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Abstract

Depending upon the user, weather records can be used as they are, or they need to be
imputated prior its use. Despite the fact that general methods for meteorological variables
exist, they are difficult to apply for daily rain. A specially difficult feature is that the
overwhelming majority of the records (>80%) are of zero rain, leading to a very non-
gaussian distribution. Other characteristic is the low autocorrelation of the time series.
The test region was the Santa Lucia river catchment area of 13000 km2, at 35°S near the
Atlantic; its yearly accumulated precipitation values are around 1000 mm, without a clear
dry or wet season. The selected subset has 20 years long and 10 stations; 30% of the events
show missing values.
A Monte Carlo simulation was designed, randomly choosing both date and station for the
missing values and afterwards different imputation procedures were successively applied.
Some statistics which characterize the distribution of the absolute error, namely its expected
value, variance and 75, 85 and 95 percentile have been derived in order to compare the
results.
Both traditional linear meteorological interpolation procedures as well as a suite of
Backpropagation Artificial Neural Networks(ANN) has been compared. The present results
are not very good, and show that is possible to imputate with a mean error of 2 mm/day and
a RMS of 7 mm/day using both linear and nonlinear procedures, while ANN seems to be
more robust against outliers.

Introduction

The problem of interpolate a field using sparse data is typical in many areas. In meteorology
the objective analysis method (Haagenson, 1982; Johnson, 1982) is commonly applied
because of its simplicity. It provides indirectly a way for calculating missing values using
available data. However, the significant amount of information required by this method usually
restricts its use to Global Data Assimilation Centers (Gandin, 1988), because they require
historical records for the calculations.
Ideally the availability of all records is preferred, but there are meteorological problems which
do not require a full dataset. For example, to calculate the areal mean value of rain the
Thiessen-Voronoi polygons method (Jácome et al., 1990) can be applied, without requiring
extensive imputation of missing values.

                                                          
1 This work was funded by the Uruguayan CONICYT, under contract 51/94
Presented at the International Conference on Engineering Applications of Neural Networks.
Stockholm, 16-18 June, 1997, pp. 337-340
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Both situations led to a low interest on the topic reflected on the scarce meteorological papers
on it. In most practical cases, either the missing value is ignored (assuming implicitly that the
missing mechanism is random) or some ad-hoc technique is applied (linear interpolation,
nearest neighbor, etc.) without further test or documentation. In any case, the population is
clearly affected in an arbitrary way, under some hypothesis of unknown validity. However, it
should be noticed that the missing value problem is of great interest in the Statistics and Social
Sciences in general (Rubin, 1987).

Considered methods: a) linear

Due to its simplicity, this methods are widely used. They can be grouped together since the
estimated quantity is a linear combination of the available data. Its general expression is
y w x bj = +. being yj  the unknown quantity, x  a vector with the available data and

both the weight vector w  and the number b are depending on the method. Typically vector
x  holds the values of the same day, and both w  and b  are constants for the whole dataset.
This definition covers the methods of Cressman, Optimum interpolation (Gandin, 1965),
Ordinary least squares, as well as other more simple ones, as the nearest neighbor. For the
sake of completeness a brief description of them will follow:
• Cressman
The requested number is obtained after a linear combination with weights which are the
inverse of square distance. The method does not require historical information, but only the
station coordinates.
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• Optimum interpolation (Gandin, 1965; Johnson, 1992)
This method is routinely applied for the initialization of global weather codes. Instead of
interpolate the desired field, it interpolates the anomaly or difference with a simple
predictor, and the spatial correlation properties of the anomaly field are analyzed. Usually it
is assumed both isotropic and homogeneous, and it should be modelled in the general case.
However, if the point where the prediction is required is one of the measuring point, its
covariance with the other stations is available, and it looks very similar to the Ordinary
Least Squares. The covariance might be calculated separately for winter and summer, for
example, or used all together as we did. This procedure allows using information from the
day before.
We used different anomaly fields and transformations for the variable to be interpolated
which are summarized in table 1. For example, the method coded as “gandin7” assigns
values for the variable x raini = , taking the anomaly respect to its historical mean. In

this case, w  is fixed (following Johnson, 1992); b x j=  (the overbar stands for average
over time). The classic Optimum Interpolation procedure is coded as “gandin20”. Because
daily rain has a very irregular probability density function (pdf) we designed a
transformation ( )x f rain=  which makes pdf(x) nearly uniform, except for rain = 0 .
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The transformation based on the cumulated density function is invertible and assures that x
belong to the interval [ ]0 1, .

