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Abstract: The widespread availability of powerful desktop computers, easy-to-use
software tools and geographic datasets have raised the quality problem of input data to
be a crucial one. Even though accuracy has been a concern in every serious application,
there are no general tools for its improvement. Some particular ones exist however, and
we are reporting here results for a particular case of quantitative raster data: Digital
Elevation Models (DEM). We tested two procedures designed to detect anomalous
values (also named gross errors, outliers or blunders) in DEM, but valid also for other
quantitative raster datasets.
A DEM with elevations varying from 181 to 1044 m derived from SPOT data has been
used as a contaminated sample, while a manually derived DEM obtained from aerial
photogrammetry has been regarded as the ground truth. That allows a direct
performance comparison for the methods with real errors.
We assumed that once an outlier location is suggested, a "better" value can be measured
or obtained through some methodology.  The options are different depending upon the
user (end users might only interpolate, while DEM producers might go to the original
data and make another reading). In this experiment we simply put the ground truth
value.
Preliminary results show that for the available dataset, the accuracy might be improved
to some extent with very little effort. Effort is defined here as the percentage of points
suggested by de methodology in relation with its total number: thus 100 per cent effort
implies that all points have been checked.
The method proposed by López (1997) gave poor results, because it has been designed
for errors with low spatial correlation (which is not the case here). A modified version
has been designed and compared also against the  method suggested by Felicísimo
(1994).
The three procedures can be applied both for error detection during the DEM generation
and by end users, and they might be of use for other quantitative raster data. The choice
of the best methodology is different depending on the effort involved.
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1. Introduction
Geographic Information Systems (GIS) is one of the fastest growing markets

in software today (Anon 1994). That implies that more people have access to
proper tools, and then are able to manipulate and produce data. Data availability
will be assured in the future, through the operation of the so called
Clearinghouses, which will distribute existing datasets to government, industry
and the general public (Nebert 1995, 1996).

The combination of widespread data and ready made, easy to use software
raises some critical points. John (1993) stated that "...very wrong answers can be
derived using perfectly logical GIS analysis techniques, if the users are not aware
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of the particular peculiarities of data...". Data quality is emerging as one of the
most important issues in GIS technology for the next years. Its management
requires methods to describe, visualize and measure it properly (see Hunter et al.
1996). Standards for describe the quality are presently under development.

Thapa et al. (1992) remarked that when setting up a GIS, most of the costs
(maybe up to 80 per cent) are related to acquiring and/or collect data. Once the
dataset is obtained further efforts to improve accuracy should be as effective as
possible. This paper reports some results on that subject. We will concentrate here
on Digital Elevation Models (DEM). We will not consider errors in the
intermediate steps in the process of DEM generation, but we will concentrate on
the errors in the final product. According to Thapa  et al. (1992)  errors can be
classified into three types: (1) gross errors and blunders, (2) systematic errors and
(3) random errors. Gross errors and blunders are caused by carelessness or
inattention of the observer in using equipment, reading scales or writing down
readings, etc. They can also be caused by malfunctioning of the equipment.
Observations affected by this kind of errors are useless, and should be eliminated.
From a statistical point of view they cannot be considered as belonging to the same
population as the other observations. Systematic errors occur in accordance with
some deterministic system which, if known, may be represented by some
functional relationship. In a statistical sense, systematic errors introduce bias in the
observations. Unlike gross errors, they cannot be detected or eliminated by
repeated observations (the errors may be precise, but they will not be accurate).
After removal of gross and systematic errors, differences still exist due to random
errors. They cannot be removed by repeated  observation, and they cannot be
modeled with a deterministic relationship. If sufficient observations are taken,
random errors posses the following characteristics: a) positive and negative errors
occur with almost the same frequency b) small errors occur more often than large
errors and c) large errors rarely occur.

