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Principal component analysis of pluviometric data

a) Application to outlier detection
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Abstract

The techniques used for the treatment of a pluviometric data bank during the development and calibration phase of a

flow-rain, flow hydrological model are presented.

The calibration phase of this type of models is considerably affected by errors (outliers) in the calibration set. Thus it

is mandatory to either correct or eliminate those records. We applied a variety of methods for this dataset. Among

them, the Principal Component Analysis (PCA) gave the best results.

The developed methodology allows real time quality control of newly acquired data with minimum computer

resources requirements, which makes feasible its application in standard equipment. For the present paper, we have

defined as errors only those records which differ from the value written down on paper by the observer.

However, it is believed that the PCA is able to detect also other random errors from the observer and even some type

of systematic ones, which are still in the investigation phase.

1. Introduction

1.1 Sketch of the problem

In all datasets it exists at least two sources for errors: those intrinsic to the measurement operation and those

generated either while keying in or during later process of the information. Both types of errors might have an

important effect depending on the particular problem. According to Husain, 1989, "... the failure of many projects of

considerable budget can be attributed at least in part, to the imprecision of the hydrologic information available...". In

the hydrological model case, the errors propagate themselves in time, and depending on the particular characteristics

of the catchment area, its effect might be considerable after significant time lags.

In the daily operation of those models, it is fairly simple for the user to notice significant outliers, because a direct

evaluation can be done the day after.

In turn, during the calibration stage of the model, many empirical parameters must be fixed by analyzing thousands of

values of measured vs. calculated flow; this comparison can only be made by analyzing global statistics like the

standard deviation, etc.

Such fact mix those events obviously erroneous as well as other more subtle ones, which might lead to significant

(and uncontrolled) bias in the parameters. For depuration purposes, it has been assumed that values written on paper

by the observer are error free, so we try to detect only typing errors. However it will be clear that the method can be
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easily extended for handling both random and some systematic errors, due to inappropriate sheltering of the

instrument the latter and careless operation the former.

The present work should be considered as a natural extension of the task performed during the calibration phase of an

hydrologic model of flow-rain, flow type for the Río Negro catchment area. For further details please refer to Silveira

et al. (1992a y 1992b).

1.2 Methodological background

Regarding outlier detection procedures, the single national registered reference is due to the guidelines produced by

the Climatology Department of the Uruguayan National Meteorological Bureau (DNM, 1988). Those specifically

related with rain data are very wide and they are mostly connected with the specification of an admissible range.

At an international level, some comprehensive meteorological work has been published (Sevruk, 1982) in order to

correct typical systematic errors in each station. In order to do this, they also require values of the surface wind

velocity, rain rate, temperature and humidity of the air, etc.

Regarding random errors, the trend is to compare the direct measurements with a model of the phenomena (see for

example, Francis, 1986; Hollingsworth et al., 1986). The latter pointed out that for the case of the surface wind, the

differences between observations and predictions follow approximately a gaussian distribution. In that case it is

relatively simple to detect outlier values in order to analyze them carefully. An important disadvantage of this

approach is the considerable amount of information required, as well as the important computer resources involved.

If we disregard (or simply it is unknown)  the physical relationship between the variables, the strictly statistical

procedures have to be considered. Barnett et al., 1984 reviewed and summarizes many techniques which might be of

use in this problem. For the multivariate analysis of data he distinguishes two main methodological trends, depending

on the fact wether the probability density function is assumed or not.

The first group techniques are named Discordancy Tests; they require an estimation of the parameter of the

distribution. There is also some work which assumes that the theoretical distribution has one shape, and the sample

another, as proposed for example by O'Hagan, 1990. He applied the idea for an example involving both a Gaussian

and a Student's t distribution. Some rules might help in those cases to highlight outlying values. Our case of daily rain

rate do not fit readily under such hypothesis, as follows from a simple analysis of its distribution.

The second group identified by Barnett is named as Informal Methods. They neglect the formal aspects of the

probability density function, and attempt in turn to exploit certain properties of the distribution. This group includes

graphic methods which look for points far from the data cloud; correlation methods, like those described by

Gnanadesikan et al., 1972; use of representative generalized distances, techniques usually connected with cluster

analysis (see Fernau et al., 1990) and Principal Component Analysis (PCA) among others, etc.

