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Abstract: The detection of errors and outliers is an important step in data processing,
specially those errors arising from the data entry operations because they are of the entire
responsability of the data processing staff. The duplicate performance method is commonly
used as an attempt to detect such type of errors. It implies typically typing twice the same
data without any special precedence. If the errors are uniformly distributed among
individuals, retyping a fraction of the total will also remove typically the same fraction of
the errors. A new method which is able to improve that procedure by sorting the records
putting first the most unlikely ones is presented. The ability of the present methodology has
been tested by a Monte Carlo simulation, using an existing database of categorical answers
of housing characteristics in Uruguay. At first, it has been randomly contaminated, and after
that, the proposed procedure applied. The results show that if a partial retyping is done
following the proposed order about 50% of the errors can be removed while keeping the
retyping effort between 4 and 14% of the dataset, while to attain a similar result with the
standard methodology 50% (on average) of the database should be processed. The new
ordering is based upon the unrotated Principal Component Analysis (PCA) transformation
of the previously coded data. No special shape of the multivariate distribution function is
assumed or required.

Some keywords: Data checking, Census data management, Outlier detection, Principal
Component analysis, Categorical data

I.- Introduction

A recurring problem in the creation or maintenance of a large computerized data base is the
correctness of the information entering the base. If high volumes of data are involved, then
data entry operation tends to be carried out by less qualified personnel, and verification is
less extensive. Thus, action is required to maintain the base's integrity, and the fact that
large volumes of machine-readable material are involved suggests that, as far as possible,
this screening action should be automated. Clearly typing errors is not the single source of
errors existing at the machine level; however on principle they can be kept under control.
There are many classical examples of typing errors, even from the early days of computer
development. A classic one is described by Coale et al. (1962) who reported an error in the
1950 U.S. census figures that resulted when a small fraction of computer cards were
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punched one column to the right of the proper position, so that an unusually high number of
14-year-old widows was reported. Only after discovering the reason for that error, they were
able to anticipate errors in the age-distribution of Indians individuals. Even though the total
amount of erroneous records was fairly small (below 1/100 of one per cent) certainly rare
categories might be greatly affected by such spurious cases. Notice that all the fields in the
record have values within their own feasible range.
A general procedure for locating typing errors in a data entry process is the duplicate
performance method. If a data typing operation is performed twice, independently, and if
the results are compared by a method that can be assumed error free (such as a computer
program comparing files after data entry), and if all the disagreements are corrected, then
the only errors remaining in the data set are those where both staff members were in error. If
the ratio of disagreements to total items is low, then the individual error rates of both
persons are low, and the probability of joint errors (the product of the probabilities of
individual errors) is lower still (Strayhorn (1990)). The method is extremely simple, and it
applies for any kind of data, both quantitative or categorical. Despite its simplicity, it has
some desired properties: the probability of locating an error is independent of the error
itself, so trivial errors will be corrected as well as subtle ones. This will help in keeping the
statistical properties of the database. It is also independent of the order the retyping is
performed, so in principle, if only a fraction of the dataset is retyped, typically the same
fraction of the errors will be corrected. Another advantage is that the  procedure does not
require a large database, so it can be applied also to small ones.
The literature about editing survey data is considerable, but somewhat scarce regarding
quality control of categorical data. Fellegi et al. (1976) presented a methodology
specifically suitable for qualitative or categorical data. It is based upon the existence of
rules which relate the different fields in each record. Such rules should be given by experts,
and express the judgment of them that certain combinations of values or code values in
different fields are unacceptable. If a particular record does not satisfy one or more of those
rules, the field (or fields) that contribute to them are rejected or modified in order to attain a
feasible record. Notice that this procedure relies on the existence of explicit rules (and
experts behind them) and requires some manipulation of the rules before application. No
experimental results are presented in the paper.
Paradice et. al. (1991) presented a methodology for controlling incoming data to a database.
Their approach focuses in minimizing the time a wrong record stays in the system, basically
by limiting its chances to pass some logical tests created by experts, and tailored for the
particular application. Not all the attributes of a record are important for all applications, so
new tests may be required for different users of the same data. For the applications the
authors are involved in, individual records should be handled also individually and not "in
aggregate" so errors will have significant effect for one particular record, but possible not
for the whole database. The paper also gives a performance evaluator for the overall error
diagnostic procedure, which gives an enterprise measure of success. They claim this
benchmark gives a clear measure for evaluating current verification procedures and
proposed changes. Even though we could not apply this methodology for an already existent
database, or even one that is created in a single task (a national census, for example) it will
give us the chance to qualify the procedures used in a continuously updated process (like
economical data).
Apart from the methods specially devised for categorical data, we want to mention some of
the methods available for quantitative data, since we will adapt some of them for the former
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case. Typically the authors rely on assumptions about the data distribution. For example,
Little et. al. (1987) presented a methodology based upon multivariate normality of the data.
They used a log-transformed population, and look for linear relationships between the new
variables. Using the squared Mahalanobis distance as an estimator, the author analyzed its
sampled distribution exploring graphically the departure from a transformed chi-squared
distribution. All instances that renders values that are "far" in some sense to the theoretically
assumed behavior are flagged and edited by experts. They also extend their methodology
for incomplete datasets, limiting for each individual the Malahanobis distance to the
available data.
A related approach has been presented by Hawkins (1974) based upon Principal Component
Analysis (PCA) of the data. Instead of using the Mahalanobis distance, he proposed to use
other statistics which are intended to be more sensitive and to have better performance when
compared with standard statistics (χ2, etc). However, some problems arise while calculating
the eigenvalues of the covariance matrix in real data. The existence of outliers may affect its
values, so more robust procedures should be preferred, and not all the data can be regarded
as normally distributed.
López et al. (1994) presented a methodology that overcomes some of these drawbacks.
Instead of  using the distribution of a single number like the Mahalanobis distance or the
Hawkins´s statistic for flagging an instance, they proposes to use k independent tests applied
over the projections of the given data on the eigenvector´s basis. No fitting with any
distribution is required. The rest of the paper is devoted to show a connection of
quantitative data procedures to categorical ones, and to present some simulated results.
The work is organized in nine sections. Section I Introduction, has discussed some work
representing the state-of-the-art on the subject. Section II Motivation and assumptions
introduces the main ideas. Section III Experimental test design describes the simulation
carried out to examine the performance of the method with a particular dataset. Section IV
Methodology describes the steps required to apply the procedure. Section V Results
summarizes the success by means of some performance indicators and finally section VI
Discussion compares the results and analyzes advantages and drawbacks, while section VII
states the Conclusions. Acknowledgments and References are included as sections VIII
and IX.