Östman (1987a) pointed out the fact that there exists no unique criteria or
single measure for the "quality" of a DEM. He suggested that one should at least,
consider accuracy in elevation, slope and also curvature.  However, accuracy
reports in terms of slope are very unusual. An exception can be found in the work
of Giles et al. (1996) who compared a 20 m resolution DEM derived from SPOT
images with field measurements in terms of slope. They recognized that the
elevation error might have two components at different scales. To filter out the
small scale error they simply applied a 3 by 3 median filter and to remove the
larger errors they used a 11 by 11 window, with a different filter. They claim that
such filtering improve to some extent the accuracy in slope, without significantly
degrading the accuracy in elevation.  This has also been reported by  Östman
(1987a). He found that the RMS error in elevation decreases with decreasing grid
size (as expected) but the effect in RMS error in slope is very limited. Förstner
(1983) gave theoretical arguments for this fact.
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Accuracy of photogrammetrically sampled DEM depends on the data sources
and the procedures involved. It has been a considered an important problem which
led to collective efforts like the one summarized by Torlegård et al. (1986). They
reported the results of DEM derived independently by a number of organizations
working on the same set of aerial photographs. Six different terrain types have
been chosen, ranging from smooth terrain to steep and rugged mountains. They
found that the errors of the elevations in photogrammetrically measured DEM
consist to a large extent of systematic components. Regarding error location, they
applied a "rule of thumb" based on recursive filtering using a 5 by 5 window, and
declared that everything located is an error. They conclude that the number of
those so defined errors typically varies between 0 and 3 per cent. They noticed that
error size is independent of terrain type and that errors are more frequent in
difficult terrain.

A similar (deterministic) approach was used in an early paper by Hannah
(1981), who detects errors by applying constraints to the slopes and to the changes
in slope at each point. Felicísimo (1994) analyzed the differences between the
elevation and an interpolated value from the neighbors. Assuming gaussian
distribution of the errors, he analyzed the differences by means of a standard
Student t test.

Using the Torlegård  et al. (1986) dataset, Li (1992) analyzed the dependence
of the final accuracy on the sampling interval. His starting point is the gridded data
and he degrades it by subsampling. He used several measures of accuracy: the
RMSE (root mean square error), the mean µ, standard deviation σ and maxima of
the difference between "truth" and data. "Truth" is available at selected
checkpoints derived from larger scale photography. He found positive correlation
among the RMS error in elevation and the slope of the terrain.

Day et al. (1988) tested three methods for the generation of DEM based on
SPOT data. The three results were compared with a very carefully, manually
digitized 30 m grid DEM, in terms of elevation differences. Even though the goal
of the work was to compare the operational behavior of the algorithms, they do not
propose a solution for the location of the errors. The distribution function of the
absolute size of such errors is also presented for each method. They also reported
how many checkpoints lie outside the limit |error-µ|>3σ.

Any method for locating the errors should make assumptions about size,
location and spatial self correlation. Bethel et al. (1984) proposed the method of
maximum chi-squared ratio for on line quality control, and tested the methodology
using uncorrelated in space, spike-like blunders of no more than 10 feet (about 3
m). López (1997) used two error models: one uncorrelated in space (spike-like
blunders) and another weakly correlated (pyramid-like).

In the field of Image Processing the term salt-and-pepper has been coined for
weakly self correlated errors. They are routinely corrected using filters. The most
popular and simple one is the median filter (Mitra et al. 1994) but it has the
fundamental inconvenience that it smoothes out all the DEM; current efforts are
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directed towards a division of the problem: to separate error detection from error
correction, and to use state variables for error detection (Abreu et al. 1996).

We will not discuss here the methods for obtaining the DEM itself. There are
well established procedures based on photogrammetry, GPS, etc. However, if the
equipment or the methods are at their limit today, there will be little chances to
improve the final results by merely pointing out some locations likely to be in
error. Fortunately, this is not the case. Ackermann (1995) points out that the trend
in DEM production is towards a move from interpolation to approximation,
because the new generation equipment is able to produce many elevation values,
but possibly with less accuracy than traditional equipment. The surface is
approximated using many points, instead of being interpolated from few, very
carefully obtained values.

Summing up, accuracy is a concern for the data producer as well as for the end
user. Accuracy is usually described using different statistics of the distribution of
elevation error at some checkpoints.

This paper presents test results of some recently proposed methodologies for
locating errors which can be applied both by the producer and the end user. The
methods were tested in a DEM with real errors, and the results are presented. Also
some guidelines for the error model for this particular case are presented.