A specific reference related to PCA is the one due to Hawkins, 1974. The author compares four statistics designed to

highlight outliers. Hawkins assumed that each observation belongs to a gaussian distribution, an hypothesis which do

not hold for the rain; however the concepts that can be derived are similar to the one considered here as well as the

results obtained working with coal samples.
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2. PCA in brief

PCA is a widely applied multivariate technique (see Richman, 1986 as a general review; Pio et al., 1989 for air

pollution; White, 1991 for rain, etc.). It might transform one set of correlated measurements into new series of

uncorrelated readings, which in turn let consider each one as an independent variable.

Moreover, the new variables minimize the remaining RMS. which might be helpful to distinguish the physics from

the noise. In this work we did not attempt to rotate the obtained components, as suggested by Richman, 1986; White,

1991 among others, a process which is supposed to improve the interpretability of components more related with the

physics.

2.1 Theoretical aspects

Hereinafter we will denote as ( )pi kτ  the precipitation value for timeτ k  (k=1..r) at station i (i=1..n). The temporal

mean at station i will be denoted with an overbar, pi .

Given a set of rain readings for a given time ( )pi kτ  they can be represented together by a vector ( )P( ,n k1) τ  which

belongs to the Rn  space (fig. 1). Each k-th point of the cloud corresponds to a dateτ k . The origin of coordinates is

taken at the baricenter of the cloud, with components pi  which will be denoted as PM .

It is possible to show that it exists a direction 
r

e1 (unique in the general case) which minimizes the sum of squares S1

S M Hk k
k

r

1 =
=

∑ 2

1

(1)

as sketched in fig. 1. The direction 
r

e1 does not depend on timeτ k . It will be denoted as ( )a k1 τ the projection OHk ,

which is also named score in the literature. Each term in S1 can be interpreted as the L2  norm of the vector

 ( ) ( )P PM 1τ τk ka e− − 1 .
r

(2)

This expression shows that for any timeτ k  the data vector is explained as the sum of a constant vector plus a multiple

of a constant vector. The statistic S r1  can be interpreted as the unexplained variance by an approximation by a

single term.

Similarly a vector 
r

e2  can be found in order to minimize the remaining variance, so

( ) ( ) ( )S P P a e a ek M k k
k

r

2 1 1 2 2

2

1

= − − −
=

∑ τ τ τ. .
r r

(3)

being ( )a k2 τ  the projection over the direction 
r

e2  of the vector OMk . Even from geometric arguments it can be

shown that  
r r

e e1 2. = 0.

We can apply the procedure up to Sn. Lebart et al.(1977) demonstrates that 
r

ei  are eigenvectors of the covariance

matrix, defined as

( )( ) ( )( )C c c p p p pij ij i k i j k j
k

= = − −








∑: .τ τ (4)
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and that the eigenvalues λ i  are directly related with the sum Si. It can be shown that the scores time series ( )ai τ and

( )a i jj τ , ≠ , have null crosscorrelation. If we denote as D  the diagonal matrix with the eigenvalues λ i  in the

diagonal, and E  the matrix holding the eigenvectors 
r

ei as columns, we can prove:

C E D E T= . .     (5)

In what follows we will use the term principal components to refer to the eigenvectors 
r

ei , and as scores the time

series of the associated projections ( )ai τ . It should be noticed that the index i is not related with a pluviometric

station.

Summing up, it exists  a lineal transformation which relates the observed time series ( )p i ni τ , ..= 1 , with the scores

( )ai τ  which can be written in matrix form as

 ( ) ( )P P E AMτ τ= + . (6)

being PM  the vector holding the mean precipitation of the period, and ( )A τ  a vector holding the scores.
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Except in pathological cases, matrix E  is not singular, thus once the rain measurements ( )p i ni τ , ..= 1  are given, it

is possible to obtain the scores ( )A τ  by applying the expression:

( ) ( )( )A E P PMτ τ= −−1 . (8)

It will be useful later to show that Eq. 6 can be rewritten as

 ( ) ( )P P a eM i
i

i n

iτ τ= +
=

=

∑
1

.
r

(9)