II.- Motivation and assumptions

For the sake of simplicity, we will assume hereinafter that by typing twice a record all errors
are removed. This will help us in simplifying some arguments, and the reader will easily
notice that this not a key hypothesis.
We mentioned before that the duplicate performance method ability is independent of the
order the records are retyped. If we assume that the wrong individuals are uniformly
distributed in the population, retyping a fraction of the dataset will most likely correct the
same fraction of errors. This paper is devoted to find a reordering in the data, designed to
put first the records that are prone to hold some errors, so partial retyping will eliminate
more errors than without any reordering.
To do so, we will try to locate outliers in the dataset. What is meant by outlier in categorical
data may differ from the concept for real-valued data. It is also assumed here that the
dataset has passed successfully some trivial logical tests, which pointed out for example,
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more than one mark in mutually exclusive answers, or similar things. Also all the coded
values are within their prescribed ranges. These logical tests are very crude, and certainly
should not be confused with the edits designed by experts in the particular data (Fellegi et.
al. (1976)). It should be regarded more as a computer specification for the data, rather than
a quality control procedure.
So we will consider only the problem of selecting a specific record (a single survey in the
example) on the basis that there is something in the answers that make them unusual. Such
record should be retyped. Notice that this procedure will diminish the variability in the data,
because “feasible” errors are prone to be ignored.
In a real processing environment, if the record is still unusual it will be carefully analyzed
by a trained specialist, which may found (or not) reasons to reject or modify some answers
in the particular record. This fact will not be considered here, but the methodology is in fact
devoted to give the specialist a smaller selected set, with higher probability of holding true
errors.
It should be stressed that errors arising from the the typing stage is one among others
sources of errors; however they are important in the sense that they can be kept under
control. Significant errors can be introduced in earlier stages (like the coding of non-
categorical answers) which cannot be controlled by the duplicate performance method, but
can be handled by the procedure to be presented below.
In categorical data, the codification procedure usually generates for each question a set of
feasible values. For technical reasons, those values are frequently coded as integers, but the
integer value itself is meaningless. In order to manage categorical data with PCA, one
should translate such integers in a way that the results do not depend upon :