Our coded name Anomaly Variable to
interpolate

Using data from
days

respect to: t t-dt
gandin historical mean rain X -

gandintrans historical mean f(rain) X -
gandin6 historical mean rain X X
gandin7 historical mean rain X -

Initial value for the field chosen as zero
gandin_diario 0 rain-daily mean X X

gandin4 0 rain X X
gandin5 0 rain X -

Neglecting instrumental error
gandin20 historical mean rain X -
gandin3a historical mean rain-daily mean X -

Table 1 Brief information about the different methods based on climatological functions.
f(rain) denotes the transformation which renders a nearly uniform probability density

function(see text). t and t-dt denotes values from the day and the day before

• Ordinary Least Squares
This method is completely standard and its theory can be found elsewhere. The weights w
are chosen in order to minimize the 2-norm of the vector ( ) ( )M w mj j−  (a scalar

proportional to the RMS) being ( )M j  the matrix of the available data (as many rows as

dates, as many columns as stations but without the j-th one) and ( )m j  is a column vector
with the j-th stations values. The implemented version assumes that the data is error free, so
w  can be derived from (dropping the index j) M Mw M mT T= . . The T stands for
transpose. The number b is 0.
• Least average (Least 1-norm)
Here the weights w  are chosen in order to minimize the 1-norm (sum of absolute values) of

the vector ( ) ( )M w mj j− . This is a much more difficult problem because it does not lead
to a linear system of equations and has to be solved as a non-linear optimization task. Also
it requires substantially more CPU time than all previous methods.
• Least 95 percentile
Since the population might be affected by a small set of gross errors, it is fit to minimize a
robust statistic, as the 95 percentile of the distribution of errors. As before, this problem
requires significant CPU time.
• Nearest Neighbor
We considered two criteria for the distance: euclidean and qualitative similarity. In both
cases the missing value is taken directly from another station following a given order. In the
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first case, the order is due to geometrical distance, and in the second we used the expertise
from a meteorologist. All weights are zero, except one which is 1, and the number b is 0.
• Assign a constant value
This is a simple method, which disregard any other information. We applied it using the
modal value and the expected value. For our dataset, the former is 0 mm/day and the latter
is near to 3 mm/day.

Considered methods: b) Non linear methods (ANN)
Such methods are very new and they are based upon simple models of the biological neural
networks. They have been used for the short term prediction of SO2 concentration (Boznar
et al., 1993), electrical load (Park., 1991), etc. The ANN is organized in layers, being the
first one stimulated directly by the observed values; each neuron of the next layer is
stimulated by a linear combination of the outputs of the previous layers by means of a
simple transfer function, like the logsig (Demuth et al., 1994) given by:
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neuron. The ANN requires, as its biological counterpart, a training process which is
simulated here by means of adjusting the ai  parameters. In this work we compared one
two-layer net, with 6 logsig neurons in the hidden and 1 linear neuron in the output layer,
and one three-layer one, with 8 linear neurons, 4 logsig and one logsig for the output. Both
were trained using one third of the available values trying to minimize the RMS of the error.
The error is defined as the difference between ANN output and true value. For the first case
we substracted rain values in mm/day while for the second case something different has to
be done, since the last neuron has an output belonging to the interval [ ]0 1, . We trained the

net in order to minimize the error with the transformed rain ( )x f rain= . All nets were
trained using backpropagation (Rumelhart et al., 1986) and due to practical reasons the
number of iterations was kept low, so its performance might be improved with more
iterations. Its training cost in CPU time is high: over 10 hours of SUN 20 for each
meteorological station.

Conclusions and results
After 250 simulations, the results are summarized in table 2. It should be noticed the
improved results for those methods using information from the day before (gandin4,
gandin6 and gandin_diario). Among those which use only information of a single day, the
best results are obtaining by the minimum 95 percentile, closely followed by the Ordinary
Least Squares method.
It should be stressed that, since the database still has errors, it is possible that the methods
suggest suitable values and the outliers affect some of the considered statistics. This is
unlikely to occur for the 85, 95, etc. percentile, and then the importance of the ANN
denoted bp7.
As final conclusions:
a) common methods based upon mere substitution by a neighbor or by a constant gave poor
results.
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b) as expected, optimum interpolation methods outperforms the others in terms of RMS,
fairly close to the ordinary least squares and least 95 percentile.
c) non linear methods (very expensive in the training phase) led to slightly more robust
results, but renders similar figures in terms of average and RMS.

Average 75% 85% 95% RMS
bp1 2.65 1.92 4.53 13.03 7.15
bp7 2.51 1.28 3.64 12.54 7.71
cressman 2.63 0.80 4.58 15.75 8.20
gandin 2.64 1.48 4.20 13.57 7.24
gandin3a 2.60 1.83 4.73 13.96 7.42
gandin20 2.68 1.56 4.21 13.42 7.21
gandin4 2.53 1.92 4.59 13.28 7.02
gandin5 2.39 1.25 4.14 13.64 7.25
gandin6 2.71 2.06 4.72 13.39 7.05
gandin7 2.23 0.50 3.11 13.39 7.48
gandin_diario 2.04 0.89 2.99 11.01 7.66
gandintrans 3.06 0.80 4.52 13.46 8.11
least squares 2.34 1.33 4.09 13.13 7.01
least 95's percentile 2.34 1.34 4.10 13.07 7.01
least average 2.26 0.86 3.60 13.23 7.21
modal value 2.79 0.00 1.78 19.04 10.26
expected value 4.73 2.96 3.02 16.25 9.88
geometrical distance 2.76 0.02 4.22 17.37 9.13
expert distance 2.82 0.01 4.31 17.74 9.33

Table 2 Preliminary results in mm/day for the different imputation methods. The expected
value and the 75, 85 and 95 percentile of the distribution of the absolute error, and its RMS

are presented and compared. In bold the five best results for each estimator.
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