The paper is organized in eight sections. Section 2 has a brief outline of both
the already existing techniques and the modified technique. Section 3 describes the
data and summarizes some of its statistics. In section 4 the performance of the
three methods is compared for the test DEM. Finally, section 5 contains a
discussion and section 6 is devoted to conclusions, where the results and proposed
future work are discussed. Acknowledgments are included under headings 7 and
References appear at the end.

2. The error detection procedures in brief
For the sake of completeness we will describe briefly the methods of

Felicísimo (1994) and López (1997), and a modification of the latter.

2.1 The method of Felicísimo (1994)
This is the simplest method available for this problem. Assuming that outliers

are only locally correlated, the method analyzes the differences δi,j between the
elevation value zi j,  and an interpolated guess ,zi j  obtained from its immediate

neighbors. Assuming that the difference has a Gaussian distribution with mean δ
and standard deviation sδ  (both obtained from the sample) a Student's t test can be
applied to validate the hypothesis that δi,j belongs to the population of deviations.
Operationally, we analyze the statistics ( )t si j i j, ,= −δ δ δ  which can be

regarded as a standardized deviation. Since the number of data points are usually
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large, we can assume a distribution [ ]tα ∞  for ti j, . For α =0.001, the statistical

[ ]tα ∞  has a value of 3.219 for a two-tail test, where the null hypothesis is

H i j0 , ,δ δ=  and the alternative is H i j1 , ,δ δ≠ .
We used a best fit approximation with a biquadratic polynomial using the

eight closest neighbors to calculate ,zi j . Along the borders we assume a mirror
symmetry, and in the corners we used a linear interpolation with the three closest
values available. We point out as candidate to be in error any δi,j that makes.
|ti,j|>3.219. The author states that even though a significantly high value of ti j,

does not necessarily imply an error, it is an excellent alarm sign. We will analyze
this topic later.

Once an error is located and corrected, both statistics δ  and sδ  change and
new candidates appear. The method can be iterated and it might stop if no more
"outlying" values remains. This is undesirable because we know that there still are
errors in the dataset, so we proceed by lowering the limit 3.219 to 3.0 at least once.
The new candidates once corrected modify the statistics, and new candidates with
the limit 3.219 appear.

The method appears to be extremely simple and is parameter free. In section 3
we will investigate if the test DEM fulfills the assumptions under which the
Felicísimo's method can be applied (Gaussian distribution, etc.). Also the
relationship of  ti,j  and real errors (available in this experiment) will be presented.

2.2 The method suggested by López (1997)
The author proposed that any given raster dataset can be analyzed by means of

subdividing it into elongated strips (figure 1). Each strip is assumed to have length
n and width w (w<<n). The method considers the strip as a set of points in the Rw
space. Each cross-section is represented by a point, where the original elevation
values establish the w coordinates. The case of w=3 is illustrated in the figure 2,
where each point Mk represents a cross-section.

The error location procedure directly analyzes the cloud of points in Rw,
disregarding any order among points. This is an important assumption, since the
concept of spatial self correlation looses completely all significance in the cloud.
Adjacent profiles (of length n) need not to be in any special order, since they are
coordinate axes in the space Rw.

The use of the cloud is common practice in statistics (Hadi 1992, 1994,
Hawkins 1974, 1993a, 1993b), since the notion of "spatial correlation" and
"precedence" is meaningless in most tabular data.
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Figure 1 Sketch of the strip notation

The procedure is based upon Principal Component Analysis (PCA), which
attempts to find the direction e1 of the vector in Rw space which minimizes S,
defined as the sum of distances Mk-Hk squared taken over all k (figure 2). The
origin O is the centroid of the set of points. For the sake of clarity, points with
negative coordinates are not shown in the figure.

The projection O Hk, which is also the scalar product of vector Mk-O with the
unitary vector e1, is called the score (after Richman 1986). Thus Mk-Hk is
orthogonal to e1. There is one score value associated with vector e1 for each point
in Rw. Let us also assume that e1 is unique.

If all the values MkHk are zero, we have reduced the problem of original
dimension w, to a one-dimensional one. All the variability in the observations is
explained by a single vector e1. If this is not the case, we may try to repeat the
procedure with the remaining variability MkHk, which belongs to a (w-1) subspace
of Rw orthogonal to e1. The original measurements Mk - O can be replaced with
the difference OMk - OHk, which is equal to Mk- Hk.

