simulation practitioners and theorists. A few recent
discussions of bootstrapping in simulation are Demirel and Willemain [1], Friedman
and Friedman [3], and Kleijnen, Cheng, and Bettonvil [4].

The remainder of this paper is organized as follows. Section 2 presents a
simulation of the M/M/1 queuing system, using the Arena software and the C
language respectively. Section 3 considers M/M/1 simulation outputs that are
normally distributed; this section analyzes these responses through both the

parametric Student t test and the bootstrap, which is explained in some detail. Section
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4 andyzes other M/M/1 responses, including the means and variances of the

responses in the transient state. Section 5 presents conclusions.

2. M/M/1 queuing simulation

By definition, M/M/1 assumes that the interarrival times of customers are
independently and exponentially distributed with a constant arrival rate (say) /;
likewise, the customer service times are independently exponentially distributed with
constant service rate y; arrival and service times are aso independent of each other.
The symbol M in the notation M/M/1 refers to the Markov properties of the arrival
and service times in this model; the symbol 1 means that there is a single server.
Implicit in this notation are the assumptions of an unlimited capacity of the waiting
room, and a First-In-First-Out (FIFO) priority rule (queue discipline). The traffic rate
(utilization factor, load) p equals A/ 1. The M/M/1 reaches a steady state provided p
< 1. In our examples we assume that the steady state isindeed reached if we select p =
1/3 and simulate n = 10" customers per run. However, when we simulate only ten
customers per run, the M/M/1 shows transient behavior (see Section 4.2).

In the steady state, the M/M/1 has analytically known means (so it is easy to
compare simulation results with the ‘true’ results) for the following responses: the
number of customers in the system (say) L , the number of customers in queue
(excluding the customer being served) Lq, the waiting time in the system W, and the

waiting time in the queue (excluding the customer being served) W

)
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At the start of each M/M/1 simulation run, we make the server idle and the queue
empty. We program the simulation in the Arena simulation package and in the faster
C language. In Arena we use its standard PRN generator. In C, we use L’Ecuyer’s
generator taken from Law & Kelton [6] (432-435). This generator will also be used to

implement the bootstrap.

3. M/M/1 example with Gaussian simulation responses

In the first example we analyze the M/M/1 when we conjecture that its simulation
gives responses that are normally distributed. A parametric statistical technique - such
as the Student t test - should then give a correct coverage probability: the 1- a
confidence interval should cover the true value with a 1- a probability. This true value
is given by (1) through (4) if the simulation has indeed reached the steady state.
Therefore, we simulate ten million (107) customers per run. For each run we estimate

the four responses corresponding with (1) through (4) through their averages (say)

\7“]. withi =1, ...,4andj =1, ..., m These m averages are independent and

identically distributed (11D) because they result from the same M/M/1 simulation
program with the same input value for p and non-overlapping PRN streams. This 11D
assumption is crucial for both the parametric and the bootstrap techniques. Moreover,
we select a ‘large” m value so that the Central Limit Theorem (CLT) applies; for

example, we select an m of 80.
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Let usfirst consider only one of the four responses, and let Y denotethe average

of themIID \7] . Further, let # denote the mean of these \7] , and let o denote the true

value following from (1) through (4). Then Hp in (5) is the null hypothesis, whereas
Hs is the dternative hypothesis:

HoZ n = o, H1: n = 7o (5)

To test each of the four null hypotheses, we use atype-l error probability of a = 0.05.

First we apply the parametric t test (Section 3.1); then the bootstrap (Section 3.2).

3.1 Student t test

To test the normality assumption implied by the t test, we construct the empirical

probability distribution F that has a probability of 1/m at each element Y, of the

J
sample. Figure 1 giveﬂsthislf and the corresponding estimated density function f for
one of the four responses, namely Wq . The chi-square goodness-of -fit test accepts F

as a Gaussian distribution.
Table 1 displays the results of the t test for the four outputs. This table shows
very small standard errors S, so — on hindsight — m = 80 is a high value. The t test

does not reject Ho, as we expected from the start.

3.2 Bootstrap test

Based on Efron and Tibshirani [2] (45-53, 170-173) - and also Mooney and Duval [7]

(10-11, 36-40) - we bootstrap the original sample of m IID observations \7J Gg=1,...,
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m), asfollows.

1. From the original sample, we draw a random sample of the same size m - with

replacement — denoted by {Y,", ..., Y/, ..., Y.} (=1, ., m). Figure 2 gives an

example of the resulting bootstrapped distribution function F"and density function

A

f", which resembles Figure 1 but is not identical to that figure. This bootstrap sample

gives the bootstrap estimator ¥~ = ZVJ /m, which has zero probability of being
J=1

identical to the original value of Y .
2. We replicate Step 1 (say) B times, where replicate b gives Y, = ZVM /m (b=1,
J=1

..., B). We take B = 1,000 .