2.2 The need for a progressive depuration

The eigenvectors  
r

ei  (denoted also as patterns) are calculated using an available cloud of data points. It might exist a

small number of unlikely values (outliers) which might affect to some extent the patterns themselves. In Silveira et

al., 1991 it has been shown that even in a population of r=4000 points, only two outliers might significantly affect the

patterns. This fact makes mandatory that a recursive depuration effort strategy is to be adopted. On early stages we

will look only for those more evident values. As it will be shown, the process can go later to look for more subtle

cases.
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3. Application of the technique to a particular case: the Río Tacuarembó

catchment area

3.1 General characteristics of the study area

Despite the work considered a substantially greater area, we restrict ourselves for this analysis to the Río Tacuarembó

catchment area, of 20.000 km2, located at 32° S, 55°W at 400 km of the Atlantic Ocean. The area can be characterized

by a smooth orography, with heights lower than 500 m, few valleys and lakes. The monthly mean for the rain is within

74 and 120 mm/month. The study period is nearly of 15 years, from Jan 1st. 1975 to Dec 2nd. 1989, value clearly over

the threshold suggested by Hawkins, 1974.

3.2 A brief description of the compared methods

a) Outlying values of the univariate series

This method is fairly simple, and requires the calculation of a "feasible" range for the values recorded in each station:

whenever any record is outside it, it is pointed out as a candidate to be in error. In the given dataset it is usual to

mistype records taken in mm/day as taken in tenths of mm/day. This values could be found only if the mistyped record

is over 100 mm/day, but the procedure is impractical for other cases.

For the daily rain example this method can detect only events clearly outlying by excess, but on the other hand it is

impossible to suggest a zero value reading as an error, because over 80% of the population is exactly zero.

b) Discrepancy of the Thiessen's spatial mean series

The first stage requires that the mean average of the rain is calculated by the Thiessen method (Jácome Sarmento et

al., 1990) using different subsets of stations taken from the n available for each day. Thus different time series arise,

and when compared if they differ "too much" the particular day is checked.

The results obtained (not presented here) let say that this method gives a much powerful test that the one before; true

errors exist in nearly 30% of the selected dates (Silveira et al., 1991). Moreover, the errors themselves need not to be

outlying.

c) Outlying values of the multivariate series

For the Río Tacuarembó dataset, typically two out three days have some missing value. Then, we must distinguish

two situations for each time τ:

c.1 ) All n stations have readings

c.2 ) Some values are missing

In the first case, it is possible to calculate the n scores ( )ai τ . If for some i, ( )ai τ  is not within the i-th specified

range, all n records used for calculate the scores should be checked. The specified ranges were determined by

analyzing the probability density function of the scores for the whole period.
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In the second case, an imputation procedure is required. It might be nearest neighbor or any other. Using the same

dataset López et al., 1994 analyzed the performance of four methods for missing value imputation are compared,

being the most efficient the Penalty of Principal Components, so we apply it here.

Once imputated the missing values, we are in the position to apply the criteria of c.1) by checking each of the scores.

However, both here and at Silveira et al., 1991 we relaxed the criteria, and the date was checked if any of the

imputated records is negative or bigger than 100 mm/day. For further details, please see López et al., 1994.

In figures 3 and 4 the typical probability density function (pdf) for both the weakest and strongest scores are shown.

For the range determination, we restrict ourselves to symmetric ones with a single parameter α i . For each i, α i  is

selected in order to make valid over 96% of the events. If the pdf is nearly symmetric (as for example patterns 2, 3, ...

17, see fig. 3 and 4) this rule implies to reject approximately 2% of each tail of the distribution. For heavily skewed

distributions (pattern 1, fig. 3) we reject only from one side of the pdf.

4. Results

4.1 With simulated errors

In order to test the ability of the method for this problem, we select a subset of n = 13 carefully revised stations which

have less than 5% of missing records for the period of r = 5450 days (nearly 15 years).

We selected at random a set of 2832 ternas of station-date-value which is around 4% of the population. The wrong

values for rain were generated by a mechanism which attempts to replicate the pdf of the real data. In fig. 5 we show

the distribution for positive values.