a) changing the order of the alternatives in the question
b) changing the integer codes

It will also be assumed that all the answers have the same relative importance. The
technique to be presented, was designed to be applied for processing the 1996 National
Census of Population and Housing  in Uruguay (population ~3 million, houses ~200.000) to
check only categorical answers. The data was not be typed, but scanned and processed via
automatic recognition routines, handling handwritten text, number and marks. Even though
automatic recognition of marks are known to be very reliable, it is intended to flag and
check dubious data while keeping the manual typing effort low.

III.- Experimental test design

A Monte Carlo simulation is performed, modifying the answers of a subset of the raw data
collected and processed during the 1985 National Census in Uruguay, and testing the ability
of the methodology to locate them. The subset chosen reports housing characteristics in the
Flores region and has been typed twice. Only private houses cases, without missing values
were considered. The final set has 4963 events, but to diminish computer time requirements,
the simulations were carried out over only 2500 individuals.
The dataset is claimed to be typed twice, and the original records are not available. This fact
makes it difficult to properly model a pattern of "rule" for real errors, so only reasonable
assumptions could be made.
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In order to obtain a contaminated set, a prescribed number of records were chosen at first
and then a random number generator choose a fixed number of questions (out of 20) to
modify. For each of them, the existing answer was changed to a different value, but still
belonging to its feasible set  (assuring that they were different with the original one). That
was considered a suitable choice for modeling “true” errors. The total number of
contaminated records were fixed as 10,  5, 3 and 1.5% of the subset of 2500 individuals.
The figures to be presented correspond to the 3% case, which implies 75 wrong cases.

IV.- Methodology

In this section, all steps required for processing a categorical dataset are described. Given
the data, the corresponding question list and the feasible options, the user should eliminate
those fields which are a priori uncorrelated with the others. Typical examples for survey
data are all the information related with the zip code, city code, address, etc. Also numerical
quantitative data should not be considered (for example: age, size of the building, etc.)
except if a categorization is applied.
The dataset is usually available in table format, one individual per row, and one question
per column. In order to have a numerically useful representation, we will binarize the
dataset, creating a new table containing only 1 or 0. This also make the data homogeneous
(dimensionless ). In order to binarize the dataset, one may think on a multiple choice sheet.
For any particular question, there are room to choose between some (maybe mutually
exclusive) alternatives. Instead of  coding a single number for the answer, we may equally
store all the alternatives, putting a 1 or 0 if the option is true or not. In other terms, each
column of the original table expands to as many columns as alternatives in the question,
allowing only 0 or 1 as an answer. After repeated for all questions, the data are transformed
into binary format, and the covariance matrix can be calculated.
Since the methodology to be applied relies upon exploiting the empirical relationships
between the answers, all the questions that are weakly correlated with the other data will not
be considered by this procedure. In early stages of the work it has been found that also
"almost trivial" answers were a source of problems, because they behave like uncorrelated
answers. For example, in the test dataset more than 96% of the population has direct
connection with the electrical power supply. So the corresponding answer  has trivially
nothing to do with the others answers. That was also the case for the questions "do you have
a freezer?", "do you have telephone at home" and others which almost always have been
answered "no" in this particular dataset. So, if more than 95% of the population answers are
the same for any binary option, the option will be removed for the final test. A second
criteria was applied trying to eliminate uncorrelated answers. If the off-diagonal elements of
the correlation matrix are very close to 0, the corresponding option is also removed. The
threshold has been chosen as 10 times the machine ε. (defined as the largest number which
satisfies 1+ε=1 in finite precision arithmetic). Those questions were removed before
applying the outlier detection process. The final dataset has 20 questions, with 69
alternatives (options).
To highlight unusual records, a PCA derived method is being proposed. PCA is a well
known methodology that transform the original (mutually correlated) data in another
uncorrelated but equivalent presentation. Usually such transformation is performed in order
to reduce the dimensionality of the problem. Only the first Principal Components (PC) are
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retained, and most of the variance in the original set is explained through them. The
remaining PC are usually neglected.
Hawkins (1974) pointed out that those neglected PC may serve as outlier detectors. PCA
transforms the covariance matrix Σ  to diagonal form, so E E TΣ Λ= . Any instance of the
data X i  is also transformed to ( )W E Xi i= − µ , being µ  its sampled mean value.