3. We sort the B bootstrap observations \7b from the smallest observation — denoted

by \7(;) - to the largest one — denoted by \7(;) . (The sorted observations \7([,) are the so-

called order statistics.) Figure 3a shows an example of the resulting empirical

distribution function, which has a probability mass of 1/B at each point. A bootstrap 1

*

- a confidence interval is then [\7(80,,2) , \7(;[1_0,,2])]. For example, if B=1,000 and a =

0.05, then the lower limit is the 25™ ordered value of the bootstrapped observations,
and the upper limit is the 975" value. If non-integer values result for the particular B

and a values, then we round to the next integer.

In Figure 3, the solid vertical line is at Wq= 1.250191; the square-dotted lines

at 1.249817 and 1.250586, which are the 2.5% and 97.5% percentiles of the
histogram; the dashed line is at 7o = Wqo = 1.25. So this figure implies that the
bootstrap interval does cover the true value #o. Table 2 shows the bootstrap

confidence interval for all our four responses.
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4. M/M/1 example: more simulation responses

The preceding section gave normally distributed M/M/1 simulation responses with
correct results for both the parametric t test and the bootstrap. This result agrees with
the statistics literature showing that the t statistic is not very sensitive to non-
normality. Obviously, this sensitivity decreases as the sample size mincreases. We
therefore investigate the effect of the number of simulation runs, m (Section 4.1).

Moreover, the simulation literature shows that the average of along runis
asymptotically normally distributed — even though the individual observations are
non-normal and auto-correlated. We therefore investigate the effect of the number of
customers per simulation run, n (Section 4.2).

Finally, the statistics literature shows that the X and the F statistics are more
sensitive to non-normality than the t statistic. We therefore analyze the variances —

instead of the means - of the simulation responses (Section 4.3).

4.1 Mean responses of run with n = 10’ customer s and varying number of runsm

Table 3 shows the t and the bootstrap intervals for five values of m, namely 2, 5, 10,
25, 50. This table shows that for m = 2, the bootstrap does not include the true value
E(Wg) = 1.25. In fact, in this example the simulation provides only two numbers —
namely 1.250349 and 1.250928, which both exceed E(WQ); so each bootstrap sample
average exceeds the true value. In general, we recommend that m = 2 should not be

used in bootstrapping.
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4.2 M ean responses of run with n =10 customer sand varying run numbersm

With only n = 10 customers per run, the smulation remains in the transient state so
we should not apply (1) through (4). In this academic example we can afford to
estimate the true mean # through a big number of runs, namely 10°% see Table 4. This
table shows very small standard errors. So we use the averages in this table as the true
values 7 to decide whether the confidence intervals cover the true mean. Figure 4
illustrates that the density function (estimated from m = 10,000 observations) does not
look Gaussian.

Table 5 shows that neither the parametric interval nor the bootstrap interval
ever misses n for m = 50. The t satistic turns out to be insensitive to the non-
normality shown in Figure 4. In general, we conclude that bootstrapping is not useful

when the simulation response is arun average.

4.3 Response variances of run with n = 10 customer s and varying run numbersm

As the simulation response of interest we now consider variances instead of means, so

(5) isreplaced by

Ho: 0 °=02; Hi: 6 > #02. (6)

To obtain the ‘true’ value o, we again use Table 4: we multiply the numbers in the

last column by 10° (= Jm ). We consider different run numbers: m=5, 10, 25, 40, 50,
80, 100.

The parametric 90% confidence interval for ¢ 2 is
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where XZos ma @0 Yo ma &€ the 5% and the 95% quantiles of the x* distribution

with m— 1 degrees of freedom.
For the bootstrap intervals, we resample the mrun averages, and re-estimate
the variance from these m bootstrap observations, etc.

Table 6 shows that for m= 50 the bootstrap intervals do cover g, whereas

the parametric intervals do not.

Finally, we do not study the individual variance magnitudes, but compare the
variances of two independent random samples. The first sample consists of m
averages of n = 10 customers each, obtained through PRN stream 1 of L’Ecuyer’s
generator defined in Law & Kelton [6] (433-434); the second sample is obtained with

stream 10. We test
Ho: 02 = 04; Hi: 0} + o}, (8)

where o7 and o2 are the variances obtained through streams 1 and 10 respectively,
so we know that this null-hypothesis is true. We consider m = 10, 50, 100 runs.

The parametric 90% confidence interval for the ratio o/ o} is given by

2 2 2
ol _S
2 FO405; m-1,m-1 < ; < FO.QS; m-1,m-1 (9)

Q2
Sy O Sp
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where Foos: mim1 ad Fogs; mimi1 ae the 5% and the 95% quantiles of the F
distribution with m — 1 degrees of freedom for both the numerator and the
denominator.