For the new cloud there should be a vector e2 (orthogonal to e1) which
minimizes the distance S in the Rw space. The process continues until w vectors ep

have been created; each new vector ep being orthogonal to all the previous ones.
The vectors ep are called principal components (PC).
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Figure 2 Sketch of the first principal component, for w=3

Each event Mk - O can be expressed as a linear combination of the PC's
( ) ( ) ( ) ( )M O e e e ek 1 k 1 2 k 2 3 k 3 w k w- =  a * +  a * + a * +...+a *        (1)

It can be shown that the scores ai associated with vector ei are uncorrelated
with those of vector ej. The vectors ei are the eigenvectors of the covariance
matrix of the data, and its components are named loadings in the literature. The
sum of the corresponding eigenvalues equals the sum of the squares of the
distances MkHk (Lebart et al. 1987).

PCA analysis generates a sequence of principal components, which explains
most (or all, for p=w) of the variance of the data. This implies that the RMS error
in approximating the data with a linear combination of their first p vectors is a
minimum for a given p<w; (p=1 in figure 2). It has been shown that in most cases a
good approximation of data is achieved for p<<w. Since the w PC's form a basis in
Rw space, they can replicate exactly any of the n points in the set, using the scores
as weights. López (1997) claims that some of the scores contain essential
information on the structure of the cloud, while others are more related to noise.
Following Hawkins (1974) he suggested a rule to identify the noisy scores. Once
identified, such scores were used to pinpoint those points in Rw space which are
prone to hold an error.
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However this is not the complete answer to the problem because each point
depends on w elevation values. Which one is wrong?. Once a point in Rw space is
selected, the elevation (or elevations) which make it unusual should be indicated.
This is done using a weighted sum of the squared scores which are related to noise.
Such statistics have been suggested for the first time by Hawkins (1974). It is a
semi-distance, closely related to the Mahalanobis distance. Its sensitivity in terms
of the elevations values is calculated and those elevations which generate the most
important contribution to the distance value are considered as errors. The
calculations are carried out independently for each outlying point in the Rw space.

We have briefly presented the procedure to find an error in a single strip. The
method can be applied for all row-wise strips to cover the entire DEM. The
candidates obtained can be grouped and designated here in after as row-wise
candidates. However, the same procedure can be applied to column-wise strips,
and a different set of column-wise candidates can be obtained.

The candidates belonging to both sets (row-wise and column-wise) represent
the final result. The procedure can be applied iteratively, since, once an error is
detected and "corrected", the cloud is modified to some extent, and so are the
scores. We keep track of the point already checked in order to avoid to select them
twice; we form the candidate set as the intersection of all previous row-wise
candidates and all previous column-wise candidates.

The procedure involves five actions, and it can be outlined as follows:
Given a DEM as a matrix of size m*n
subdivide the DEM in row-wise and column-wise strips of width w
repeat until criteria are satisfied:

a) increment the previous  row-wise candidate set:
a.1.- locate the columns likely to have candidates
a.2.- within each column, find the rows that identify the candidates

b) increment the previous column-wise candidate set:
b.1.-locate the rows likely to have candidates
b.2.- within each row, find the columns that identify the candidates

c) intersect both sets
d) evaluate criteria
e) correct all errors

end
Some remarks follows. In the pseudo code we have used a single strip width w

for rows and columns. This simplifies the tuning process, as will be shown later.
The process is supposed to stop when some criterion is fulfilled. For his

experiment, López (1997) suggested to stop if the type I error is too big (defined as
the probability of missclassify as error a good value). This criterion is useless for
real errors and as will be shown below. Each iteration will be named "step" in the
following discussion.
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This procedure is more complex than the one of Felicísimo (1994), but it does
not require that adjacent profiles appear "together". We will discuss this further in
the next paragraphs.