Obviously the elements wij  are a linear combination of the components of X i .

The ( )w X wj i ij=  components are mutually uncorrelated, and have variance λ j  (the
associated eigenvalue). The PCA residual test statistic is defined by Hawkins as

( )T X wi
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Hawkins proposed to flag any instance i that renders values for ( )T Xi2  inside a so called
outlier region (Davies et. al. (1993)). López et. al. (1994) applied a closely related
procedure also based upon PCA, to handle daily rain datasets. They proposed to flag an
instance when for any one [ ]j K K∈ 1 2, ,  the projection ( ) [ ]w X LB UBj i j j∉ ,  being

LBj  andUBj  lower and upper bounds which define the non-outlier region for projection

( )w Xj i . Those limits are derived from the distribution of ( )w Xj  . The eigenvalues
themselves are not required as well as any specific distribution for the data.
This paper follows almost the same idea, but since we are now working with categorical
data some details need to be discussed.
It should be pointed out that, even in numerical datasets, usually the mean value and the
Principal Components are real vector values, and so are the projections of the dataset on the
PC, which are called here scores. That holds even if the data are integer or even binary
numbers. For example, in a rain dataset, all values are integer and positive, but the scores
are real, i.e., they belong to a different number category. When considering categorical
binary answers a similar situation arises. However, even real, the possible values are limited
due to a combinatorial problem. We are implicitly requiring that this finite number is a large
number (in the experiments, 269-1) and the reason is presented below.
Once the data (without missing values!) are binarized and presented in table (or matrix)
format, the PCA can be performed straightforwardly. Principal components can be derived
as the eigenvectors of the covariance matrix (Lebart et. al. (1977)). Let’s call E the square
nxn matrix whose columns are the eigenvectors, which satisfy E E TΣ Λ= , being Σ the
sample’s covariance matrix, and Λ  a diagonal matrix which holds the (sorted in ascending
order) eigenvalues. "n" is not the number of controlled questions but the sum of all the
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options within them. It is assumed that the population is big enough to represent properly
the true covariance with the sample´s covariance matrix.
Other subtle requirement should be stated: the procedure will not be of use if the number of
options for the answers is low, because the distributions won´t look like those of continuous
data. Notice that the real numbers wij  are not arbitrary because they arise from a finite
number of possible answers.
Anyway, since the matrix is range-defective due to the logical interrelationships between
mutually exclusive answers, there will be some zero eigenvalues. This makes a slight
difference with the situation for quantitative data (Hawkins (1974), López et. al. (1994))
where the Σ  matrix is positive definite. The matrix of scores is defined here as:

 W E X= −( )µ
being X  the binary data (one row for each record) and µ  the arithmetic mean (among
columns) of the matrix X .  Matrix W  has the same dimensions as matrix X , and its
column-wise mean is zero. This is a linear transformation of the original data, and so each
element wij  depends directly upon all the elements xim , where m ranges from 1 to n. This
is an important fact, because the discrete distribution of the linear combination is
completely different from the dichotomic one for xij  , as it is shown in fig. 1.
Two facts should be remarked:

a) the sampled probability density function looks like the one of an ordinary
continuous variable, even though it is based on a linear combination of dichotomic
terms.
b) Its shape is different depending on the index of the score, following the same
behavior noticed for scores derived from continuous variables, being more
symmetrical as the index increases.