Next, we bootstrap the m run averages, estimate the variance from these m 1ID.

averages, etc. Table 7 shows that for m> 50 the bootstrap intervals do cover the ratio
afolafo0 = 1, whereas the parametric intervals do not; that is, the F statistic is

sensitive to non-normality.

5. Conclusion

We used a basic simulation model — namely the M/M/1 queue — to compare
parametric and bootstrap tests. In case of normally distributed responses both methods
give correct results; that is, the procedures give confidence intervals that cover the
true value with a probability of 1 - a. In case of ‘serious’ non-normality, however,
only the bootstrap gives good confidence intervals; such non-normality occurs if other

responses than means are of interest, for example, variances.
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Table 1. Student t test for mean responses of M/M/1 simulation

with m = 80 runs and n = 10" customers per run; critical value

toos 10 =1.99045

Mo Y S to|
L 0.50000 0.50005 0.00037 1.24215
Lg | 0.16667 0.16670 0.00025 1.07155
W | 3.75000 3.75044 0.00237 1.67355
Wg | 1.25000 1.25019 0.00175 0.97651

Table 2: Bootstrap confidence intervals with B = 1000 bootstrap samples, for

the M/M/1 responses corresponding with Table 1

Mo Confidence Interval
L 0.50000 [0.499972,0.500134]
Lq 0.16667 [0.166644,0.166751]
W 3.75000 [3.749963,3.750972]
W 1.25000 [1.249817,1.250586]
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Table 3: Parametric and bootstrap confidence intervals for varying m;

bold face denotes type-1 error; remaining symbols defined in Tables 1 and 2

Parametric t test Bootstrap

L [ 0.499850 ; 0.500080] | [0.499849; 0.500061 ]

m=50 | Lq | [0.166564;0.166730] | [ 0.166565 ; 0.166716 ]
\W [ 3.749144 ; 3.750531] | [ 3.749158 ; 3.750409 ]

Wq | [ 1.249317; 1.250454] | [ 1.249335 ; 1.250340 ]

L [ 0.499876 ; 0.500194] | [ 0.499883; 0.500175]

Lg | [0.166587 ;0.166813] | [ 0.166592 ; 0.166799 ]

me= \W [ 3.749380 ; 3.751203] | [ 3.749435; 3.751153 ]
Wq | [ 1.249497 ; 1.251015] | [ 1.249537 ; 1.250928 ]

L [ 0.499890 ; 0.500270] | [ 0.499920 ; 0.500222 ]

Lg | [0.166573;0.166867] | [ 0.166595 ; 0.166831 ]

e W | [3.749097 ; 3.751223] | [ 3.749268 ; 3.750967 ]
Wq | [ 1.249278; 1.251225] | [ 1.249455 ; 1.250981 ]

L [ 0.499792; 0.500419] | [ 0.499911 ; 0.500288 ]

Lg | [0.166504 ; 0.166963] | [ 0.166590 ; 0.166876 |

= \W [ 3.747991 ; 3.752172] | [ 3.748745; 3.751368 ]
Wq | [ 1.248638; 1.251893] | [ 1.249265 ; 1.251351]

L [ 0.497573;0.502909] | [ 0.500031 ; 0.500451 ]

m=2 | Lg | [0.164953;0.168739] | [ 0.166697 ; 0.166995 ]
\W [ 3.739419; 3.762676] | [ 3.750593; 3.752502 ]

Wq | [1.239679; 1.262842] | [ 1.250349 ; 1.250928 ]
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Table 4: Mean responses of simulation run with only 10

estimated from 10° observations

customers each,

Average Standard error
L 0.487292 0.000382
Lg 0.164769 0.000266
W 3.469899 0.001828
Wg 0.970643 0.001280
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Table 5: Confidence intervals for only n = 10 customers per simulation run for varying

m; see Tables3 and 4

Parametric (t-test)

Bootstrap

[ 0.378961 ; 0.678679]

[ 0410282 ; 0.691098 ]

Lg

[ 0.081722 ; 0.326162 ]

[0.110272; 0.333543]

[ 3.274720 ; 4.391356 ]

[ 3.320852 ; 4.418864 ]

Wq

[ 0.703133 ; 1.632256 ]

[0.761513 ; 1.651382]

[ 0.337200 ; 0.474021 ]

[ 0.343763; 0.471647]

Lg

[ 0.063101 ; 0.133002 ]

[ 0.068224 ; 0.132341]

[ 2.853836 ; 3.684307 ]

[ 2.882404 ; 3.666295 ]

Wo

[ 0.473647 ; 0.928672 ]

[ 0.507649 ; 0.925314 ]

[ 0.341220 ; 0.474677 ]

[ 0.320291 ; 0.503626 ]

Lg

[ 0.038709 ; 0.134443]