2.3 The modified version
This variant has been specially designed in order to handle the problem of

heavily correlated errors in space. Notice that the procedure of López (1997) has
been tested with synthetic, weakly correlated errors. Its performance decays as the
correlation increases. The procedure of Felicísimo suffers from the same problem,
since the error at i,j is highly correlated with the one at the immediate neighbors.
López's procedure does not require that the along the strip profiles are contiguous.
Therefore we can skip some of them (the ones most correlated) for the analysis.
The strip is chosen as before, but in the calculations we consider subsets created
using every k-th  row, k being related to the range, a geostatistical property
(Samper et al. 1990) of the error field. In this paper we assume that the range can
be estimated from an independent analysis: it might depend on DEM
characteristics, method for obtaining it, scale of aerial photography, etc. The
modified method resembles the multigrid approach (Strang 1989) used  in
scientific computing packages for the solution of differential equation.

3. The experiment
To test the method with real data we have selected two DEM of the Aix-en-

Provence region in the South of France, both of 12.42 km by 6.9 km, 30 m spacing.
A subset of 360 rows and 216 columns was used for all calculations. Both DEM
have been described elsewhere (Day et al. 1988), and include as a significant
feature Mount Sainte Victoire. The first DEM has been produced by
photogrammetric measurement of spot elevations from aerial photography. Its
accuracy has been estimated by multiple set-up and observation of several blocks
within the DEM. An analysis of 830 duplicate points (i.e. set up and measured
twice) is presented in table 1. The second DEM has been derived from a set of
three SPOT images using an stereo matcher. It has been interpolated to a 30 m grid
by using values within a window of size 21 pixels. Elevation values have been
obtained using kriging with a spheric variogram of 4000 m2 sill and 3000 m range,
assuming an accuracy for the window of 11 m S.D. Table 2 shows the statistics for
the difference between the interpolated DEM (obtained from the stereo matcher's
output) and the one manually generated.

Figure 3 illustrates the main features of the DEM, and figure 4 shows the
probability density function of the differences in elevation. It should be noticed
that the probability of exactly zero error is negligible: only 6 out 95865 points
have exactly the same elevation in both datasets.
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Table 1 Comparison of 830 duplicate
points of the manually derived
DEM (From Day et al. 1988)

Mean abs. error -0.026 m
S.D. error 1.837 m

RMSE 12.70 m
Max. (abs. size) 14.66 m
|error-µ|>3σ 1.7 %

Table 2 Comparison of 95865 points of
the SPOT derived DEM against
the manually derived one

Mean abs. error 0.93 m
S.D. error 12.67 m

RMSE 12.70 m
Max. 193.83 m
Min. -86.22 m

|error-µ|>3σ 1.43 %
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Figure 3 Illustration of the test DEM obtained using only every tenth grid value.

This leads to a paradox: since any choice for the locations will succeed in
pointing a true error, the error type I will be identically zero disregarding the
procedure, and the error type II will decrease linearly with the effort. This preclude
to compare results with those presented in López (1997), since the author used
such statistics to decide whether to stop the procedure or to continue. For real
datasets a possible measure will be the RMSE between the original and the
corrected elevations, and the procedure might go on as long as the RMSE exceeds
a preset threshold.

Another interesting result regards some properties of the discrepancy field,
i.e., the difference between both DEM. We used geostatistical techniques (Samper
et al. 1990; Cressie 1993) to describe it. Figure 5 shows a plot of the sampled
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variogram. Even though the goal of the present paper is not to model the variogram
itself, it can be noticed that the range can be roughly estimated as 300 m, i.e., 10
times the grid spacing. This numerical result is in agreement with results obtained
by visual analysis of the discrepancy field and can be interpreted as a measure of
the spatial correlation of the error field. Clearly, the occurrence of errors cannot be
regarded as a local phenomenon, a hypothesis assumed by Felicísimo (1994) and
López (1997).
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Figure 4 Sampled probability density function of the discrepancies in elevation between
both DEM

Most errors are found in a smooth neighborhood regardless if they occur along
breaklines or as isolated values. The errors typically influence the data over a
distance of 10 pixels. At breaklines the decay should be considered across the line.