We applied the suggested method in order to detect the artificial errors. In tables I and II we presented the total

number of error detected discriminated by step. Between the first and second column, the difference is in the

recalculation of the limitsα i . The detected errors in the first columns were ignored in order to calculate the newα i ,

but they are expected to be detected in the second sweep. Neither the covariance matrix nor the eigenvectors were

recalculated.

Another possibility is detect-correct-recalculate. The results are presented in the first column. For the second

depuration, we eliminate the outlying values detected and both the covariance and its eigenvectors are recalculated.

We show in bold the results for days with missing values. In table I, we express the results in relation to the number

of revised values checked against paper. In table II, we present the results in relation with the total number of errors

yet in the population.

The results show that it is more convenient to change the limits α i  rather than recalculate the eigenvectors. Thus for

two sweeps it can be found 81% of the wrong values, which affects 49% of the revised days.

If we want to recalculate the pattern as soon as we detect the first 571 errors, in the second depuration we found only

186 errors, which account only for 21% of the days to check.

Such behavior was not observed while working with the raw data: even very few errors affected significantly the

patterns, requiring in turn a couple of iterations in order to stabilize them.
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First sweep

total detected

total revised
.103

Second sweep

total detected

total revised
.10 3

First depuration 360

7644
10 413+ =211

+ 6318
.

2065

54067
10 383+ =215

+ 6435
.

Second depuration 151

5798
10 163+ =35

+ 5863
.

1784

50924
10 323+ =40

+ 5837
.

Third depuration 68

4966
10 83+ =36

+ 7514
.

276

9555
10 193+ =39

+ 7397
.

Table I: Evolution of the depuration process in relation with the data to be checked. Terms in the table follow the schema

( ) ( )A B C D+ + .103
, being A: wrong values detected in full days; B: wrong values detected in incomplete days (in bold); C: number of

records revised in complete days and D: number of records revised in incomplete days (in bold).

First sweep

total detected

total not yet found

Second sweep

total detected

total not yet found

First depuration 360

2832

571

2832
0 20

+ = =211
.

2065

2832

2280

2832
0 81

+ = =215
.

Second depuration 151

2832 571

186

2261
0 08

+
−

= =35
.

1784

2261

1824

2261
0 81

+ = =40
.

Third depuration 68

2261 186

104

2075
0 05

+
−

= =36
.

276

2075

315

2075
015

+ = =39
.

TableII: Evolution of the depuration process in relation with the remaining errors. Terms in the table follow the schema( )A B C+ , being A:

wrong values detected in full days; B: wrong values detected in incomplete days (in bold) and C: wrong values in the database yet to be found.

4.2 Over real errors

In a real situation a table like Table II cannot be created. It is required also a criteria to stop the procedure: we decided

to stop as soon as no new errors (true errors) were found. We define as true error all those cases which the number in

the files do not coincide with the one written on paper.

In early stages we worked for full days (with no missing values) over a set of 21 stations. Two phases could also be

distinguished.

In the first one, after performing the PCA calculations, we removed the worse errors. They were identified because

even not significantly affecting the mean vector, the first and second patterns were completely distorted (see Silveira

et al., 1991 for details). This stage corresponds with rows 1, 2 and 3 of Table III.
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In the second phase we selected those days which scores ( )ai kτ  exceed the allowable value. The measurements for

such day were checked against paper, and corrected if any discrepancy exist. Then we recalculate the Principal

Components and the process start again.

For each score ai  the limits were estimated either as three times the standard deviation, or were simply ignored.

Despite the criteria of the three times is a well known boundary valid for the gaussian distribution, the method do not

requires neither imply it.

During the task it has been observed that some days were systematically pointed out as suspicious, even though they

agree with the paper. We performed a subjective analysis in a case per case basis, and we classified further the values

as consistent and dubious. The former were associated normally to heavy rain events concentrated in space; the latter

show very different values even in very near stations. They were temporally removed from the database in order to not

affect the PCA calculations (see González et al., 1991).

The process ends when all dubious values coincide with paper. In table III the evolution of the depuration process is

shown. In the first three stages, we only look for gross errors, checking essentially the scores associated with the

leading patterns, which explains the low number of days affected.