[ 0.050122 ; 0.126516]

[ 2.641867 ; 3.546088 ]

[ 2.755872 ; 3.443103]

Wo

[ 0.331028 ; 0.836934 ]

[ 0.385879 ; 0.790322 ]

[ 0.205214 ; 0.676804 ]

[ 0.300132 ; 0.581887 ]

Lg

[ -0.000873 ; 0.199383 ]

[ 0.039158 ; 0.161557 ]

[ 2451001 ; 4.164820]

[ 2.817221 ; 3.831998 ]

Wo

[ 0.145700 ; 1.194277 ]

[ 0.346806 ; 0.993171]

[ -1.615904 ; 2.576032 ]

[ 0.315107 ; 0.645021 ]

Lg

[ -0.625336 ; 0.832008 ]

[ 0.045988 ; 0.160684 |

[ -3.287186 ; 10.746990 ]

[ 3.177641 ; 4.282159 ]

Wq

[-3.312499 ; 4.796973 ]

[ 0.423121 ; 1.061353]
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Table 6: Response variance o° of four responses

00%(L) = 0.1459, 6x*(Lq) = 0.0708, 6o (W) = 3.3423, 5> (Wa) = 1.6379

Parametric (x°-test)

Bootstrap

L [0.1361; 0.2177] [ 0.0726; 0.2841]
Lq [ 0.0767 ; 0.1227 ] [ 0.0310; 0.1781]
m= 100
W [ 2.5686 ; 4.1081 ] [ 2.0092 ; 4.2601 ]
Wg [ 1.4207 ; 2.2722 ] [ 0.0197; 3.1053]
L [ 0.1517; 0.2568 ] [ 0.0943;0.2971]
Lq [ 0.0770; 0.1304 ] [ 0.0440; 0.1590]
m= 80
W [ 3.5473; 6.0043 ] [ 2.2412; 7.0636 ]
Wg [ 20240 ; 3.4259 ] [ 1.1925; 4.3765]
L [ 0.2054 ; 0.4015] [ 0.0453; 0.6153 ]
Lq [ 0.1366 ; 0.2671] [ 0.0179; 0.4165]
m= 50
W [ 2.8507 ; 5.5736 ] [ 1.7493; 6.5558 ]
Wg [ 1.9737; 3.8588 ] [ 0.8229; 5.1368 ]
L [ 0.0653; 0.1387 ] [ 0.0393; 0.1508 ]
Lg [ 0.0225; 0.0479] [ 0.0122; 0.0515]
m= 40
W [ 1.7187 ; 3.6501 ] [ 1.3694 ; 3.3209 ]
Wg [ 0.6514 ; 1.3834 ] [ 0.4649; 1.3700]
L [ 0.0181; 0.0476 ] [ 0.0170; 0.0363 ]
Lg [ 0.0047; 0.0124 ] [ 0.0065; 0.0110]
m= 25
W [ 0.6669 ; 1.7537 ] [ 0.5799; 1.3972]
Wq [ 0.2002 ; 0.5265 ] [ 0.1103; 0.4756 ]
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Table 7: Response variance ratios g7/ o = 1

Parametric F test

Bootstrap

L [ 0.73807 ; 1.43436 ] [ 0.73914 ; 2.88741 ]
Lg [ 0.69675 ; 1.35407 ] [ 0.31897 ; 4.17641]
m= 100
W [ 1.07688 ; 2.09282 ] [ 0.41237 ; 3.01069 ]
Wg [ 1.15986 ; 2.25409 ] [ 0.65561 ; 1.57299]
L [ 0.93755; 2.42206 ] [ 0.47687 ; 4.89792 ]
Lg [ 1.02148 ; 2.63887 ] [ 0.41887 ; 7.24482 ]
m= 50
W [ 1.29542 ; 3.34656 ] [ 0.83133; 4.37372]
Wg [ 1.60051 ; 4.13474 ] [ 0.78944 ; 6.79824 ]
L [ 0.27827 ; 2.81200 ] [ 0.02318; 3.21575]
Lq [ 0.21617 ; 2.18444 ] [ 0.00545; 3.39574 ]
m= 10
W [ 0.07635; 0.77159 ] [ 0.09051 ; 0.64896 ]
Wg [ 0.05964 ; 0.60270] [ 0.00632 ; 1.02862 ]
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Figure 1. (a) Empirical Distribution F (b) Empirical Density Function f from the
sample Wq (m = 80)

Figure 2: (a) Empirical Distribution, (b) Empirical Density Function, from the
bootstrapped Wg™ (m= 80)

Figure 3: (a) Probability Distribution from the B = 1000 sample variables wq', (b)

Density Function from the B = 1000 sample variables qub)

Figure 4: Empirical Density Function for m = 10,000 runs, each run simulating only

n = 10 customers
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