Before analyzing the accuracy results, we want to go a bit further into some
hypothesis by Felicísimo (1992) a) Gaussian distribution of the errors and b)
relationship between outlying values of the ti,j population and the true errors. We
show in figure 6 a QQ-plot of the distribution of the original ti,j population. The
QQ-plot produces a linear relationship when two distributions are of the same type
(even though with different parameters). In this case the target distribution is
Gaussian. The x-coordinate corresponds to the normal cumulative error function,
with no units, while the y-coordinate is the sampled cumulative density function of
δi,j, measured in m. As it can be seen, Gaussian distribution is hardly achieved.
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On the other hand figure 7 shows a QQ-plot comparing the distribution of the
δi,j against the real errors. In this case the similarities are evident, and this might
lead to the wrong conclusion that δi,j is heavily correlated with real errors (which
in turn offers a tool to locate big errors finding big values of δi,j). Unfortunately
this is not the case. What can be concluded from figure 7 is that both populations
belong to the same (unknown) class, but they might be completely independent. In
fact the linear correlation coefficient is 0.0858.
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Figure 5 Sampled variogram of the difference of both DEM vs. distance. Results obtained
from the GEOEAS software

4. Results
We may analyze the results using different statistics. The most interesting one

will take into account the evolution of the elevation accuracy in terms of the
editing effort. For our purposes we measure the editing effort as the number of
elevation values checked divided by the total number of points in the DEM. We
assumed that the user has a correction procedure and that procedure is perfect.

Normally the accuracy of a DEM is not directly known to the user; it can be
estimated through sampling in isolated points if more precise measurements are
available.

For practical purposes it might be more meaningful to use statistics from the
distribution of the errors detected while working with the dataset  For example, its
RMSE will measure the size of the errors detected by the method for a given
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effort. We disregard the RMSE for each step, because its variability precludes any
simple analysis.
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Figure 6 QQ-plot of the N(0,1) cumulative density function vs. the sampled cumulative
density function of δi,j, for the available DEM.

We believe that a clear measure of the effort involved should be included. The
effort per step (in turn) depends strongly on the choice of the margin level. It
regulates how much of the tail of the distribution of the noisy scores will be
regarded as being in error. Cutting out the tails might produce an empty set of
candidates. In order to avoid this we slightly increased the margin level to assure
that there will be candidates to check in each step.

Figure 8 shows the evolution of the accuracy measured in terms of the RMSE
for a strip width w=8. The boundaries of the dashed regions at the top and  the
bottom show the worst and best possible operation locus. The former is obtained
by considering first the smallest discrepancies, while the latter corresponds to
selecting the largest discrepancies first. Under our assumptions both lines should
meet at 0 and at 100 per cent. Even though both limits are hardly of practical
interest (because it requires knowing the errors in advance) they give a better
understanding of the process. Lines with the -o- symbol are for the Felicísimo
(1994) method while the others are for different controlled scores as of López
(1997) method. Figure 8a has more detail in the low effort region, while figure 8b
has been extended up to 15 per cent effort.  It is clear that the Felicísimo's method
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outperforms the López's method in the long run, but at the low effort they are
similar. This region is of primary importance for two reasons. Firstly because most
users will not go too much further. End users neither have extra data nor too much
tools, so they will correct at most the worst errors. DEM producers might go back
and make another measurement, but this might become a boring task if new values
do not differ substantially from the old ones. Secondly, according to Torlegård  et
al. (1986) blunders typically account for less than 3 per cent of the dataset, 0.5 per
cent being a median value. Thus pursuing the task over such limit might be
misleading, because the methods have been designed for finding gross errors only.
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Figure 7 QQ-plot of the sampled cumulative density function (cdf) of the true errors vs. the
δi,j cdf for the available DEM.

It should be noticed that none of the methods shows at 0 per cent effort a slope
comparable to the best possible method, which implies that the most important
errors are not found in the early stages of the procedure.

We also tested some other options for the width parameter w which will not
be presented here. Figure 9 compares the accuracy performance of the modified
method vs. Felicísimo's one. The figure was obtained after subdividing the DEM in
regions of width 72 rows, and building the strips taking every 9th row within the
region. Thus the "strip" width is again 8. Notice that we skip nearly 10 rows, as
suggested by the range of the variogram. The plot of the Felicísimo's method is
again included for comparison. The most striking fact is the difference in the slope
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at 0 per cent effort which is markedly closer to the best one. This implies that
larger errors are found earlier, leading to a faster decrease of the RMSE. However,
once those important errors are removed, the remaining ones are difficult to locate,
and the simpler Felicísimo's method is better if the effort exceeds 1.75 per cent.
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Figure 8 Evolution of the accuracy (measured by the RMSE in m) vs. the effort for the
methods of Felicísimo (1994) (with the -o- symbol) and López (1997). Results for
w=8. Different lines correspond to different number of uncontrolled scores. Left plot
8a shows details of the right one 8b.