Another important point is the measurement of efficiency. The column headed with η  in Tables III and IV shows a

number which even being independent of the number of stations seems to be pessimistic; in practice it is more

representative the one indicated by column G (measured as errors per revised day), because in most cases the error

was so obvious that by merely checking one or two our of the 21 values were enough to locate the error.

Stage A B C E F G η

1 9 21 6 51 34

2 354 326 154 448 186 87

3 222 267 336 475 395 174 83

4 70 83 206 286 219 126 60

5 72 60 8 132 105 106 51

6 41 2 29 111 18 65 31

7 9 1 12 115 13 19 9

8 1 113 2 1 0

9 109 0 0

Table III: Evolution  of the depuration of real errors for the full days (i.e. without missing values). We analyzed 21 stations. Keys to table: A.- Wrong

values; B.- The digital value do not exist on paper; C.- Dubious value; E.- Total number of days checked; F.- Days not considered before; G.-

(A+B+C)/E*100 Total number of errors for each 100 days revised; η = (A+B+C)/(21*E)*1000 Total number of errors for 1000 values checked.

Regarding the days with missing values, we applied the Penalty of Principal Components method (described by López

et al. 1994). In those days with zero rain readings we simply assign zero to the missing values. In other case, we

penalized the 10 weakest scores using as weights the reciprocal of the variance. Table IV shows the work in different

stages, being all percentages to the total number of values revised in each stage.
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Stage A B C D E F G η

1 344 314 220 945 457 399 210

2 56 27 65 57 495 94 41 22

3 117 118 138 37 558 179 73 39

4 52 69 118 21 536 94 49 26

5 17 36 36 10 586 53 17 9

6 21 12 34 6 560 30 13 7

7 19 20 9 1 659 15 7 4

8 659 0 0

Table IV: Evolution of the process of real errors for days with missing values. We analyzed 19 stations. Keys to table: A.- Wrong values; B.- The digital

value do not exist on paper; C.-Dubious value; D.- Data exist on paper but were not digitized; E.- Total number of days checked; F.- Days not

considered before; G.- (A+B+C+D)/E*100 Total number of errors for each 100 days revised; η =(A+B+C+D)/(19*E)*1000 Total number of

errors for  1000 values checked

5. Conclusions

We have described and presented a methodology for multivariate quality control based upon Principal Component

Analysis (PCA). The results, considering the effort involved can be regarded as satisfactory. In a controlled

experiment we succeeded in identify one error every two days checked, finding that way over 80% of the known

errors.

The required computer time can be considered minimal. The heaviest part is the calculation of the covariance matrix

and its associated eigenvectors, an operation which is performed a limited number of times.

Considering that for each event it is only required a linear transformation, it is possible to apply the method in real

time even with hand held computers.

6. Acknowledgments

Carlos López designed both the methodology and the experiment. Elizabeth González was in charge of the real errors

phase, and also conducted the bibliographic search. Both authors jointly analyzed the obtained results. Jorge Goyret

implemented in part the algorithms, and performed all calculations related with the described experiment.

It should be mentioned that this work is an extension of the task accomplished under the contract "Development of an

hydrological model for the Río Negro catchment area" funded by UTE. The permission for using the information and

publish the results is gratefully acknowledged.

7. References

Barnett, V.; Lewis, T., 1984. "Outliers in statistical data" John Wiley and Sons, 463 pp.

DNM, 1988. "Procedimientos para el control de calidad climatológico" Informe interno de la Dirección Nacional de

Meteorología, Nov. 1988, 20 págs.



10

Fernau, M.E.; Samson, P.J., 1990. "Use of Cluster analysis to define periods of similar meteorology and precipitation

chemistry in eastern North America. Part I: Transport Patterns" Journal of Applied Meteorology, V 29, N 8, 735-750.

Francis, P.E., 1986. "The use of numerical wind and wave models to provide areal and temporal extension to

instrument calibration and validation of remotely sensed data" In Proceedings of A workshop on ERS-1 wind and

wave calibration, Schliersee, FRG, 2-6 June, 1986 (ESA SP-262, Sept. 1986)

Gnanadesikan, R.; Kettenring, J.R., 1972. "Robust estimates, residuals and outlier detection with multiresponse data"

Biometrics, V 28, 81-124.