That's why we claim that the same procedures reported there could be used from now on.
Once the sample distribution is created, confidence limits can be calculated. These values
will define the outlier region (Davies et. al. (1993)) but without assuming any particular
distribution shape. Why do we claim that this is the outlier region?. Fig. 2 shows the
sampled probability distribution function for the given database of some of the scores and
the arrows point to two values: those marked with an "o" correspond to the original answers
for a particular record; those marked with an "x" are related to the same record, but now
contaminated by modifying one of the answers. In this particular case, it was imposed that
the house is equipped both with a color and a black and white TV set, while originally it has
only black and white. Notice that the effect is important mostly in the "weakest" scores (i.e.
those associated with the lower eigenvalues of matrix Σ ) and that the ones associated with
the "strongest" ones are only minimally modified. The proper limit between the "weakest"
and the "strongest" is to be determined, and some guidance is given below.
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Figure 1 Example of the distribution of the 18th. score

A known fact is that each of those Principal Components associated with low eigenvalues
have significant weights only with few variables in the original data. That implies that
controlling the outlier region of one or two weak scores protects only some of the variables,
which may be unadvisable. Those Principal Components associated with larger eigenvalues
are typically insensitive regarding outliers, as it can be seen in fig. 2, so they should be
avoided for our purposes. Summing up, neither too few or too many scores should be
checked, and the appropriate number is a matter that is not uniquely solved in the literature.
Some rule of thumb suggest to neglect those terms whose associated eigenvalues are over a
previously defined threshold. Hawkins (1974) suggests a more refined criteria, which
chooses the limit in order to protect all the variables by proper inspection of the elements of
matrix E . He did not formalize the criteria, so we will propose some objective one. The
rows of matrix E are related with the original variables. Assume that K1 is the index of the
first non-zero eigenvalue, and K2 is another integer index to be determined, (K1< K2
because we assumed that the eigenvalues are sorted). In order to assure that at least once the
variable Xj  significantly affects some score, at least one of the eigenvectors with index
ranging from K1 to K2 (i.e. columns in matrix E ) should have a non negligible weight. The
weights are the elements e jk  of row j of matrix E while k∈[K1,K2], and they should be
considered in absolute value for this purpose. The limit for negligible-not negligible is
based upon a threshold value. If any abs( e jk ) is larger that such threshold for some

k∈[K1,K2], the variable is said to be protected. The threshold value cannot be chosen as a
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fixed constant like 0.17, because (due to normalization) the e jk are related with the size n of

matrix E . So the proper threshold should take this fact into account. Since a

mathematically valid eigenvector could be( )111 11, , ,..., , n , we choose as a threshold

value a multiple of 1 n , now independent of size n itself. In the simulations the chosen
multiple was 0.15, and the resulting range [K1,K2]  was [21,45].
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Figure 2 Example of the effect of a single outlier in a particular record

Once the limits K1 and K2 are defined, the sampled probability density function can be
created for each score, and limits for the outlier region arise for each k, k∈[K1,K2]. The
procedure is now straightforward, and it implies:

a) for each k-th score, look for records with values aik in the corresponding kth

outlier region, k∈[K1,K2]
b) once those records (rows) are retyped (and maybe modified or not), they can be
included back in population X  and new values for µ, E  and outlier regions are
calculated.
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The procedure is iterative, and some stop criteria should be given. In each step, the dataset
is classified in two categories. The first one holds the records which are likely to have an
error, and the second one holds the ones accepted. When such a decision is made, it is
certainly possible to reject good quality as poor or classify nondefective items as defectives;
then, the associated error is called Type I. When a decision is made to accept poor quality
as good (classify defective items as nondefectives), the error is called Type II  (Minton
(1969)).
We will denote as  number of contaminated records found the successfully identified
records which belong to the candidates set. That set is suggested by the algorithm, and its
size (the number of candidates analyzed) depends strongly on the parameters, as will be
pointed out later. Its quotient is an estimate of the complement of the Type I error:

CE EI I= − =1 (number of contaminated surveys found)
(number of  candidates analized)

 

and it measures the rate of success looking from the point of view of the reviewing process.
It should be noted that in a production environment CEI  can be measured by the end user
without knowing the total number of errors (i.e., without retyping twice the whole dataset).
Another important number is the probability associated with a purely random choice, i.e.
without using any rule in selecting the candidate set. As long as the procedure goes forward,
an accepted set is created. The Type II error associated is defined by the quotient

EII = (number of  contaminated surveys not found)
( total number of  "classified as acceptable"  surveys)

This quotient can be expressed in more rigorous terms, as:

EII =







initial number of 
contaminated surveys

  -  
accumulated number of

contaminated surveys found
 

( total number of surveys -  accumulated number of  candidates analized)

The EII  value also measures the probability to locate an error in the acceptable dataset
with any blind (or random) procedure like the standard duplicate performance. Instead of
presenting the evolution of the EII  index, a clearer measure of success is used, and it was
defined as

η2 = (accumulated number of contaminated surveys found)
(initial number of  contaminated surveys)

This statistic monotonically increases from step to step, and it is bounded by 100 %, which
implies that all the contaminated values have been located. It will also allow to compare
directly the improvement over the standard duplicate performance method.
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V.- Results

The calculations were carried out for 1, 2 and 3 wrong answers per record. Figure 3 shows
the results for the first three steps in terms of the ratio η2   for 100 replications of the
experiment. The best results arise for a marginal value of  0.10%, where the methodology
were able to locate 25% of the original errors (and in some cases, nearly 50%) in a single
step of the procedure. The case of 0.01% looks very striking, because it represents two
different bimodal, bell shaped distributions. This behavior is connected to some extent to
the small number of records involved, as it will be shown later, and the picture is still
incomplete because it does not show the effort involved in each step.  Again, the value
chosen for the marginal value is not crucial.
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Figure 3 Distribution of the accumulated fraction of the total errors located up to the first three steps. Plots
derived after 100 experiments, modifying 3% of the records with 2 errors each.

Figure 4 is itself a global summary of the behavior of the method. The x-axis is the fraction
of the total dataset retyped, while the y-axis represent η2 , the fraction of the total errors
found. We should emphasize that the continuous line indicates the locus of the theoretical
evolution of the standard (blind) duplicate performance method, i.e.: by typing the x% of
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the whole dataset, the same x% of the errors were removed (notice that the line goes
through the (20%,20%) point). For any choice of the marginal value, the methodology
proves to be better than the standard duplicate method, and since the behavior was very
similar, only the case of 0.10% is shown. The dotted line is the best you can attain: retype
first only those records that have errors. In the figure while retyping only 5% of the original
data (x-axis) we can locate an amount of the original errors ranging from 25-60%, and when
retyping 10%, 40-75% can be located.

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100
Overall results vs. effort level

3% of the surveys initially contaminated
with 2 errors each; Marginal  0.10%

Be
st

 p
os

si
bl

e 
op

er
at

io
n 

lin
e

Expected duplicate performance locus

Figure 4 Evolution of the remaining errors against the retyping effort for the suggested depuration order and the
blind retyping. Plots derived after 100 experiments, modifying 3% of the records with 2 errors each.