The end user can calculate RMS values of the errors already found like those
presented in figure 10. The x-coordinate is the effort defined as before, while the
y-coordinate is the RMSE of the population already corrected. The 0 per cent
value is not defined. Plots correspond to the Felicísimo (1994) approach and the
modified method of López (1997). It is clear that the former finds larger errors in
the "long" run (over 1.75 per cent effort) but the latter is fairly better for lower
effort values. Three lines with different number of uncontrolled scores are shown,
and it is clear that the one of 0 value is very similar to the one of 2, except very
close to the 0 per cent effort.

We also analyzed the spatial location of the errors found when a substantial
amount of work has been done. Figure 11 shows the places where Felicísimo's
method pointed out the errors up to the 3 per cent effort (in black), and up to 15
per cent (in gray). We noticed that most of them are concentrated along significant
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features of the DEM, namely breaklines where slope changes abruptly. In such
points the second order polynomial is not a good approximation of the surface, so
differences larger than expected arise. Once some values are corrected, such
differences are even more evident, but since we do not allow any point to be
corrected twice, its closer neighbors become candidates, explaining the "clear"
image. Figure 12 shows the pattern for the modified method of López. The image
looks "noisy" since points are located randomly. Due to space limitations we
cannot go further in the comparison of both patterns.
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Figure 9 Evolution of the accuracy (measured by the RMSE in m) vs. the effort for the
methods of Felicísimo (1994) (with the -o- symbol) and the modified of López
(1997). Results choosing every 9th row. Different lines correspond to different
number of uncontrolled scores. Left plot 9a shows details of the right one 9b.

5. Discussion
We have compared two published methods for locating errors (also named

outliers or blunders) in raster datasets. We also suggested a modification for one of
them, and we carried out a comparative test for all three methods using real data
with known errors. The method suggested by Felicísimo (1994) is very simple, but
no results using either synthetic or real errors were previously reported. One
interesting fact is that this method is parameter free. However it has been derived
under some hypotheses that do not apply to the DEM used in this study. It relies on
a low order polynomial interpolator using only nearest neighbors. We think that it
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will work better in smooth terrain. The use of low order polynomials tends to
pinpoint locations which are close to each other, a situation which is more likely to
occur with systematic errors. For further work we suggest considering the use of a
local Universal Kriging interpolator (Samper et al. 1990) using more neighbors,
which is in line with the findings of Giles et al. (1996) who also used a window
with 11 by 11 elements. The Kriging approach also allows to model different
spatial correlation scales.

0 3 6 9 12 15
15

20

25

30

35

40

45

50

55

- : 0
--: 2
: : 4

- : 0
--: 2
: : 4

- : 0
--: 2
: : 4

- : 0
--: 2
: : 4

- : 0
--: 2
: : 4

- : 0
--: 2
: : 4

Figure 10 Evolution of the RMSE found of the cumulated errors up to a given effort vs. the
effort, for the methods of Felicísimo (1994) (with the -o- symbol) and the modified
of López (1997). Results choosing every 9th row, resulting strips of w=8. Left plot
shows details of the right one

The overall results show that if  better elevation values can be derived using
the same raw data, this approach leads to higher accuracy, provided that they there
are no systematic errors.

The method outlined by López (1997) has been designed for and tested with
synthetic errors with very low spatial correlation. For our case, where errors show
heavy spatial correlation, it performs only slightly better than Felicísimo's for low
effort, but it is outperformed in any other case. We consider the performance of
López's method as poor.

In order to handle the spatial correlation of errors, we have proposed a
modification of the method by López. We form the strips by subsampling the DEM
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at each k-th row. From a programming point of view this is a minor change. In real
applications, the number k has to be fixed a priori. Östman (1987b) suggested that
k is strongly connected with both the DEM and the acquisition method. We
estimated the range from the sampled variogram. López (1997) describes a rule
how to determine how many scores are considered describing the structure of the
cloud. This rule suggest a value of 2. Slightly better results were obtained using 0.
However, in a first approximation the rule is still valid.