González, E.; Morales, C., 1991. "Depuración de la base de datos pluviométricos de la cuenca del Río Tacuarembó".

Informe interno preparado para el Departamento de Hidrología del Instituto de Mecánica de los Fluidos e Ingeniería

Ambiental. 11 pp.

Hawkins, D.M., 1974. "The detection of errors in multivariate data, using Principal Components" Journal of the

American Statistical Association, V 69, 346, 340-344.

Hollingsworth, A.; Shaw, D.B.; Lonnberg, P.; Illari, L.; Arpe, K. and Simmons, A.J., 1986. "Monitoring of

observation and analysis quality by a data assimilation system" Monthly Weather Review, V 114, N 5, 861-879.

Husain, T., 1989. "Hydrologic uncertainty measure and network design" Water Resources Bulletin, V 25, N 3, 527-

534.

Jácome Sarmento, F.; Sávio, E.; Martins, P.R., 1990. "Cálculo dos coeficientes de Thiessen em microcomputador". En

las Memorias del XIV Congreso Latinoamericano de Hidráulica, Montevideo, Uruguay (6-10 Nov., 1990). V 2, 715-

724.

Lebart, L.; Morineau, A.; Tabard, N. 1977. "Techniques de la Description Statistique: Méthodes et logiciels pour

l'analyse des grands tableaux". Ed. Dunod, París. 344 pp.

López, C.; González, J. F.; Curbelo, R., 1994. "Análisis por componentes principales de datos pluviométricos. b)

Aplicación a la eliminación de ausencias" Estadística, 46, 146, 147, pp. 55-83 También Publicación Técnica del

Centro de Cálculo PTCECAL2/92, Centro de Cálculo, Facultad de Ingeniería, CC 30, Montevideo, Uruguay.

O'Hagan, A., 1990. "Outliers and credence for location parameter inference" Journal of the American Statistical

Association: Theory and Methods, V 85, N 409, 172-176.

Pio, C.A.; Nunes, T.V.; Borrego, C.S.; Martins, J.G., 1989. "Assesment of air pollution sources in an industrial

atmosphere using principal components and multilinear regression analysis" The Science of the Total Environment, V

8, 279-292.

Richman, M.B., 1986. "Review article: Rotation of principal components" Journal of Climatology, V 6, 293-335.

Sevruk, B., 1982. "Methods of correction for systematic error in point precipitation measurement for operational use"

World Meteorological Organization WMO 589, Operational Hydrology Report 21, 89 pp.

Silveira, L.; López, C.; Genta, J.L.; Curbelo, R.; Anido, C.; Goyret, J.; de los Santos, J.; González, J.; Cabral, A.;

Cajelli, A., Curcio, A.,

1991. "Modelo matemático hidrológico de la cuenca del Río Negro" Informe final. Parte 2, Cap. 4. 83 pp.Silveira, L.;

Genta, J.L.; Anido Labadie, C., 1992. "HIDRO URFING - Modelo hidrológico para previsión de caudales en tiempo

real- Parte I: Simulación de los procesos hidrológicos en el suelo" . Publicación Interna del Dpto. Hidrología, IMFIA

1/92, Instituto de Mecánica de los Fluidos, Facultad de Ingeniería, CC 30, Montevideo, Uruguay.

Silveira, L.; Genta, J.L.; Anido Labadie, C., 1992. "HIDRO URFING - Modelo hidrológico para previsión de caudales

en tiempo real- Parte II: Transformación en cuenca, ruteo y criterios de calibración y verificación" . Publicación



11

Interna del Dpto. Hidrología, IMFIA 2/92, Instituto de Mecánica de los Fluidos, Facultad de Ingeniería, CC 30,

Montevideo, Uruguay.

White, D., 1991. "Climate regionalization and rotation of principal components" International Journal of Climatology,

V 11, 1-25



12

fig 1: fig 10 de lebart

fig 2: mapa de las 21 estaciones

fig 3: distribucion de los ai

fig 4: distribucion de los ai

fig 5: comparacion de las series simuladas y real