Further work will show a degraded performance, because the “worst” errors have already
been located. The limit goal of the procedure will be also the (100%,100%) point, because
if all the data are checked we assume that all the errors will be removed.  This procedure is
intended to be applied for partial retyping.
The previous figures have presented the results with the records contaminated with 2 errors
each. As expected, with 3 or more errors per record the results will be better while with 1
error they will be worse. For the 3 errors per record case, figure 5 show that after retyping
10% of the database, 50-85% of the errors have been corrected. For the case of a single
error per record, fig.  6 shows that after retyping 10% of the database, only 25-50% of the
errors have been corrected at most. The reader may notice that the cloud do not show any
point over 16%; that's because we limit ourselves to 10 steps in the procedure. Even in this
difficult case, the method is typically 4 times better than the blind retyping.
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Some results regarding the initial number of  erroneous records (not presented) show that
the behavior of the best fit curve is almost independent of such value, but the dispersion is
lower for larger initial number of erroneous records. This fact is a very desirable property,
because poor quality dataset can be handled without loosing performance.
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Figure 5 Evolution of the remaining errors against the retyping effort for the suggested depuration order and the
blind retyping. Plots derived after 100 experiments, modifying 3% of the records with 3 errors each.

VI.- Discussion

Comparing the use of logical edits against the present methodology, some clear differences
arise. The methodology proposed in this work does not require any expert, since the “rules”
(if any) are embedded in the population. Even the dichotomic answers (like marital status,
sex, etc.) which are mutually exclusive, are handled gracefully, and need not to be analyzed
separately. Moreover, when the population is updated using mostly the same questions, but
with changes in some of them, all related rules should be revised. If a question is
ambiguous, the rule can be wrong, while the proposed methodology probably will flag the
answers as “uncorrelated” and will remove automatically from the feasible set.
Since the mere retyping is a completely “blind” methodology, it will locate equally well
errors in “unusual” as well as “typical” individuals, keeping the variability of the dataset,
while both the proposed methodology and the logical edits are oriented toward flagging
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only those errors which make a particular individual “unusual”. Then they will diminish the
variability of the dataset.
However, it should be admitted that the application either of logical rules or mere retyping
do not require a large population of individuals, while this methodology implicitly does.
Other limitation of  the reported methodology is that not all the questions can be controlled,
either because of  almost trivial answer or low correlation with other answers. Moreover, it
cannot handle individuals with missing values.
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Figure 6 Evolution of the remaining errors against the retyping effort for the suggested depuration order and the
blind retyping. Plots derived after 100 experiments, modifying 3% of the records with 1 errors each.

The numerical procedure is quite simple. It requires first to transform all answers to a
“check box” format, so only ones or zeros will be admitted as answer. Then, the covariance
matrix is constructed and its eigenvectors calculated, and a new table of projections (scores)
of the original individuals over the eigenvectors is created. By analyzing the eigenvectors, a
critical set of the scores is chosen in order to calculate for each an outlier region. Every
individual with at least one  of  its scores lying on those region should be retyped. All the
procedure can be automated. Once calculated the eigenvectors and the critical set, it can be
applied even during the first typing process, allowing for near real time quality control.
The sensitivity to some parameters have been tested during the work, and for others not.
Among the first, the margin (related with the number of individuals to be retyped in each
step) was only weakly significant. The methodology for selecting the principal components
to check seems feasible, but no further tests have been done.
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For perfectly uncorrelated answers as a limiting case, the procedure is equivalent to looking
for answers with low probability, which is also a feasible procedure.

IX.- Conclusions

The problem of quality control of categorical data is treated with a methodology derived
from statistical procedures for quantitative data. Two other alternatives can be analyzed, the
duplicate performance method and the use of logical edits. The first is very simple and
popular, and requires typing again the same dataset. Its ability in locating errors for a given
typing effort is known to be low. The use of logical edits strongly rely on the existence of an
expert, which should prepare a set of rules, expressed in terms of logical relationships
between the answers. When any of them is not met, the record is flagged as unusual, and
retyping is performed. Here an alternative is proposed in order to reorder carefully what
should be retyped.
Some limitations of this procedure are: a somewhat large (yet undefined) population is
required as well as a minimum number of options for the answers, it cannot handle missing
data, and depending on the inherent characteristics of the population, some answers or
options for answers are not checked. The users for a methodology like this are still those
which are either collecting or using the raw data; we are not giving any tool to check
derived statistics (like averages in a region, etc.).
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