Figure 11 Binary map of the errors located up to the 15 per cent effort with the method of
Felicísimo (1994). Black areas are for the suggested locations up to the 3 per cent
effort; gray ones are obtained after 15 per cent effort

All three methods have been used in an iterative fashion. Once some errors
were removed, all the calculations have been carried out again, and new candidates
appear. If this is not the case, some parameters are modified automatically
(lowering confidence limits, for example) in order to continue the operation. We
continue until 15 per cent of the DEM elevation values have been corrected or
confirmed. According to Torlegård  et al. (1986) gross errors account for less than
3 per cent of the population, so the 15 per cent limit is well within either the
systematic (as defined by Thapa et al. 1992) or the random error set, provided the
first 3 per cent were really gross errors.

We assumed that, once an error is located, it can be replaced by a "better"
value. In real applications the procedure will be different depending on the user. In
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a DEM production environment, some action can be taken to check these
identified isolated values. In photogrammetric measurements these checks can be
done before removing the stereopair. The goal here is to improve the overall
accuracy, while the effort is less crucial. On the other hand, the end user is left
alone in most cases, because he may not be able to go to the original data sources.
Therefore he will be interested in "evident" errors, i.e. those of relevant size
(which are typically few).

Figure 12 Binary map of the errors located up to the 15 per cent effort with the modified
method of López (1997). Black areas are for the suggested locations up to the 3 per
cent effort; gray ones are obtained after 15 per cent effort

A comment about the computer time requirements: the method of Felicísimo
(1994) is fairly cheap (of the order of m.n operations, being (m,n) the size of the
DEM), while the method of López (1997) and the modified procedure presented
here involve, for each step, the computation of (m/w).(n/w) covariance matrices of
size (w,w), which takes [(n/w).O(n2)+(m/w).O(m2)].O(w2) operations; to calculate
the eigenvectors requires in turn [(n/w)+(m/w)].O(w2) operations, and to project
each strip to calculate the scores requires (m+n).w operations. Some other
operations are required but depend linearly on m and n. In our example, a DEM of
size m=360 and n=216, for w=8, about 5 minutes per step are required using
MATLAB in a SUN Sparc 20. The overall procedure is considered cheap in terms
of computer time.
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6. Conclusions
Some methods to locate gross errors in quantitative raster data have been

presented, and they were tested using a grid-based DEM with known errors. The
DEM, derived from SPOT data, has elevations ranging from 181 to 1044 m. A
more accurate DEM of the same area is available; it has been considered as the
ground truth. The hypothesis of errors uncorrelated in space seems to be wrong at
least for this case, as well as the assumption of gaussian distribution for the
residuals. This poses serious concern about the usefulness of some previously
published algorithms (Felicísimo 1994; López 1997) and motivated this work.

The results suggest that Felicísimo (1994) method find mostly what is
regarded as systematic errors, mainly due to the interpolation algorithm
(biquadratic polynomial). López (1997) show similar results in terms of RMS of
errors only in the early stages of the correction process.

In order to handle the significant spatial correlation observed a modified
version of the method of López (1997) has been designed and tested with the same
dataset. The results were significantly improved and exceeded those of Felicísimo
up to a certain level of effort, the effort being defined as the fraction of the DEM
elevations corrected or revised. This effort level (1.75 per cent) is of the order of
the number of gross errors typically found in DEM; moreover its location pattern
looks sparse and random, as opposed to the pattern produced by Felicísimo's
method.

The modified method has some free parameters; the most important is an
estimate of the correlation lag (or the range of the variogram). It can be estimated
from a limited number of independent control points; some authors claim that such
value depends on the method for acquisition of the DEM and the DEM itself.

We assumed that once an error is identified, it can be corrected. In the case of
using the algorithm in a semi-automatic production environment, the method
warns the operator about possible errors before the stereopair is unmounted,
enabling new measurements. In a fully digital production environment, some
correlation thresholds are usually varied to minimize computer time. The method
may be used to selectively strengthen the correlation thresholds in suspicious
points. In case there is no possibility to verify the errors, e.g. for end users, the
algorithm will help to locate the most unlikely values; they may be replaced with
the aid of some suitable interpolation method. If there are some independent
sources (maps, etc.) they could be used for checking.
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